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ABSTRACT OF THE DISSERTATION

Higher-Dimension Operators and Applications in SMEFT and Tidal Gravitational Effects

by

Eric Jonathan Sawyer

Doctor of Philosophy in Physics

University of California, Los Angeles, 2021

Professor Zvi Bern, Chair

This dissertation explores the effects of higher-dimension operators in scattering amplitudes,

and how such amplitudes can be used to gain insight into areas of physics ranging from

elementary particle interactions to the tidal responses of black holes and neutron stars.

Chapter 1 provides a brief introduction to higher-dimension operators and the Effective

Field Theories (EFTs) which are their natural environment. In Chapter 2, we prove a

theorem stating that operators which are ”longer” in a specific sense cannot renormalize

”shorter” operators at low loop levels. This result applies very generally, and can apply at

high loop levels given the appropriate operators. We also discuss how the theorem applies

to specifically to the Standard Model Effective Field Theory (SMEFT). In Chapter 3, we

extend this discussion of renormalization within the SMEFT by calculating a large class

of one loop amplitudes of dimension-six SMEFT operators and showing how to use these

amplitudes to compute two loop anomalous dimensions. Finally, in Chapter 4 we turn the

calculation of amplitudes with higher-dimension operators to the purpose of calculating the

effects of tides on the gravitational potential between, for example, orbiting black holes and

neutron stars. This work, which includes in principle the leading effect of tidal operators at

all loops, has direct relevance for gravitational wave detectors.
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Chapter 1

Introduction

Our understanding of physics has for centuries developed on the principle that simple rules

dominate on the scales we experience in our day to day lives, and as situations approach

the more extreme, be it on the scale of particles or on the scale of galaxies, new effects

begin to result in corrections to the familiar rules. This intuition that new physics can be

conceived as corrections to theories that work well at low energy is the foundational idea

behind Effective Field Theories (EFTs). In this context, the normal field theory require-

ment for renormalizability is discarded, with the assumption that a renormalizable theory

ultimately describes physics at high energies. However, knowledge of the high energy theory

is unnecessary for understanding the physics at low energies, which can simply be described

in terms of a low energy theory plus corrections given by higher-dimension operators. These

operators, constructed only out of the fields of the low-energy theory, capture corrections

given by the high-energy physics, and are suppressed by a characteristic high-energy scale.

The Standard Model Effective Field Theory (SMEFT) provides an illustrative example.

The well-known Standard Model Lagrangian,

L(4)
SM = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµϕ)†(Dµϕ) +m2ϕ†ϕ− 1

2
λ(ϕ†ϕ)2

+ i(l̄ /Dl + ē /De+ q̄ /Dq + ū /Du+ d̄ /Dd)− (l̄Γeeϕ+ q̄Γuuϕ̃+ q̄Γddϕ+ h.c.) (1.1)

1



is fully renormalizable in four dimensions, with all of the terms being of dimension four.

The requirement of renormalizability leaves little room for adding additional physics, but in

the framework of an effective field theory, we can add additional higher-dimension operators

which provide corrections to the Lagrangian, and thus to the physical scattering amplitudes:

L = L(4) +
1

Λ

∑
i

c
(5)
i O

(5)
i +

1

Λ2

∑
i

c
(6)
i O

(6)
i +O

(
1

Λ3

)
, (1.2)

where operators with higher mass dimension are suppressed by more powers of the high-

energy scale Λ. A comprehensive review of the SMEFT can be found in Ref. [1]

Within this bottom-up approach for building an EFT, no assumption is made about the

relative magnitudes of the operator coefficients (c
(5)
i , c

(6)
i etc.). It is thus important to include

all possible operators in the Lagrangian for each operator dimension, and thus for each power

of Λ−1. This can prove a challenge at higher dimensions, as the number of operators quickly

grows out of hand. For example, there is only one valid operator at dimension five for the

SMEFT, fifty-nine valid operators at dimension six [2], and 1,029 operators at dimension

eight [3], not including the large variety of flavor structures allowed. The benefit of this

completeness, however, is that by experimentally searching for the effects of these operators,

we can systematically search for new physics without assuming a model for its high-energy

realization.

Along with the need to systematically explore the effects of the higher-dimension opera-

tors individually, care must be paid to understand the relationships between the operators

under the renormalization group flow. Understanding the meaning behind the experimen-

tal appearance of certain operators involves performing EFT matching at the high energies

relevant to the underlying theory, but experiments can only access data at the relative low

energies of particle colliders. The evolution of the theory between the two scales is described

2



by the renormalization group equation,

[
(µ∂µ + β ∂) δij +

(
γUV − γIR

)
ij

]
Fj = 0, (1.3)

where Fj[p1, ..., pn; q;µ] = 〈p1, ..., pn|Oj(q)|0〉 is a form factor, and γUVij is the anomalous

dimension, which can be computed perturbatively and describes the running of the couplings

from the high-energy scale down to the energies accessible by experiment.

In the landmark works of Refs. [4], the authors completed a systematic computation of

the one-loop anomalous dimension matrix for dimension-six operators in the SMEFT. Besides

their importance for interpreting experimental data, these calculations reveal a remarkable

structure with the appearance of nontrivial zeros in the anomalous dimension matrix [5].

These zeros implied an unforeseen structure in the SMEFT, as the general naive assumption

for EFTs is that every operator that is not forbidden from renormalizing another operator will

produce a non-zero anomalous dimension. The one-loop zeros were elegantly explained using

helicity selection rules [6], but the question remained whether they would persist at higher

loop orders, or whether this was an accident of the simplicity of the one-loop calculations.

In Chapters 2 and 3 we show that indeed there is additional structure beyond one loop in

the SMEFT anomalous dimension matrix. We make use of an elegant formalism developed

by Caron-Huot and Wilhelm in [7], which casts the calculation of the anomalous dimensions

in terms of on-shell form factors and amplitudes.

On-shell methods have gained in prominence in a large variety of physical settings, includ-

ing, for example, collider physics (see e.g. Refs. [8]), ultraviolet properties of (super)gravity

(see e.g. Refs. [9]), cosmological observables (see e.g. Refs. [10]), and gravitational wave

physics(see e.g. Refs. [11]). This is in large measure due to the ability to construct higher

loop integrands and amplitudes out of lower loop objects, and often merely out of tree level

amplitudes. This manner of construction avoids the need for Feynmann rules that are simple

to state, but which in practice lead to an explosion of terms in the intermediate stages of the

3



calculation. The SMEFT community has also seen a shift to the inclusion of more on-shell

methods, including the classification of interactions in an on-shell framework [12] and the

calculation of some anomalous dimensions using on-shell methods [13].

In the context of anomalous dimensions and renormalization-group analyses, unitarity

cuts give us direct access to renormalization-scale dependence. After subtracting infrared sin-

gularities, the renormalization-scale dependence can be read off from remaining dimensional

imbalances in the arguments of logarithms [7]. The direct link between anomalous dimen-

sions at any loop order and unitarity cuts is made explicit in the formulation of Caron-Huot

and Wilhelm. In Chapter 2, we use their on-shell formalism, along with an insight about

the nature of scaleless integrals, to demonstrate that non-trivial zeros in the anomalous

dimension matrix persist at any given order in perturbation theory.

In Chapter 3, we continue this analysis of the dimension-six SMEFT operators by showing

the calculation of a number of two-loop anomalous dimension matrix elements. Along the

way, we calculate a large class of the full one-loop amplitudes, which are used as building

blocks in the two loop calculation. We also verify a number of the one-loop anomalous

dimensions calculated in Refs. [4]. We will further show that additional structure can be

found in the two-loop anomalous dimensions, including the ability to set certain matrix

elements to zero using judicious choices of the renormalization scheme for the one-loop

amplitudes.

While we have so far focused on the SMEFT as our example of an EFT with higher

dimension operators, another example is the calculation of corrections to gravitational wave

signals, as detected by the LIGO and Virgo collaborations [14]. In this context, the physics

of the gravitational interaction between black holes or neutron stars binary pairs is viewed

as a process that takes place on a number of characteristic scales [15]. The wavelength

of the gravitational radiation represents the largest scale, from which the radiation may

well be represented as emanating from a point source. Zooming in, the separation between

the two bodies represents the next scale, where the bodies themselves are treated as point

4



Inspiral Merger Ringdown 

Post Newtonian 
Theory 

Perturbation 
Theory 

Numerical 
Relativity Figure 1.1: Diagram of a binary merger gravitational wave signal. The perturbative methods

discussed here are used to analyze the inspiral phase, with higher-order corrections becoming more
prominent as the merger phase approaches. Figure reproduced from Ref. [16]

particles. Indeed at this scale the leading contributions to the gravitational wave signal can

be calculated quite accurately. However, finite size effects are not included by treating the

particles as point sources. In an EFT setting, however, the separation of scales lends the

problem naturally to doing just that, but including finite size effects as corrections due to

higher-dimensional operators.

These corrections are encoded in their effects on the two-body Hamiltonian,

H(p, r) =
√

p2 +m2
1 +

√
p2 +m2

2 + V (p, r) , (1.4)

and are extracted systematically, following the general approach introduced in Ref. [17], by

matching QFT scattering amplitudes to a non-relativistic EFT. The potential is analyzed

perturbatively, either in the Post-Minkowskian (PM: expansion in the gravitational coupling

G, all orders in velocity), or in the Post-Neutonian (PN: expansion in the velocity, with

v2/c2 ∼ G) schemes. Either scheme produces physically equivalent results in their regions of

overlap, and both are used extensively to study the inspiral phase of the binary merger, as

illustrated in the diagram of a gravitational wave signal in Figure 1.1. The PM expansion

5



has the benefit of taking advantage of modern amplitude techniques, including construction

from unitary cuts of on-shell tree amplitudes. Recently, friendly competition between those

working in either scheme has led to results including the 4PM potential [18] (fourth order in

G), the full 4PN potential [19], and partial results up to 6PN [20].

These results effectively treat the objects as scalar particles with no spin or internal struc-

ture, but the EFT methods used can also accommodate both these additional complications.

In terms of spin, progress has been made by a number of authors, including the calculation

of spin1· spin2 effects up to O(G2) [21] in the PM framework. In the PN framework, recent

results include the N3LO quadratic in spin static contribution at order G4 [22], the NLO

gravitational quartic-in-spin interaction [23], and the N3LO spin-orbit coupling at order G4

[24].

These works still treat the objects effectively as point particles without internal structure,

however, but recently finite size effects have begun to receive more attention in both the PN

[25] and PM [26] frameworks, including the calculation of the leading effects of the first-

relevant tidal operators. In Chapter 4 of this thesis, we greatly expand upon previous results

on the finite size effects by presenting the two-body Hamiltonian and associated eikonal

phase, to leading PM order, for infinitely many tidal deformations described by operators

with arbitrary powers of the curvature tensor. We proceed to derive the leading contributions

of various infinite classes of Rn-type tidal operators and also comment on their higher-order

contributions. Lastly, we discuss the application of our methods to the case of pure Rn

extensions of General Relativity.
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L. Bernard, L. Blanchet, A. Bohé, G. Faye and S. Marsat, “Fokker action of nonspinning

compact binaries at the fourth post-Newtonian approximation,” Phys. Rev. D 93, no.8,

084037 (2016) [arXiv:1512.02876 [gr-qc]];
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Chapter 2

Non-renormalization and operator

mixing via on-shell methods

Using on-shell methods, we present a new perturbative non-renormalization theorem for

operator mixing in massless four-dimensional quantum field theories. By examining how

unitarity cuts of form factors encode anomalous dimensions we show that longer operators

are often restricted from renormalizing shorter operators at the first order where there exist

Feynman diagrams. The theorem applies quite generally and depends only on the field

content of the operators involved. We apply our theorem to operators of dimension five

through seven in the Standard Model Effective Field Theory, including examples of nontrivial

zeros in the anomalous-dimension matrix at one through four loops. The zeros at two and

higher loops go beyond those previously explained using helicity selection rules. We also

include explicit sample calculations at two loops.
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2.1 Introduction

A key challenge in particle physics is to identify physics beyond the Standard Model. Be-

cause current experimental data at colliders is well described by the Standard Model, it

is unclear which theoretical direction will ultimately prove to be the one chosen by Na-

ture. It is therefore important to quantify new physics beyond the Standard Model in a

systematic, model-independent manner. The theoretical framework for doing so is via effec-

tive field theories that extend the Standard Model Lagrangian by adding higher-dimension

operators [1, 2]:

∆L =
∑
i

ciOi , (2.1)

with coefficients ci suppressed by powers of a high-energy scale Λ dictated by the dimension

of Oi. The resulting theory, known as the Standard Model Effective Field Theory (SMEFT),

is reviewed in Ref. [3].

As for all quantum field theories, renormalization induces mixing of these operators. This

can be parametrized by the renormalization group equation,

16π2 ∂ci
∂ log µ

= γUV
ij cj , (2.2)

where γUV
ij is the anomalous-dimension matrix and µ is the renormalization scale. Usually,

γUV
ij is calculated perturbatively in the marginal couplings of the Standard Model Lagrangian,

which we will denote collectively as g. The complete one-loop anomalous-dimension matrix

for operators up to dimension six has been computed in Refs. [4, 5]. These calculations reveal

a number of vanishing entries related to supersymmetry [6], which seem surprising at first

because there are valid diagrams that can be written down. These zeros have been elegantly

explained [7] using tree-level helicity selection rules [8], which set certain classes of tree-level

amplitudes to zero. The tree-level vanishings imply through unitarity that certain logarithms

and their associated anomalous dimensions are not present. Although these selection rules
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are reminiscent of supersymmetric ones, they hold for generic massless quantum field theories

in four dimensions.

Might it be possible that beyond one loop there are new nontrivial zeros? At first sight,

this seems rather unlikely because the helicity selection rules fail to hold at loop level. In

this Letter, we show that, contrary to expectations, there are, in fact, additional nontrivial

zeros in the higher-loop anomalous-dimension matrix. As in Ref. [7], our only assumption

is that the theory does not contain any relevant couplings (e.g. masses). To state the new

nonrenormalization theorem we define the length of an operator, l(O), as the number of

fundamental field insertions in O. Then the statement of theorem is as follows:

Consider operators Os and Ol such that l(Ol) > l(Os). Ol can renormalize Os at L loops

only if L > l(Ol)− l(Os).

At fixed loop order, sufficiently long operators cannot renormalize short operators because

there would be too many legs to form a diagram with the right structure. Such zeros in the

anomalous-dimension matrix are trivial. As written above the theorem applies non-trivially

at (l(Ol) − l(Os))-loops, i.e., the first loop order at which there could be renormalization

because diagrams exist. However, in a general theory with multiple types of fields, the first

renormalization can be delayed even further, depending on the precise field content of the

two operators. We encapsulate this into the more general rule:

If at any given loop order, the only diagrams for a matrix element with the external par-

ticle content of Os but an insertion of Ol involve scaleless bubble integrals, there is no

renormalization of Os by Ol.

What makes them nontrivial is that Feynman diagrams exist that seem as if they should

contribute to an anomalous dimension, but fail to do so because the diagrams do not gener-

ate the appropriate logarithms. The Feynman-diagram language can obscure this, because

individual diagrams are not gauge invariant. While not difficult to disentangle at one loop,
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at higher loops it becomes more advantageous to work in an on-shell formalism, which only

takes gauge-invariant quantities as input. Indeed, modern unitarity methods [9] have clar-

ified the structure of loop amplitudes resulting in significant computational advantages for

a variety of problems, including the computation of form factors and associated anomalous

dimensions [10].

2.2 Renormalization and Form Factors

Traditionally, the anomalous dimension corresponding to the renormalization of an operator

Oi by an operator Oj is extracted from UV divergences. These can be found, for instance,

in form factors,

Fj[p1, ..., pn; q;µ] = 〈p1, ..., pn|Oj(q)|0〉 , (2.3)

with an operator insertion Oj and external states |p1, ..., pn〉 that overlap with states created

by Oi. The divergences and associated anomalous dimensions can also be obtained from

one-particle irreducible effective actions or from scattering amplitudes,MOj , corresponding

to form factors with the operator momentum injection q set to zero.

Here we use the elegant on-shell approach developed by Caron-Huot and Wilhelm that

extracts anomalous dimensions directly from renormalized quantities [11]. In this approach,

the intuition that the renormalization properties of the theories are encoded in on-shell form

factors through their logarithms is made precise by the following equation:

e−iπDF ∗ = S F ∗ , (2.4)

where F ∗ is the conjugate form factor with an insertion of an Oj operator. This relates the

phase of the S-matrix, S, to the dilatation operator D which extracts anomalous dimensions.

We point the interested reader to Ref. [11] for its derivation.

For simplicity we use dimensional regularization. In this case the dilatation operator D
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(a)

(c)

(b)

(d)

Figure 2.1: Unitarity cuts relevant for the extraction of anomalous dimensions from one-
and two-loop form factors. The darker blobs indicate a higher-dimension operator insertion.
The double-lined arrow indicates the insertion of additional off-shell momentum from the
operator. The dashed line indicates the integral over phase space of the particles crossing
the cut.

is related to the single renormalization scale µ = µUV = µIR, as D ' −µ∂µ. Expanding

Eq. (2.4) at one loop one obtains the following description of the renormalization of Oi by

Oj

(
γUV
ij − γIR

ij + β(g)∂g
)(1) 〈p1, ..., pn|Oi|0〉(0)

= − 1

π
〈p1, ..., pn|M⊗Oj|0〉 .

(2.5)

On the left hand side we find the tree-level form factor of Oi, the beta function β(g) of

the couplings g, the anomalous dimensions γUV, which are the objects of interest, and the

infrared anomalous dimensions γIR, which arise from soft and/or collinear logarithms. The

superscripts denote the perturbative order. The right hand side arises from the termMF ∗,

where M = −i(S − 1) is the scattering amplitude. The notation ⊗ here refers to an inte-

gration over the phase space of intermediate two-particle states in the product. This simply

corresponds to a one-loop unitarity cut, as depicted in Figure 2.1(a). Schematically, Eq. (2.5)

says that, up to terms coming from the β function, one-loop anomalous dimensions are eigen-

values of the S-matrix, with the form factors being the corresponding eigenvectors. More

practically, this equation describes how to systematically extract the anomalous dimensions

17



from the coefficients of logarithms by taking discontinuities of the form factor.

The fact that dependence on the renormalization scale is related to discontinuities in

kinematic variables is no surprise since the arguments of logarithms must balance kinematic

variables against the renormalization scale to make them dimensionless. This observation has

also been used to efficiently determine the renormalization-scale dependence of the two-loop

counterterm in pure Einstein gravity from unitarity [12].

At higher-loop orders, other unitarity cuts, matching the order of the anomalous dimen-

sion, need to be considered. For instance at two loops, the three-particle cut is required, as

well as the two-particle cut between the tree-level amplitude and the one-loop form factor

and vice versa, as in Fig. 2.1(b–d).

2.3 Non-renormalization theorem

We would like to consider the renormalization of a shorter operator Os by a longer operator

Ol. This could be, for example, the renormalization of φ2F 2 by φ6, where φ is a scalar and

F is a vector field strength. For simplicity we will take Os and Ol to be single operators,

though in general they represent collections of operators with the same field content, but

differing Lorentz contractions or color factors. Because our arguments rely only on the field

content and basic structure of the unitarity cuts, our conclusions will apply just as well to

the more general case.

The formalism reviewed above allows us to connect the anomalous dimensions to unitarity

cuts of form factors, given knowledge of the β function of the leading couplings and the

infrared anomalous dimensions. We now show that for the leading contributions, there is

an even more direct connection between the ultraviolet anomalous dimensions and unitarity

cuts.

The appearance of the β function in Eq. (2.5) is avoided simply by extracting the anoma-

lous dimensions from the minimal form factor of Os, which is defined as the one with the
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minimum number of legs needed to match the operator. We will denote this by a subscript on

the state, |p1, ..., pn〉s. Because of its defining property, the minimal tree-level form factor is

local and does not depend on the couplings, g. Therefore the dependence of the higher-loop

analog of Eq. (2.5) on the β function drops out.

Next, we would need knowledge of the infrared anomalous dimension γIR. Infrared sin-

gularities are very well understood [13–16]. Our case is special, with a rather simple infrared

structure. We are interested in the first loop order at which the higher-dimension operator

could be renormalized. This would be the first loop order for which it is possible to write

down valid diagrams. The lack of diagrams at lower-loop order means there cannot be any

log(µIR) terms or corresponding γIR at the given loop order under consideration. In addition,

infrared singularities are diagonal for the operators with distinct fields, mixing only via color.

Therefore at this order γIR = 0. Various examples will be given in Ref. [17].

Thus, application of Eq. (2.4) is particularly simple for our case so that the relation

between the first potentially nonvanishing anomalous dimension and unitarity cuts is direct:

(γUV
sl )(L)

s〈p1, ..., pn|Os|0〉(0)

= − 1

π
s〈p1, ..., pn|M⊗Ol|0〉 .

(2.6)

With this relation at hand, it is now straightforward to argue for new non-renormalization

zeros by analyzing the allowed unitarity cuts. Eq. (2.6) gives (γUV
sl )(L) in terms of a sum

over cuts of the form illustrated in Fig. 2.1. The left-hand side of any such k-particle cut

is a nM-point amplitude, with the number of particles external to the cut equal to nM − k.

Similarly the right-hand side is an nF -point form factor, with nF −k particles external to the

cut. Now, for the minimal form factor, the total number of external particles must match

the length of Os, so we must have the relation,

nM + nF − 2k = l(Os) . (2.7)
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The number of legs nM and nF are both bounded from below. For the unitarity cut to be

non-zero, the scattering amplitude on the left must have at least two external particles, that

is, nM ≥ k + 2. On the other side, nF is restricted by the requirement that the form factor

not include any scaleless bubbles. Since all legs of the form factor, including those crossing

the cut, are on shell, any such scaleless bubbles would evaluate to zero. At one loop, for

example, this implies nF ≥ l(Ol), which is the same as the tree level relation. At higher

loops the particle count can be reduced depending on the number of loops in the form factor,

which produces the relation

nF ≥ l(Ol)− (LF − 1)− δLF ,0 . (2.8)

Here LF is the number of loops contained in the form factor. δLF ,0 is unity if the form factor

is at tree level and zero otherwise, which accounts for the fact that there is no reduction

in particle number between tree level and one loop. By considering the possible placings

of the loops in the cut or on either side of the cut, we have LF ≤ L − (k − 1), implying

nF ≥ l(Ol) − L + k − δLF ,0. Combining this with the condition on nM and plugging in to

equation (2.7), we obtain

l(Ol)− L+ 2− δLF ,0 ≤ l(Os) . (2.9)

This inequality shows that the difference in length of the operators can preclude the renor-

malization unless

L > l(Ol)− l(Os) , (2.10)

and thus completes the proof of the first form of our theorem. In summary, we have shown

that at loop orders less than or equal to l(Ol) − l(Os) there are no allowed unitarity cuts

that can capture the coefficient of log(µ2), which in turn implies that γUV
sl = 0. Eq. (2.9) also

shows that the contributions to the anomalous dimension at loop order L = l(Ol)− l(Os)+1

are captured by cuts of the type in Figs. 2.1(a) and 2.1(b), that are given purely in terms of
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tree-level matrix elements. Cuts of the type in Fig. 2.1(c) are directly ruled out by Eq. (2.9)

and cuts of the type in Fig. 2.1(d) are ruled out because l(Ol) − l(Os) + 2 legs need to be

sewn across the cut to have a total of l(Os) external legs, so that all l(Ol)− l(Os) + 1 loops

are accounted for in the cut. This observation should help in their computation, for instance

by allowing the use of four-dimensional helicity methods to evaluate the cut. It also implies

that helicity selection rules can be active beyond one loop, contrary to expectations.

Depending on the particle contents of the two operators, it might happen that there

are no allowed unitarity cuts even at a higher loop order than the one predicted by the

first form of the theorem. Instead of analyzing the unitarity cuts, this can be explained in

the more familiar diagrammatic language. Clearly, if the only diagrams that can be drawn

involve scaleless bubbles, there will be no available cut where all loops are included in the

cut. Thus, diagrams with fewer cut legs will force the form factor to include the scaleless

bubble, and thus to evaluate to zero. Then the corresponding anomalous dimension must

also be zero. This explains the more general rule presented in the introduction. As noted

above this relies on the absence of infrared singularities whenever corresponding lower-loop

form factors vanish.

Examples of zeros in the SMEFT at one loop are the renormalization of F 3 by φ2F 2,

and of D2φ4, Fφψ2, and Dφ2ψ2 by φ3ψ2, which were already explained using the helicity

selection rules [7], but also follow from the principles described here. In contrast to the

helicity selection rules, however, our theorem can also apply at higher loops. The full set of

zeros predicted by our rules for operators of dimensions five, six and seven includes examples

at one through four loops and is described in Tables 2.1, 2.2, and 2.3 respectively. The tables

also indicate the overlap between our theorem and the one-loop helicity selection rules of

[7]. Note we have combined some of the categories of operators of [7], since our theorem

does not need to distinguish operators based on their chirality.

21



2.4 Two-loop examples

Consider now two calculations that show explicit examples, from Table 2.2, of the nontrivial

zeros in the anomalous-dimension matrix at two loops. The examples will also demonstrate

the vanishing of γIR. The first example is the renormalization of Oφ2F 2 by Oφ6 , which is the

entry (2,8) of Table 2.2.

The minimal two-loop form factor forOφ2F 2 includes two external scalars and two external

gauge bosons. The product MF ∗ in Eq. (2.4) at two loops requires either a cut between a

five-point amplitude and the tree-level form factor or a four-point amplitude and a one-loop

form factor with an insertion of Oφ6 . However, the cut between the five-point amplitude and

the tree-level form factor leaves five total external legs, and thus cannot match the minimal

form factor for Oφ2F 2 . For the cut between the four-point amplitude and the one-loop form

factor to match the minimal form factor for Oφ2F 2 , the one-loop form factor would have to

involve a massless tadpole, which would evaluate to zero.

We can also directly check that the (single) diagram—Fig. 2.2(a)—for the Oφ6 → Oφ2F 2

renormalization evaluates to zero. By incorporating an IR regulator λIR, we can evaluate the

integral while keeping the UV and IR dependences separate and determine the behavior of

the form factor in the limit λIR → 0. The integral for this diagram immediately factorizes,

and each of the two loop integrals is of the form

∫
dD`1

(2π)D
(2`1 − k1) · ε1

(`2
1 − λIR)((`1 − k1)2 − λIR)

. (2.11)

This integral vanishes by the on-shell condition k1 · ε1 = 0 and Lorentz invariance, since k1

is the only available momentum. Therefore Oφ6 cannot renormalize Oφ2F 2 at two loops.

For a slightly more complex example, consider the renormalization of OF 3 by Oψ4 at two

loops, corresponding to entry (1,6) of Table 2.2. Again, for this process the three-particle

cut between the five-point amplitude and the tree-level form factor does not produce the
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Table 2.1: Application of the non-renormalization theorem to dimension-five operators. The
operators labeling the rows are renormalized by the operators labeling the columns. ×L
indicates the theorem applies at L-loop order. (L) denotes that there are no diagrams
before L-loops, but renormalization is possible at that order, since the required cuts can
exist. Light-gray shading indicates a zero at one loop due to helicity selection rules, while
dark-gray shading indicates the entry is a new zero predicted by our non-renormalization
theorem.

F 2φ Fψ2 φ2ψ2 φ5

F 2φ (2) ×2

Fψ2 ×1 ×3

φ2ψ2 (2)

φ5

Table 2.2: Application of the non-renormalization theorem to dimension six. The notation
is explained in Table I.

F 3 φ2F 2 Fφψ2 D2φ4 Dφ2ψ2 ψ4 φ3ψ2 φ6

F 3 ×1 (2) ×2 ×2 ×2 ×3 ×3

φ2F 2 (2) ×2

Fφψ2 ×1 ×3

D2φ4 ×1 ×2

Dφ2ψ2 ×1 (3)

ψ4 (2) (4)

φ3ψ2 (2)

φ6

correct external-particle state corresponding to the field content of OF 3 . The two-particle

cut between the four-point amplitude and the one-loop form factor with an insertion of Oψ4

is shown in Figure 2.2(b). By again adding an IR regulator, the result can be written as

∫
dLIPS`1

dD`2

(2π)D
Tr[X(`1)/̀2/ε3(/̀2 − /k3)]

(`2
2 − λIR)((`2 − k3)2 − λIR)

, (2.12)

where X receives contributions from the multiple possible diagrams of the four-point ampli-

tude and includes the remaining propagators.

One can reduce the `2 tensor integrals using standard techniques to obtain the following

result
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Table 2.3: Application of the non-renormalization theorem to dimension seven. The notation
is explained in Table I. The shortest and longest operators have been dropped from the list
of columns and rows, respectively, since our theorem requires a reduction in length of the
operators.

φ3F 2 D2φ5 Dφ3ψ2 φψ4 Fφ2ψ2 φ4ψ2 φ7

F 3φ ×1 ×2 ×2 ×2 (2) ×3 ×3

DFφψ2 (2) ×2 ×1 ×1 ×1 ×2 ×4

F 2ψ2 (2) (3) (2) (2) ×1 ×2 ×4

D2φ2ψ2 (2) (2) ×1 ×1 ×1 ×2 (4)

Dψ4 (3) (3) (2) ×1 (2) (3) (5)

φ3F 2 (2) ×2

D2φ5 ×1 ×2

Dφ3ψ2 ×1 (3)

φψ4 (2) (4)

Fφ2ψ2 ×1 ×3

φ4ψ2 (2)∫
dD`2

(2π)D
`µ2`

ν
2

(`2
2 − λIR)2

∫
dLIPS`1 Yµν(`1) (2.13)

=− iΓ(−1 + ε)

2(4π)2−ε (λIR)1−ε
∫
dLIPS`1 Y

µ
µ(`1) ,

where ε = (4 − D)/2, Y contains the rest of the trace in Eq. (2.12), and terms linear in

`2 cancel. Since the phase-space integral can at worst result in a log(λIR) divergence, the

factor (λIR)1−ε ensures that the expression goes smoothly to zero as λIR approaches zero for

all orders in ε. Therefore the cut vanishes, along with the UV anomalous dimension.

2.5 Conclusions

We have derived a new non-renormalization theorem that applies to higher-dimensional

operators in quantum field theory. Since the theorem is dependent on only the number

and type of fields in each operator, it applies to generic massless theories with no relevant

operators.
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(a) (b)

Figure 2.2: (a) Diagram showing the only possible two loop contribution to the renormal-
ization of Oφ2F 2 by Oφ6 . (b) Cut of a form factor showing that Oψ4 cannot renormalize OF 3

at two loops. The solid square indicates the insertion of the φ6 or ψ4 operator, respectively.

Besides being helpful to find zeros of the anomalous-dimension matrix, the on-shell for-

malism of Ref. [11] is a good way to compute nonzero entries as well. Whenever an entry

is excluded by our theorem, it should be much simpler to compute the entry at the next

loop order compared to computing a generic entry at that loop order, because only tree-level

quantities enter the cuts. In addition, helicity selection rules [7] might then apply, pushing

the zero one loop further. For instance, it is straightforward to confirm that many of the

nonzero entries in the tables above vanish in the absence of Yukawa couplings. It would

also be interesting to combine our results with those of Ref. [18], where dimensional-analysis

counting rules are used to constrain coupling-constant dependence, and more generally to

find the full set constraints in the multiloop anomalous-dimension matrix of the SMEFT.

On-shell methods [9] are also a good way to compute amplitudes including higher-dimension

operators. Using these we have computed four-point one-loop massless amplitudes and asso-

ciated anomalous dimensions of the SMEFT dimension-six operators, which will be described

elsewhere [17].
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Chapter 3

Structure of two-loop SMEFT

anomalous dimensions via on-shell

methods

We describe on-shell methods for computing one- and two-loop anomalous dimensions in the

context of effective field theories containing higher-dimension operators. We also summarize

methods for computing one-loop amplitudes, which are used as inputs to the computa-

tion of two-loop anomalous dimensions, and we explain how the structure of rational terms

and judicious renormalization scheme choices can lead to additional vanishing terms in the

anomalous dimension matrix at two loops. We describe the two-loop implications for the

Standard Model Effective Field Theory (SMEFT). As a by-product of this analysis we verify

a variety of one-loop SMEFT anomalous dimensions computed by Alonso, Jenkins, Manohar

and Trott.
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3.1 Introduction

Effective Field Theory (EFT) approaches have risen to prominence in recent years as a

systematic means for quantifying new physics beyond the Standard Model. The Standard

Model Effective Field Theory (SMEFT) incorporates the effects of new physics via higher-

dimension operators built from Standard Model fields [1, 2]. The operators are organized

according to their dimension, which gives a measure of their importance at low-energy scales.

The SMEFT allows exploration of the effects of new physics without requiring a complete

understanding of the more fundamental high-energy theory. While systematic, the SMEFT

involves a large number of operators and free coefficients [3], making it useful to develop im-

proved techniques for computing quantities of physical interest and for understanding their

structure. One such quantity is the anomalous dimension matrix of the higher-dimension

operators. The appearance of anomalous dimensions implies that the Wilson coefficients of

operators at scales accessible by collider experiments differ from those at the high-energy

matching scale to the more fundamental unknown theory. These also control operator mix-

ing, providing important information on how experimental constraints from one operator

affect the coefficients of other operators. This makes evaluating the anomalous dimension

matrix a crucial aspect of interpreting results within the SMEFT. Towards this goal, here we

apply on-shell methods that greatly streamline the computation of anomalous dimensions at

one and two loops and expose hidden structure.

A systematic and complete computation of the one-loop anomalous dimension matrix for

dimension-six operators in the SMEFT is found in the landmark calculations of Refs. [4].

Besides their importance for interpreting experimental data, these calculations reveal a re-

markable structure with the appearance of nontrivial zeros in the anomalous dimension

matrix [5]. These one-loop zeros have been understood as stemming from selection rules

that arise from supersymmetry embeddings [6], helicity [7], operator lengths [8], and angular

momentum [9]. Perhaps even more surprisingly, nontrivial zeros in the anomalous dimension
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matrix of the SMEFT appear at any loop order and for operators of any dimension [8]. In

addition, a surprising number of the associated one-loop scattering amplitudes vanish as

well [9, 10], suggesting additional zeros may appear in the anomalous dimensions at two

loops. Here we apply on-shell methods to identify a new set of vanishing terms in the two-

loop anomalous dimension matrix of the SMEFT. As a by product of our two-loop study,

we also confirm many one-loop anomalous dimensions computed in Refs. [4], via both the

generalized unitarity method [11] and an elegant new unitarity-based method due to Caron-

Huot and Wilhelm for directly extracting anomalous dimensions from cuts [12], which builds

on insight developed in earlier work on N = 4 super-Yang-Mills theory [13].

On-shell methods have proven to be quite useful in a variety of other settings, including

collider physics (see e.g. Refs. [14]), ultraviolet properties of (super)gravity (see e.g. Refs. [15–

18]), theoretical explorations of supersymmetric gauge and gravity theories (see e.g. Refs. [19,

20]), cosmological observables (see e.g. Refs. [21, 22]), and gravitational-wave physics (see

e.g. Refs. [23]). They have also been used as a convenient means for classifying interactions

in EFTs such as the SMEFT [24]. In addition, general properties of the S-matrix, such as

unitarity, causality and analyticity have been used to constrain Wilson coefficients of EFTs

[25], including the SMEFT [26].

In the context of anomalous dimensions and renormalization-group analyses, unitarity

cuts give us direct access to renormalization-scale dependence. After subtracting infrared

singularities, the renormalization-scale dependence can be read off from remaining dimen-

sional imbalances in the arguments of logarithms [16]. The direct link between anomalous

dimensions at any loop order and unitarity cuts is made explicit in the formulation of Caron-

Huot and Wilhelm [12]. In carrying out our two-loop analysis we make extensive use of their

formulation. Very recently the same formalism and general set of ideas was applied in

Refs. [27, 28] to compute certain SMEFT anomalous dimensions.

In general, two-loop unitarity cuts include both three-particle cuts between two tree-level

objects, as well as two-particle cuts between tree-level and one-loop objects. Consequently,
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our exploration of two-loop anomalous dimensions will require computing one-loop matrix

elements first. On-shell methods, in particular generalized unitary [11, 29, 30], are especially

well suited for this task. Because we feed one-loop matrix elements into higher-loop calcu-

lations, we find it convenient to use D-dimensional techniques which account for rational

terms. To carry out the integration, we decompose the integrands into gauge-invariant ten-

sors along the lines of Refs. [31, 32]. In this form, the integrands can be straightforwardly

reduced to a basis of scalar integrals using integration by parts technology (as implemented,

e.g., in FIRE [33]). These one-loop amplitudes are among the building blocks that feed into

the two-loop anomalous dimension calculation.

Using the unitarity-based formalism, we indeed find that many potential contributions

to the two-loop anomalous dimension matrix vanish for a variety of reasons, including the

appearance of only scaleless integrals [8], color selection rules, vanishing rational terms at

one loop, as well as appropriate renormalization scheme choices at one loop. These vanishing

contributions go beyond those identified in our previous paper [8]. Of the new vanishings,

perhaps the most surprising is the finding that additional zeros can be induced at two loops

by slightly adjusting the MS renormalization scheme at one loop. This is tied to the fact that

two-loop anomalous dimensions and local rational contributions to one-loop amplitudes are

scheme dependent, and can therefore be set to zero by appropriate finite shifts of operator

coefficients, or, equivalently, by a finite renormalization of the operators, or the addition of

finite local counterterms.

For simplicity, we use a non-chiral version of the Standard Model, with zero quark and

Higgs masses, zero Yukawa couplings, and without an Abelian sector, but point out overlap

with the SMEFT in Section 3.5. We note that although we only utilize Dirac fermions here,

on-shell methods are well suited for dealing with chiral fermions as well (see e.g. Refs. [14,

29]). In any case, this model is a close enough cousin of the SMEFT that we can directly

verify a variety of one-loop SMEFT anomalous dimensions calculated in Refs. [4], finding

full agreement, and make some predictions about the structure of the two-loop anomalous
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dimension matrix.

The paper is organized as follows. In Section 3.2, we explain our conventions, list the

higher-dimensional operators in our simplified version of the SMEFT, and summarize the

on-shell methods that we use to obtain anomalous dimensions. In Section 3.3 we explain

the use of generalized unitarity in constructing full one-loop amplitudes, and we discuss the

appearance of numerous zeros in the rational terms of the amplitudes. We also explain how

finite counterterms can produce additional zeros in the rational terms of many of the one-

loop amplitudes. Examples of additional vanishing contributions to the two-loop anomalous

dimension matrix are presented in Section 3.4, including those that arise from finite coun-

terterms at one-loop. In Section 3.5 we discuss the overlap between our simplified model

and the full SMEFT in the basis of operators used in Refs. [4], and discus the implications

of our results for the latter theory. We give our conclusions in Section 3.6. Appendix 3.A ex-

plains the projection method used for integration in detail and lists the gauge invariant basis

tensors. The explicit D-dimensional forms of the full one-loop amplitudes, as well as their

four-dimensional finite remainders, are relegated to the ancillary files [34] and Appendix 3.B,

respectively.

3.2 Setup and formalism

We now present our conventions and explain the on-shell formalisms that we use for obtaining

the anomalous dimensions. One procedure for doing so is to extract them from ultraviolet

divergences in amplitudes. This procedure follows the generalized unitarity method for

assembling scattering amplitudes from their unitarity cuts [11, 11, 14, 29]. While we describe

the procedure for obtaining the anomalous dimensions in the current section, we leave a more

detailed discussion of the generalized unitarity method for Section 3.3, where it will be used

to construct full amplitudes.

As a second method, we apply the recent formalism of Caron-Huot and Wilhelm [12],
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which directly expresses the anomalous dimensions in terms of unitarity cuts. This method

is particularly effective for computing anomalous dimensions, and is our preferred method

beyond one loop. We show how this method helps clarify the structure of the anomalous

dimension matrix at two loops and exposes new nontrivial zeros.

3.2.1 Conventions and basic setup

To illustrate our methods we will consider a model with dimension-four Lagrangian given by

L(4) = −1

4
F a
µνF

aµν +DµϕD
µϕ− λ (ϕϕ)2 + i

Nf∑
m=1

ψ̄m /Dψm , (3.1)

where the gauge field strength, F a
µν , is in the adjoint representation of SU(N), while ψm

and ϕ are fundamental representation Dirac fermions and scalars, respectively. The index

m on the fermions denotes the flavor; for simplicity we take a single flavor of scalars. The

covariant derivative is given by

(Dµψm)i =
(
δij∂µ + ig

1√
2
T aijA

a
µ

)
(ψm)j , (3.2)

where T aij is the SU(N) generator. We normalize the generator in the standard amplitudes

convention by Tr[T aT b] = δab which differs from the usual textbook one, and we define

fabc = −iTr[[T a, T b]T c] and dabc = Tr[{T a, T b}T c] for later use.1

This model theory has the general structure of the Standard Model, but with all masses

and Yukawa couplings set to zero, and with only one gauge group. Here we also use Dirac

instead of chiral fermions; the basic methods apply just as well to cases which include chiral

fermions in the context of Standard Model calculations, as in Ref. [29].

To mimic the SMEFT we modify this Lagrangian by adding dimension-six operators

1Note that our structure constants, fabc, carry an extra factor of
√

2 relative to standard textbook
conventions [35].
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supressed by a high-energy scale Λ:

L = L(4) +
1

Λ2

∑
k

c
(6)
i O

(6)
i , (3.3)

where the list of the operators that we consider here is given in Table 3.12. Note that our

simplified model contains representatives from all of the operator classes of the basis used

in Refs. [4], other than the classes ψ2Fϕ and ψ2ϕ3 (ψ2XH and ψ2H3 in the notation of

Refs. [4]), since operators in these classes must always have one uncharged fermion. We

defer a comparison to the full SMEFT to Section 3.5.

At first order in ci/Λ
2, renormalization induces mixing of the dimension-six operators, as

parametrized by

ċi ≡
∂ci

∂ log µ
= cjγji . (3.4)

If the coefficient of operator Oj appears on the right-hand side of the RG equation for the

coefficient of operator Oi, as above, we say that Oj renormalizes Oi, or that they mix under

renormalization. Sometimes we write the corresponding anomalous dimension as γi←j. In all

tables which describe anomalous dimensions we will display γ′ij = γT
ij to facilitate comparison

with Refs. [4]. The anomalous dimension matrix γij depends on the dimension-four couplings

g and λ, in the combinations

g̃2 =
g2

(4π)2
, λ̃ =

λ

(4π)2
, (3.5)

which we sometimes refer to collectively as g(4).

We extract anomalous dimensions from both amplitudes and form factors. We define a

form factor with an operator insertion as

Fi(1
h1 , ..., nhn ; q) = 〈kh11 , ..., k

hn
n |Oi(q)|0〉 , (3.6)

2We note that Oϕ6 has no nonzero four-point amplitudes through two-loops, and therefore cannot renor-
malize any of the other operators [8]. We still include it here for completeness.
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Label Operator

OF 3
1
3
fabcF a

µνF
a
νρF

a
ρµ

O(ϕ2F 2)1 (ϕ†ϕ)F a
µνF

a
µν

O(ϕ2F 2)2 dabc(ϕ†T aϕ)F b
µνF

c
µν

O(D2ϕ4)1 (ϕ†Dµϕ)∗(ϕ†Dµϕ)

O(D2ϕ4)2 (ϕ†ϕ)�(ϕ†ϕ)

Oϕ6 (ϕ†ϕ)3

Opr(Dϕ2ψ2)1
i(ϕ†(Dµ −

←−
Dµ)ϕ)(ψ̄pγ

µψr)

Opr(Dϕ2ψ2)2
i(ϕ†(T aDµ −

←−
DµT

a)ϕ)(ψ̄pT
aγµψr)

Omnpr(ψ4)1
(ψ̄mγ

µψn)(ψ̄pγµψr)

Omnpr(ψ4)2
(ψ̄mγ

µT aψn)(ψ̄pγµT
aψr)

Table 3.1: List of dimension-six operators considered here. For simplicity, we take the
fermions to be Dirac. The labels mnpr are flavor indices and abc color indices. Note the
operator OF 3 is normalized slightly differently than in Refs. [4], as are the color matrices T a

in the operators O(Dϕ2ψ2)2 and O(ψ4)2 . We will occasionally drop the ( )1 and ( )2 subscripts
to refer to pairs of operators collectively.

which are matrix elements between an on-shell state 〈k1, ..., kn|, with particles of momenta

{k1...kn} and helicities {h1...hn}, and an operator Oi that injects additional off-shell mo-

mentum q. The states might also be dependent on the color and flavor of the particles, but

we leave this dependence implicit for the moment. Form factors are especially useful when

dealing with on-shell states with fewer than four particles, where kinematics would otherwise

require the amplitude (with real momenta) to be zero. From the perspective of form factors,

we can think of an amplitude with an operator insertion as a form factor, but where the

higher-dimension operator injects zero momentum, q = 0,

Ai(1
h1 , ..., nhn) = 〈kh11 , ..., k

hn
n |Oi(0)|0〉 . (3.7)

When the inserted operator is the identity, we recover the usual scattering amplitude, which
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depends only on the dimension-four couplings. We denote such an amplitude as

A(1h1 , ..., nhn) = 〈kh11 , ..., k
hn
n |0〉 = 〈kh11 , ..., k

hi
i |M| − k

−hi+1

i+1 , . . . ,−k−hnn 〉 . (3.8)

Unless otherwise stated, we use an all outgoing convention where all the particles are crossed

to the final state. When crossing fermions there are additional signs on the right-hand side

of Eq. (3.8) that we leave implicit here. In general we can write the form factors (and

amplitudes) as color-space vectors,

Fi(1, . . . , n) =
∑
j

C[j]Fi [j](1, . . . , n) , (3.9)

where the C[i] are a set of independent color factors. In the context of amplitudes, these

correspond to color-ordered [36] or, more generally, primitive [37] amplitudes. The color

factors C[i] depend on which particles of the amplitude are in the adjoint or fundamental

representation of SU(N). Here, we only need the decomposition into a basis of color factors

without using special properties of the coefficients. For the various processes we consider,

the tree and one-loop amplitudes are listed in Appendix 3.B.

We use the conventional dimensional regularization and MS-like schemes throughout, in

which the amplitudes and form factors, Fi satisfy the renormalization-group equations

[
(µ∂µ + β ∂) δij +

(
γUV − γIR

)
ij

]
Fj = 0, (3.10)

where ∂µ := ∂/∂µ, ∂ := ∂/∂g(4), β := β(g(4)) is the β-function of the collection of marginal

couplings, γUV
ij are the anomalous dimensions of the higher-dimension operators, and γIR

ij

are the IR anomalous dimensions, arising from soft and/or collinear divergences3. For later

3The relative sign between UV and IR anomalous dimensions is merely a convention.
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convenience, we introduce the shorthand

∆γ = γUV − γIR . (3.11)

The appearance of both kinds of anomalous dimensions stems from the fact that there is a

single dimensional-regularization parameter, ε = εUV = εIR, and single scale, µ = µUV = µIR,

for both the UV and IR divergences. As usual we take ε = (4−D)/2.

The perturbative expansion of the different quantities we consider is denoted by

Fi = F
(0)
i + F

(1)
i + F

(2)
i + · · · ,

Ai = A
(0)
i + A

(1)
i + A

(2)
i + · · · ,

γij = γ
(1)
ij + γ

(2)
ij + · · · ,

β = β(1) + β(2) + · · · , (3.12)

where each order in the expansion includes an additional power of the dimension-four cou-

plings, g(4), as defined in Eq. (3.5), compared to the previous order. Since the operators we

consider here have a least four fields, except for the F 3 case, any of the generated four-point

tree amplitudes are local, and directly correspond to the operator. The amplitudes generated

by the F 3 operator also contain a vertex obtained from the dimension-four operators. Thus,

the four-point tree amplitudes have no powers of g(4), with the exception of the four-point

amplitudes generated from the F 3 operator.

3.2.2 Anomalous dimensions from UV divergences

Anomalous dimensions are traditionally extracted from countertems associated to UV di-

vergences. For instance, in Refs. [4] the full one-loop anomalous dimension matrix of the

SMEFT was calculated by extracting the 1/ε divergences of the one-particle irreducible (1PI)

diagrams that generate the one-loop effective action in the background field method. Alter-
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natively, one might extract the anomalous dimensions from on-shell amplitudes. Here, we

use the full one-loop amplitudes to calculate the one-loop anomalous dimension matrix of

our model, and thereby verify a representative set of the anomalous dimensions calculated

in Refs. [4].

An efficient way of determining UV divergences at one loop was presented for the β-

function in Ref. [38]. Here we adopt this method to calculate one-loop anomalous dimensions.

In general, the renormalization of Oi by Oj at one loop is determined by calculating the

matrix element with external particles corresponding to Oi, but with an insertion of Oj. In

general, one-loop matrix elements can be expressed in terms of a basis of scalar integrals

A
(1)
i =

∑
s

as4, i I4,s +
∑
s

as3, iI3,s +
∑
s

as2, iI2,s , (3.13)

comprised of boxes I4,s, triangles, I3,s, and bubbles, I2,s, where the corresponding coefficients,

asi , b
s
i and ci are gauge invariant and generically depend on color and the dimensional regu-

larization parameter ε. The integrals can then be expanded in ε, producing both UV and IR

poles in ε. Only the scalar bubble integrals contain UV divergences, so we write a formula

for the anomalous dimensions in terms of the bubble coefficients as2, i, whose ε dependence

can be ignored for this purpose. However, some care is required because of cancellations

between UV and IR divergences. We delay a detailed discussion of the infrared structure

of the amplitudes to Section 3.3. For the moment, we just recall that the 1/ε pole in the

bubble integrals in Eq. (3.13) does not contain the full UV divergence of the amplitude. The

reason for this is that there is an additional 1/ε pole which originates in bubble-on-external-

leg diagrams, which are scaleless and set to zero in dimensional regularization because of a

cancellation of UV and IR poles,

∣∣∣∣
p2=0

∝ 1

εUV
− 1

εIR
+ log

µ2
UV

µ2
IR

. (3.14)
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Hence the bubbles on external legs give an additional UV contribution,

− 1

2ε
γIR (1)

c A
(0)
i := − 1

2ε

∑
p

γIR
c, pA

(0)
i , (3.15)

where γcp is the so-called collinear anomalous dimension of particle p, and the sum is over

all external states of the tree amplitude. For the vectors, fermions and scalars in our theory

the collinear anomalous dimensions are given by [39]

γIR (1)
c, v = −g̃2b0 , γ

IR (1)
c, f = −g̃23CF , γIR (1)

c, s = −g̃24CF , (3.16)

where b0 = (11N − 2Nf − Ns/2)/3 is the coefficient in the one-loop β-function of g, and

CF = (N2−1)/2N is the Casimir of the fundamental representation. While we only consider

one flavor of scalar in our model, we include the parameter Ns in the β-function and elsewhere

to track contributions from scalar loops.

In addition, there are contributions to the 1/ε UV pole proportional to the one-loop

β-function of the dimension-four couplings, related to the renormalization of such couplings

1

2ε
(n− Li)β̃(1)A

(0)
i , (3.17)

where β̃(1) = β(1)/g(4), n is the number of external states and Li is the length of the operator

Oi, i.e., the number of fields it contains. We therefore conclude that the sum over bubble

coefficients is related to the UV anomalous dimensions by

1

(4π)2

∑
s

as2 ,i = −1

2

[
γUVij − γIR

c δij + (n− Li)β̃(1)δij
]
A

(0)
j . (3.18)

Similar formulas have recently been used in Ref. [28]. There are multiple methods by which

one might calculate these coefficients. We do so by using generalized unitarity. For the

purposes of extracting the UV divergences, it suffices to evaluate four-dimensional cuts [7, 38].
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However, we are interested in obtaining the full amplitudes, including rational terms, as a

stepping stone towards calculating two-loop anomalous dimensions, so we use D-dimensional

unitarity cuts as described in Section 3.3.

The approach we outlined is very powerful at one loop, but at higher loops becomes

more difficult to use, because it requires two-loop integration. In particular, at higher loops

simple decompositions of integrals along the lines of Eq. (3.13) do not exist. One might still

construct the amplitudes using unitarity methods, and then extract their UV divergences by

carrying out the loop integration, but one would like a simpler technique that avoids much of

the technical complexity. Furthermore, to calculate two-loop divergences, one must also keep

track of evanescent one-loop subdivergences, which contaminate the result. By an evanescent

subdivergence we mean a subdivergence whose corresponding counterterm vanishes in strictly

four dimensions, but which cannot be ignored in dimensional regularization (see e.g. Ref. [40,

41]). While not physical, these evanescent subdivergences greatly complicate higher-loop

calculations, and it is better to use a method that avoids them, whenever possible. Ref. [16]

gives a nontrivial two-loop example for Einstein gravity showing how on-shell methods can

efficiently bypass evanescent effects [15] to determine renormalization-scale dependence.

3.2.3 Anomalous dimensions directly from unitarity cuts

A much more direct way to obtain anomalous dimensions is to focus on the renormalization-

scale dependence encoded in the logarithms, and not on the divergences. The logarithms are

detectable in four-dimensional unitarity cuts. Any dimensional imbalance in the kinematic

arguments of the logarithms must be balanced by renormalization-scale dependence, so one

can directly determine the renormalization-scale dependence and any anomalous dimensions

by collecting the contributions from unitarity cuts. For example, this strategy has been

used to greatly simplify the extraction of the two-loop renormalization-scale dependence in

Einstein gravity [16].
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The formalism of Caron-Huot and Wilhelm [12] gives a rather neat way to carry out this

strategy , allowing us to extract the anomalous dimension at L-loops directly from phase-

space integrals of lower-loop on-shell form factors and amplitudes. Among other useful fea-

tures, this makes potential zeros in the anomalous dimension matrix much more transparent

than with conventional methods [8].

By considering the analyticity of the form factors with respect to complex shifts in mo-

menta, along with unitarity, Caron-Huot and Wilhelm derived the following compact equa-

tion:

e−iπDF ∗i = S F ∗i , (3.19)

which relates the phase of the S-matrix, S, to the dilatation operator, D (ignoring trivial

overall engineering dimensions). The dilation operator acts on the conjugate form factor F ∗i .

Writing S = 1 + iM, Eq. (3.19) can be rewritten more practically as

(e−iπD − 1)F ∗i = iMF ∗i , (3.20)

where the scattering amplitude, M, acts as a matrix on the form-factor, yielding its imagi-

nary part via the optical theorem4. The right-hand side of this equation is defined to be a

unitarity cut. As we discuss below, this equation precisely captures the notion that the scale

dependence of Fi is encoded in the coefficients of its logarithms. We note that the use of the

complex conjugate form factor, F ∗, only affects the imaginary part, which do not affect our

calculations through two loops. Therefore, we drop the complex conjugation henceforth.

In dimensional regularization, the dilatation operator is related to the single renormal-

ization scale, µ, as D = −µ∂µ, reflecting the fact that Fi can only depend on dimensionless

ratios sij/µ (ignoring the overall engineering dimensions), and that logarithms in sij kine-

matic variables must be balanced either by µ or by each other. The dilatation operator then

4In our notation the optical theorem states, 2ImF ∗
i = MF ∗

i for form factors or 2ImM = MM for
amplitudes.
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Figure 3.1: Unitarity cut relevant for the extraction of anomalous dimensions from one-loop
form factors. The darker blobs indicate a higher-dimension operator insertion. The double-
lined arrow indicates the insertion of additional off-shell momentum from the operator. The
dashed line indicates the integral over phase space of the particles crossing the cut.

acts on the form factors as

DFi = −µ∂µFi = [∆γij + δijβ ∂]Fj, (3.21)

where we have used the renormalization-group equation (3.10). This, together with equation

(3.19), gives us a powerful means to extract anomalous dimensions.

While Eqs. (3.19) and (3.21) are valid non-perturbatively, we can expand in perturbation

theory to obtain order-by-order expressions for the anomalous dimensions. At one loop the

expansion yields [
∆γ

(1)
ij + δijβ

(1)∂
]
F

(0)
j = − 1

π
(MFi)

(1) , (3.22)

where the superscript denotes the order in perturbation theory. On the right-hand side

(MFi)
(1) indicates

(MFi)
(1) =

n∑
k=2

∑
c

(Mc
k→2)(0) ⊗ F (0)

n−k+2 ,i , (3.23)

where the sums are over all kinematic channels and the ⊗ denotes a sum over intermediate

two-particle states in the product. For a given kinematic channel this is given by the Lorentz-
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invariant phase-space integral

(M1···k
k→2)(0) ⊗ F (0)

n−k+2 ,i =
∑∫

dLIPS2

∑
h1,h2

〈1 · · · k|M|`h11 `
h2
2 〉(0)〈`h11 `

h2
2 · · ·n|Oi|0〉(0)

=
∑∫

dLIPS2

∑
h1,h2

A(0)(1, · · · , k,−`−h11 ,−`−h22 )F
(0)
i (`h11 , `

h2
2 , · · · , n) , (3.24)

where the sum over helicities also includes a sum over different states crossing the cut. In

summary, (MFi)
(1) corresponds to a sum over all one-loop two-particle unitarity cuts, as

depicted schematically in Figure 3.1.

After rewriting the expression in terms of four-dimensional spinors, the two-particle

phase-space integrals can be easily evaluated following the discussion of Ref. [12],

 λ′1

λ′2

 =

 cos θ − sin θ eiφ

sin θ e−iφ cos θ


 λ1

λ2

 , (3.25)

where the λi and λ̃i = λ∗i spinors depend on the momenta of the external legs and the λ′i and

λ̃′i = λ′i
∗ spinors on the momenta of the cut legs. With this parametrization the integration

measure is simply, ∫
dLIPS2 ≡

1

16π

∫ 2π

0

dφ

2π

∫ π
2

0

2 cos θ sin θdθ . (3.26)

In the definition of the phase-space measure, here we have included an additional symmetry

factor of 1/2, relative to the usual volume of two-particle phase space, i.e., 8π. This is

generally convenient but requires some care when non-identical particles cross the cut, where

we will need to multiply by two to cancel the symmetry factor.

Next consider two loops. Expanding Eq. (3.20) through this order, we obtain

[
∆γ

(1)
ij + δijβ

(1)∂
]
F

(1)
j +

[
∆γ

(2)
ij + δijβ

(2)∂
]
F

(0)
j

− iπ 1

2

[
∆γ

(1)
ik + δikβ

(1)∂
] [

∆γ
(1)
kj + δkjβ

(1)∂
]
F

(0)
j = − 1

π
(MFi)

(2) .

(3.27)
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(a) (b) (c)

Figure 3.2: Unitarity cuts relevant for the extraction of anomalous dimensions from two-
loop form factors, using the same notation as in Figure 3.1. The darker blobs indicate a
higher-dimension operator insertion. The blobs with a hole indicate a one-loop form factor
or amplitude.

On the right-hand side of this equation, (MFi)
(2) denotes collectively the three two-loop

unitarity cuts displayed in Figure 3.2,

(MFi)
(2) =

n∑
k=2

∑
c

[
(Mc

k→2)(1) ⊗ F (0)
n−k+2 ,i + (Mc

k→2)(0) ⊗ F (1)
n−k+2 ,i

+(Mc
k→3)(0) ⊗ F (0)

n−k+3 ,i

]
. (3.28)

In the first term we find two-particle cuts composed of the one-loop amplitude and the

tree-level higher-dimension form factor depicted in Figure 3.2(a). These are

(M1···k
k→2)(1) ⊗ F (0)

n−k+2 ,i =

∫
dLIPS2

∑
h1,h2

〈1 · · · k|M|`h11 `
h2
2 〉(1) 〈`h11 `

h2
2 · · ·n|Oi|0〉(0)

=

∫
dLIPS2

∑
h1,h2

A(1)(1, · · · , k,−`−h11 ,−`−h22 )F
(0)
i (`h11 , `

h2
2 , · · · , n) . (3.29)

Similarly, the second term, shown in Figure 3.2(b), is a combination of cuts composed by

the tree-level amplitude and the one-loop higher-dimension operator, which are

(M1···k
k→2)(0) ⊗ F (1)

n−k+2 ,i =

∫
dLIPS2

∑
h1,h2

〈1 · · · k|M|`h11 `
h2
2 〉(1) 〈`h11 `

h2
2 · · ·n|Oi|0〉(0)

=

∫
dLIPS2

∑
h1,h2

A(0)(1, · · · , k,−`−h11 ,−`−h22 )F
(1)
i (`h11 , `

h2
2 , · · · , n) . (3.30)

Finally, the third term is composed of three-particle cuts involving two tree-level objects, as
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in Figure 3.2(c)

(M1···k
k→3)(0) ⊗ F (1)

n−k+3 ,i =

∫
dLIPS3

∑
h1,h2,h3

〈1 · · · k|M|`h11 `
h2
2 `

h3
3 〉(0)〈`h11 `

h2
2 `

h3
3 · · ·n|Oi|0〉(0)

=

∫
dLIPS3

∑
h1,h2,h3

A(0)(1, · · · , k,−`−h11 ,−`−h22 ,−`−h33 )F
(0)
i (`h11 , `

h2
2 , `

h3
3 , · · · , n) . (3.31)

A parameterization analogous to (3.25) for the three-particle cut is given in Ref. [12]. We

will not evaluate any three-particle cuts in the present work, so we refer the reader to this

work for more details.

We can rearrange Eq. (3.27) to put it into a more convenient form for extracting two-loop

anomalous dimensions. First, note that the imaginary part of Eq. (3.27)

−iπ 1

2

[
∆γ

(1)
ik + δikβ

(1)∂
] [

∆γ
(1)
kj + δkjβ

(1)∂
]
F

(0)
j = − 1

π
Im(MFi)

(2) , (3.32)

does not feature the two-loop anomalous dimensions. Using the optical theorem again, we

write its right-hand side in terms of unitarity cuts

Im(MFi)
(2) = (MMFi)

(2) , (3.33)

where the relevant cuts are the iterated two-particle cuts in Fig. 3.3. For instance (MMFi)
(2)

contains terms of the form

∫
dLIPS2dLIPS′2

∑
h1,h2

∑
h′1,h

′
2

〈· · · |`h11 `
h2
2 〉(0)〈`h11 `

h2
2 · · · |`

h′1
1′ `

h′2
2′ 〉

(0)〈`h
′
1

1′ `
h′2
2′ · · · |Oi|0〉

(0) , (3.34)

which correspond to cuts of the type in Fig. 3.3(a). Note that Eq. (3.33) does not include

a factor of 1/2 from the optical theorem because the imaginary part can arise from cutting

either the one-loop amplitude or form factor, which give identical contributions.

Eq. (3.32) does not contain the two-loop anomalous dimensions but instead captures the
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(a) (b)

Figure 3.3: Iterated two-particle cuts that appear on the right-hand side of Eq. (3.33).

exponentiation of one-loop anomalous dimensions and the associated logarithms. Nonethe-

less (3.33) can be used to simplify the real part of Eq. (3.27), which yields

[
∆γ

(1)
ij + δijβ

(1)∂
]

ReF
(1)
j +

[
∆γ

(2)
ij + δijβ

(2)∂
]
F

(0)
j (3.35)

= − 1

π
Re(MFi)

(2) = − 1

π
(MFi −MMFi)

(2) .

Note that the right-hand side can be rewritten using

(MFi −MMFi)
(2) =

[(
M− 1

2
MM

)(
Fi −

1

2
MFi

)](2)

= [Re(M)Re(Fi)]
(2) ,

(3.36)

and with this we arrive at

[
∆γ

(1)
ij + δijβ

(1)∂
]

ReF
(1)
j +

[
∆γ

(2)
ij + δijβ

(2)∂
]
F

(0)
j = − 1

π
[Re(M)Re(Fi)]

(2) . (3.37)

We use this equation to extract two-loop anomalous dimensions. In practice Eq. (3.37) simply

instructs us to drop the imaginary parts of the one-loop matrix elements when calculating

the cuts in Figs. 3.2(a) and 3.2(b). On the left-hand side, we now see the appearance of

one-loop anomalous dimensions and the β-function, as well as the one-loop form factor F
(1)
i .

The two-loop UV anomalous dimension γ
UV(2)
ij contained in ∆γ

(2)
ij is the object of interest,

but to extract it we first need to remove γ
IR(2)
ij , which requires an understanding of the IR

singularities, which we discuss below.
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Simplifying strategies

A strategy that greatly simplifies the analysis is to choose an external state with the minimal

number of external legs that is sensitive to the operator of interest, i.e. select the operator’s

minimal form factor. In this way we can avoid terms of the form β(n)∂F
(0)
i in Eqs. (3.27) and

(3.37), since, under this choice, F
(0)
i is local, and thus does not depend on the dimension-four

couplings, g(4). This strategy was used in Ref. [8] to prove nonrenormalization theorems at

the first loop order where diagrams exist.

More generally, the β-function can no longer be eliminated by using minimal form factors

whenever the one-loop form factor with an Oi insertion, F
(1)
i , produces a nonzero result with

the chosen external states. In addition, the β-function acting on the one-loop anomalous-

dimension matrix is nonzero if the matrix elements themselves are nonzero. For example, to

determine the renormalization of OF 3 by itself at two loops, we would evaluate Eq. (3.37)

with the external state 〈1+2+3+|. In this case the term β(2)∂F
(0)

F 3 would vanish, though the

term β(1)∂F
(1)

F 3 would remain.

Unlike the β-function, the IR anomalous dimensions are non-trivial to eliminate. Ref. [12]

removes them by subtracting, at the integrand level, form factors of global symmetry cur-

rents, such as the stress-tensor, which are UV finite but contain the same IR divergences.

Alternatively, one can use the same on-shell methods to calculate them and subtract them af-

ter integration. At one loop, the structure of infrared divergences is well understood [42–44],

and it is straightforward to subtract them after integration. We explain how to carry this out

at the level of the amplitudes in the next section. Furthermore, whenever we are interested

in a leading off-diagonal element of the anomalous dimension matrix, the IR anomalous

dimensions does not appear, since the infrared divergences are diagonal in the operators

(excluding color).

Finally, form factors are useful for operators with only two or three external fields, since

they allow nonzero results when kinematics would otherwise set amplitudes with fewer than
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four external particles to zero. Here we generally set the operator momentum insertion q = 0

and work in terms of amplitudes whenever possible, i.e. whenever there are four or more

external states.

3.2.4 Comments on evanescent operators

When extracting anomalous dimensions from UV divergences in dimensional regularization

one must carefully keep track of evanescent operators [40, 41]. These operators are non-

trivial in D-dimensions, but whose matrix elements vanish for any choice of external four-

dimensional states. In the context of the SMEFT an example of an evanescent operator

would be the Lorentz–Fierz identities

OFierz,L = (ψ̄mL γ
µψnL)(ψ̄pLγµψ

r
L) + (ψ̄pLγ

µψnL)(ψ̄mL γµψ
r
L) ,

OFierz,R = (ψ̄mRγ
µψnR)(ψ̄pRγµψ

r
R) + (ψ̄pRγ

µψnR)(ψ̄mRγµψ
r
R) , (3.38)

(where we raised the flavor indices for convenience) which are identically zero in four but

not in arbitrary dimensions. More generally one can easily construct such operators by

antisymmetrizing over five or more Lorentz indices. In the context of our model, an example

of such an evanescent operator is

(ψ̄γ[αγµγνγσγρ]ψ)(ψ̄γ[αγµγνγσγρ]ψ) . (3.39)

One-loop diagrams might contain a 1/ε divergence proportional to the matrix element of

an evanescent operator. While this does not affect one-loop anomalous dimensions because

we can take the external states to be four-dimensional, when inserted in a higher-loop di-

agram in the context of dimensional regularization such evanescent operators are activated

and can generate both UV divergent and finite contributions. In fact, they are needed to

properly subtract subdivergences. These effects must be taken into account in order to
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correctly extract two-loop UV divergences and their associated anomalous dimension. In

practice we can deal with the effects of evanescent operators [40, 41], but the number of

them grows with dimension and loop order (especially in the presence of fermions). For

this reason it would be desirable to avoid them when possible, since they are a technical

complication due to the use of dimensional regularization, and ultimately we would expect

that they do not affect the physics [15].

We expect the on-shell methods presented above to completely sidestep the issue of

evanescent operators when obtaining anomalous dimension, at least through two loops.

Ref. [16] provides a nontrivial demonstration that complications from evanescent operators

can be completely sidestepped using on-shell methods and by focusing on renormalization-

scale dependence instead of divergences. In the two-loop formulas used here, anomalous

dimensions and associated logarithms are given directly in terms of four-dimensional unitar-

ity cuts of tree and one-loop objects. This automatically eliminates most of the evanescent

dependence, except for finite shifts in one-loop matrix elements with evanescent operator

insertions. We expect that any remaining evanescent dependence in the one-loop amplitudes

or form factors to be eliminated by finite renormalizations [41]. Given the usual subtleties

of dealing with evanescent operators, it would, of course, be important to explicitly verify

that including or not including evanescent operators in the one- and two-loop anomalous

dimension matrix amounts to a scheme choice.

3.2.5 Anomalous dimensions and non-interference

As noted in Ref. [45] helicity selection rules imply the non-interference of SMEFT tree-

level matrix elements when constructing cross sections. This has important consequences

in the context of the SMEFT, where the possibility of measuring the coefficient of higher-

dimension operators at colliders can be impacted by the vanishings in the interference of the

Standard-Model tree amplitudes and those of higher-dimension operators, when computing
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cross sections. A connection between one-loop anomalous dimension and interference terms

can be seen in Eq. (3.22), where, upon setting q = 0, the form factors become amplitudes

and the right-hand side directly captures the interference of tree-level dimension-four and

dimension-six amplitudes. Note that this holds even when the anomalous dimension is not

zero, in which case this equation relates the interference terms to simpler objects, namely the

one-loop anomalous dimensions and tree-level matrix elements. Of course, in a realistic cross-

section calculation one would not integrate over the full phase space, due to experimental

cuts.

At two loops the connection between zeros in the anomalous dimensions and non-interference

is not as direct, since it requires cancellations between both sides of Eq. (3.27). Eq. (3.32)

shows that, in general, the imaginary part of the interference term is given by the square of

one-loop anomalous dimensions times tree-level matrix elements. Instead of non-interference,

Eq. (3.35) shows that a vanishing two-loop anomalous dimension would imply that the real

part of interference term is simply is related to the product of one-loop anomalous dimensions

and one-loop matrix elements. It would be interesting to further investigate the consequences

stemming from these observations, even in the presence of experimental cuts.

3.3 One-loop amplitudes and anomalous dimensions

In this section we describe our generalized unitarity calculation of the one-loop amplitudes

with an insertion of a higher-dimensional operator in our simplified model. We then extract

the one-loop anomalous dimension matrix of this theory. Finally, we comment on the struc-

ture of rational terms in the amplitudes and on the ability to set some of them to zero with

a judicious scheme choice. The results in this section are building blocks needed for the two-

loop analysis in the next section. In addition, they provide one-loop anomalous dimensions

that can be cross-checked against those in Refs. [4].
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3.3.1 One-loop amplitudes from generalized unitarity

The generalized unitarity method [11, 29, 30] for constructing one-loop amplitudes can be

found in various reviews, for example see Ref. [46], but here we briefly review the proce-

dure for the one-loop case. To construct the full one-loop amplitudes to all orders in the

dimensional-regularization parameter ε, we begin with the D-dimensional four-point tree-

level amplitudes with or without insertions of the dimension-6 operators (given in Appendix

3.B). By using D-dimensional tree amplitudes, we ensure that the cuts appropriately capture

the coefficients of the D-dimensional box, triangle, and bubble scalar integrals that form a

basis for the full one-loop amplitudes, as in Eq. (3.13). In general, the coefficients have ε

dependence, and expanding in ε produces rational terms that would not automatically be

included if a purely four-dimensional approach to the cuts were used [11]. Besides ε, the

coefficients only depend on the Mandelstam invariants s = (k1 + k2)2, t = (k2 + k3)2 and

u = (k1 + k3)2.

We construct the cuts in the standard way. For example, the integrand-level s-channel

cut with an On operator insertion is given by

∑
i

C[i]
([
ast4,n[i]I4,st + asu4,n[i]I4,su + as3,n[i]I3,s + as2,n[i]I2,s

] ∣∣∣
`2=0

)
=
∑

states

∑
j

C[j]A(0)
n (1, 2, `h11 , `

h2
2 )[j]

∑
k

C[k]A(0)(−`h22 ,−`h11 , 3, 4)[k]

+
∑

states

∑
j

C[j]A(0)(1, 2, `h11 , `
h2
2 )[j]

∑
k

C[k]A(0)
n (−`h22 ,−`h11 , 3, 4)[k] ,

(3.40)

where the sum over states includes the helicity and the color, and, for this case, `2 =

−(`1 + k1 + k2). The C[i] are the appropriate color factors for the associated amplitudes.

Since the cut legs are on-shell, where `2
1 = `2

2 = 0. Often, the external particles will restrict

A
(0)
n to be nonzero only for certain cuts or placements within the cuts, depending on the

field content of the operator inserted.

As an example, the cuts of the amplitude A
(1)

F 3(1ψ2ψ̄3 4), are shown in Figure 3.4, where
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(a)

(b) (c)

(d) (e)

Figure 3.4: The necessary cuts for constructing a two-fermion, two-vector amplitude. For an
amplitude with an insertion of a higher-dimension operator, one should insert the operator
into either side of the diagrams when possible. The wavy lines are vector bosons, the lines
with arrows fermions and the dashed lines scalars.

the operator OF 3 should be inserted on either side of the cuts, when the tree amplitudes

exist. Other amplitudes with four-point operators require only the cuts corresponding to

their correct external particles. The color factors C[j]C[k] can be reduced to the appropriate

color basis of the full amplitude, C[i], based on the external particles. Doing so determines

the contribution from each color-decomposed cut.

We evaluate the cuts using the D-dimensional state sum completeness relations,

ε∗µi � ενi =
∑

states h

ε
∗(h)µ
i ε

(h)ν
i = −gµν +

qµkνi + kµi q
ν

q · ki
,

ūi � ui =
∑

states h

ū
(h)
i u

(h)
i = /ki ,

(3.41)

where q is an arbitrary reference vector with q2 = 0.

The next task is to merge the cuts and to integrate. One can merge the cuts at the level

of the integrand to find a single integrand that has the correct cuts in all channels. However,
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is it is generally simpler to merge the integrated results from each cut, treating each cut as

an off-shell object, but dropping contributions that do not have a cut in the given channel.

Integration is done by projecting each cut for a given process onto a basis of gauge-invariant

tensors, as described in more detail in Appendix 3.A. Although the methods we use to extract

anomalous dimensions do not require us to keep track of evanescent divergences, because

the projection technique is fully D dimensional, we track them and confirm that they do not

enter our calculations of various entries in the two-loop anomalous-dimension matrix. An

alternative is to use spinor-helicity methods [47] which are much more powerful when the

number of external legs increases. These have been successfully used for both chiral [29] and

higher-loop calculations [48], but then additional care is needed to deal with subtleties that

arise from using dimensional regularization.

After projection, the cut integrand is rewritten in terms of inverse propagators. We

reduce the remaining integrals to the basis of scalar integrals in Eq. (3.13) using integration

by parts relations as implemented in FIRE [33]. Cut merging is then straightforward, as

the coefficients of integrals in the merged amplitude can be read directly off the results from

each cut, summed over the possible particles crossing the cut. For example, the s-channel

cut in Eq. (3.40) yields the coefficients of the s-channel bubble and triangle, as well as those

of the (s, t) and (s, u) boxes in Eq. (3.13).

The full set of D-dimensional four-point one-loop amplitudes for the dimension-six oper-

ators in our model are given in the ancillary file [34]. These expressions are valid to all orders

in ε, but to obtain the finite, renormalized expressions needed to feed into our calculation of

two-loop anomalous dimensions, we need to subtract the UV poles.

The one-loop amplitudes are IR divergent. The IR singularities of gauge theories are well

understood [39, 42–44], and can be expressed in terms of lower-loop amplitudes involving the

same operator insertion and external particles. The explicit form of the one-loop infrared
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singularity, for example, is given by

A
(1)
i = I(1)A

(0)
i , (3.42)

where the IR operator I(1) is given by [39, 42, 43]5

I(1) =
eεγE

Γ(1− ε)

n∑
p=1

∑
q 6=p

Tp · Tq
2

[
γ

IR (1)
cusp

ε2
− γ

IR (1)
c, p

T 2
p

1

ε

](
−µ2

2kp·kq

)ε
, (3.43)

where the sums are over external particles. The color charge Tp = {T ap } is a vector with

respect to the generator label a and a SU(N) matrix with respect to the outgoing particle p.

The infrared divergence includes a 1/ε2 pole, with coefficient given by the cusp anomalous

dimension γ
IR (1)
cusp = 4g̃2, and 1/ε poles, with coefficient given by the collinear anomalous

dimension of particle p given in Eq. (3.16). By obtaining the IR dependence of the one-loop

amplitudes from Eq. (3.42), we can subtract it from the full one-loop amplitudes. As always,

the definition of the IR-divergent parts carries with it some arbitrariness as to which finite

pieces are included.6

The remaining poles in ε are UV poles, which we then match to the appropriate tree-

level counterterm amplitude containing an insertion of the operator Oj. A complication is

that there can be multiple operators corresponding to the same external particle content,

but with different color structures. Therefore, in these cases the coefficient of a single color

factor in the loop amplitude is insufficient for the purpose of determining the anomalous

dimensions, and in principle all the color factors for the given process and operator insertion

must be considered simultaneously. For example, the one-loop amplitude with an insertion

of the O(Dϕ2ψ2)2 operator and four external scalars determines the renormalization of both

the O(D2ϕ4)1 and the O(D2ϕ4)2 operators, where the operators are given in Table 3.1.

In some cases the IR structure is trivial, e.g. when the IR anomalous dimensions are zero

5The difference with the formulas in those references is due to our normalization of the SU(N) generators.
6In physical quantities this arbitrariness cancels between real emission and virtual contributions.
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simply because there are no lower-loop amplitudes for a given operator and given external

state. Our examples in Section 3.4 follow this pattern. For instance, in the example of

O(D2ϕ4)1 renormalizing O(ψ4)1 at two loops, there is no tree level or one-loop amplitude with

an insertion of O(D2ϕ4)1 which has an external state of four fermions, simply due to the lack

of Feynman diagrams. Since the full IR dependence is proportional to lower-loop amplitudes,

this implies there cannot be an IR divergence at two loops. This same reasoning underpinned

the non-renormalization theorem in Ref. [8]. More generally, one needs to account for the

infrared singularities.
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3.3.2 One-loop UV anomalous dimensions

After subtracting the IR singularities, the only remaining 1/ε poles in the amplitudes corre-

spond to the desired one-loop anomalous dimensions,

ċF 3 = g̃2(12N − 3b0)cF 3 ,

ċ(ϕ2F 2)1 = g̃2

(
−5cF3 −

(3N2 − 7) + 2Nb0

N
c(ϕ2F 2)1 +

N2 − 4

N2
c(ϕ2F 2)2

)
+ λ̃ 4(1 +N)c(ϕ2F 2)1 ,

ċ(ϕ2F 2)2 = g̃2

(
−NcF 3 + 2c(ϕ2F 2)1 +

2N2 − 5− 2Nb0

N
c(ϕ2F 2)2

)
+ λ̃ 4c(ϕ2F 2)2 ,

ċ(D2ϕ4)1 = g̃2

(
3(N + 1)

N
c(D2ϕ4)1 +

2(N − 2)(Ns + 9)

3N
c(D2ϕ4)2 +

4

3

N − 2

N
cww(Dϕ2ψ2)2

)
+ λ 12c(D2ϕ4)1 ,

ċ(D2ϕ4)2 = g̃2

(
36NCF − (2N − 1)(Ns + 9)

3N
c(D2ϕ4)2 +

3(N − 2)(N + 1)

2N
c(D2ϕ4)1

+
2(2N − 1)

3N
cww(Dϕ2ψ2)2

)
+ λ̃

(
2(N − 2)c(D2ϕ4)1 + 8(N + 1)c(D2ϕ4)2

)
,

ċpr(Dϕ2ψ2)1
= 0 ,

ċpr(Dϕ2ψ2)2
= g̃2

(
1

3
Nsc(D2ϕ4)2δpr +

1

3
(−9N +Ns)c

pr
(Dϕ2ψ2)2

+
4

3
Nfc

ww
(Dϕ2ψ2)2

δpr

− 2

3
Nfc

pwwr
(ψ4)1

− 2

3
Nf

(
2cprww(ψ4)2

− 1

N
cpwwr(ψ4)2

))
,

ċmnpr(ψ4)1
= g̃2 6 (N2 − 1)

N2
cmnpr(ψ4)2

,

ċmnpr(ψ4)2
= g̃2

(
−Ns

3
(cmn(Dϕ2ψ2)2

δpr + cpr(Dϕ2ψ2)2
δmn)

+
2

3
Nf (δmnc

pwwr
(ψ4)1

+ δprc
mwwn
(ψ4)1

) + 6cmnpr(ψ4)1
− 3

N
cmnpr(ψ4)2

+
2Nf

3N
(2N(δprc

mnww
(ψ4)2

+ δmnc
prww
(ψ4)2

)− (δprc
mwwn
(ψ4)2

+ δmnc
pwwr
(ψ4)2

))

)
. (3.44)

Here Ns is left as a parameter to track contributions from scalar loops. In our model it

should be set to unity. These anomalous dimensions have been extracted directly from the
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F 3 (ϕ2F 2)1 (ϕ2F 2)2 (D2ϕ4)1 (D2ϕ4)2 (Dϕ2ψ2)1 (Dϕ2ψ2)2 (ψ4)1 (ψ4)2

F 3 0 0 /0 /0 /0 /0 /0 /0

(ϕ2F 2)1 0 0 0 0 /0 /0

(ϕ2F 2)2 0 0 0 0 /0 /0

(D2ϕ4)1 0 0 0 0 /0 /0

(D2ϕ4)2 0 0 0 0 /0 /0

(Dϕ2ψ2)1 0 0 0 0 0 0 0 0 0

(Dϕ2ψ2)2 0 0 0 0 0

(ψ4)1 0 /0 /0 /0 /0 0 0 0

(ψ4)2 0 /0 /0 /0 /0 0

Table 3.2: Structure of the zeros in the one-loop anomalous dimension matrix. The /0 entries
indicate there are no contributing one-loop diagrams, whereas a 0 alone indicates that there
are one-loop diagrams that could contribute, but actually give a vanishing result. The
operators labeling the rows are renormalized by the operators labeling the columns.

scattering amplitudes, and, as a cross-check, we also used the unitarity cut method explained

in the previous section [12] for computing directly the anomalous dimensions. The structure

of the anomalous dimension matrix is summarized in Table 3.2. It is worth pointing out

the simplicity in the renormalization and mixing of (Dϕ2ψ2)1 and (ψ4)1, which is due to

these operators being a product of global symmetry currents, which heavily constrains the

kind of states they can overlap with. This is special in our model, which does not contain

an Abelian gauge field. In the presence of the latter, the operators would be a product of

gauge symmetry currents (just like (Dϕ2ψ2)2 and (ψ4)2) which are renormalized [49], so the

anomalous dimension matrix will receive contributions proportional to the Abelian gauge

coupling.

We use these results to verify a representative set of the one-loop anomalous dimension

calculated in Ref. [4], including entries from nearly all classes of operators. Additional

details about this verification is given in Section 3.5. This provides a nontrivial check on our

one-loop results, which we then feed into the two-loop anomalous dimension calculations.
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3.3.3 Structure of one-loop amplitudes and rational terms

V
+
V

+
V

+
V

+

V
+
V

+
V

+
V
−

V
+
V

+
V
−
V
−

ϕ
ϕ
V

+
V

+

ϕ
ϕ
V

+
V
−

ϕ
ϕ
ϕ
ϕ

ψ
−
ψ

+
V

+
V

+

ψ
−
ψ

+
V

+
V
−

ψ
−
ψ

+
V
−
V

+

ψ
+
ψ
−
V
−
V
−

ψ
+
ψ
−
ϕ
ϕ

ψ
+
ψ
−
ψ

+
ψ
−

ψ
+
ψ
−
ψ
−
ψ

+

ψ
+
ψ

+
ψ
−
ψ
−

F 3 L L R L R 0 L R R L 0 0 0 0

(ϕ2F 2)1 R 0 R L R 0 0 0 0 0 0 /0 /0 /0

(ϕ2F 2)2 R 0 R L L 0 0 0 0 0 0 /0 /0 /0

(D2ϕ4)1 /0 /0 /0 0 0 L0 /0 /0 /0 /0 0 /0 /0 /0

(D2ϕ4)2 /0 /0 /0 R 0 L0 /0 /0 /0 /0 L0 /0 /0 /0

(Dϕ2ψ2)1 /0 /0 /0 0 0 0 0 0 0 0 L0 0 0 0

(Dϕ2ψ2)2 /0 /0 /0 R 0 L0 R 0 0 R L0 L0 L0 L0

(ψ4)1 /0 /0 /0 /0 /0 /0 R 0 0 R L0 L L L

(ψ4)2 /0 /0 /0 /0 /0 /0 R 0 0 R L0 L L L

R: rational amplitude

L: amplitude with both logarithms and rational terms

/0: trivial zero, no contributing one-loop diagrams

0: zero explained by angular momentum selection rules [9]

0: zeros “accidental” to our model

0: zero from an appropriate local counterterm

L0 zero rational term from an appropriate local counterterm, logarithmic terms remain.

Table 3.3: Structure of the zeros, rational terms, and logarithms in the full one-loop helicity
amplitudes. In this table each entry indicates whether the operator of its row produces the
amplitude with external state corresponding to its column. V denotes a vector boson, ψ a
fermion and ϕ a scalar.

After subtracting the infrared singularities and renormalization, the amplitudes are finite.

The full set of results for our renormalized and IR-subtracted amplitudes is given in Appendix

3.B. The renormalized helicity amplitudes include a large number of zeros, including those

which would otherwise be rational contributions. A number of these zeros were pointed

out in Ref. [10], and explained using angular-momentum selection rules in Ref. [9]. These
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selection rules explain most of the observed zeros, leaving some “accidental” zeros, displayed

as a blue 0 in Table 3.3. These zeros can be considered an accident of the simplicity of our

model, and in a more general theory with an Abelian gauge field, we expect that such zeros

should not occur. In each case, the entry directly below the blue zero shows that while the

accident holds for that particular operator, another operator with identical particle content,

but different color structure, produces a nonzero result in M̄S. Intuitively, this is because

only the first of each pair of operators is a product of global symmetry currents in our model

(c.f. our discussion in Section 3.3.2). Alternatively, these “accidental” examples can be

shown to follow from angular momentum selection rules combined with selection rules for

gauge charges (i.e. color selection rules), as described in Ref. [9].

Perhaps more interesting is the surprisingly large number of amplitudes—with shaded

(red) rectangles around 0 entries in Table 3.3—which do not evaluate to zero in the standard

M̄S renormalization scheme, but which are proportional to a linear combination of the tree-

level amplitudes of the dimension-six operators. These amplitudes can therefore be set to

zero by an appropriate choice of finite counterterms. This corresponds to a scheme change,

showing that these amplitudes are scheme dependent. Explicit examples of how these rational

shifts are related to the scheme dependence of the two-loop anomalous dimensions is discussed

at length in the next section.

Similarly, for a number of amplitudes (marked L0 and in a shaded red rectangle in

Table 3.3), all rational terms in the amplitude can be removed with an appropriate choice

of finite counterterms, leaving behind logarithmic terms which cannot be subtracted in this

way. These logarithmic terms do not appear to be of the right form to produce local results,

so we may expect that they also do not produce contributions to the two-loop anomalous

dimensions via Eq. (3.37). It would be interesting to investigate this, but we refrain from

doing so here. Remarkably, only a small number of the one-loop amplitudes contain rational

terms that cannot be removed via finite counterterms.

As expected, however, some amplitudes do contain non-local rational amplitudes, pro-
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hibiting such a simple subtraction by a local counterterm. It is interesting to note that all

the nonzero rational amplitudes of (D2ϕ4)2, (Dϕ
2ψ2)2, (ψ

4)1 and (ψ4)2 are non-local but can

be individually set to zero by the introduction of an F 3 finite counterterm. This procedure,

however, will always introduce new diagrams which make other /0 entries in the same row

nonzero. For example, since the F 3 tree contains nonzero four-vector tree amplitudes, en-

tries in these columns will no longer be zero. Another interesting observation is that the

UV divergence in the only nonzero amplitude of (Dϕ2ψ2)1 cancels between terms, but the

logarithms remain.

The vanishing one-loop amplitudes strongly suggests that many contributions to the

two-loop anomalous dimension matrix should vanish, beyond those identified in Ref. [8]. For

many of the two-loop anomalous dimensions, these zeros imply that the only contribution to

the final result comes from the three-particle cut, making their evaluation much simpler than

expected, since only four-dimensional tree-level objects are involved. In a number of cases,

including multiple examples in Section 3.4, the three-particle cut also vanishes, thereby

immediately implying that the corresponding two-loop anomalous dimension is zero. Of

course, the amplitudes corresponding to the entries of Table 3.3 with shaded (red) rectangles

are not zero when working strictly in M̄S, so one would need to evaluate the two-particle

cuts in order to determine the corresponding anomalous dimensions in this scheme.

Finally, the appearance of many zeros in Table 3.3 suggests that even more zeros in

the two-loop anomalous dimension might be found by using the helicity selection rules of

Ref. [7] or the angular momentum conservation rules of Ref. [9], given that the remaining

three-particle cut only involves four-dimensional tree amplitudes, which are often restricted

by these selection rules.
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3.4 Two-loop zeros in the anomalous dimension matrix

In this section we use the results of the previous section and the tools in Section 3.2.3 to

obtain two-loop anomalous dimensions in our simplified theory. These calculations will unveil

a number of mechanisms that give rise to a wealth of new zeros in the two-loop anomalous

dimension matrix. As mentioned in the previous section, two-loop anomalous dimensions

are scheme dependent7 This makes the question of whether a two-loop anomalous dimension

is zero somewhat ill-defined. We will show explicit examples of anomalous dimensions that

are nonzero in the M̄S scheme, but for which we can find a scheme in which they are zero. In

addition, we demonstrate the cancellation of logarithms in the evaluation of Eq. (3.37) when

they appear. For simplicitly, throughout this section, we assume the case of a single flavor of

fermion, drop the flavor indices, and set Nf = Ns = 1. In all the cases we consider here, the

one-loop amplitudes required for the two-loop computation are infrared finite, simplifying

the discussion.

3.4.1 Zeros from length selection rules

First we summarize the results of our previous paper, which points out a set of nontrivial

zeros in the two-loop anomalous dimension matrix of generic EFTs [8]: operators with longer

length—those with more field insertions—are often restricted from renormalizing operators

with shorter length, even if Feynman diagrams exist. Specifically, for operators Ol and

Os, with lengths l(Ol) and l(Os), Ol can renormalize Os at L loops only if the inequality

L > l(Ol) − l(Os) is satisfied. This implies, for example, that the operator Oϕ6 cannot

renormalize any of the other operators in our model (Table 3.1) at two loops. This is due

to the fact that any two-loop diagram with an insertion of Oϕ6 and four external particles

must contain a scaleless integral, which evaluates to zero in dimensional regularization. This

implies that the anomalous dimensions vanish, if there are no IR divergences. In this case

7This is in contrast to the β-function, which is scheme dependent starting at three loops [35, 50].
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the lack of infrared singularities follows from the fact that they are proportional to the

corresponding lower-loop amplitudes, which vanish due to the lack of diagrams when the

bound is not satisfied.

In addition, as shown in Ref. [8], in a theory with multiple types of fields, such as

the SMEFT, additional vanishing can occur at loop orders higher than indicated by the

above bound. In general, whenever the only diagrams one can draw with an insertion of

Ol and the external particles of Os always involve scaleless integrals, then there will be no

renormalization of Os by Ol. In the language of Section 3.2.3, this happens because there

are no nonzero cuts on the right-hand side of Eq. (3.37) or the higher loop analog. Iteration

pieces on the left-hand-side of Eq. (3.37)—terms other than γ
(L)
s←lF

(0)
s —are also set to zero

by the presence of scaleless integrals. Examples of this form of the rule in effect include the

lack of two-loop renormalization of OF 3 by ODϕ2ψ2 ,OD2ϕ4 , or Oψ4 .

Another important consequence of the length selection rule is that, at loop order L =

l(Ol) − l(Os) + 1, only the (L + 1)-particle cut can contribute [8]. For example, the three-

particle cut depicted in Figure 3.8(a) is the only cut that can contribute to γ
UV(2)

F 3←(ϕ2F 2)1
. The

(L + 1)-particle cut can then be evaluated using a four-dimensional tree-level amplitudes,

making the calculation much simpler than that of a generic L-loop anomalous dimension

matrix element. This observation, noted in Ref. [8], makes it straightforward to evaluate

certain two-loop SMEFT anomalous dimensions solely from three-particle cuts [27].

3.4.2 Zeros from vanishing one-loop rational terms

Next, we show that the vanishing of many one-loop amplitudes and rational terms found in

Section 3.3 yields additional zeros in the two-loop anomalous-dimension matrix of our theory.

Somewhat surprisingly, this sometimes involves a cancelation between different contributions

to the logarithms from one-loop terms in the cut. We will explain how this relates to the

scheme dependence of two-loop anomalous dimensions.
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Oψ4 ← OD2ϕ4

We begin by determining the renormalization of O(ψ4)1 and O(ψ4)2 by O(D2ϕ4)1 , which we

denote by O(ψ4)1 ← O(D2ϕ4)1 and O(ψ4)2 ← O(D2ϕ4)1 . To extract the anomalous dimensions,

we examine cuts of amplitudes with four external quarks. We can readily prove that these

anomalous dimension matrix elements are zero at two loops in our model. The contributing

cuts would be

1. the three-particle cut between the five-point dimension-four tree amplitude and the

five-point (D2ϕ4)1 amplitude,

2. the two-particle cut between the four-point dimension-four one-loop amplitude and the

four-point (D2ϕ4)1 tree, and

3. the two-particle cut between the four-point dimension-four tree and the four-point

(D2ϕ4)1 one-loop amplitude.

In all cases the external particles must be four fermions to match the desired operator.

In case (1), the five point amplitude containing the operator (D2ϕ4)1 must have two

external fermions, but since the Yukawa couplings are set to zero in our simplified model,

the (D2ϕ4)1 tree must have at least four scalars, prohibiting the required three-scalar two-

fermion amplitude. For case (2), the (D2ϕ4)1 tree must again have two fermions, so that

there are no valid diagram and the cut vanishes.

The vanishing of case (3) relies on our knowledge of the one-loop amplitudes with an

operator insertion(D2ϕ4)1, given in Appendix 3.B. In this case, the only O(D2ϕ4)1 one-loop

amplitude that can be inserted into the cut is the two-scalar two-fermion amplitude—as in

Figure 3.5—which is zero for this operator. Therefore, all possible contributing cuts evaluate

to zero. Since O(D2ϕ4)1 does not renormalize Oϕ2ψ2D or Oψ4 at one loop, which otherwise

produce terms on the left-hand-side of Eq. (3.37), the vanishing of the three types of cuts

implies that the two-loop anomalous-dimension matrix element is also zero.
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(a) (b)

Figure 3.5: The (12)-channel (a) and (34)-channel (b) unitary cuts which determine the
renormalization of O(ψ4)1 by O(D2ϕ4)1 or O(D2ϕ4)2 . The (23)- and (14)-channel cuts are given
by the exchange of legs 2 and 4. In each, the darker blobs indicate a higher-dimension
operator insertion, and the vertical (blue) dashed line indicates the integral over phase space
of the particles crossing the cut.

Next, consider the case O(ψ4)1 ← O(D2ϕ4)2 , which we also show has a zero entry in the

anomalous dimension matrix of our simplified model. We organize the calculation into the

three types of cuts as in the previous case, with the only difference being that, in case (3),

the one-loop amplitude with an insertion of O(D2ϕ4)2 , and with two scalars and two fermions

as external particles is nonzero, and in fact has a UV divergence. While the presence of

nonzero cuts, shown diagrammatically in Figure 3.5, might seem to imply that the two-loop

anomalous dimension must be nonzero, we will show that it actually evaluates to zero as

well.

Using the external state 〈1+

ψ
2−
ψ

3+

ψ
4−
ψ
| and setting Oi = O(D2ϕ4)2 , Eq. (3.37) reduces to

γ
UV(2)

ψ4←(D2ϕ4)2
F

(0)

ψ4 + γ
UV(1)

(Dϕ2ψ2)2←(D2ϕ4)2
F

(1)

(Dϕ2ψ2)2
(3.45)

= − 1

π
(M12

2→2 +M14
2→2 +M23

2→2 +M34
2→2)(0) ⊗ ReF

(1)

(D2ϕ4)2
,

where on the right-hand side we only find cuts of the form in Figure 3.5 with an O(D2ϕ4)2

insertion, and the (13) and (24) channels are not allowed. For instance the (12)-channel cut
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is

(M12
2→2)(0) ⊗ ReF

(1)

(D2ϕ4)2
(3.46)

= 2

∫
dLIPS2 〈1+

ψ
2−
ψ
|M|`1ϕ

`2 ϕ
〉(0) Re〈`1ϕ

`2 ϕ
3+

ψ
4−
ψ
|O(D2ϕ4)2|0〉(1) .

The factor of 2 is required to cancel the symmetry factor of 1/2 in our definition of the

phase-space measure. Other terms in Eq. (3.37) drop out because O(D2ϕ4)2 does not have

either a one-loop or tree-level form factor with a four-fermion external state, and does not

renormalize O(Dϕ2ψ2)1 or the Oψ4 operators at one loop. In particular, the β-function also

does not appear.

For simplicity, we set the off-shell momentum q to zero, and Eq. (3.45) then reduces to

γ
UV(2)

ψ4←(D2ϕ4)2
A

(0)

ψ4 (1+

ψ
2−
ψ

3+

ψ
4−
ψ

) + γ
UV(1)

(Dϕ2ψ2)2←(D2ϕ4)2
A

(1)

(Dϕ2ψ2)2
(1+

ψ
2−
ψ

3+

ψ
4−
ψ

) (3.47)

= − 2

π

∑∫
dLIPS2A

(0)(1+

ψ
2−
ψ
−`2ϕ

−`1 ϕ
)ReA

(1)

(D2ϕ4)2
(`1ϕ

`2 ϕ
3+

ψ
4−
ψ

) ,

where the sum is over the available channels. The relevant tree and renormalized one-loop

amplitudes needed to construct the cut are (including the color factors):

A(0)(1+

ψ
2−
ψ

3
ϕ
4
ϕ

) = T ai2i1T
a
i4i3

g2 〈23〉[13]

s
, (3.48)

A
(1)

(D2ϕ4)2
(1+

ψ
2−
ψ

3
ϕ
4
ϕ

) = T ai2i1T
a
i4i3

g̃2

9
〈23〉[13](3 log(−s/µ2) + 8) , (3.49)

where again the flavor indices have been dropped for simplicity. Note the form of Eq. (3.47)

provides a nontrivial check on the phase space integral on the right-hand side: A
(1)

(D2ϕ4)2

contains terms proportional to log(−s/µ2), which, after the phase-space integral, must cancel

against terms in A
(1)

(Dϕ2ψ2)2
.

We can readily evaluate the cut by relabeling the amplitudes (3.48)–(3.49) and applying

the spinor parametrization (3.25) to the scalars crossing the cut. This yields an integral
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with no poles in z = eiφ, other than the pole at zero. This can be seen by the fact that all

spinor products in A(0) are either proportional to e±iφ or else have no φ dependence under

our parametrization, whereas A
(1)

(D2ϕ4)2
only has a pole in s. This makes the φ integral trivial

to evaluate, resulting in:

∫ π
2

0

dθ
g̃4

18
〈24〉[13] sin3(2θ)(3 log(−s/µ2) + 8)T ai2i1T

a
i4i3

=
g̃4

27
〈24〉[13](3 log(−s/µ2) + 8)T ai2i1T

a
i4i3

, (3.50)

for the (12)-channel cut. The (34)-channel cut gives the same result, while the other cuts yield

the same result with legs two and four exchanged. Summing over the three other channels, we

exactly match the second term on the left-hand side of Eq. (3.45), since γ
UV(1)

(Dϕ2ψ2)2←(D2ϕ4)2
=

g̃2/3 and

A
(1)

(Dϕ2ψ2)2
=

2g̃2

9
〈24〉[13](3 log(−s/µ2) + 8)T ai2i1T

a
i4i3
− (2↔ 4) . (3.51)

Therefore the cuts exactly cancel all terms on the left-hand side of Eq. (3.45) involving the

one-loop anomalous dimensions and form-factors, leaving γ
UV(2)

ψ4←(D2ϕ4)2
F

(0)

ψ4 = 0. Thus the

two-loop anomalous dimension γ
UV(2)

ψ4←(D2ϕ4)2
is zero.

In fact, we could have come to this conclusion simply by examining the form of the one-

loop amplitudes in Eqs. (3.49) and (3.51). First, note the two-loop anomalous dimension

must be g̃4 times a number (i.e., it does not have any kinematic dependence). Logarithmic

terms resulting from the cut on the right-hand side of (3.45) must therefore cancel against

logarithmic terms in A
(1)

(Dϕ2ψ2)2
. Since both one-loop form factors are proportional to the

factor (3 log(−s/µ2) + 8), and since this term can be pulled out of the phase-space integral

on the right-hand side of Eq. (3.45), the cancellation of the logarithmic terms implies can-

cellation of the rational term as well. Thus, even though there are nonzero cuts, there can

be no remaining rational term that leads to a nonzero two-loop anomalous dimension.
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(a) (b)

Figure 3.6: The (a) (12)-channel and (b) (34)-channel unitary cuts which determine the
renormalization of O(D2ϕ4)1 and O(D2ϕ4)2 by O(ψ4)1 or O(ψ4)2 . The (23)- and (14)-channel
cuts are given by exchanging legs 2 and 4. In each, the darker blobs indicate a higher-
dimension operator insertion, and the vertical (blue) dashed line indicates the integral over
phase space of the particles crossing the cut.

At this point, the vanishing of the two-loop anomalous dimensions due to the cancella-

tion of one-loop rational terms might seem accidental. However, one must remember that

such local rational pieces are scheme dependent and can be adjusted by adding finite local

counter-terms. As described in Section 3.3, the rational terms of both one-loop amplitudes

in (3.49) and (3.51) can be set to zero by such finite counterterms, which would also result in

γ
UV(2)

ψ4←(D2ϕ4)2
= 0. For this particular example, it just so happened that the naive M̄S scheme

has zero anomalous dimension, but next we will see that this is not always the case.

As a cross-check, we have verified that the Eq. (3.32) is also satisfied. The crucial sub-

stitution log(−s/µ2)→ log(−s/µ2)− iπ, is required in the right-hand side of that equation,

coming from the analytic continuation of the amplitude from the Euclidean region to the

correct physical region, which must be carried out for use in Eqs. (3.29)–(3.31).

OD2ϕ4 ← O(ψ4)1

This section will provide our first example of nonzero two-loop anomalous dimension matrix

elements in M̄S, while demonstrating how an appropriate choice of scheme, i.e. choice of

finite local counterterms, can eliminate the two-loop anomalous dimensions of this example.

We will begin with the calculation in M̄S. Again, there is no three-particle cut, due

to the particle content of the two types of operators in question. Using the external state
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〈1
ϕ
2
ϕ

3
ϕ
4
ϕ
| and setting Oi → O(ψ4)1 , Eq. (3.37) becomes

γ
UV(2)

(D2ϕ4)1←(ψ4)1
F

(0)

(D2ϕ4)1
+ γ

UV(2)

(D2ϕ4)2←(ψ4)1
F

(0)

(D2ϕ4)2
+ γ

UV(1)

(Dϕ2ψ2)2←(ψ4)1
F

(1)

(Dϕ2ψ2)2
(3.52)

= − 1

π
(M12

2→2 +M14
2→2 +M23

2→2 +M34
2→2)(0) ⊗ ReF

(1)

(ψ4)1
.

As for the previous example, the logarithmic terms in the cuts must cancel against terms

in the amplitude F
(1)

(Dϕ2ψ2)2
on the left-hand side of the equation. Since we are dealing with

four-point matrix elements we will again set q = 0. Then the one-loop amplitudes required

for this example are

A
(1)

(ψ4)1
(1+

ψ
2−
ψ

3
ϕ
4
ϕ

) =
2g̃2

9
〈23〉[13](3 log(−s/µ2)− 2)T ai2i1T

a
i4i3

, (3.53)

A
(1)

(Dϕ2ψ2)2
(1
ϕ
2
ϕ

3
ϕ
4
ϕ

) =
2g̃2

9
(t− u)(3 log(−s/µ2)− 5)T ai2i1T

a
i4i3

+ (2↔ 4) , (3.54)

and the tree-level amplitudes needed are in Eq. (3.48) along with

A
(0)

(D2ϕ4)1
(1
ϕ
2
ϕ

3
ϕ
4
ϕ

) = tδi2i1δi4i3 + sδi4i1δi2i3 , (3.55)

A
(0)

(D2ϕ4)2
(1
ϕ
2
ϕ

3
ϕ
4
ϕ

) = 2sδi2i1δi4i3 + 2tδi4i1δi2i3 , (3.56)

which are shown in a slightly different basis of color factors than those shown in the appendix.

The phase-space integral is evaluated in the same manner as the previous examples, with

the result of the (12)-channel cut being

− 1

π

∫
dLIPS2

∑
h1,h2

A(0)(1
ϕ
2
ϕ
−`1

h1
ψ
−`2

h2
ψ

)A
(1)

(ψ4)1
(`2

h2
ψ
`1
h1
ψ

3
ϕ
4
ϕ

)

= − 2

27
g̃4(t− u)(3 log(−s/µ2)− 2)T ai2i1T

a
i4i3

. (3.57)

After summing over all channels and subtracting the contribution of γ
UV(1)

(Dϕ2ψ2)2←(ψ4)1
F

(1)

(Dϕ2ψ2)2

in Eq. (3.52)—thus canceling the logarithmic terms—the two-loop anomalous dimensions
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are given by

γ
UV(2)

(D2ϕ4)1←(ψ4)1
(tδi2i1δi4i3 + sδ41δ23) + γ

UV(2)

(D2ϕ4)2←(ψ4)1
(2sδi2i1δi4i3 + 2tδi4i1δi2i3) (3.58)

=− 4

9
g̃4(t− u)T ai2i1T

a
i4i3

+ (2↔ 4) .

Applying the color Fierz identity,

T aijT
a
kl = δilδkj −

1

N
δijδkl , (3.59)

and solving for the two-loop anomalous dimensions, we find

γ
UV(2)

(D2ϕ4)1←(ψ4)1
=− 4g̃4(N − 2)

9N
,

γ
UV(2)

(D2ϕ4)2←(ψ4)1
=

2g̃4(2N − 1)

9N
, (3.60)

in the M̄S scheme. Although these anomalous dimension matrix elements are nonzero in the

M̄S scheme, a simple rational shift of the coefficients c(D2ϕ4)1 , c(D2ϕ4)2 , and c(Dϕ2ψ2)2 can set

them to zero. This is accomplished by the following shifts in the coefficients:

c(D2ϕ4)1 −→ c̃(D2ϕ4)1 = c(D2ϕ4)1 +
10g̃2(N − 2)

9N
c(Dϕ2ψ2)2 ,

c(D2ϕ4)2 −→ c̃(D2ϕ4)2 = c(D2ϕ4)2 +
5g̃2(2N − 1)

9N
c(Dϕ2ψ2)2 ,

c(Dϕ2ψ2)2 −→ c̃(Dϕ2ψ2)2 = c(Dϕ2ψ2)2 −
2g̃2

9
c(ψ4)1 ,

(3.61)

which yields

γ̃
UV(2)

(D2ϕ4)1←(ψ4)1
= 0 , γ̃

UV(2)

(D2ϕ4)2←(ψ4)1
= 0 , (3.62)

where the tilde indicates the modified scheme. The shifts above are equivalent to a finite

renormalization of the operator at one loop. Generally this can be achieved by choosing
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the rational terms in γ
UV(1)

(Dϕ2ψ2)2←(ψ4)1
F

(1)

(Dϕ2ψ2)2
to match those of the cuts. In our particular

example we set the rational terms of both (3.53) and (3.54) to zero. We briefly comment

below on the consequences of this redefinition for the two-loop RG running of the operators

involved.

While we do not present the analogous calculation forO(ψ4)2 here, by inspecting Table 3.3,

we can deduce that the two-loop anomalous dimensions γ
UV(2)

(D2ϕ4)1←(ψ4)2
and γ

UV(2)

(D2ϕ4)2←(ψ4)2
can

also be set to zero with the appropriate choice of finite counterterms.

General comments about scheme redefinition

As mentioned above, the scheme choice that sets some two-loop anomalous dimensions to

zero is equivalent to a finite renormalization of the operators

Õi = Zfin
ij Oj , where Zfin

ij = δij + fij(g
(4)) , (3.63)

and the quantity fij is finite and has a perturbative expansion starting at one loop, fij(g
(4)) =

f
(1)
ij + · · · . As usual, the redefinition of the coefficients, c̃i = Z

fin (c)
ij cj is given by the inverse,

Z
fin (c)
ij = (Zfin

ij )−1. The effect of such a scheme redefinition can be easily analyzed using

the unitarity-based formalism employed in this paper. Since the coupling dependence of fij

starts at one loop we have that

F̃
(0)
i = F

(0)
i , (3.64)

F̃
(1)
i = F

(1)
i + f

(1)
ij F

(0)
j , (3.65)

where the tilde indicates a form factor of the redefined operator Õi. From Eqs. (3.64)

and (3.22) we conclude the one-loop anomalous dimensions are unaffected by the finite
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renormalization, i.e., ∆γ̃
(1)
ij = ∆γ

(1)
ij . Similarly, writing Eq. (3.37) for the redefined operator

[
∆γ̃

(1)
ij + δijβ

(1)∂
]

ReF̃
(1)
j +

[
∆γ̃

(2)
ij + δijβ

(2)∂
]
F̃

(0)
j = − 1

π

[
Re(M)Re(F̃i)

](2)

. (3.66)

and using Eqs. (3.64) and (3.65) together with Eqs. (3.22) and (3.37), while keeping in mind

that the infrared anomalous dimensions are not changed by redefining the scheme, we find

the relation between the two-loop anomalous dimensions in the two schemes,

γ̃
UV(2)
ij = γ

UV(2)
ij + f

(1)
ik γ

UV(1)
kj − γUV(1)

ik f
(1)
kj − β

(1)∂f
(1)
ij . (3.67)

In general, one would like to solve this equation for f
(1)
ik to get as many vanishing entries as

possible in γ̃
UV(2)
ij .

We have explicitly verified Eq. (3.67) in the examples above, where we set the anoma-

lous dimensions of the form γ̃
UV(2)

D2ϕ4←ψ4 to zero by appropriately choosing f
(1)

Dϕ2ψ2←ψ4 and

f
(1)

D2ϕ4←Dϕ2ψ4 . In addition, f
(1)

D2ϕ4←ψ4 vanished, which from Eq. (3.67) implies the the absence

of a term induced by the β-function in the new two-loop anomalous dimension. On the other

hand, it is clear from Eq. (3.67) that the finite renormalizations will induce some additional

running in the two-loop anomalous dimensions γ̃
UV(2)

Dϕ2ψ2←ψ4 and γ̃
UV(2)

D2ϕ4←Dϕ2ψ4 , proportional to

the one-loop beta function and ∂f (1). However, this additional running is harmless, since

those operators already mix at one loop. Furthermore, the corresponding entries in the two-

loop anomalous-dimension matrix receive contributions from both two- and three-particle

cuts that have no a priori reason to vanish, so we expect them in any case to run. In sum-

mary, our scheme choice prevents certain operators from mixing at two loops at the expense

of modifying the running of operators that, in any case, mix at one loop in the original

scheme.
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(a) (b)

Figure 3.7: (12)-channel (a) and (34)-channel (b) unitary cuts which determine the renor-
malization of O(ϕ2F 2)1 and O(ϕ2F 2)2 by O(ψ4)1 or O(ψ4)2 . There are no t-channel cuts for this
process. In each diagram, the darker blobs indicate a higher-dimension operator insertion,
and the dashed line indicates the integral over phase space of the particles crossing the cut.

3.4.3 Zeros from color selection rules

This section will provide an example of another type of selection rule, wherein a mismatch

between the color of the cuts and the color of the target operators prevents renormalization

at two loops.

Oϕ2F 2 ← Oψ4

For this example we choose the external state to be 〈1
ϕ
2
ϕ

3+4+|, under which both O(ϕ2F 2)1

and O(ϕ2F 2)2 are nonzero. Using this state and setting Oi → O(ψ4)1 , Eq. (3.37) reduces to

γ
UV(2)

(ϕ2F 2)1←(ψ4)1
F

(0)

(ϕ2F 2)1
+ γ

UV(2)

(ϕ2F 2)2←(ψ4)1
F

(0)

(ϕ2F 2)2
+ γ

UV(1)

(Dϕ2ψ2)2←(ψ4)1
F

(1)

(Dϕ2ψ2)2
(3.68)

= − 1

π

(
(M12

2→2)(0) ⊗ ReF
(1)

(ψ4)1
+ (M34

2→2)(0) ⊗ ReF
(1)

(ψ4)1

)
.

Naively there would be the additional term γ
UV(2)

F 3←(ψ4)1
F

(0)

F 3 on the left-hand-side of the equa-

tion, since OF 3 produces a nonzero tree amplitude with the state 〈1
ϕ
2
ϕ

3+4+|. How-

ever, as was discussed in Section 3.4.1, the length and particle content of O(ψ4)1 requires
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γ
UV(2)

F 3←(ψ4)1
= 0. Setting q = 0, the (12)-channel cut of the above equation is

(M12
2→2)(0) ⊗ ReF

(1)

(ψ4)1
=

∫
dLIPS2

∑
h1,h2

A(0)(1
ϕ
2
ϕ
−`1

h1
ψ
−`2

−h2
ψ

)A
(1)

(ψ4)1
(`2

h2
ψ
`1
h1
ψ

3+4+) ,

(3.69)

and the (34)-channel cut is

(M34
2→2)(0) ⊗ ReF

(1)

(ψ4)1
=

∫
dLIPS2

∑
h1,h2

A(0)(3+4+−`1
h1
ψ
−`2

h2
ψ

)A
(1)

(ψ4)1
(`2

h2
ψ
`1
h1
ψ

1
ϕ
2
ϕ

) .

(3.70)

The (34)-channel cut vanishes, because the amplitude A(0)(3+4+−`1ψ
−`2 ψ

) is zero for all

helicities of the fermions crossing the cut. This vanishing is required for the consistency

of the logarithmic terms: A
(1)

(ψ4)1
(`2

h2
ψ
`1
h1
ψ

1
ϕ
2
ϕ

) includes a term proportional to log(−s/µ2),

but there is no term on the left-hand side that can cancel it, since F
(1)

(Dϕ2ψ2)2
(1
ϕ
2
ϕ

3+4+) is

purely rational. The one-loop amplitudes needed for this calculation are

A
(1)

(ψ4)1
(1+

ψ
2−
ψ

3+4+) = − g̃
2s[14]〈24〉 [T a3 , T a4 ]i2i1

3〈34〉2
, (3.71)

A
(1)

(ψ4)1
(1−
ψ

2+

ψ
3+4+) = − g̃

2〈12〉[23][24] [T a3 , T a4 ]i2i1
3〈34〉

, (3.72)

A
(1)

(Dϕ2ψ2)2
(1
ϕ
2
ϕ

3+4+) =
g̃2s(t− u) [T a3 , T a4 ]i2i1

3〈34〉2
, (3.73)

while the tree-level amplitudes needed for the cut calculation are (3.48) and its conjugate.

The phase-space integrals are carried out in the same manner as the previous example, with

the simplification that the functions are now entirely rational. The result of the phase-space
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integral is

− 1

π

∫
dLIPS2

∑
h1,h2

A(0)(1
ϕ
2
ϕ
−`1

−h1
ψ
−`2

−h2
ψ

)A
(1)

(ψ4)1
(`2

h2
ψ
`1
h1
ψ

3+4+)

= −2g̃4s(t− u) [T a3 , T a4 ]i2i1
9(〈34〉)2

= γ
UV(1)

(Dϕ2ψ2)2←(ψ4)1
A

(1)

(Dϕ2ψ2)2
. (3.74)

Thus the phase-space integral exactly cancels against this term from the left-hand-side of

Eq. (3.68), meaning the two-loop anomalous dimension is again zero.

Interestingly, this can also be seen without looking at the kinematic content of the cuts on

the right-hand side of Eq. (3.68). Since the color of both O(ϕ2F 2)1 and O(ϕ2F 2)2 are symmetric

in T 3 and T 4, no combination of the two can produce the color factor [T 3, T 4]i2i1 . Since this is

the color of A
(1)

(Dϕ2ψ2)2
(1
ϕ
2
ϕ

3+4+), and the color of A
(1)

(ψ4)1
(1±
ψ

2∓
ψ

3+4+) is also anti-symmetric

under the exchange of 3 and 4, we can see directly from the color that neither of these terms

can contribute to the two-loop anomalous dimension, and therefore must cancel. As in the

previous example, we can extend this argument trivially to the operator O(ψ4)2 , since its two-

fermion two-vector-boson amplitude is proportional to that of O(ψ4)1 . In this case, the only

difference on the left-hand side would being the value of γ
UV(1)

(Dϕ2ψ2)2←(ψ4)2
versus γ

UV(1)

(Dϕ2ψ2)2←(ψ4)1
,

but the color again ensures all terms must cancel, leaving

γ
UV(2)

(ϕ2F 2)1←(ψ4)1
= γ

UV(2)

(ϕ2F 2)2←(ψ4)1
= 0 ,

γ
UV(2)

(ϕ2F 2)1←(ψ4)2
= γ

UV(2)

(ϕ2F 2)2←(ψ4)2
= 0 . (3.75)

Here we focused on a simple example in which the color can preclude renormalization.

In more general cases, one can directly inspect the color of the amplitudes that compose the

cuts contributing to a given anomalous dimension and determine whether a given operator

can yield a nonzero contribution. Note that this is more efficient than studying the color

of individual Feynman diagrams, since the color decomposed amplitudes have fewer color

structures.
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(a) (b)

Figure 3.8: (a) Unitary cut which determines the renormalization of OF 3 by O(ϕ2F 2)1 or
O(ϕ2F 2)2 . Note this form factor requires q 6= 0, and the double-lined arrow indicates this
insertion of additional off-shell momentum from the operator. (b) Unitarity cut which de-
termines the renormalization of O(ψ4)1 and O(ψ4)2 by O(ϕ2F 2)1 or O(ϕ2F 2)2 . In each, the
darker blobs indicate a higher-dimension operator insertion, and the dashed line indicates
the integral over phase space of the particles crossing the cut.

It is worth noting that, as mentioned in Section 3.3, the nonzero rational amplitudes

(3.71)–(3.73) can be set to zero by introducing finite counterterms proportional to c(ψ4)1OF 3

and c(Dϕ2ψ2)2OF 3 , respectively. However, since these are non-local amplitudes, doing so intro-

duces nonzero terms for other amplitudes, in particular any amplitudes where OF 3 produces

a nonzero tree-level amplitude. This would introduce a great deal of confusion—for example,

if we were to introduce a counterterm to cancel (3.71), we would then need to include addi-

tional cuts on the right-hand side of Eq. (3.68), including three-particle cuts and cuts with

nontrivial IR dependence. Canceling either Eq. (3.71) or Eq. (3.73) with such a countert-

erm would also spoil the argument of Section 3.4.1, as the OF 3 self-renormalization would

contribute in a nontrivial way. Therefore we would have to include the term γ
UV(2)

F 3←(ψ4)1
F

(0)

F 3

on the left-hand side of Eq. (3.68) as well. For all of the above reasons, we choose not to

implement these finite shifts. It is interesting however, that even though the rational terms

remain in this example, the structure of the color precludes renormalization at two loops.

3.4.4 Outlook on additional zeros

The previous sections have demonstrated numerous zeros in the two-loop anomalous dimen-

sion matrix, summarized in Table 3.4. However, the previous examples are by no means
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F 3 (ϕ2F 2)1 (ϕ2F 2)2 (D2ϕ4)1 (D2ϕ4)2 (Dϕ2ψ2)1 (Dϕ2ψ2)2 (ψ4)1 (ψ4)2 ϕ6

F 3 0 0 0 0 0 0 /0

(ϕ2F 2)1 0 0 0

(ϕ2F 2)2 0 0 0

(D2ϕ4)1 0∗ 0∗ 0

(D2ϕ4)2 0∗ 0∗ 0

(Dϕ2ψ2)1 /0

(Dϕ2ψ2)2 /0

(ψ4)1 0 0 /0

(ψ4)2 0 0 /0

ϕ6

/0 : trivial zero, no contributing two-loop diagrams

0 : zero predicted by the selection rules of Section 3.4

: only a three-particle cut is needed to evaluate γ
UV(2)
ij

Table 3.4: Structure of the two-loop anomalous dimension matrix γ
(2)
ij due to the collected

rules outlined in this section. A /0 indicates there are no contributing two-loop diagrams,
whereas 0 alone indicates that there are one-loop diagrams that could contribute, but the
anomalous dimension evaluates to zero. A 0∗ indicates the result is nonzero in M̄S, but set to
zero by introducing the appropriate finite counterterms. Shading indicates the entry depends
only on the three-particle cut, due to either the length selection rules of Section 3.4.1 or the
vanishing of the relevant one-loop amplitudes. As for Table 3.2, the operators labeling the
rows are renormalized by the operators labeling the columns.

exhaustive, and more zeros may exist. The large number of zeros in the one-loop amplitudes

(Table 3.3) implies that when calculating two-loop anomalous dimensions, the two-particle

cut formed from the dimension-four tree and the dimension-six one-loop amplitude will not

contribute. In some cases, the only contribution will come from the three-particle cut.

Examples of this include the renormalization of OF 3 by O(ϕ2F 2)1 or O(ϕ2F 2)2 , and the renor-

malization of O(ψ4)1 and O(ψ4)2 by O(ϕ2F 2)1 or O(ϕ2F 2)2 . The cuts for these examples are

depicted in Figure 3.8. While is may seem that there no reason to expect any given three-

particle cut to evaluate to zero, it is possible that a detailed inspection may find that helicity
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selection rules [7] or angular momentum selection rules [9] set certain cuts to zero. For a

generic entry, the collection of these rules and the rules laid out in the sections above greatly

simplify the calculation of the two-loop anomalous dimensions by eliminating one or more

required unitary cuts, and one might expect that overlapping rules will conspire to eliminate

all possible cuts and set additional entries in Table 3.4 to zero.

3.5 Implications for the SMEFT

The full SMEFT is more intricate than the simplified model adopted in this work, as it

includes masses, multiple gauge groups and a number of additional operators. Still many

of the results of our calculations provide nontrivial information about the structure of the

anomalous dimension matrix of the SMEFT. In this section we describe the overlap of our

theory with the SMEFT, and we explain how our results directly confirm a large number of

the one-loop anomalous dimensions computed in Refs. [4]. We also comment on two-loop

zeros and the coupling dependence of a subset of the two-loop anomalous-dimension matrix

of the SMEFT.

3.5.1 Mapping our theory to the SMEFT

We now describe how the differences between our simplified model and SMEFT are taken into

account to import the conclusions of our analysis to the SMEFT. First, the Standard Model

spectrum contains massive particles, notably the Higgs, whose masses can affect the structure

of the renomalization group running of both the Standard Model couplings and Wilson

coefficients of the SMEFT. However, in this work we have focused on the mixing between

dimension-six operators, which by dimensional analysis cannot depend on masses or other

dimensionful parameters. In the presence of masses there can be additional mixing between

operators of different dimensions, including modifications to the running of the Standard

Model couplings, but these correspond to entries of the anomalous dimension matrix different
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than those studied in this paper. The same holds for the finite renormalizations that were

used to cancel certain one-loop matrix elements. Namely, in the presence of masses one might

need to introduce finite renormalization of the Standard Model couplings to remove new local

contributions to the one-loop matrix elements. Dimensional analysis ensures that this does

not affect the structure of the two-loop dimension-six anomalous dimensions. In summary,

the structure of the anomalous dimensions in our simplified model translates directly to the

SMEFT, and our comparison and conclusions are unaffected by ignoring masses.

Compared to our simplified model the SMEFT also includes several gauge groups and

additional higher-dimension operators. By keeping the gauge group to be a general SU(N),

and by leaving the identity of the fermions unspecified, we can still access many of the entries

of the anomalous-dimension matrix in the full SMEFT basis of operators used by Refs. [4].

In particular, since the Higgs transforms under SU(2), setting N = 2 and the number of

scalars Ns = 1 allows us to map to anomalous dimensions or four-point amplitudes from

representatives of any of the classes of operators in Ref. [4] other than the ψ2Fϕ class

(ψ2XH in the notation of Ref. [4]). Since the scalar is in the fundamental representation

that class necessarily involves both a left-handed fermion charged under SU(2), as well as an

uncharged right-handed fermion, which does not fit into our framework. By taking N = 3,

parts of the anomalous dimensions in the SMEFT containing gluons can also be obtained. In

principle, one can also compare anomalous dimensions for additional operators using more

sophisticated embeddings of the Standard Model into SU(N), including U(1) charges (see

e.g, Appendix IV of Ref. [51]), but we do not do so here.

By specifying the flavor of the fermions, we can map to a number of operators of the

full basis used by Ref. [4] via different choices of gauge group and helicity. For example,

by taking N = 2 and and left-handed helicity on the external states, we access the SU(2)

portions of the amplitudes involving the q and q̄ quark doublets, and map onto the operators

(q̄γµq)(q̄γ
µq) and (q̄γµτ

Iq)(q̄γµτ Iq). One remaining difference in our approach compared to

the full SMEFT is that we treat the fermions as Dirac instead of Weyl. This causes factor
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of 2 differences in the Nf terms of the renormalization of O(Dϕ2ψ2)2 and O(ψ4)2 compared to

Ref. [4], which need to be taken into account when comparing. While our simplified model

avoids having to deal with γ5, the generalized unitarity method has been applied to such

cases as well [29]. At one loop, the issue of Weyl versus Dirac fermions is reduced to a

question of which helicities to take in the state sum in Eq. (3.24).

Setting aside the issue of Weyl versus Dirac fermions, mapping onto the four-fermion

operators of Ref. [4], (l̄γµl)(l̄γ
µl), (ūγµu)(ūγµu), and (d̄γµd)(d̄γµd) is possible as well, but

requires some care, due to the presence of evanescent effects. In particular, for these cases

the operator O(ψ4)2 is related to the operator O(ψ4)1 due to the SU(N) Fierz identity (3.59)

(ψ̄mγ
µT aψn)(ψ̄pγµT

aψr) = (ψ̄mγ
µψn)(ψ̄pγµψr)

(
δipinδimir −

δiminδipir
N

)
. (3.76)

which, together with the Lorentz–Fierz relations for all left- or right-handed spinors

(ψ̄mL γ
µψnL)(ψ̄pLγµψ

r
L) = −(ψ̄pLγ

µψnL)(ψ̄mL γµψ
r
L) ,

(ψ̄mRγ
µψnR)(ψ̄pRγµψ

r
R) = −(ψ̄pRγ

µψnR)(ψ̄mRγµψ
r
R) , (3.77)

(where we raised the flavor indices for convenience) can be applied to eliminate the need for

the O(ψ4)2 operator in Table 3.1:

Omnpr(ψ4)2
= (ψ̄mγ

µT aψn)(ψ̄pγµT
aψr) = Omrpn(ψ4)1

− 1

N
Omnpr(ψ4)1

, (3.78)

when there are no additional group indices preventing the particle exchange (for example,

the additional SU(3) index prevents the reduction of (q̄γµτ Iq)(q̄γµτ
Iq) operator based on

the SU(2) Fierz identity). By choosing to implement Eq. (3.77) or not, we can map onto

either the operators (l̄γµl)(l̄γµl), (ūγµu)(ūγµu), or (d̄γµd)(d̄γµd), or onto the set of operators

(q̄γµτ Iq)(q̄γµτ
Iq) and (q̄γµτ Iq)(q̄γµτ

Iq), respectively. Since we take all the fermions in our

operators to be charged under the same gauge group, here we do not map onto the (L̄R)(L̄R)
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OG OW OHW
OH�
OHD

O(1)
Hl

O(3)
Hl

O(1)
Hq

O(3)
Hq

Oll
O(1)
qq

O(3)
qq

Ouu
Odd

OG X3 /0 /0 /0 /0 /0 /0 /0 /0

OW /0 X2 X2 /0 /0 /0 /0 /0 /0

OHW /0 X2 X2,λ X2 X2 X2 /0 /0 /0

OH�, OHD /0 X2 X2 X2,λ X2 X2 /0 /0 /0

O(1)
Hl , O

(3)
Hl

/0 X2 X2 X2 X2,λ X2 X2 /0 /0

O(1)
Hq, O

(3)
Hq

/0 X2 X2 X2 X2 X2,λ /0 X2 /0

Oll /0 X2 /0 /0 X2 /0 X2 /0 /0

O(1)
qq , O(3)

qq X3 X2 /0 /0 /0 X2 /0 X2 /0

Ouu, Odd X3 /0 /0 /0 /0 /0 /0 /0 X3

Table 3.5: Checks on the one-loop anomalous dimensions calculated in Ref. [4] obtained from
our calculations. The /0 entries correspond to trivial cases were there are no contributing
diagrams. The entries X3 and X2 are checked by setting the SU(N) group to SU(3) or SU(2),
respectively. In both cases, only the pieces of the anomalous dimensions proportional to g2

3

or g2
2 are accessed by our amplitudes. The X2,λ cases indicates that both terms proportional

to g2
2 and λ are verified. Operators have been grouped according to whether the gauge

dependence of the particle content is the same. As for the other tables, the operators
labeling the rows are renormalized by the operators labeling the columns.

or (L̄R)(R̄L) subsets of the four-fermion operators, which require the presence of multiple

gauge groups.

It is worth noting, that there are some simplifications in the SMEFT relative to our model

with general gauge group. The symmetric color tensor dabc is zero in SU(2), meaning that

the operator O(ϕ2F 2)2 is identically zero. In addition, this implies the color factors for the

two-vector, two-scalar or two-vector, two-fermion processes are related by N{T a1 , T a2}i4i3 =

2δa1a2δi4i3 , meaning the number of color-ordered amplitudes is reduced for those processes

in the case of SU(2).
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3.5.2 Verification of one-loop anomalous dimensions

From our one-loop calculations and the relations described above we have verified entries

from numerous classes of operators in the SMEFT, as summarized in Table 3.5, following

the notation of Ref. [4]. This includes examples proportional to g2
3, g2

2, and λ. In this sense

our operators are a representative sample of the full SMEFT, despite the simplified nature

of our dimension-four Lagrangian. The direct agreement with results of Ref. [4] displayed

in Table 3.5 provides a highly non-trivial check of the validity and the effectiveness of the

approach used here.

3.5.3 Two-loop implications

Next we briefly discuss the implications of the zeros in the two-loop anomalous dimensions

of our simplifies model for the SMEFT. The selection rules of Section 3.4 set a number

of entries strictly to zero, and restrict the coupling dependence of others. Our findings

are summarized in Table 3.6. The full SMEFT anomalous dimensions include dependence

on the Yukawa couplings, which are absent in our simplified theory, so some of the zeros

uncovered above may be replaced by anomalous dimensions that depend on such couplings.

Nevertheless, our results show that the coupling dependence of the anomalous dimensions

is simpler than one might have expected, and that some of the entries are zero or do not

have pure dependence on the gauge couplings. Though most of the strictly zero examples

rely on the length selection rule, which does not depend on the gauge group or the presence

of Yukawa couplings, the anomalous-dimension matrix element γ
(2)
HW←qq relies solely on the

color selection rules. In this case, including Yukawa and U(1) couplings will not affect this

zero, as the cuts still cannot match the color of the target operator.

In addition to the zeros, we find that many of the entries only receive contributions from

either three- or two-particle cuts, which should greatly simplify their computation. One

interesting example is the element γ
(2)
qq←HW , which only has a three-particle cut due to the
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vanishing of the one-loop amplitudes that would contribute to the two-particle cut. For this

example, we have also checked the one-loop amplitudes with Yukawa and U(1) couplings

do not contribute. As can also be seen in Table 3.6, many entries vanish when the Yukawa

couplings are set to zero. Many of these zeros are trivial due to the particle content of the

operators involved, but in some cases a closer examination of the diagrams is required to see

that only diagrams with Yukawa couplings will produce nonvanishing results.

Note that the operators in Table 3.6 are merely a representative set, in that all of the

operators of the SMEFT are restricted by one or more of our selection rules, either in terms

of which operators they can renormalize, or vice versa. In particular, the length selection

rules apply independently of the gauge group or the presence of Yukawa couplings, which

allows us to include operators of the classes ψ2Fϕ and ψ2ϕ3 in Table 3.6. We would also

like to stress that our analysis of the structure of the two-loop anomalous dimensions is

not an exhaustive study of the SMEFT anomalous dimensions. For this reason, we expect

that there could be additional vanishings or structures that can be uncovered under closer

scrutiny.

3.6 Conclusions

In this paper we applied on-shell methods to investigate the structure of the two-loop anoma-

lous dimension matrix of dimension-six operators, in both a simplified model and in the

SMEFT. At one loop, we used both the standard generalized unitarity method [11] and the

recently developed approach for extracting anomalous dimensions directly from unitarity

cuts [12]. At two loops, we find the latter method to be especially effective, with the former

method providing one-loop amplitudes as inputs. As an initial step, we reorganized the

basic equation for the two-loop anomalous dimension in the latter approach so as to simplify

one-loop iterations. Using this equation, we revealed a number of vanishing contributions

in the two-loop anomalous dimension matrix of the SMEFT. Our analysis was based on
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a simplified model without U(1) or Yukawa interactions. Nevertheless, as summarized in

Table 3.6, by analyzing the overlap of our simplified model with the SMEFT we found that

a remarkable number of SMEFT two-loop anomalous dimensions either vanish or have a

simpler dependence on the Standard Model couplings than naively expected.

The structure we uncovered has a number of origins, including length selection rules, color

selection rules, and zeros in the one-loop amplitudes with dimension-six operator insertions.

Additional zeros arise from the choice of an M̄S-like scheme which includes additional finite

renormalizations designed to set various rational terms in one-loop amplitudes to zero. This

suggests that there exist interesting schemes that make the structure of the renormalization-

group running beyond one loop more transparent. The full implications of choosing such

schemes clearly deserve further study.

Since one-loop amplitudes are used as input for the two-loop calculation, we have com-

puted the full set of four-point amplitudes with dimension-six operator insertions in our

simplified version of the SMEFT. As a byproduct, these amplitudes have allowed us to

verify a large subset of the one-loop anomalous dimensions calculated in Refs. [4].

The zeros that we found in the two-loop anomalous dimension matrix relied on choosing

examples with trivial infrared dependence, as well as a lack of a three-particle cut. However,

the methods can be applied just as well to any generic anomalous dimension matrix element

at two or higher loops. It would be interesting to investigate whether there are additional

zeros at two loops beyond those we identified. The large number of zeros in the one-loop am-

plitudes restrict the number of cuts that can contribute, suggesting that other mechanisms,

such as helicity or angular-momentum selection rules, may set the remaining cuts to zero in

some cases.

The presented methods are quite general, and should be applicable to general EFTs.

In addition, while we have focused on ultraviolet anomalous dimensions here, this method

could equally be applied to the evaluation of infrared anomalous dimensions, such as the soft

anomalous dimension, by the use of ultraviolet protected operators such as the stress-tensor
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or global symmetry currents. It would also be interesting to understand the implications,

if any, of the vanishing of two-loop anomalous dimensions for the interference of Standard

Model and higher-dimension operator matrix elements beyond tree level, in the presence of

experimental cuts. Another obvious direction would be to include dimension seven and eight

operators into the analysis [52].

The conclusions of the present work are unchanged by the presence of masses, as these

only affect a different set of entries in the anomalous dimension matrix that relate operators

of differing dimension. Studying such entries will require revisiting the proof of the length

selection rules, since formerly scaleless integrals can have a UV divergence proportional to a

mass, which generates running for operators of lower dimension. Additionally, masses allow

additional logarithms of the form log(µ/m), whose coefficient is not captured by traditional

unitarity cuts. It would be interesting to study possible extensions of our formalism to

capture these effects and explore the structure of that sector of the anomalous dimension

matrix.

In summary, we have demonstrated that the on-shell methods applied here are well suited

for computing anomalous dimensions and associated scattering amplitudes at one and two

loops. We used these methods to expose new structures in the guise of vanishing terms in the

anomalous matrix of the SMEFT beyond one loop. Our analysis here was not exhaustive,

so it is likely that further vanishing contributions and new structures exist at two loops and

beyond. Our results also suggest that a judicious choice of renormalization scheme can help

expose such structures.

86



3.A Integral reduction via gauge-invariant tensors

In this appendix we summarize the projection technique that we use to perform tensor

reduction of loop integrals in Section 3.3. The same technique has been previously used

in Refs. [31, 32] and is a convenient method for decomposing D-dimensional tensor loop

integrands (or cuts) into a basis of scalar master integrals, in a way that makes dimensional

regularization, and any associated chiral and evanescent issues relatively straightforward.

In particular this technique is well suited to deal with integrals with high-rank numerators,

which naturally arise in loop amplitudes with insertions of higher-dimension operators.

We start by noting that scattering amplitudes amplitudes are gauge invariant and can

therefore be decomposed into a basis of gauge-invariant tensors, Tm. For a given amplitude

labeled by i we have,

A
(L)
i =

∑
m

A(L)
i,m(kj)Tm(kj, εj, uj, ūj) , (3.79)

where the coefficients, A(L)
i,m, only depend on the external momenta, and all dependence on

the polarization vectors or spinors is contained entirely within the basis tensors, Tm. The

basis tensors for the various processes we consider in this paper are given below and in the

supplementary material [34]. They are found by writing down the most general polynomials

built from Lorentz invariant products of external polarizations, spinor and momenta and

then demanding gauge invariance.

The desired coefficient of tensor Tj can be extracted using a projector

Pn = cnmT
∗
m , (3.80)

where cnm is the inverse of the matrix

mnm = T ∗n � Tm . (3.81)
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Here the product � corresponds to the state sum in Eq. (3.41), taken over all particles. The

coefficient of the tensor is then simply given by

A(L)
i,m = Pm � A(L)

i . (3.82)

The projectors for all processes consider in this paper are given explicitly in an ancillary

file [34].

Once projected, any gauge invariant quantity can be summarized as a list of the coef-

ficients corresponding to each basis tensor. In the case of a loop integrand or cut thereof,

each coefficient is a rational function of scalar propagators and inverse propagators (and

irreducible numerators beyond one loop). The integrals corresponding to each term in the

projected quantity are then in a form that can be reduced to a basis of master integrals using

by integration by parts (IBP) relations. This can be done using by using IBP programs such

as FIRE [33].

As described in Section 3.3, we can apply this procedure cut by cut to determine the

coefficients of each gauge invariant tensor in the full amplitude.

Basis tensors

Basis tensors for the four-vector amplitudes are taken from [32], which we reproduce here.

Beginning with the linearized field strength for each external particle:

Fi µν ≡ ki µεi ν − ki νεi µ , (3.83)

one can construct the following combinations,

F 4
st ≡ (F1F2F3F4) , F 4

tu ≡ (F1F4F2F3) , F 4
us ≡ (F1F3F4F2) ,

(F 2
s )2 ≡ (F1F2)(F3F4) , (F 2

t )2 ≡ (F1F4)(F2F3) , (F 2
u )2 ≡ (F1F3)(F4F2) ,

(3.84)
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where parentheses one the right-hand side of the above equations indicate taking the trace

over adjacent Lorentz indices. The four-vector basis tensors are then given by

T tree
vvvv = −1

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2) + 2 (F 4
st + F 4

tu + F 4
us) ,

T++++
vvvv = −2F 4

st +
1

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2) ,

T−+++
vvvv = −TF 3 − (F 4

tu − F 4
us) (s− t) + (F 4

st −
1

4
((F 2

s )2 + (F 2
t )2 + (F 2

u )2)) (s+ t) ,

T−−++
vvvv = (F 2

s )2 − (F 2
t )2 + 2 (F 4

tu − F 4
us) , (3.85)

T−+−+
vvvv = 2F 4

st −
1

2
((F 2

s )2 + (F 2
t )2 − (F 2

u )2) ,

T ev1
vvvv = −(2F 4

st +
3

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2)) (s+ t) + 2 (F 4
us (3 s+ t) + F 4

tu (s+ 3 t)) ,

T ev2
vvvv = −(2F 4

st −
1

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2)) (s− t) + 2 (F 4
tu − F 4

us) (s+ t) ,

where the v labels signifies that a leg is a vector boson, and TF 3 is proportional to the F 3

amplitude [53]:

TF 3 = −istA(0)

F 3 = −istu
(

(F 2
s )2

4s2
+

(F 2
t )2

4t2
+

(F 2
u )2

4u2
− g1g2g3g4

(stu)2

)
, (3.86)

where gi ≡ (ki+1Fiki−1). We note that we have written this expression in an explicitly gauge-

invariant form at the expense of manifest locality. These tensors are nonzero only under the

indicated (and parity conjugate) helicity configurations, along with cyclic permutations.

T tree
vvvv is nonzero for helicities (1−2+3−4+), (1−2−3+4+), and cyclic permutations. T ev1

vvvv and

T ev2
vvvv are evanescent, i.e. zero for all helicity configurations in four dimensions. This can be

made manifest by rewriting them as

T ev1
vvvv =

1

2
k

[α
4 F

µν
1 F

σρ]
2 k2αF4µνF3σρ +

1

2
k

[α
4 F

µν
3 F

σρ]
2 k2αF4µνF1σρ ,

T ev2
vvvv =

1

2
k

[α
2 F

µν
1 F

σρ]
3 k1αF2µνF4σρ ,

(3.87)

where the anti-symmetrization does not include a symmetry factor.
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The two-vector, two-scalar tensors are also nonzero under specific helicity combinations,

and are given by

T+−
vvss = 2(k3F1F2k4) + 2(k4F1F2k3)− (k3 · k4)(F1F2) , T++

vvss = −(F1F2) , (3.88)

where the v and s labels specify the corresponding legs are vectors or scalars.

Similarly, the two-vector, two-fermion tensors are linear combinations of those in Ref. [31],

chosen to again be nonzero only under specific helicities:

T−+++
ffvv = − 1

24
(ū2 /F 4 /F 3/k2u1) , T−+−+

ffvv = − 1

24
(ū2 /F 4/k2

/F 3u1) ,

T−++−
ffvv = − 1

24
(ū2 /F 3/k1

/F 4u1) , T−+−−
ffvv = − 1

24
(ū2/k1

/F 4 /F 3u1) ,

T ev
ffvv =

1

2
k

[α
1 F

µν
3 F

ρσ]
4 (ū2γαγµγνγργσu1) , (3.89)

where f now indicates a leg as a fermion, /F i = Fi µνγ
µγν , and the antisymmetrization in T ev

includes a symmetry factor of 1/5!. As for the four-vector case, we encounter an evanescent

tensor, T ev
ffvv which vanishes for all four-dimensional helicities. For the two-fermion two-

scalar case there is only a single basis tensor:

Tffss = ū2/k3u1 . (3.90)

Finally, the four-fermion tensors are,

T 1
ffff = (ū2γ

µu1)(ū4γµu3) ,

T 2
ffff = (ū2/k4u1)(ū4/k2u3) ,

T 3
ffff = (ū2γ

µγνγρu1)(ū4γµγνγρu3)− 16(ū2γ
µu1)(ū4γµu3) ,

T 4
ffff = t (ū2γ

µ/k4γ
ρu1)(ū4γµ/k2γρu3)− 4u(ū2/k4u1)(ū4/k2u3) , (3.91)
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plus those given by the exchange of legs 2 and 4. It should be noted, however, that in

practice it is unnecessary to calculate the coefficients of the exchanged tensors, since they

are fixed by the symmetry of the contributing diagrams. T 3
ffff and T 4

ffff are chosen to be

zero for the helicity configuration 1+

ψ
2−
ψ

3+

ψ
4−
ψ

and its conjugate, so that these tensors are

evanescent if the spinors are Weyl of the same handedness.

3.B Tree-level and one-loop amplitudes

In this appendix we collect tree- and one-loop amplitudes. In addition to the spinor-helicity

amplitudes given below, expressions that are valid to all orders in the dimensional regu-

larization parameter ε are provided in a supplementary file [34]. While we do not require

one-loop amplitudes without higher-dimension operators for our specific examples in Section

3.4, they would be required for the calculation of a generic two-loop anomalous dimension

matrix element. These one-loop dimension-4 amplitudes can be found in various references;

e.g. Refs. [54] gives the relevant amplitudes which exclude scalars.

The amplitudes and form factors can be written as vectors in color space,

A(L)(λ1λ2λ3λ4) = Sλ1λ2λ3λ4
∑
i

C[i]
λ1λ2λ3λ4

A(L)(λ1λ2λ3λ4)[i] , (3.92)

where Sλ1λ2λ3λ4 is a helicity-dependent factor which which depending on spinors when evalu-

ated using four-dimensional spinor helicity. These factors are pure phases for the amplitudes

with an even number of pairs of external fermions, and for the amplitudes with an odd

number of fermions their square is a dimensionless ratio of s, t, or u and powers thereof. The

full list of Sλ1λ2λ3λ4 for each process is listed below.

The IR dependence has been stripped from the amplitudes below, but can be recon-
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structed, if desired, using the basic IR formulas given in the text, which we reproduce here:

A
(1)
i = I(1)A

(0)
i + A

(1)fin
i , (3.93)

where the IR operator I(1) is given by

I(1) =
eεγE

Γ(1− ε)

n∑
p=1

∑
q 6=p

Tp · Tq
2

[
γ

IR (1)
cusp

ε2
− γ

IR (1)
c, p

T 2
p

1

ε

](
−µ2

2kp·kq

)ε
, (3.94)

with

γIR (1)
cusp = g̃24 , γIR (1)

c, v = −g̃2b0 , γ
IR (1)
c, f = −g̃23CF , γIR (1)

c, s = −g̃24CF . (3.95)

Explicit evaluations of I(1) for various processes can be found, for example, in Refs. [31, 48].

All results below are reported in the Euclidean region and the M̄S scheme. As a shorthand,

logarithms are given by:

X2 = log
(s
t

)2

+ π2, Y 2 = log
( s
u

)2

+ π2, Z2 = log
(u
t

)2

+ π2,

Xs = log

(
µ2

−s

)
, Xt = log

(
µ2

−t

)
, Xu = log

(
µ2

−u

)
.

(3.96)

In general we drop the Wilson coefficients, for example cF 3 for amplitudes with an OF 3

insertion, since it is in this form that the amplitudes are used in Eq. (3.37). However

we have contracted the Wilson coefficients with the amplitudes for operators which include

fermions, since doing so simplifies the flavor information for these cases.
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3.B.1 Four-vector amplitudes

The color factors for the four-vector amplitudes are

C[1]
vvvv = Tr[T 1T 2T 3T 4] , C[2]

vvvv = Tr[T 1T 3T 2T 4] ,

C[3]
vvvv = Tr[T 1T 2T 4T 3] , C[4]

vvvv = Tr[T 1T 4T 2T 3] , (3.97)

C[5]
vvvv = Tr[T 1T 3T 4T 2] , C[6]

vvvv = Tr[T 1T 4T 3T 2] ,

C[7]
vvvv = Tr[T 1T 2] Tr[T 3T 4] , C[8]

vvvv = Tr[T 1T 3] Tr[T 2T 4] , C[9]
vvvv = Tr[T 1T 4] Tr[T 2T 3] ,

where only two partial amplitudes—one single-trace and one double-trace—are independent

in general, and the rest are given by relabelings.

We remove dimensionless prefactors from the helicity amplitudes. These are all phases

except for the amplitudes involving only one pair of fermions. For the four-vector amplitudes,

the spinor prefactors are are given by

S(1+2+3+4+) =
[12][34]

〈12〉〈34〉
, S(1−2+3+4+) =

〈12〉〈14〉[24]

〈23〉〈24〉〈34〉
,

S(1−2−3+4+) =
〈12〉[34]

〈34〉[12]
, S(1−2+3−4+) =

〈13〉[24]

〈24〉[13]
. (3.98)

The tree-level D-dimensional amplitudes are given by

A(0)(1234)[1] =
−g2

st
T tree
vvvv ,

A(0)(1234)[7] = 0 ,

A
(0)

F 3(1234)[1] =
g

2stu

(
4stT++++

vvvv − 2uT−+++
vvvv + (s− t)T ev2

vvvv

)
,

A
(0)

F 3(1234)[7] = 0 , (3.99)
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which have four-dimensional helicity values

A(0)(1−2+3+4+)[1] = A(0)(1=2+3+4+)[1] = 0 ,

A(0)(1−2−3+4+)[1] = −g
2s

t
,

A(0)(1−2+3−4+)[1] = −g
2u2

st
,

A(0)(1±2±3±4±)[7] = 0 , (3.100)

A
(0)

F 3(1
+2+3+4+)[1] = 2gs ,

A
(0)

F 3(1
−2+3+4+)[1] = −gu ,

A
(0)

F 3(1
−2−3+4+)[1] = A

(0)

F 3(1
−2+3−4+)[1] = 0 ,

A
(0)

F 3(1
±2±3±4±)[7] = 0 . (3.101)

The one-loop amplitudes with one insertion of the F 3 operator are

A
(1)fin

F 3 (1+2+3+4+)[1] = gg̃2
(
(4N(t− u) + 2ub0)Xs + (4N(s− u) + 2ub0)Xt

− 1

2
(44N + 2Nf −Ns)u

)
,

A
(1)fin

F 3 (1−2+3+4+)[1] = gg̃2
(
N
u2 − st
u

X2

+ (2N(t− u) + b0u)Xs + (2N(s− u) + b0u)Xt − 12u
)
,

A
(1)

F 3(1
−2+3−4+)[1] = 0 ,

A
(1)

F 3(1
−2−3+4+)[1] =

gg̃2

6
(4N(u− s)− (2Nf −Ns)(u− t)) , (3.102)

where g̃2 = g2/(4π) as defined in Eq.(3.5), and b0 = (11N−2Nf−Ns/2)/3. The double-trace

amplitudes with an OF 3 insertion are given by the U(1) decoupling identity

A
(1)

F 3(1234)[7] =
1

N

(
A

(1)

F 3(1234)[1] + A
(1)

F 3(1243)[1] + A
(1)

F 3(1423)[1]

)
. (3.103)
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The amplitudes with one insertion of a ϕ2F 2 operators are

A
(1)

(ϕ2F 2)1
(1±2±3±4±)[1] = 0 ,

A
(1)

(ϕ2F 2)1
(1+2+3+4+)[7] = 4g̃2Nss ,

A
(1)

(ϕ2F 2)1
(1−2+3+4+)[7] = A

(1)

(ϕ2F 2)1
(1−2+3−4+)[7] = 0 ,

A
(1)

(ϕ2F 2)1
(1−2−3+4+)[7] = 4g̃2Nss ,

A
(1)

(ϕ2F 2)2
(1+2+3+4+)[1] = −2g̃2Nsu ,

A
(1)

(ϕ2F 2)2
(1−2+3+4+)[1] = A

(1)

(ϕ2F 2)2
(1−2+3−4+)[1] = 0 ,

A
(1)

(ϕ2F 2)2
(1−2−3+4+)[1] = 2g̃2Nss ,

A
(1)

(ϕ2F 2)2
(1+2+3+4+)[7] = A

(1)

(ϕ2F 2)2
(1−2−3+4+)[7] = −4g̃2Nss

N
,

A
(1)

(ϕ2F 2)2
(1−2+3+4+)[7] = A

(1)

(ϕ2F 2)2
(1−2+3−4+)[7] = 0 . (3.104)

3.B.2 Four-fermion amplitudes

The color structures for the four-fermion amplitudes are

C[1]
ffff = T ai2i1T

a
i4i3

, C[2]
ffff = T ai4i1T

a
i2i3

. (3.105)

Note for any operator, due to the anti-symmetry of the amplitudes under exchange of (anti-

)fermions:

A
(L)
O (1+

ψm
2−
ψ̄n

3+
ψp

4−
ψ̄r

)[2] = −A(L)
O (1+

ψm
2−
ψ̄r

3+
ψp

4−
ψ̄n

)[1] (s↔ t) ,

A
(L)
O (1+

ψm
2−
ψ̄n

3−
ψp

4+
ψ̄r

)[2] = −A(L)
O (1+

ψm
2+
ψ̄r

3−
ψp

4−
ψ̄n

)[1] (s↔ t) ,

A
(L)
O (1+

ψm
2+
ψ̄n

3−
ψp

4−
ψ̄r

)[2] = −A(L)
O (1+

ψm
2−
ψ̄r

3−
ψp

4+
ψ̄n

)[1] (s↔ t) . (3.106)
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The overall spinor phases are

S(1+

ψ
2−
ψ

3+

ψ
4−
ψ

) =
〈24〉[12]

〈34〉[24]
, S(1+

ψ
2−
ψ

3−
ψ

4+

ψ
) =
〈23〉[12]

〈34〉[23]
,

S(1+

ψ
2+

ψ
3−
ψ

4−
ψ

) =
[12]

[34]
. (3.107)

The tree-level D-dimensional amplitudes are given by

A(0)(1ψm2 ψ̄n3ψp4 ψ̄r)[1] = g2u2γ
µu1 ū4γµu3

2s
δmnδpr ,

A
(0)

(ψ4)1
(1ψm2 ψ̄n3ψp4 ψ̄r)[1] =

N

N2 − 1
(cnmrp(ψ4)1

u2γ
µu1 ū4γµu3 − crmnp(ψ4)1

Nu4γ
µu1 ū2γµu3) ,

A
(0)

(ψ4)2
(1ψm2 ψ̄n3ψp4 ψ̄r)[1] = cnmrp(ψ4)2

u2γ
µu1 ū4γµu3 , (3.108)

which have four-dimensional values

A(0)(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] =
g2u

s
δmnδpr ,

A(0)(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] = −g
2t

s
δmnδpr ,

A(0)(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = 0 ,

A
(0)

(ψ4)1
(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] = −
2Nu(Ncrmnp(ψ4)1

+ cnmrp(ψ4)1
)

N2 − 1
,

A
(0)

(ψ4)1
(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] =
2Ntcnmrp(ψ4)1

N2 − 1
,

A
(0)

(ψ4)1
(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] =
2N2scnmrp(ψ4)1

N2 − 1
,

A
(0)

(ψ4)2
(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] = −2ucnmrp(ψ4)2
,

A
(0)

(ψ4)2
(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] = 2tcnmrp(ψ4)2
,

A
(0)

(ψ4)2
(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = 0 . (3.109)
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The amplitudes with one insertion of the F 3 operator are

A
(1)

F 3(1
+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] =
1

3
gg̃2uδmnδpr ,

A
(1)

F 3(1
+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] = −1

3
gg̃2tδmnδpr ,

A
(1)

F 3(1
+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = 0 . (3.110)

The amplitudes with one insertion of a Dϕ2ψ2 operator are

A
(1)

(Dϕ2ψ2)1
(1±
ψm

2±
ψ̄n

3±
ψp

4±
ψ̄r

)[1] = 0 ,

A
(1)

(Dϕ2ψ2)2
(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] = −1

9
g̃2Ns(3Xs + 8)u(crp(Dϕ2ψ2)2

δmn + cnm(Dϕ2ψ2)2
δpr) ,

A
(1)

(Dϕ2ψ2)2
(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] =
1

9
g̃2Ns(3Xs + 8)t(crp(Dϕ2ψ2)2

δmn + cnm(Dϕ2ψ2)2
δpr) ,

A
(1)

(Dϕ2ψ2)2
(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = 0 . (3.111)
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The amplitudes with one insertion of a ψ4 operator are

A
(1)fin

(ψ4)1
(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] =
2g̃2u

9t

(
t
(
72Ncrmnp(ψ4)1

+Nf (3Xs + 2)(δmnc
rwwp
(ψ4)1

+ δprc
nwwm
(ψ4)1

)
)

+ 9(2s+ t(3Xu + 25))cnmrp(ψ4)1

)
,

A
(1)fin

(ψ4)1
(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] = −2

9
g̃2(Nf t(3Xs + 2)(δmnc

rwwp
(ψ4)1

+ δprc
nwwm
(ψ4)1

)

+ 9(2s+ t(5− 3Xt))c
nmrp
(ψ4)1

) ,

A
(1)fin

(ψ4)1
(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = −16g̃2Nscrmnp(ψ4)1
,

A
(1)fin

(ψ4)2
(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] =
2g̃2u

9Nst

(
9s
(
2
(
N2 − 1

)
s+ t

(
13N2 − 3Xu − 25

))
cnmrp(ψ4)2

+ t(Nfs(2N(3Xs + 5)(δmnc
rpww
(ψ4)2

+ δprc
nmww
(ψ4)2

)

− (3Xs + 2)(δmnc
rwwp
(ψ4)2

+ δprc
nwwm
(ψ4)2

))

+ 9N(s(3Xu + 17) + 2t)crmnp(ψ4)2
)
)
,

A
(1)fin

(ψ4)2
(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] = −2g̃2

9N

(
9
(
2
(
N2 − 1

)
s− t

(
3(N2 − 1)Xt − 3N2 + 5

))
cnmrp(ψ4)2

+Nf t(2N(3Xs + 5)(δmnc
rpww
(ψ4)2

+ δprc
nmww
(ψ4)2

)

− (3Xs + 2)(δmnc
rwwp
(ψ4)2

+ δprc
nwwm
(ψ4)2

))
)
,

A
(1)fin

(ψ4)2
(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = 2g̃2(3s(Xs + 1)− 2t)crmnp(ψ4)2
. (3.112)

3.B.3 Four-scalar amplitudes

The color structures for this process are identical to those of the four fermion case:

C[1]
ssss = T ai2i1T

a
i4i3

, C[2]
ssss = T ai4i1T

a
i2i3

. (3.113)
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There is no spinor phase in this case, as the scalars do not carry helicity weight. The tree-level

amplitudes are

A(0)(1ϕ2ϕ̄3ϕ4ϕ̄)[1] = −g
2(t− u)

2s
− 2λN

N − 1
,

A
(0)

(D2ϕ4)1
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] =

N(Ns+ t)

N2 − 1
,

A
(0)

(D2ϕ4)2
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] =

2N(Nt+ s)

N2 − 1
. (3.114)

The one-loop amplitudes with an insertion of the F 3 operator are

A
(1)

F 3(1ϕ2ϕ̄3ϕ4ϕ̄)[1] = −1

6
gg̃2N(t− u) . (3.115)

The one-loop amplitudes with an insertion of a ϕ2F 2 operator are

A
(1)

(ϕ2F 2)1
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] = 2g̃2(Nt+ s) ,

A
(1)

(ϕ2F 2)2
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] =

2g̃2 (N2 − 4) s

N
. (3.116)

The one-loop amplitudes with an insertion of a D2ϕ4 operator are

A
(1)fin

(D2ϕ4)1
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] =

g̃2

2

(
− 4(4N + 3)s− 2(3N + 5)t

− 3(N − 2)tXt − 3sXs + 3uXu

)
+

2λ̃

N − 1

(
2N((N − 3)t− 2s)−NsXs

+ (N − 2)NtXt +NuXu

)
,

A
(1)fin

(D2ϕ4)2
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] =

g̃2

9

(
− 2(2t(9N + 4Ns + 27) + (4Ns + 45)s)

+ 27(2N − 1)tXt − 3Xs((Ns − 18)s+ 2Nst) + 27uXu)

+
4λ̃N

N − 1
(−4(Nt+ s) + (1− 2N)tXt − sXs + uXu) . (3.117)
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The one-loop amplitudes with an insertion of a Dϕ2ψ2 operator are

A
(1)

(Dϕ2ψ2)1
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] = 0 ,

A
(1)

(Dϕ2ψ2)2
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] = −2

9
cww(Dϕ2ψ2)2

g̃2(3Xs + 5)(t− u) . (3.118)

3.B.4 Two-fermion, two-vector amplitudes

The color factors for the two-fermion, two-vector amplitudes are

C[1]
ffvv = (T 3T 4)i2i1 , C[2]

ffvv = (T 4T 3)i2i1 , C[3]
ffvv = Tr[T 3T 4]δi2i1 . (3.119)

In this case the spinor prefactors are not pure phases, but have magnitudes equal to ratios

of s, t, and u:

S(1−
ψp

2+
ψ̄r

3+4+) =
〈13〉[34]

〈23〉〈34〉
, S(1−

ψp
2+
ψ̄r

3−4+) =
〈13〉3

〈12〉〈34〉〈41〉
,

S(1−
ψp

2+
ψ̄r

3+4−) =
〈14〉3

〈12〉〈31〉〈43〉
, S(1−

ψp
2+
ψ̄r

3−4−) =
〈34〉3

〈23〉〈24〉[12]
. (3.120)

The tree-level amplitudes for this process are

A(0)(1ψp2 ψ̄r34)[1] = −g
2

st
(2T−+−+

ffvv − 2T−++−
ffvv + T ev

ffvv)δpr ,

A
(0)

F 3(1ψp2 ψ̄r34)[1] = −2g

s
(T−+++

ffvv + T−+−−
ffvv )δpr , (3.121)
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which evaluate in four dimensions as

A(0)(1−
ψp

2+
ψ̄r

3+4+)[1] = 0 ,

A(0)(1−
ψp

2+
ψ̄r

3+4−)[1] = g2δpr ,

A(0)(1−
ψp

2+
ψ̄r

3−4+)[1] =
g2t

u
δpr ,

A(0)(1−
ψp

2+
ψ̄r

3−4−)[1] = 0 ,

A
(0)

F 3(1
−
ψp

2+
ψ̄r

3+4+)[1] = −gtδpr ,

A
(0)

F 3(1
−
ψp

2+
ψ̄r

3+4−)[1] = 0 ,

A
(0)

F 3(1
−
ψp

2+
ψ̄r

3−4+)[1] = 0 ,

A
(0)

F 3(1
−
ψp

2+
ψ̄r

3−4−)[1] =
gtu

s
δpr . (3.122)

The one-loop amplitudes with an insertion of a F 3 operator are

A
(1)fin

F 3 (1−
ψp

2+
ψ̄r

3+4+)[1] =
gg̃2δpr
36Nu

(
2tu
(
34N2 +N(5Nf + 2Ns)− 18

)
+ 9Ntu((4Nf +Ns)Xs + 2(N − b0)Xt)

+ 18N2(t− u)tX2
)
,

A
(1)fin

F 3 (1−
ψp

2+
ψ̄r

3−4+)[1] = 0 ,

A
(1)

F 3(1
−
ψp

2+
ψ̄r

3+4−)[1] = gg̃2δprN
su

t
,

A
(1)fin

F 3 (1−
ψp

2+
ψ̄r

3−4−)[1] = −u
s
A

(1)fin

F 3 (1−
ψp

2+
ψ̄r

3+4+)[1] , (3.123)
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A
(1)fin

F 3 (1−
ψp

2+
ψ̄r

3+4+)[3] = gg̃2δpr

(
(3N + b0)

2N
t(Xu −Xt)

+
(t− u)

2su
(stX2 + suY 2 + utZ2)

)
,

A
(1)

F 3(1
−
ψp

2+
ψ̄r

3−4+)[3] = gg̃2δpr2
st

u
,

A
(1)

F 3(1
−
ψp

2+
ψ̄r

3+4−)[3] = gg̃2δpr2
su

t
,

A
(1)fin

F 3 (1−
ψp

2+
ψ̄r

3−4−)[3] = −u
s
A

(1)fin

F 3 (1−
ψp

2+
ψ̄r

3+4+)[3] . (3.124)

The one-loop amplitudes with an insertion of a ϕ2F 2 operator all evaluate to zero:

A
(1)

(ϕ2F 2)1
(1±
ψp

2±
ψ̄r

3±4±)[1] = A
(1)

(ϕ2F 2)1
(1±
ψp

2±
ψ̄r

3±4±)[3] = 0 ,

A
(1)

(ϕ2F 2)2
(1±
ψp

2±
ψ̄r

3±4±)[1] = A
(1)

(ϕ2F 2)2
(1±
ψp

2±
ψ̄r

3±4±)[3] = 0 . (3.125)

The one-loop amplitudes with an insertion of a Dϕ2ψ2 operator are

A
(1)

(Dϕ2ψ2)1
(1±
ψp

2±
ψ̄r

3±4±)[1] = A
(1)

(Dϕ2ψ2)1
(1±
ψp

2±
ψ̄r

3±4±)[3] = 0 ,

A
(1)

(Dϕ2ψ2)2
(1−
ψp

2+
ψ̄r

3+4+)[1] =
1

3
g̃2crp(Dϕ2ψ2)2

Nst ,

A
(1)

(Dϕ2ψ2)2
(1−
ψp

2+
ψ̄r

3+4−)[1] = A
(1)

(Dϕ2ψ2)2
(1−
ψp

2+
ψ̄r

3−4+)[1] = 0 ,

A
(1)

(Dϕ2ψ2)2
(1−
ψp

2+
ψ̄r

3−4−)[1] = − 1

3s
g̃2crp(Dϕ2ψ2)2

Nstu ,

A
(1)

(Dϕ2ψ2)2
(1±
ψp

2±
ψ̄r

3±4±)[3] = 0 . (3.126)

The one-loop amplitudes with an insertion of a ψ4 operator are

A
(1)

(ψ4)1
(1±
ψp

2±
ψ̄r

3±4±)[1],[3] =
Nf

Ns

crwwp(ψ4)1

crp(Dϕ2ψ2)2

A
(1)

(Dϕ2ψ2)2
(1±
ψp

2±
ψ̄r

3±4±)[1],[3] ,

A
(1)

(ψ4)2
(1±
ψp

2±
ψ̄r

3±4±)[1],[3] =
2Ncrpww(ψ4)2

− crwwp(ψ4)2

crwwp(ψ4)1

A
(1)

(ψ4)1
(1±
ψp

2±
ψ̄r

3±4±)[1],[3] . (3.127)
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3.B.5 Two-scalar, two-vector amplitudes

The color basis for this process is analogous to the that of the previous:

C[1]
vvss = (T 1T 2)i4i3 , C[2]

vvss = (T 2T 1)i4i3 , C[3]
vvss = Tr[T 1T 2]δi4i3 . (3.128)

The spinor factors are again pure phases:

S(1+2+3ϕ4ϕ̄) =
[12]

〈12〉
, S(1+2−3ϕ4ϕ̄) =

〈23〉〈24〉[12][34]

〈12〉〈34〉[23][24]
. (3.129)

The D-dimensional tree-level expressions are given by

A(1)(123ϕ4ϕ̄)[1] = −g
2

st
T+−
vvss ,

A(1)(123ϕ4ϕ̄)[3] = 0 ,

A
(1)

F 3(123ϕ4ϕ̄)[1] =
g(t− u)

2s
T++
vvss ,

A
(1)

F 3(123ϕ4ϕ̄)[3] = 0 ,

A
(1)

(ϕ2F 2)1
(123ϕ4ϕ̄)[1] = 0 ,

A
(1)

(ϕ2F 2)1
(123ϕ4ϕ̄)[3] = −2T++

vvss ,

A
(1)

(ϕ2F 2)2
(123ϕ4ϕ̄)[1] = −2T++

vvss ,

A
(1)

(ϕ2F 2)2
(123ϕ4ϕ̄)[3] = − 4

N
T++
vvss , (3.130)
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with four-dimensional helicity values

A(1)(1+2+3ϕ4ϕ̄)[1] = 0 ,

A(1)(1+2−3ϕ4ϕ̄)[1] =
g2u

s
,

A(1)(1±2±3ϕ4ϕ̄)[3] = 0 ,

A
(1)

F 3(1
+2+3ϕ4ϕ̄)[1] =

1

2
g(t− u) ,

A
(1)

F 3(1
+2−3ϕ4ϕ̄)[1] = 0 ,

A
(1)

F 3(1
±2±3ϕ4ϕ̄)[3] = 0 ,

A
(1)

(ϕ2F 2)1
(1±2±3ϕ4ϕ̄)[1] = 0 ,

A
(1)

(ϕ2F 2)1
(1+2+3ϕ4ϕ̄)[3] = −2s ,

A
(1)

(ϕ2F 2)1
(1+2−3ϕ4ϕ̄)[3] = 0 ,

A
(1)

(ϕ2F 2)2
(1+2+3ϕ4ϕ̄)[1] = −2s ,

A
(1)

(ϕ2F 2)2
(1+2−3ϕ4ϕ̄)[1] = 0 ,

A
(1)

(ϕ2F 2)2
(1+2+3ϕ4ϕ̄)[3] = −4s

N
,

A
(1)

(ϕ2F 2)2
(1+2−3ϕ4ϕ̄)[3] = 0 . (3.131)
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The one-loop amplitudes with an insertion of the F 3 operator are

A
(1)fin

F 3 (1+2+3ϕ4ϕ̄)[1] = − gg̃2

72N

(
8((52N2 − 18)s+ (77N2 − 36)t+N(t− u)(5Nf + 2Ns))

+ 18N((2N(5t− 7u)− 3b0(t− u))Xt +Xs(2Ns+ b0(u− t)))

− 72N2tX2
)
,

A
(1)
F3

(1+2−3ϕ4ϕ̄)[1] =
1

2
gg̃2Nu ,

A
(1)fin

F 3 (1+2+3ϕ4ϕ̄)[3] =
gg̃2

4N

(
(8Nt+ b0(t− u))Xt + (8Nu+ b0(u− t))Xu − 4NsXs

+
1

6s
(stX2 + suY 2 + tuZ2)

)
,

A
(1)
F3

(1+2−3ϕ4ϕ̄)[3] = −gg̃2s . (3.132)

The one-loop amplitudes with an insertion of a ϕ2F 2 operator are

A
(1)fin

(ϕ2F 2)1
(1+2+3ϕ4ϕ̄)[1] = − g̃

2s

N
((b0 − 2N)Xt + b0Xu) + 4g̃2s , (3.133)

A
(1)

(ϕ2F 2)1
(1+2−3ϕ4ϕ̄)[1] = 2g̃2(s+ 3t) ,

A
(1)fin

(ϕ2F 2)1
(1+2+3ϕ4ϕ̄)[3] = g̃2s (4CF − 2(b0 + 3CF )Xs)

+ 4λ̃(N + 1)s(Xs + 2) ,

A
(1)

(ϕ2F 2)1
(1+2−3ϕ4ϕ̄)[3] = 0 ,

A
(1)fin

(ϕ2F 2)2
(1+2+3ϕ4ϕ̄)[1] =

g̃2s

N2

(
6N
(
2N2 − 3

)
+N (3−Nb0)Xs + 2b0Xu

+
(
2N(N2 − 4)− b0(N2 − 2)

)
Xt

)
+ 4λ̃s(Xs + 2) ,

A
(1)

(ϕ2F 2)2
(1+2−3ϕ4ϕ̄)[1] = −2g̃2

N

(
N2u+ 4t

)
,

A
(1)fin

(ϕ2F 2)2
(1+2+3ϕ4ϕ̄)[3] =

g̃2s

N2

(
2 (b0N − 3)Xs + b0N(Xt +Xu)− 3

(
4N2 − 1

) )
− 8

N
λ̃s(Xs + 2) ,

A
(1)

(ϕ2F 2)2
(1+2−3ϕ4ϕ̄)[3] = −4g̃2s . (3.134)
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The one-loop amplitudes with an insertion of a D2ϕ4 operator are

A
(1)

(D2ϕ4)1
(1+2+3ϕ4ϕ̄)[1] = −1

2
g̃2Nss ,

A
(1)

(D2ϕ4)1
(1+2−3ϕ4ϕ̄)[1] = 0 ,

A
(1)

(D2ϕ4)1
(1±2±3ϕ4ϕ̄)[3] = −A(1)

(D2ϕ4)1
(1±2±3ϕ4ϕ̄)[1] ,

A
(1)

(D2ϕ4)2
(1+2+3ϕ4ϕ̄)[1] =

1

3
g̃2Ns(s− t) ,

A
(1)

(D2ϕ4)2
(1+2−3ϕ4ϕ̄)[1] = 0 ,

A
(1)

(D2ϕ4)2
(1±2±3ϕ4ϕ̄)[3] = 4A

(1)

(D2ϕ4)1
(1±2±3ϕ4ϕ̄)[1] . (3.135)

The one-loop amplitudes with an insertion of a Dϕ2ψ2 operator are

A
(1)

(Dϕ2ψ2)1
(1±2±3ϕ4ϕ̄)[1] = A

(1)

(Dϕ2ψ2)1
(1±2±3ϕ4ϕ̄)[3] = 0 ,

A
(1)

(Dϕ2ψ2)2
(1+2+3ϕ4ϕ̄)[1] =

1

3
g̃2cww(Dϕ2ψ2)2

Nf (t− u) ,

A
(1)

(Dϕ2ψ2)2
(1+2−3ϕ4ϕ̄)[1] = A

(1)

(Dϕ2ψ2)2
(1±2±3ϕ4ϕ̄)[3] = 0 . (3.136)

3.B.6 Two-fermion, two-scalar amplitudes

The color structures for this process are identical to those of the four fermion case:

C[1]
ffss = T ai2i1T

a
i4i3

, C[2]
ffss = T ai4i1T

a
i2i3

. (3.137)

There is only one independent spinor prefactor (which again is not a pure phase for this

case):

S(1ψ2 ψ̄3ϕ4ϕ̄) =
〈23〉[13]

s
. (3.138)
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The tree-level amplitudes for this process are given by

A(0)(1ψp2 ψ̄r3ϕ4ϕ̄)[1] = g2 ū2/k3u1

s
δpr ,

A(0)(1ψp2 ψ̄r3ϕ4ϕ̄)[2] = 0 ,

A
(0)

(Dϕ2ψ2)1
(1ψp2 ψ̄r3ϕ4ϕ̄)[1] = −

2crp(Dϕ2ψ2)1
N(ū2/k3u1)

N2 − 1
,

A
(0)

(Dϕ2ψ2)1
(1ψp2 ψ̄r3ϕ4ϕ̄)[2] = −

2crp(Dϕ2ψ2)1
N2(ū2/k3u1)

N2 − 1
,

A
(0)

(Dϕ2ψ2)2
(1ψp2 ψ̄r3ϕ4ϕ̄)[1] = −2crp(Dϕ2ψ2)2

(ū2/k3u1) ,

A
(0)

(Dϕ2ψ2)2
(1ψp2 ψ̄r3ϕ4ϕ̄)[2] = 0 , (3.139)

with four-dimensional helicity values

A(0)(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = g2δpr ,

A(0)(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 ,

A
(0)

(Dϕ2ψ2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = −
4crp(Dϕ2ψ2)1

Ns

N2 − 1
,

A
(0)

(Dϕ2ψ2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = −
4crp(Dϕ2ψ2)1

N2s

N2 − 1
,

A
(0)

(Dϕ2ψ2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = −4crp(Dϕ2ψ2)2
s ,

A
(0)

(Dϕ2ψ2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 . (3.140)

The one-loop amplitudes with an insertion of the F 3 operator are

A
(1)

F 3(1
+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] =
1

6
gg̃2Nsδpr ,

A
(1)

F 3(1
+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 . (3.141)
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The one-loop amplitudes with an insertion of a ϕ2F 2 operator all evaluate to zero:

A
(1)

(ϕ2F 2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = A
(1)

(ϕ2F 2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 ,

A
(1)

(ϕ2F 2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = A
(1)

(ϕ2F 2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 . (3.142)

The one-loop amplitudes with an insertion of a D2ϕ4 operator are

A
(1)

(D2ϕ4)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = A
(1)

(D2ϕ4)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 ,

A
(1)

(D2ϕ4)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] =
1

9
g̃2Nss(3Xs + 8)δpr ,

A
(1)

(D2ϕ4)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 . (3.143)

The one-loop amplitudes with an insertion of a Dψ2ϕ2 operator are

A
(1)fin

(Dϕ2ψ2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = −g̃2s(3Xt − 3Xu − 16)crp(Dϕ2ψ2)1
,

A
(1)fin

(Dϕ2ψ2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 16g̃2Nscrp(Dϕ2ψ2)1
,

A
(1)fin

(Dϕ2ψ2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] =
g̃2s

9N
crp(Dϕ2ψ2)2

(
8
(
9N2 +NNs − 18

)
− 27

(
N2 − 1

)
Xt + 3NNsXs − 27Xu

)
+

4

9
g̃2Nfs(3Xs + 5)cww(Dϕ2ψ2)2

δpr ,

A
(1)fin

(Dϕ2ψ2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = −3g̃2s(Xt −Xu)c
rp
(Dϕ2ψ2)2

. (3.144)
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The one-loop amplitudes with an insertion of a ψ4 operator are

A
(1)

(ψ4)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = −2

9
g̃2Nfs(3Xs + 2)crwwp(ψ4)1

,

A
(1)

(ψ4)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 ,

A
(1)

(ψ4)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] =
2g̃2Nfs

9N
((3Xs + 2)crwwp(ψ4)2

− 2N(3Xs + 5)crpww(ψ4)2
) ,

A
(1)

(ψ4)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 . (3.145)
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OG OW OHW OuW
OH�
OHD

O(1)
Hq

O(3)
Hq

O(1)
qq

O(3)
qq

Ouu OuH OH

OG /0 /0 /0 /0 /0 0 0 /0 /0

OW /0 0y 0 0 0 /0 /0 /0

OHW /0 0y 0 /0 0y 0

OuW 0y 0y 0y 0y 0y 0y 0y /0

OH�, OHD /0 0y 0y(SSg
4
2
∗) 0y 0y 0

O(1)
Hq, O

(3)
Hq 0y 0y 0y(@@yλ) /0

O(1)
qq , O(3)

qq 0y 0y(SSg
4
2) /0 /0

Ouu /0 /0 0y 0y 0y /0 /0

OuH 0y 0y 0y 0y 0y 0y 0y 0y

OH /0 0y 0y

/0 : trivial zero, no contributing two-loop diagrams

0 : zero predicted by the selection rules of Section 3.4

: only a three-particle cut is needed to evaluate γ
UV(2)
ij

: only two-particle cuts available for the relevant diagrams

0(@@yλ), etc. : the selection rules of Section 3.4 forbid the stated coupling dependence

0y : γ
UV(2)
ij vanishes if Yukawa couplings are set to zero

Table 3.6: Predictions for the zeros and coupling dependences of a representative selection
of the SMEFT two-loop anomalous-dimension matrix, γ

UV(2)
ij . The notation for the operator

labels follows that of [4]. The g4
2 dependence of the entry labeled 0y(SSg

4
2
∗) vanishes using the

appropriate counterterms at one loop. The operators labeling the rows are renormalized by
the operators labeling the columns.

110



Bibliography

[1] W. Buchmuller and D. Wyler, “Effective Lagrangian Analysis of New Interactions and

Flavor Conservation,” Nucl. Phys. B 268, 621 (1986).

[2] I. Brivio and M. Trott, “The Standard Model as an Effective Field Theory,” Phys. Rept.

793, 1 (2019) [arXiv:1706.08945 [hep-ph]].

[3] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, “Dimension-Six Terms in the

Standard Model Lagrangian,” JHEP 1010, 085 (2010) [arXiv:1008.4884 [hep-ph]].

[4] E. E. Jenkins, A. V. Manohar and M. Trott, “Renormalization Group Evolution of

the Standard Model Dimension Six Operators I: Formalism and lambda Dependence,”

JHEP 1310, 087 (2013) [arXiv:1308.2627 [hep-ph]];

E. E. Jenkins, A. V. Manohar and M. Trott, “Renormalization Group Evolution of the

Standard Model Dimension Six Operators II: Yukawa Dependence,” JHEP 1401, 035

(2014) [arXiv:1310.4838 [hep-ph]];

R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, “Renormalization Group Evolu-

tion of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence

and Phenomenology,” JHEP 1404, 159 (2014) [arXiv:1312.2014 [hep-ph]].

[5] R. Alonso, E. E. Jenkins, and A. V. Manohar “Holomorphy Without Supersymme-

try in the Standard Model Effective Field Theory,” Phys. Lett. B 739, 95 (2014)

[arXiv:1409.0868 [hep-ph]].

111



[6] J. Elias-Miro, J. R. Espinosa and A. Pomarol, “One-Loop Non-Renormalization Results

in EFTs,” Phys. Lett. B 747, 272 (2015) [arXiv:1412.7151 [hep-ph]].

[7] C. Cheung and C. H. Shen, “Nonrenormalization Theorems without Supersymmetry,”

Phys. Rev. Lett. 115, no. 7, 071601 (2015) [arXiv:1505.01844 [hep-ph]].

[8] Z. Bern, J. Parra-Martinez, and E. Sawyer “Nonrenormalization and Operator Mixing

via On-Shell Methods,” Phys. Rev. Lett. 124, no. 5, 051601 (2020) [arXiv:1910.05831

[hep-th]].

[9] M. Jiang, J. Shu, M. Xiao and Y. Zheng, “New Selection Rules from Angular Momentum

Conservation,” [arXiv:2001.04481 [hep-ph]].

[10] N. Craig, M. Jiang, Y. Li and D. Sutherland, “Loops and Trees in Generic EFTs,”

[arXiv:2001.00017 [hep-ph]].

[11] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, “One Loop n Point Gauge

Theory Amplitudes, Unitarity and Collinear Limits,” Nucl. Phys. B 425, 217 (1994)

[hep-ph/9403226];

Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, “Fusing Gauge Theory Tree

Amplitudes into Loop Amplitudes,” Nucl. Phys. B 435, 59 (1995) [hep-ph/9409265];

Z. Bern and A. G. Morgan, “Massive Loop Amplitudes from Unitarity,” Nucl. Phys. B

467, 479 (1996) [hep-ph/9511336].

[12] S. Caron-Huot and M. Wilhelm, “Renormalization Group Coefficients and the S-

matrix,” JHEP 1612, 010 (2016) [arXiv:1607.06448 [hep-th]].

[13] B. I. Zwiebel, “From Scattering Amplitudes to the Dilatation Generator in N=4 SYM,”

J. Phys. A 45, 115401 (2012) [arXiv:1111.0083 [hep-th]];

M. Wilhelm, “Amplitudes, Form Factors and the Dilatation Operator in N = 4 SYM

Theory,” JHEP 02, 149 (2015) [arXiv:1410.6309 [hep-th]].

112



[14] C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde, H. Ita, D. Kosower and

D. Maitre, “An Automated Implementation of On-Shell Methods for One-Loop Ampli-

tudes,” Phys. Rev. D 78, 036003 (2008) [arXiv:0803.4180 [hep-ph]];

R. Ellis, K. Melnikov and G. Zanderighi, “W+3 Jet Production at the Tevatron,” Phys.

Rev. D 80, 094002 (2009) [arXiv:0906.1445 [hep-ph]];

C. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita,

D. Kosower and D. Maitre, “Precise Predictions for W + 4 Jet Production at the Large

Hadron Collider,” Phys. Rev. Lett. 106, 092001 (2011) [arXiv:1009.2338 [hep-ph]].

[15] Z. Bern, C. Cheung, H. H. Chi, S. Davies, L. Dixon and J. Nohle, “Evanescent Ef-

fects Can Alter Ultraviolet Divergences in Quantum Gravity without Physical Conse-

quences,” Phys. Rev. Lett. 115, no. 21, 211301 (2015) [arXiv:1507.06118 [hep-th]].

[16] Z. Bern, H. H. Chi, L. Dixon and A. Edison, “Two-Loop Renormalization of Quantum

Gravity Simplified,” Phys. Rev. D 95, no. 4, 046013 (2017) [arXiv:1701.02422 [hep-th]].

[17] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page, M. Ruf and V. Sotnikov,

“The Two-Loop Four-Graviton Scattering Amplitudes,” [arXiv:2002.12374 [hep-th]].

[18] Z. Bern, J. J. Carrasco, W. Chen, A. Edison, H. Johansson, J. Parra-Martinez,

R. Roiban and M. Zeng, “Ultraviolet Properties of N = 8 Supergravity at Five Loops,”

Phys. Rev. D 98, no.8, 086021 (2018) [arXiv:1804.09311 [hep-th]].

[19] N. Arkani-Hamed and J. Trnka, “The Amplituhedron,” JHEP 10, 030 (2014)

[arXiv:1312.2007 [hep-th]];

S. Caron-Huot, L. J. Dixon, F. Dulat, M. von Hippel, A. J. McLeod and G. Papathana-

siou, “Six-Gluon Amplitudes in Planar N = 4 Super-Yang-Mills Theory at Six and

Seven Loops,” JHEP 08, 016 (2019) [arXiv:1903.10890 [hep-th]];

J. L. Bourjaily, E. Herrmann, C. Langer, A. J. McLeod and J. Trnka, “All-Multiplicity

Non-Planar MHV Amplitudes in sYM at Two Loops,” Phys. Rev. Lett. 124, no.11,

113



111603 (2020) [arXiv:1911.09106 [hep-th]];

S. Caron-Huot, L. J. Dixon, J. M. Drummond, F. Dulat, J. Foster, Ö. Gürdoğan, M. von
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Chapter 4

Leading Nonlinear Tidal Effects and

Scattering Amplitudes

We present the two-body Hamiltonian and associated eikonal phase, to leading post-Minkowskian

order, for infinitely many tidal deformations described by operators with arbitrary powers of

the curvature tensor. Scattering amplitudes in momentum and position space provide sys-

tematic complementary approaches. For the tidal operators quadratic in curvature, which

describe the linear response to an external gravitational field, we work out the leading post-

Minkowskian contributions using a basis of operators with arbitrary numbers of derivatives

which are in one-to-one correspondence with the worldline multipole operators. Explicit

examples are used to show that the same techniques apply to both bodies interacting tidally

with a spinning particle, for which we find the leading contributions from quadratic in

curvature tidal operators with an arbitrary number of derivatives, and to effective field the-

ory extensions of general relativity. We also note that the leading post-Minkowskian order

contributions from higher-dimension operators manifest double-copy relations. Finally, we

comment on the structure of higher-order corrections.
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4.1 Introduction

The remarkable discovery of gravitational waves by the LIGO and Virgo collaborations [1]

has ushered in a new era of exploration that promises major new discoveries on black holes,

neutron stars and perhaps even new basic insights into fundamental physics. Theoretical

tools of increased precision, matching that of gravitational-wave signals not only from current

detectors but also from proposed gravitational-wave observatories [2], are required.

The evolution of a compact binary and the ensuing gravitational-wave emission can be

divided in three distinct phases — inspiral, merger and ring down — according to their un-

derlying properties. The inspiral part of binary mergers, which is the subject of this paper,

is analyzed through models such as the effective one-body (EOB) formalism [3]. The weak

gravitational field during this phase makes it suitable for a perturbative approach and these

models import information from post-Newtonian (PN) gravity [4–7], as well as the self-force

framework [8] and numerical relativity [9]. More recently, the post-Minkowskian (PM) ex-

pansion [10–16] has gained prominence due to its capture of the complete velocity dependence

at fixed order in Newton’s constant. By exposing the analytic structure of each order, this

expansion also offers new insight into features of gravitational perturbation theory, exposes

hereto unexpected structure in certain observables, and may open a path to the resummation

of perturbation theory in the classical limit. The PN, PM and self-force expansions provide

important nontrivial cross checks in their overlapping regions of validity [7, 13, 14, 17]. For

recent reviews see Refs. [18].

Over the years a close link between classical physics and scattering amplitudes has been

developed [11–13, 15, 19–21] and led to a robust and powerful means for obtaining two-body

Hamiltonians [11] and observables in the post-Minkowskian expansion. It was obtained by

combining modern techniques, such as generalized unitarity [22], which emphasize gauge-

invariant building blocks at all stages and build higher-order contributions from lower-order

ones with effective field theory methods. This framework proved its effectiveness through
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the construction of the sought after two-body Hamiltonian at the third order in Newton’s

constant [12, 13] and the identification of surprising simplicity in physical observables of

interacting spinning black holes [23]. The scattering angle is of particular importance, as it

provides a direct link [20] with the EOB framework [3] used to predict gravitational wave

emission from compact binaries.

In this paper we investigate the effects of tidal deformations [24] on the conservative

two-body Hamiltonian during the inspiral phase, focusing on their structure in the post-

Minkowskian expansion. The tidal deformations offer a window into the equation of state of

neutrons stars [25] and test our understanding of black holes [21, 26–30] and of possible exotic

physics [31]. While tidal effects are expected to vanish for black holes in general relativity [32],

they are of crucial importance for understanding the equation of state of neutron stars. These

corrections are formally equivalent to fifth-order post-Newtonian effects [5], highlighting the

importance of precision perturbative calculations.

Properties of extended bodies that relate to their finite size can be encoded in local-

operator deformations of a point-particle theory by integrating out their internal degrees

of freedom. The set of all possible tidal operators is constrained only by the symmetry

properties of the fundamental theory, such as parity. We introduce our organization of tidal

operators in close analogy with the case of electromagnetic susceptibilities. Indeed, not

only is there a formal similarity between gauge theory and gravity, but the integrand of

gravitational scattering amplitudes can be obtained directly from gauge theory using the

double copy [33, 34]. For the relatively simple case of the leading-PM order contribution of a

given tidal operator to scattering amplitudes, these relations follow from the factorization of

the point-particle energy-momentum tensor and from the fact that the linearized Riemann

tensor is a product of two gauge-theory field strengths. Thus, in analogy with the case of

electromagnetic interactions of extended bodies, tidal operators may contain arbitrarily-high

number of Riemann curvature tensors with an arbitrary number of derivatives.

Curvature-squared tidal operators, describing the linear response of an extended body
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to an external gravitational field, were recently classified in Ref. [30], where an expression

for the two-body Hamiltonian and scattering angle at leading post-Minkowskian order was

conjectured. Here we prove the conjecture for a basis of operators whose Wilson coefficients

in the four-dimensional point-particle effective action are exactly the same as the worldline

electric and magnetic tidal coefficients, related to the corresponding multipole Love numbers

by factors of the typical scale of the body, see e.g. Ref. [5, 25, 28]. The lowest-order matrix

elements of our tidal operators are, by construction, the same as the matrix elements of

the worldline tidal operators. To establish the map beyond leading order it is necessary to

compare physical quantities. At the next-to-leading order the contributions of low-derivative

R2 tidal operators to the two-body Hamiltonian and to the scattering angle were determined

in Refs. [21, 29].

We also obtain the leading-order modifications of the two-body Hamiltonian and of the

scattering angle due to tidal operators with arbitrarily-high number of Weyl tensors, which

describe the nonlinear response of extended bodies to external gravitational field. As usual

we organize the operators in terms of electric and magnetic-type components, E and B, of

the Riemann (or Weyl) tensor. The finite rank of these tensors leads to nontrivial relations

between different operators, allowing us to express the contributions of En and Bn-type

operators for n ≥ 4 in terms of those of products of simpler operators, thus reducing the

number of independent structures.

While these relations appear mysterious for scattering amplitudes in momentum space,

they are made manifest by Fourier-transforming the integral representation of the ampli-

tude to position space. At any loop order, the transform decouples all integrals from each

other. This observation allows us to write down closed-form expressions for amplitudes,

two-body Hamiltonians and scattering angles generated by infinite families of operators. Be-

yond leading order the structure of tidally-deformed amplitudes is more complicated, but the

momentum-space methods of Refs. [11–13, 21] can be applied systematically. Integration by

parts methods [35] are especially powerful for the conservative two-body problem because in
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the potential region of loop integrals all relevant integrals are of single-scale type [36].

The methods we use to describe tidal operators apply equally well to deformations of a

point-particle theory by any operators, including e.g. those arising in effective field theory

extensions of General Relativity [37–40]. We illustrate this point by working out the contri-

butions of R3 and R4 and compare them with existing results. The two-body Hamiltonian

and associated observables for a point-particle deformed by tidal operators interacting with

a spinning particle can also be derived through similar methods. To leading PM order, only

the single-graviton interaction of the spinning particle is relevant and it is captured by the

stress tensors described in [23, 41, 42]. As an example, we find the leading spin-orbit con-

tributions from E2-type tidal operators with an arbitrary number of derivatives interacting

with a spinning particle.

This paper organized as follows. In Section 4.2 we present a description of the operators

encoding tidal deformations. In Section 4.3 we discuss the leading-order tidal contribu-

tions from R2-type operators with an arbitrary number of derivatives. This section also

demonstrate how to incorporate spin effects for the second body. We proceed to derive in

Section 4.4 the leading contributions of various infinite classes of Rn-type tidal operators

and also comment on their higher-order contributions. In Section 4.5 we discuss the appli-

cation of our methods to the case of Rn extensions of General Relativity. We present our

conclusions in Section 4.6. An appendix gives the explicit results for the contributions of

a collection of high-order tidal operators to the two-body Hamiltonian and the associate

scattering amplitudes.

Note added: While this project was ongoing we became aware of concurrent work by

Cheung, Shah and Solon [43] based on using the geodesic equation and containing some

overlap on leading contributions to the two-body Hamiltonian from the Rn tidal opera-

tors. In addition, the methods developed there determine the two-body Hamiltonian for a

tidally-deformed test particle interacting with a Schwarzschild black hole, to all orders in
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the Schwarzschild radius of the latter. We are grateful for interesting and helpful discussions

and sharing drafts.

4.2 Effective actions for tidal effects

4.2.1 Effective actions for post-Minkowskian potentials

In this work we study tidal or finite-size effects in the gravitational interactions of two massive

extended bodies. They are encoded in a classical two-body Hamiltonian of the form

H(p, r) =
√

p2 +m2
1 +

√
p2 +m2

2 + V (p, r) , (4.1)

and is extracted systematically, following the general approach introduced in [11], by match-

ing QFT scattering amplitudes to a non-relativistic EFT. If the size of the two bodies is

much smaller than their separation, non-analytic/long-distance classical potential has the

form

V (p, r) ∼ ci(p)m

(
Gm

|r|

)i
, (4.2)

where m carries unit mass dimension and the momentum transfer q, Fourier-conjugate to r,

is much smaller than the center of mass momentum p. Such a conservative potential arises

from integrating out gravitons with momenta ` in the potential region which has the scaling

behavior

` = (`0, `) ∼ (|q||v|, |q|), (4.3)

where |v| ∼ O (|p|/m). Note that Gm is of the order of the effective Schwarzschild radius

of the particles Rs, so the classical expansion1 of the potential is an expansion in Rs/|r|. If

the separation of the two bodies can be of the same order as their typical size R, then the

1The amplitude also contains non-analytic terms which we will not study here, corresponding to quantum
contributions to the potential of the form (`2p/r

2)n, where `p is the Planck length.
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classical potential takes the form

V (p, r) ∼ ci,k(p)m

(
Gm

|r|

)i(
R

|r|

)k
. (4.4)

For black holes R ∼ Rs so the size of terms with powers of R is comparable to higher

PM orders. For other bodies R > Rs so the contribution should be bigger. For reference,

neutrons stars have R/Rs ∼ 10, and the sun has R/Rs ∼ 105. In practice, it is convenient

to always use Rs/r as the expansion parameter so that the tidal effects just modify the

coefficients in the usual PM potential, i.e. ci,k ∼ ∆ci+k.

From our point of view, the new scale Rs is introduced by integrating out the degrees

of freedom that describe the tidal dynamics of an extended body to yield a point-particle

effective theory. In such an effective theory the finite size effects are encoded as higher-

dimension operators Oi which are suppressed by powers of Rs|q|. Their Wilson coefficients

can be determined either by matching to the complete theory that includes the tidal degrees

of freedom, or by comparing to experiment. A side effect of choosing Rs instead of R as the

scale characterizing finite-size effects is that for less compact bodies the Wilson coefficients

are not necessarily O(1). This approach was pioneered in the context of a worldline PN

formalism in Ref. [5], and recently adapted to the PM framework in Ref. [29]. In the QFT

language this approach has been recently used in Refs. [21, 30]. In section we provide a

systematic treatment of such effective actions and write a basis of operators which simplifies

the translation between QFT and worldline formalisms and makes the relation to familiar

in-in observables manifest.

The cases that we focus on in this paper correspond to leading contributions from tidal

or other operators. Although these operators first contribute to loop amplitudes, the de-

termination of their leading-order contribution to the two-body potential is straightforward

and formally given by inverting the Born relation between the scattering amplitude and the
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potential:

VO(p, r) = − 1

4E1E2

∫
dD−1q

(2π)D−1
e−iq·rMO(p, q) . (4.5)

Here MO is the leading-order four-scalar scattering amplitude with with a single insertion

of O, center of mass momentum p, transferred momentum q. In general the potential is

gauge dependent and not unique. In the above equation we choose to expose the on-shell

condition on q first such that p · q ' O(q2) ∼ 0. This naturally gives the potential in the

isotropic gauge.

Alternatively, the effective two-body Hamiltonian can be constructed by matching its

conservative observables — such as the conservative scattering angle, or the impulse and

spin kick — or the closely-related eikonal phase [44],

δO(p, b) =
1

4m1m2

√
σ2 − 1

∫
dD−2q

(2π)D−2
e−ib·qMO(p, q) , (4.6)

with the corresponding quantities in the complete theory. Here we use −pi = −miui as the

incoming momenta of particle 1 and 2 and

σ ≡ p1 · p2

m1m2

= u1 · u2 . (4.7)

In either case, the matching is carried out order by order in Newton’s constant G, that

is order by order in the post-Minkowskian expansion. The relation between the eikonal

and conservative observables holds also for the scattering of spinning particles. To leading

nontrivial order, the effect of a composite operator O on the impulse and spin kick in the

center-of-mass frame is

∆p = −∇bδO(b) + . . . , ∆Si = −{Si, δO(b)}+ . . . , (4.8)

where the ellipsis stand for higher-order terms that depend on O and {•, •} is the Poisson
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bracket. We expect that the all-order relation between the eikonal phase and conservative

observables put forth in Ref. [23] holds in the presence of deformations by tidal and other

composite operators. At leading order, the semiclassical approximation implies that the

eikonal phase coincides with the radial action integrated over the scattering trajectory. We

discuss this further in Section 4.3.3. The latter allows us to make contact with Ref. [28] in

which tidal effects were computed using a classical worldline formalism for a subset of tidal

operators.

Alternatively the matching can be performed by directly computing a physically mean-

ingful quantity such as the conservative scattering angle, corresponding to the scattering

with radiation reaction turned off; or the closely related eikonal phase. In either case match-

ing is performed order by order in perturbation theory in Newton’s constant, G, that is order

by order in the post-Minkowskian expansion.

MO(q) = |q|AMO , (4.9)

VO(r) = − 1

4E1E2

2AΓ
(

1
2
(D − 1 + A)

)
π(D−1)/2Γ(−1

2
A)

|r|−A−(D−1)MO , (4.10)

δO(b) =
1

4m1m2

√
σ2 − 1

2AΓ
(

1
2
(D − 2 + A)

)
π(D−2)/2Γ(−1

2
A)

|b|−A−(D−2)MO , (4.11)

where we have used the formula for the Fourier transform of a power

∫
dDq

(2π)D
e−ix·q|q|A =

2AΓ
(

1
2
(D + A)

)
πd/2Γ(−1

2
A)

|x|−(A+D) . (4.12)

Here A is power of the soft q carried by the amplitude. For an operator with n power of

Riemann or Weyl tensors with n∂ derivatives acting on them, the leading contribution to

the two-to-two scalar amplitude is

A = 3n+ n∂ − 3− 2ε(n− 1), (4.13)
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where we use D = 4− 2ε. For example, for the electric and magnetic operators E2 and B2

we will introduce shortly, n = 2 and n∂ = 0 so A = 3 − 2ε, and every pair of derivatives

acting of these increases n∂ and A by two.

4.2.2 Effective actions for linear and non-linear tidal effects

We now explain how to parametrize the response of a general body to an external field and

how this can be encoded in an effective action. We will discuss this in detail in the simpler

case of electromagnetism, which will easily generalize to the gravitational case.

Tidal response in non-linear optics

The full non-linear response of a body to an external electric field Ei is described by the

induced electric dipole moment density Di. In the rest frame of the body, it has a formal

expansion in powers of the electric field [45]:

Di1(t,x) = χ
(1)
i1i2

(t,x)Ei2(t,x) + χ
(2)
i1i2i3

(t,x)Ei2(t,x)Ei3(t,x) + · · · . (4.14)

The first term is the familiar linear response function; the subsequent terms encode the

properties of the body in the susceptibility tensors, χ(n), which are symmetric in their indices.

Similarly, in the presence of a magnetic field Bi, one can write magnetic susceptibilities, as

well as general susceptibilities capturing the response under a general electromagnetic field.

It is convenient to transform Eq. (4.14) to Fourier space, where it takes the form

Di1(−ω1,−q1) = χ
(1)
i1i2

(ω1, q1;ω2, q2)Ei2(ω2, q2)

+ χ
(2)
i1i2i3

(ω1, q1;ω2, q2;ω3, q3)Ei2(ω2, q2)Ei3(ω3, q3) + · · · . (4.15)

Here we have adopted a generalized summation convention where repeated frequencies and

momenta are integrated over, and the Fourier susceptibilities include energy-momentum-
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conservation delta functions

χ
(n−1)
i1···in = δ

(∑
i

ωi

)
δ

(∑
i

qi

)
χ̃

(n−1)
i1···in , (4.16)

which account for the fact that the position-space product in Eq. (4.14) becomes a Fourier

space convolution in Eq. (4.15).

The dipole density can be related to a generating function — or effective action — S(E),

via the usual response formula

Di1(−ω1,−q1) =
∂S(E)

∂Ei1(ω1, q1)
. (4.17)

The effective action, following from formally integrating Eq. (4.14), is given by

S(E) =
1

2
χ

(1)
i1i2

(ω1, q1;ω2, q2)Ei1(ω1, q1)Ei2(ω2, q2)

+
1

3
χ

(2)
i1i2i3

(ω1, q1;ω2, q2;ω3, q3)Ei1(ω1, q1)Ei2(ω2, q2)Ei3(ω3, q3) + · · · . (4.18)

This makes clear that the momentum space susceptibilities are completely symmetric tensors,

as well as symmetric functions of all their arguments. S(E) could be put in a form closer to

an action by series expanding the susceptibilities and rewriting the powers of frequency and

three-momenta as derivatives. For instance one can rewrite some terms in the expansion as

follows

(
∂χ

(1)
i1i2

∂ω1∂q
j
2

(0)ω1q
j
2

)
Ei1(ω1, q1)Ei2(ω2, q2) ∼

(
∂χ

(1)
i1i2

∂ω1∂q
j
2

(0)

)
∂tEi1(t,x)∇j

xEi2(t,x) . (4.19)

Note that the expansion in the three momenta here simply corresponds to a multipole ex-

pansion of the electric fields.

So far we have been working in the rest frame of the object. The choice of a frame breaks

manifest Lorentz invariance down to the rotations around the position of the object. We
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would like to covariantize the expressions above so that is they are valid in an arbitrary

reference frame, in which the body moves with velocity v. This can be done by considering

the four-velocity of the object uµ = γ(1,v), where γ is the Lorentz factor. As is well known

the electric field and magnetic fields in the rest frame of the body can be covariantly written

as

Eµ = Fµνu
ν , Bµ = ∗Fµνuν , (4.20)

where Fµν is the electromagnetic field strength, and ∗Fµν its dual. Similarly, it is clear that

any frequency and spatial momenta can be written as

ωi → u · q ≡ uµqµ , qi → (q⊥)µ ≡ Pµνq
ν , (4.21)

where we have introduced the four momentum of the field, qµi and a projector,

P µν = ηµν − uµuν , (4.22)

which makes indices purely spatial in the rest frame of the object. Naively this covarianti-

zation requires adding components to the polarizabilities so that χ
(n−1)
i1···in → χ

(n−1)
µ1···µn , and we

can write

S(E) = χ(1)
µ1µ2

(u · q1, q
⊥
1 ;u · q2, q

⊥
2 )Eµ1(q1)Eµ2(q2)

+ χ(2)
µ1µ2µ3

(u · q1, q
⊥
1 ;u · q2, q

⊥
2 , u · q3, q

⊥
3 )Eµ1(q1)Eµ2(q2)Eµ3(q3) + · · · , (4.23)

due to the fact that uµEµ = uµBµ = 0, which follows from the antisymmetry of the field

strength.

The generating function written above describes the non-linear response of an arbitrary

material, including those that violate rotational and Lorentz invariance. In the following

we will be only interested in Lorentz-preserving effects, which impose addition constraints

133



on the susceptibility tensors. Firstly, Lorentz invariance constrains the index structure of

the susceptibility, which can only be carried by Lorentz-covariant tensors. If we impose

parity, the only such tensors are the metric itself and the graviton momenta, so the tensor

susceptibility must decompose in a set of scalar susceptibilities as follows

χ(1)
µ1µ2

= χ
(1)
0 gµ1µ2 + χ

(1)
1 q⊥1µ1q

⊥
2µ2

(4.24)

χ(2)
µ1µ2µ3

= χ
(2)
0 (gµ1µ2q

⊥
3µ3

+ gµ2µ3q
⊥
1µ1

+ gµ3µ1q
⊥
2µ2

) , (4.25)

χ(3)
µ1µ2µ3µ4

= χ
(3)
0 g(µ1µ2gµ3µ4) + χ

(3)
1 (gµ1µ2q

⊥
3µ3
q⊥4µ4 + perms) + χ

(3)
2 q⊥1µ1q

⊥
2µ2
q⊥3µ3q

⊥
4µ4

, (4.26)

where in general each tensor structure must be summed over permutations which respect

the symmetry (µi ↔ µj) while simultaneously swapping q⊥i ↔ q⊥j . Another consequence

of Lorentz invariance is that the scalar susceptibilities only depend on Lorentz invariant

combinations of momenta, so that

χ(n−1)
a (u · qi; q⊥i )→ χ(n−1)

a (u · qi; q⊥i · q⊥j ) . (4.27)

Note that in the rest frame q⊥i · q⊥j = qi · qj.

Non-linear tidal response in gravity

It is now easy to generalize the tidal response for electromagnetism to its gravitational

analog. In this case we start from the induced quadrupole moment, written in terms of the

gravito-electric field

Qi1j1(t,x) = χ
(1)
i1j1i2j2

(t,x)Ei2j2(t,x) + χ
(2)
i1j1i2j2i3j3

(t,x)Ei2j2(t,x)Ei3j3(t,x) + · · · , (4.28)
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where now the gravitational susceptibilities are more general tensors symmetric in each pair

of i and j indices

χ···ij··· = χ···ji··· , χ···iaja···ibjb··· = χ···ibjb···iaja··· . (4.29)

In the rest frame of the object the electric field is related to the Weyl tensor as Eij = C0i0j.

Similar expressions can be written for the response to a gravito-magnetic or to a mixed field.

All of these quantities can be covariantized by introducing

Eµν ≡ Cµανβu
αuβ, Bµν ≡ (∗C)µανβu

γuδ ≡ 1

2
εαβγµC

αβ
δνu

γuδ, (4.30)

where all indices are curved and the Levi-Civita tensor is defined as ε0123 = +1. As in the

electromagnetic case the following relations hold

Eµνu
ν = 0 , Bµνu

ν = 0 , (4.31)

as well as

Eµ
µ = 0 , Bµ

µ = 0 , (4.32)

where the first equality is a consequence of the tracelessness of the Weyl tensor. The corre-

sponding generating function for tidal response is then simply

Sgrav(E) = χ(1)
µ1ν1µ2ν2

(u · q1, P q1;u · q2, P q2)φ(p′)Eµ1ν1(q1)Eµ2ν2(q2)φ(p) (4.33)

+ χ(2)
µ1ν2µ2ν2µ3ν3

(u · q1, P q1;u · q2, P q2, u · q3, P q3)φ(p′)Eµ1ν1(q1)Eµ2ν2(q2)Eµ3ν3(q3)φ(p) + · · ·

where, as above, a convolution over all momenta is implicit, and the covariant susceptibilities

are traceless in each pair of µ, ν indices ηµνχ···µν··· = 0. Once again, Lorentz invariance will

further constraint the form of the susceptibility tensors in a way analogous to Eqs. (4.24)-
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(4.26).

From response to QFT effective actions

We now proceed to connect our discussion to a QFT effective action, focusing on the case of

gravity; the electromagnetic case is completely analogous.

The connection can be easily made by interpreting the generating function, Sgrav(E) as

the expectation value in a background field of an operator in a one-particle state |p〉 with

four momentum p = mu, and zero spin. In second-quantized language the one-particle state

is created by a scalar field, φ, at infinity and

Stidal = χ(1)
µ1µ2

(u · q1, q
⊥
1 ;u · q2, q

⊥
2 )φ(p)Eµ1(q1)Eµ2(q2)φ(p′)

+ χ(2)
µ1µ2µ3

(u · q1, q
⊥
1 ;u · q2, q

⊥
2 , u · q3, q

⊥
3 )φ(p)Eµ1(q1)Eµ2(q2)Eµ3(q3)φ(p′) + · · · , (4.34)

can be identified as the momentum-space effective action that encodes the response to the

background field. Note that, in order to enforce momentum conservation, the Fourier-

transformed susceptibilities must satisfy

χ(n−1)
µ1···µn = δ

(∑
i

qi − q

)
χ̃(n−1)
µ1···µn , (4.35)

where q = −(p + p′). Note that the susceptibilities are initially only defined for q = 0, so

their covariantization requires an extension to q 6= 0. This does not affect the classical limit.

As above, each term in the expansion of susceptibilities is encoded by a higher-dimension

operator in the effective action, where now the factors of four-velocity u can be identified

with derivatives acting on the scalar field. For instance,

∂2n
ω χ

(1)
µ1ν1µ2ν2

(0, 0)[(u · q1)2n + (u · q2)2n]φ(p′)Eµ1ν1(q1)Eµ2ν2(q2)φ(p)

, ↔ ∂2n
ω χ

(1)
µ1ν1µ2ν2

(0, 0)

∫
d4x
√
−g 1

m2n
φEµ1ν1∇(ρ1···ρ2n)E

µ2ν2∇(ρ1···ρ2n)φ . (4.36)
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where the classical limit is implicit on the left-hand side. To write a generic operator ap-

pearing in this expansion it is convenient to introduce the combinations,

Êµ1µ2...µn =
i2

m2
Symµ1...µn [∇νn . . .∇ν3Cµ1αµ2βP̂

νn
µn . . . P̂

ν3
µ3
∇α∇β ] ,

B̂µ1µ2...µn =
i2

m2
Symµ1...µn [∇νn . . .∇ν3(∗C)µ1αµ2βP̂

νn
µn . . . P̂

ν3
µ3
∇α∇β ] ,

Ê(l)
µ1µ2...µn

=
im+2

mm+2
Symµ1...µn [∇νn . . .∇ν3∇ρ1 . . .∇ρlCµ1αµ2βP̂

νn
µn . . . P̂

ν3
µ3
∇(ρ1 . . .∇ρl)∇

α∇β ] ,

B̂(l)
µ1µ2...µn

=
im+2

mm+2
Symµ1...µn [∇νn . . .∇ν3∇ρ1 . . .∇ρl(∗C)µ1αµ2βP̂

νn
µn . . . P̂

ν3
µ3
∇(ρ1 . . .∇ρl)∇

α∇β ] ,

(4.37)

where all the derivatives on the right of the Weyl tensor act on the scalar field, and the

position-space projector is

P̂ ν
µ =

1

m2
(∂µ∂

ν − δνµ∂2) . (4.38)

The terms in the expansion that encode the most general linear response are then

SQFT
tidal

∣∣
linear

= m

∫
d4x
√
−g

∞∑
n=2

∞∑
l=0

(µ(n,l) φÊ(l)
µ1···µnÊ

(l)µ1···µnφ+ σ(n,l) φB̂(l)
µ1···µnB̂

(l)µ1···µnφ)

(4.39)

where the coefficients are related to the susceptibility as µ(n,l) ∼ (∂ω2)
l(∂q1·q2)

lχ
(1)
0 (0; 0),

and the magnetic susceptibilities are related to σ(n,l) in a similar way. Operators like

φE
(l1)
µ1µ2E

(l2)µ1µ2φ with l1 6= l2 are related to operators with l1 = l2 by integration by parts

and use of scalar field equations of motion. We therefore can ignore them at this order.

Similarly, the effective action

SQFT
tidal

∣∣
non-linear

= m

∫
d4x
√
−g

∞∑
n=2

(ρ(n)
e φÊµ1

µ2Êµ2
µ3 · · · Êµnµ1φ+ ρ(n)

m φB̂µ1
µ2B̂µ2

µ3 · · · B̂µn
µ1φ) + · · ·

(4.40)
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encodes part of the lowest-multipole time-independent non-linear response,

It is not difficult to translate the different terms in the response functions into a first

quantized framework. This leads to a one-to-one relation between the higher-dimension

operators in the QFT effective action and worldline operators. The factors of u are identified

with the four-velocity of the worldline uµ = dxµ/dτ and the factors of (u ·∇) simply become

derivatives with respect to the proper time τ . Thus, the analog of the operators in the

effective worldline action are

Eµ1µ2...µn = Symµ1µ2...µn

[
P ν3
µ3
. . . P νn

µn∇ν3 . . .∇νnCµ1αµ2β
]
uαuβ ,

Bµ1µ2...µn = Symµ1µ2...µn

[
P ν3
µ3
. . . P νn

µn∇ν3 . . .∇νn(∗C)µ1αµ2β
]
uαuβ ,

E(m)
µ1...µn

= (uα∇α)mEµ1...µn = (∂τ )
mEµ1...µn ,

B(m)
µ1...µn

= (uα∇α)mBµ1...µn = (∂τ )
mBµ1...µn , (4.41)

where Pµν = gµν − uµuν is the u-orthogonal projector on the worldline. The effective action

encoding the linear response are

Sworldline
tidal |linear =

∫
dτ

∞∑
n=2

∞∑
l=0

µ(n,l) (E(l)
µ1···µnE

(l)µ1···µn + σ(n,l) B(l)
µ1···µnB

(l)µ1···µn) . (4.42)

Note that here we use a different normalization than Ref. [28], the relation between our

coefficients is µ
(n,l)
BDG = 2l!µ(n,l) and σ

(n,l)
BDG = 2(l+1)!σ(n,l). The non-linear response is captured

by

Sworldline
tidal

∣∣
non-linear

=

∫
dτ

∞∑
n=2

ρ(n)
e Eµ1

µ2Eµ2
µ3 · · ·Eµnµ1 + ρ(n)

m Bµ1
µ2Bµ2

µ3 · · ·Bµn
µ1) + · · · .

(4.43)

Thus, for a particle of mass mi described by the scalar field φi, the correspondence
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between worldline operators and QFT Lagrangian operators is

∫
dτE(l)

µ1...µn
E(l)µ1...µn ←→ mi

∫
d4x
√
−gφiÊ(l)

µ1...µn
Ê(l)µ1...µnφi , (4.44)∫

dτB(l)
µ1...µn

B(l)µ1...µn ←→ mi

∫
d4x
√
−gφiB̂(l)

µ1...µn
B̂(l)µ1...µnφi . (4.45)

The normalization of the QFT operators is fixed such that their four-point matrix elements

in the classical limit reproduce the expectation value of the worldline operators, provided

that the normalization of the asymptotic states is the same for both of them, i.e. it is a non-

relativistic normalization for the QFT states. One may similarly construct a correspondence

between worldline and QFT operators with more factors of the Riemann tensor. For more

details about the correspondence between QFT amplitudes and worldline matrix elements

see e.g. Ref. [46].

Four dimensional relations

In any fixed dimension, the operators described above satisfy relations stemming from their

finite number of components2; thus they give an overcomplete description of the physics of

extended bodies.

One class of relations follows from the the electric and magnetic fields being tensors of

finite rank. Naively they have rank four, but because Eµνu
ν = Bµνu

ν = 0 their rank is

lowered to three. This is not a surprise: it is a consequence of the fact that Eµν and Bµν are

the covariant versions of the purely spatial Eij, Bij in the rest frame. The simplest relation

following from the finiteness of the ranks of E and B is

E[µ1
µ2Eµ2

µ3Eµ3
µ4Eµ4]

µ1 = 0 , (4.46)

which, together with the tracelessness of E, implies that E4 = 1/2(E2)2. More generally,

2In a different context these relations are known as evanescent operators which are operators whose matrix
elements vanish in four-dimensions but not in general dimension [47].
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relations can be found which involve mixed powers of the electric and magnetic fields. For

operators with no derivatives all such relations can be generated by evaluating the following

determinant as a formal power series

det[1 + t(E + rB)] =
∞∑
i=2

i∑
j=0

Ri,jt
irj . (4.47)

The rank-three property of an arbitrary combination of E and B implies that Ri≥4,j = 0. A

sample of such relations is

23R4,0 = (E2)2 − 2(E4) = 0 ,

22R4,2 = 2(EB)2 + (B2)(E2)− 2(EBEB)− 4(E2B2) = 0 ,

5R5,0 = (E5)− 5

6
(E2)(E3) = 0 ,

6R5,2 = 6(E2BEB) + 6(E3B2)− (B2)(E3)− 3(E2)(EB2) = 0 ,

2R5,4 = 2(EB4)− (B2)(EB2) = 0 , (4.48)

as well as the ones that follow by interchanging E and B. Here the round parenthesis denote

the matrix trace,

(O) ≡ Tr[O] . (4.49)

Recursively solving them implies that any operator of the form (En≥4) can be written as a

polynomial in E2 and E3 as follows

(En) = n
∑

2p+3q=n

1

2p3q
Γ(p+ q)

Γ(p+ 1)Γ(q + 1)
(E2)p (E3)q . (4.50)

A similar relation holds for (B2n), while (B2n+1) = 0 in a parity-invariant theory such as

GR.

Another class of relations follows from the vanishing of the Gram determinants of any
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ℓ1 ℓ2

Figure 4.1: The generalized cut for leading-order contributions to E2- or B2-type tidal operators.
Each blob is an on-shell amplitude, which in this case is local. Each exposed line is taken to be
on shell and the blobs represent tree amplitudes. The dark blob contains an insertion of an E2-
or B2-type higher-dimension operator with an arbitrary number of additional derivatives. The
external momenta are all outgoing and the arrows indicated the direction of graviton momenta.

five or more four-momenta. They imply that certain terms in the power series expansion of

susceptibilities are not linearly independent. For instance,

det(vi · vj) = 0 with vi ⊂ {p1, p2, q1, q2, q3} . (4.51)

A final class of relations, which we will not detail any further, follows from the over-

antisymmetrization of indices of both derivatives and E or B.

An exhaustive enumeration of the E2- and B2-type operators was carried out in Ref. [30],

using Hilbert series techniques [48], which automatically eliminate the redundancies de-

scribed here. In contrast, we will not make an attempt to eliminate all redundant operators,

but rather use their relations as a check on our framework and calculations.

4.3 Leading order E2 and B2 tidal effects

In this section we discuss the leading-order contribution of the two-graviton tidal operators

constructed in Section 4.2. The analysis parallels to some extent that of Ref. [30], with

the main difference being the choice of operator basis. Our choice aligns with the worldline

approach [5, 28] making it straightforward to compare Love numbers. We also evaluate all

integrals providing a proof of the results with arbitrary numbers of derivatives. Here we

work in an amplitudes-based approach following Refs. [11–13, 21].
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4.3.1 Constructing integrands

The first task is to write down a scattering amplitude from which classical scattering angles

and Hamiltonians can be extracted. To obtain the integrand we use the generalized unitarity

method [22]. In this method, the integrand is constructed from the generalized unitarity cut

which we define to be

C ≡
∑
states

Mtree
(1) Mtree

(2) Mtree
(3) · · ·Mtree

(m) , (4.52)

where theMtree
(i) are tree amplitudes, some of which can have operator insertion. As a simple

example, Fig. 4.1 displays the unitarity cut containing the leading-order effect of an R2 tidal

operator.

In general, the cuts that can contribute to the conservative classical Hamiltonian satisfy

some simple rules. The first is that generalized unitarity cuts must separate the two matter

lines to opposite sides of a cut, which follows from the fact we are interested only in long-

range interactions. Another general rule is that every independent loop must have at least

one cut matter line, so the energy is restricted to a matter residue. Any contribution with

a graviton propagator attached to the same matter line also does not contribute to the

conservative classical part. Further details are found in Ref. [13].

In constructing the amplitude integrand we may immediately expand in soft-graviton

momenta, since each power of graviton momentum effectively carries an additional power

of ~ and is quantum suppressed. This expansion can be carries out either on at the level

of the input tree amplitudes or after assembling the cuts. The order to which a give term

needs to be expanded is dictated by simple counting rules. Terms with too high a scaling

in the graviton momenta are dropped. For example, at one-loop for the case without tidal

or other higher-dimension operators this implies that any term in a diagram numerator

with more than a single power of loop momentum in the numerators yields only quantum-

mechanical contributions; some terms require fewer loop-momentum factors. In the presence

of higher-dimension operators, the leading classical contributions can have higher powers of

142



loop momentum dictated simply by the number of extra derivatives in the operator compared

to to the usual two derivative minimal coupling; the extra implicit powers of ~ are made up

by the coefficient so the entire expression corresponds to a classical result.

In general to sew the trees together into generalized cuts one should use physical-state

projectors which depend on null reference momenta

Pµνρσ =
∑
states

εµν(−p)ερσ(p) =
1

2

(
PµρPνσ + PµρPνσ

)
− 1

D − 2
PµνPρσ , (4.53)

where Pµρ = ηµρ − (nµpρ + nρpµ)/(n · p) and nµ is the null reference momentum. However,

the reference momenta will drop out if the seed amplitudes are manifestly transverse. In

fact, one can always arrange for such terms to automatically drop out [49].

Alternatively, we can also use four-dimensional helicity states to sew gravitons across

unitarity cuts. In general, some caution is required in the presence of infrared or ultraviolet

singularites, although at least through third post-Minkowskian order helicity methods have

been shown to correctly capture all contributions [13]. For cases without non-trivial infrared

or ultraviolet divergences 3, we can straightforwardly apply four-dimensional methods. In our

cases, the above D-dimensional sewing is simple enough so we will not use four-dimensional

helicities here.

Finally, the information from multiple generalized cuts must be merged into a single

expression. This can either be accomplished at the level of the integrand or after integration.

For leading tidal coefficients, effectively only a single cut contributes, so merging information

from the cuts is trivial.

3There are ultraviolet divergence at even loop orders that local in momentum transfer q, e.g. in the 3PM
scattering [12, 13]. However, these are irrelevant for long-range dynamics because they can be absorbed by
a contact interaction.

143



Simplifications from leading classical order

The on-shell amplitudes in the unitarity cut simplifies dramatically if we are only interested

at leading classical order. Because there is no enhancement from iteration, any terms beyond

the leading order in graviton momenta are quantum mechanical and can thus be ignored.

For example, consider a three-point scalar-graviton-scalar amplitude at tree level

M3(φ(p), h(`), φ(p′)) = −κpµpνεµν(`) , (4.54)

where κ is related to Newton’s constant by κ2 = 32πG. For any of the three-point amplitudes

inserted in Figure 4.1, we can replace the scalar momenta p by the external momentum p2

at leading classical order. Physically this implies that we ignore all back reaction on the

particle 2, so all three-point amplitudes in Figure 4.1 are approximately the same.

For the amplitude with higher-dimension operator, it suffices to use linearized version of

the curvature operators. Expanding the metric in the usual way, gµν = ηµν + κhµν , we find

the Weyl tensor to leading order is

Cµνρσ = −2κ∂[µ|∂[ρhσ]|ν] +O(κ2,�h) . (4.55)

In deriving this expression we have also dropped terms proportional to the equations of

motion for the graviton; this is because they do not contribute to the on-shell matrix elements

necessary for the evaluation of the leading-order amplitude. The linearized Weyl tensor in

momentum space then reads

C lin
µνρσ(`) ≡ κ

2
[`µ`ρ ε(`)νσ − `ν`ρ ε(`)µσ − `µ`σ ε(`)νρ + `ν`σ ε(`)µρ] . (4.56)

The linearized Weyl tensor can be written a form that manifests the double copy in terms
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of two gauge-theory field strengths

C lin
µνρσ(`) =

κ

2
F lin
µν (`)F lin

ρσ (`) , (4.57)

where

F lin
µνρσ(`) ≡ `µε(`)ν − `νε(`)µ , (4.58)

and we identify the graviton polarization tensor as ε(`)νσ = ε(`)νε(`)σ. This simple example

of a double-copy relation [33, 34], which is trivial at the linearized level, then implies that

the leading-order amplitudes for tidal operators display double-copy relations. The gauge

invariance is manifest.

To make the gravitational coupling manifest in all equations, we will extract all factors of

κ from the building blocks of amplitudes. The linearized electric and magnetic components

of the linearized Weyl tensor (4.56) follow from Eq. (4.30)

Eµ1µ2(`, p) =
1

2m2

[
`µ1`µ2(p · ε(`) · p)− (p · `) (`µ1ε(`)µ2ρp

ρ + `µ2ε(`)µ1ρp
ρ) + ε(`)µ1µ2(p · `)2

]
,

(4.59)

Bµ1µ2(`, p) =
1

4m2
εαβγµ

[
(p · `) (`αε(`)βµ2 − `

βε(`)αµ2) + `β`µ2(p · ε(`))α − `α`µ2(p · ε(`))β
]
,

(4.60)

where the particle momentum and its four-velocity are related in the usual way, pµ = muµ.

It is then straightforward to assemble the amplitude with insertions of a higher-dimension

operator from above formulae.

In general to sew trees into generalized cuts one should use physical-state projectors which

depend on null reference momenta. However, for the leading-order contributions that we will

mostly be studying here, the terms containing dependence on the reference momentum auto-

matically drop out because they are contracted into manifestly gauge-invariant (transverse)
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quantities4. Effectively, we can use the numerator of the de Donder gauge propagator,

Pµνρσ =
∑
states

εµν(−p)ερσ(p)→ 1

2

(
ηµρηνσ + ηµρηνσ

)
− 1

D − 2
ηµνηρσ , (4.61)

to sew gravitons across cuts. Combining the projector with the three-point amplitude in

Eq. (4.54) at leading classical order, effectively turns the graviton polarization tensors of the

higher-dimension operator into

εµν(`)→ Tµν(p2) =

(
p2,µp2,ν −

m2
2

Ds − 2
ηµν

)
. (4.62)

Crucially the result is independent of the loop momentum, implying that the sewing automat-

ically imposes Bose symmetry for the gravitons of the higher-dimension operator. As we will

outline in Sec. 4.4, this no longer holds beyond leading order where back-reaction becomes

important. For example, at next-to-leading order pairs of the stress tensor in Eq. (4.54) can

source a single graviton, acting as a sort of “impurity”, which may be interpreted as the first

correction to the gravitational field of a free particle towards that of a Schwarzschild black

hole.

The discussion above can be extended to include the leading-order scattering of scalars

deformed by higher-dimension operators off higher-spin particles described the Lagrangian

in Ref. [23]. For a generic spinning body the stress tensor is

M3(φs(p), h(`), φs(p
′)) = −κV µν

3 (φs(p), h(`), φs(p
′))εµν(`) , (4.63)

V µν
3 (φs(p), h(`), φs(p

′)) = pµpν
∞∑
n=0

CES2n

(2n)!

(
` · S(p)

m

)2n

− i`ρp(µS(p)ν)ρ

∞∑
n=0

CBS2n+1

(2n+ 1)!

(
` · S(p)

m

)2n

,

where ` is the graviton momentum and S(p)µ and S(p)µν are the covariant spin vector and

4In fact, one can always arrange for such terms to automatically drop out [49].
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spin tensor, related by

Sµν(p) = − 1

m
εµνγδpγSδ(p) , Sµ(p) = − 1

2m
εµβγδpβSγδ(p) , (4.64)

and we recall that in the classical limit ` · S(p)/m = O(1).

For the Kerr black hole the stress tensor, originally found in Ref. [42] from different

considerations, is obtained by setting CES2n = CBS2n = 1 and has the closed-form expression

MKerr
3 (φs(p), h(`), φs(p

′)) = −κ exp(ia ∗ `)(µ
ρp
ν)pρεµν(`) , (4.65)

where

aµ =
1

2p2
εµνρσp

νSρσ(p) , (a ∗ `)µν ≡ εµνρσa
ρ`σ . (4.66)

Despite the more complicated dependence on the graviton momentum, the sewing of the

spinning three-point amplitudes with the composite operator contact term can be carried by

a replacement analogous to Eq. (4.62). For example, for a particle with the stress of a Kerr

black hole, it is

εµν(`)→ TKerr
µν (`, p2) = exp(ia ∗ `)(α

ρp
β)pρ

(
δµαδ

ν
β − ηαβ

ηµν

Ds − 2

)
. (4.67)

We note that only the terms with an even number of spin vectors, in general governed by the

coefficients CES2n , contribute to the trace part of this replacement. To shorten the ensuing

equations, in the following we will use the replacement

εµν(`)→ T µνgen(`, p2) =

(
pµ2p

ν
2 −

m2
2

Ds − 2
ηµν
)
A(`)− i

2
`ρ(p

µ
2S

νρ(p2) + pν2S
µρ(p2))B(`) ,

(4.68)
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where A(`) and B(`) can be read off Eqs. (4.63) and (4.67).

4.3.2 Momentum-space analysis

Before discussing the leading-order effects of the most general tidal operators introduced in

Sec. 4.2, we discuss here the simpler case of operators E
(m)
µ1µ2 , corresponding to the multipoles

of the gravitational field of the quadrupole operator Eµν .

The construction of the relevant four-point matrix element of the operator φE
(m)
µ1µ2E

(m)µ1µ2φ,

corresponding to the darker blob in Fig. 4.1, is straightforward. The matrix element is

ME2
l,2

(h(`1), h(`2), φ(p1), φ(p4)) = 2κ2m1

(
DE2

l,2
(p1, `1, p4, `2) +DE2

l,2
(p1, `2, p4, `1)

)
,

DE2
l,2

(p1, `1, p4, `2) =

(
i

m1

)2l

(p1 · `1)l(p1 · `2)lEµ1µ2(`1, p1)Eµ1µ2(`2, p4) .

(4.69)

As noted earlier, because tidal operators are gauge invariant and constructed out of Weyl

tensors, this matrix element obeys the transversality conditions for the two gravitons. Thus,

their contribution to generalized unitarity cut in Fig. 4.1 automatically accounts for the

physical-state projection. The sewing is then simply given by the replacement in Eq. (4.62).

To leading order in soft expansion we can also replace all p1 · `2 = −p1 · `1 +O(q).

The resulting amplitude is

ME2
l,2

(p, q) = iκ2

∫
dD`1

(2π)D

ME2
l,2

(h(`1), h(`2), φ(p3), φ(p4))
∣∣
εµν(`i)→Tµν(p2)

`2
1((`1 − p2)2 −m2

2)(q − `1)2

= 4im1κ
4

∫
dD`1

(2π)D

(u1 · `1)2lEµ1µ2(`1, p1)Eµ1µ2(`2, p1)
∣∣
εµν(`i)→Tµν(p2)

`2
1((`1 − p2)2 −m2

2)(q − `1)2
, (4.70)
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where the numerator is given more explicitly by

Eµ1µ2(`1, p1)Eµ1µ2(`2, p1)
∣∣
εµν(`i)→Tµν(p2)

(4.71)

=
1

8
m4

2

[
(u1 · `1)2((u1 · `1)2 +

1

2
q2)− 2σ2q2(u1 · `1)2 +

1

8
q4(1− 2σ2)2

]
+O(q6) .

Further expanding the amplitude in the soft limit leads to

ME2
l,2

(p, q) = 64iπ2G2|q|3+2lm1m
3
2((1− 2σ2)2I2l + 4(−1 + 4σ2)I2(1+l) + 8I2(2+l)) ,

where I2l are triangle integrals

I2l =

∫
dD`

(2π)D
|q|−2l+1(` · u1)2l

`2(−2` · u2)(`− q)2
, (4.72)

which must be evaluated in the potential region. The results of these integrals were conjec-

tured in Ref. [30]. Here we present the proof, by going to the frame in which particle 2 is at

rest

u1µ = −(σ, 0, 0,
√
σ2 − 1) , u2µ = −(1, 0, 0, 0) , qµ = (0, q) = (0, qx, qy, qz) , (4.73)

under which `iµ = (`0
i , `i) = (`0

i , `
x
i , `

y
i , `

z
i ). Note that since qz = q · ẑ = O(q2) by on shell

conditions, we can treat qz ≈ 0 if we are only interested in the leading classical limit. We

then have

I2l = (σ2−1)l
∫

dD`

(2π)D
|q|−2l+1(`z)2l

(2`0)`2(`− q)2
=

i(σ2 − 1)l

22l+1(4π)(D−1)/2

∫
dD−1`

π(D−1)/2

|q|−2l+1(2`z)2l

`2(`− q)2
, (4.74)

where in the second equality we have evaluated the residue of the energy pole with a symme-

try factor 1/2 because the graviton propagators cannot be on shell in the potential region.

The remaining integral is a Euclidean triangle with a linearized propagator and is given by
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Smirnov in Ref. [50],

∫
dD−1`

π(D−1)/2

(q2)a+b+ c
2
− 3

2

(`2 − i0)a[(`− q)2 − i0]b(2`z − i0)c
(4.75)

= e
iπc
2 |q|−2εΓ

(
c
2

)
Γ
(

3
2
− a− c

2
− ε
)

Γ
(

3
2
− b− c

2
− ε
)

Γ
(
a+ b+ c

2
+ ε− 3

2

)
2Γ(a)Γ(b)Γ(c)Γ(3− a− b− c− 2ε)

,

for q · ẑ = 0 which is valid for leading order in the classical limit. The result is

I2l = − i(σ2 − 1)l

4l+2−ε(4π)1/2−ε |q|
−2ε Γ

(
1
2
− ε
)

Γ
(

1
2

+ ε
)

Γ
(

1
2
− l
)

Γ (1− ε+ l)
. (4.76)

Using the result for these integrals with ε = 0 the amplitude is

ME2
l,2

(p, q) = |q|3+2lME2
l,2

(p) , (4.77)

ME2
l,2

(p) = G2m1m
3
2

(−1)lπ3/2Γ(1
2

+ l)

22(1+l)Γ(3 + l)
(4.78)

× (σ2 − 1)l(11 + 4l(3 + l)− 6(5 + 2l)σ2 + (5 + 2l)(7 + 2l)σ4) .

The corresponding potential and eikonal phase are

VE2
l,2

(p, r) =
−1

4E1E2|r|2l+6

23+2lΓ(3 + l)

π3/2Γ(−3
2
− l)
ME2

l,2
(p) , (4.79)

δE2
l,2

(p, b) =
1

4m1m2

√
σ2 − 1

1

|b|2l+5

23+2lΓ(5
2

+ l)

πΓ(−3
2
− l)

ME2
l,2

(p) . (4.80)

It is not difficult to see that, for l = 0 and l = 1, eq. (4.80) reproduces the expectation values

of the operators E2 and (Ė)2 evaluated in Ref. [28].

The calculation above can be easily repeated for the operator B
(l)
µνBµν (l); it amounts to

replacing in Eq. (4.70) E with B given in Eq. (4.60). The resulting amplitude, potential and
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eikonal phase are:

MB2
l,2

(p, q) = |q|3+2lMB2
l,2

(p) , (4.81)

MB2
l,2

(p) = G2m1m
2
2

(−1)lπ3/2Γ(1
2

+ l)

22(l+1)Γ(3 + l)
(5 + 2l)(σ2 − 1)l+1(1 + 2l + (7 + 2l)σ2) , (4.82)

VB2
l,2

(p, r) =
−1

4E1E2|r|2l+6

23+2lΓ(3 + l)

π3/2Γ(−3
2
− l)
MB2

l,2
(p) , (4.83)

δB2
l,2

(p, b) =
1

4m1m2

√
σ2 − 1

1

|b|2l+5

23+2lΓ(5
2

+ l)

πΓ(−3
2
− l)

MB2
l,2

(p) . (4.84)

Similarly to eq. (4.80), the eikonal phase above evaluated on l = 0 and l = 1 reproduces the

expectation values of the operators B2 and (Ḃ)2 found in [28].

4.3.3 Position-space analysis

Alternatively, the calculation can be done in position space, more specifically in the rest

frame of particle 2 as in Eq. (4.73). This approach will provide a simple way to generalize

the analysis beyond one loop. There are two key observations here. First, the amplitude

with C2 operator insertion in Eq. (4.69) factorizes into a product of the multipole expansions

of electric or magnetic tensors

ME2
l,2

(h(`1), h(`2), φ(p1), φ(p4)) = 4m1κ
2

(
i

m1

)2l

((p1 · `1)lEµ1µ2(`1, p1))((p1 · `2)lEµ1µ2(`2, p1))

+O(q2l+4) , (4.85)

where we have applied the classical limit p4 = −p1 + O(q) to Eq. (4.69). Second, in the

potential region, we can integrated out graviton energy component by picking up residue

from the matter propagator [11, 13]. This sets `0
1 = `0

2 = 0 and implies the graviton momenta

`1, `2 are purely spatial. To exploit the factorization at the integrand level, we further Fourier
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transform the spatial q in Eq. (4.70) to position space5

ME2
l,2

(p, r) ≡
∫

dD−1q

(2π)D−1
e−ir·q M̃E2

l,2
(p, q) (4.86)

=
κ2

4m2

2∏
i=1

∫
dD−1`i

(2π)D−1

e−ir·`i

`2
i

ME2
l,2

(h(`1), h(`2), φ(p1), φ(p4))
∣∣
εµν(`i)→Tµν(p2)

.

Crucially, the dependence on the two graviton momenta `1, `2 factorizes and each of them

can be treated as an independent variable. Together with the factorization in Eq. (4.85), the

Fourier transform acts on individual electric tensor Eµ1µ2(`i, p1). We define

Eµν(r, p1) ≡
∫

dD−1`i
(2π)D−1

e−ir·`i

`2
i

Eµν(`i, p1)
∣∣
ερσ(`)→Tρσ(p2)

=
−m2

2

16π|r|5
[
3
(
r2 + 2(σ2 − 1)z2

)
u2µu2ν − 3σr2(u2µu1ν + u2µu1ν) + 2r2u1µu1ν

+ 3(2σ2 − 1)rµrν − 6σ
√
σ2 − 1z (u2µrν + u2µrν) + 3

√
σ2 − 1z (u1µrν + u1µrν)

+ ((3σ2 − 2)r2 − 3(σ2 − 1)z2)ηµν

]
, (4.87)

where rµ = (0, r) = (0, x, y, z) in the frame of Eq. (4.73) as the electric field sourced by

p2 in position space. The Fourier transform of scalar-graviton amplitude (with the graviton

propagators) is then

ME2
l,2

(h1, h2, φ(p1), φ(p4)|r) ≡
2∏
i=1

∫
dD−1`i

(2Π)D−1

e−ir·`i

`2
i

ME2
l,2

(h(`1), h(`2), φ(p1), φ(p4))

= ME2
l,2

(h(`1), h(`2), φ(p1), φ(p4)|Eµ1µ2(`j, p1)→ Eµ1µ2(rj, p1), `i → i∇j)
∣∣
rj→r

, (4.88)

where any loop momentum `j is replaced with the gradient on the position rj of the electric

field Eµ1µ2(rj, p1) and all rj are identified with r. The two-scalar scattering amplitude in

5The Fourier transform acts on the amplitude with generic off-shell q, which is three dimensional. We
use M̃(p, q) to denote amplitude with off-shell q.
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position space then has a simple form

ME2
l,2

(p, r) =
κ2

4m2

ME2
l,2

(h1, h2, φ(p1), φ(p4)|r)

= κ4m1

m2

(σ2 − 1)l
[
(ẑ · ∇)l Eµ1µ2(r, p1)

]2
, (4.89)

where in the second line we plug in the result in Eq. (4.85), apply the replacement in

Eq. (4.88) and ẑ is the unit vector along z direction.

The position-space result is generally not isotropic; namely, it could depend on ẑ · r. To

make the result isotropic, we go back to momentum space and impose the on-shell condition

ẑ · q = O(q2) ' 0,

MO(p, q) =

∫
dD−1r e+ir·qMO(p, r)

∣∣
ẑ·q=0

. (4.90)

Since the result only depends on the covariant variables σ and q2 = −q2, it can be promoted

to any other frame. All Fourier-transforms that appear in this calculation are of the form

∫
dD−1r

eir·q(ẑ · r)s

rh
=

(−1)s/2πD/2

2h−s−D+1

|q|h−s−D+1

sin(1
2
π(D − 1− h))

Γ(1
2
(1 + s))

Γ(1
2
h)Γ(1 + 1

2
(h− s−D + 1))

,

(4.91)

for some exponents h and integer s. The isotropic potential then follows from Eq. (4.10).

From the position-space amplitude we can directly obtain the eikonal phase, although it

can be calculated easily once we have the amplitudeMO(p, b). To see this, we simply invert

the amplitude in terms of Eq. (4.5) and plug it into Eq. (4.6)

δO(p, b) =
1

4m1m2

√
σ2 − 1

∫
dD−2q

(2π)D−2
e−ib·q

∫
dD−1reir·qMO(p, r)

∣∣∣
q=(qx,qy ,0)

=
1

4m1m2

√
σ2 − 1

∫ ∞
−∞

dzMO(p, r = (b, z)), (4.92)
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where we use b = (bx, by, 0) and r = (x, y, z). Since we are only interested in the leading

order, the particle trajectory can be treated as a straight line. In the frame where particle 2

is rest at the origin, the position of particle 1 is xµ1 = (t, r) = bµ+uµ1τ = τ(σ, bx, by,
√
σ2 − 1).

The above formula can be written as

δO(p, b) =
1

4m1m2

∫ ∞
−∞

dτMO(p, r(τ)) . (4.93)

So the eikonal phase can be obtained straightforwardly fromMO(p, r(τ)). This is expected

because the eikonal phase is proportional to the worldline action integrated over a straight

line. Our approach here offers a derivation from purely scattering-amplitudes perspective.

The advantage of position-space approach is that it is very general. The discussion above

applies to contribution of any tidal operator at its leading classical order. The only integrals

needed, to any loop order, are in Eq. (4.91). We will discuss and illustrate this point in more

detail in Sec. 4.4.

The discussion above can be generalized easily to the case with magnetic operators. The

position-space magnetic component of the linearized Weyl tensor, contracted with a point-

particle stress tensor, is

Bµν(r, p1) ≡
∫

dD−1`i
(2π)D−1

e−ir·`i

`2
i

Bµν(`i, p1)
∣∣
ερσ(`)→Tρσ(p2)

. (4.94)

We have the scalar-graviton amplitude in position space

MB2
l,2

(h(`1), h(`2), φ(p1), φ(p4)|r) ≡
2∏
i=1

∫
dD−1`i

(2Π)D−1

e−ir·`i

`2
i

MB2
l,2

(h(`1), h(`2), φ(p1), φ(p4))

=MB2
l,2

(h(`1), h(`2), φ(p1), φ(p4)|Bµ1µ2(`j, p1)→ Bµ1µ2(rj, p1), `i → i∇j)
∣∣
rj→r

.

(4.95)
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Again we identify all rj in the end with r. The position-space amplitude is then

MB2
l,2

(r) =
1

m2

(κ
2

)2

MB2
l,2

(h1, h2, φ(p1), φ(p4)|r) . (4.96)

Let us comment on an interesting relation between electric and magnetic operators. In

position space we find

Eµν(r, p1)Eµν(r, p1) =
3m4

2

128π|r|10

[
3(σ2 − 1)(r2 − z2)(σ2r2 − (σ2 − 1)z2) + r4

]
, (4.97)

Bµν(r, p1)Bµν(r, p1) =
9m4

2

128π|r|10
(σ2 − 1)(r2 − z2)(σ2r2 − (σ2 − 1)z2) . (4.98)

The two operators are almost identical. The difference between the two is independent of σ

which is sub-sub-leading in the high-energy limit σ � 1. As explained in Ref. [28], this is

expected because the difference is proportional to Weyl tensor squared which is independent

of σ. This behavior has also been observed at the next-to-leading order in Ref. [29].

4.3.4 General multipole operators

Following the example discussed in detail in the previous sections, we proceed to evaluate

the amplitudes and the corresponding eikonal phases with one insertion of the generic tidal

operators φE
(l)
µ1...µnE

(l)µ1...µnφ and φB
(l)
µ1...µnB

(l)µ1...µnφ. As already mentioned for operators

with n = 2, we may choose without loss of generality, the two E and B factors to have equal

upper index.

The calculations for the two operators are parallel. For this reason, in the common part

we will collectively denote E or B by X, and specialize at them at the end. Thus, to leading
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order in κ, the momentum space expressions of Ê(l) and B̂(l) defined in Eq. (4.37) are

X(l)
µ1µ2...µn

= i2l+(n−2)

(
i

m

)l
(p · `)lSymµ1...µn [P ν3

µ3
(p)`ν3 . . . P

νn
µn (p)`νnX(`, p)µ1µ2 ] +O(κ2) ,

(4.99)

where P νi
µi

are the momentum space form of the projectors in Eq. (4.38) and Xµ1µ2(`, p)

being given by Eµ1µ2 and Bµ1µ2 in Eqs. (4.59)-(4.60) for the two operators, respectively. The

symmetrization over the indices µ1, . . . , µn includes division by the number of terms. In the

expression above ` is the graviton momentum, p is the scalar momentum and ε(`) in the

explicit expressions of Eµ1µ2 and Bµ1µ2 is the graviton polarization tensor.

The product of two linearized X
(l)
µ1...µn with different graviton momenta `1 and `2, and

contracted as in Eqs. (4.44) and (4.45), contains three different structures: (1) all projectors

are contracted with each other, (2) all but one projector are contracted with each other and

(3) all but two projectors are contracted with each other. The four-point matrix element of

the operator φX
(l)
µ1...µnX

(l)µ1...µnφ needed for the construction of the four-scalar amplitude is

MX2
l,n

(h(`1), h(`2), φ(p1), φ(p4)) = 2κ2m1

(
DX2

l,n
(p1, `1, p4, `2) +DX2

l,n
(p1, `2, p4, `1)

)
,

(4.100)

where

DX2
l,n

(p1, `1, p4, `2) = i2(n−2)i2l(−1)l
2(n− 2)!

n!
(u1 · `1)2l

[
(`1 · P (p1) · P (p4) · `2)n−2ΠX

1 (p1, `1, p4, `2)

+ 2(n− 2)(`1 · P (p1) · P (p4) · `2)n−3ΠX
2 (p1, `1, p4, `2) (4.101)

+
1

2
(n− 2)(n− 3)(`1 · P (p1) · P (p4) · `2)n−4ΠX

3 (p1, `1, p4, `2)
]
.
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The three factors ΠX
1 (p1, `1, p4, `2) are given by

ΠX
1 (p1, `1, p4, `2) = Xµ1µ2(`1, p1)Xµ1µ2(`2, p4) , (4.102)

ΠX
2 (p1, `1, p4, `2) = `1 · P (p1) ·X(`2, p4) ·X(`1, p1) · P (p4) · `2 ,

ΠX
3 (p1, `1, p4, `2) = `1 · P (p1) ·X(`2, p4) · P (p1) · `1 `2 · P (p4) ·X(`1, p1) · P (p4) · `2 .

To the order we are interested in we may freely replace p4 → −p1, since the difference is of

subleading order in the expansion in small transferred momentum. For n = 2, the second and

third line vanish and, for X ≡ E, we recover the four-point matrix element of the operator

φE
(l)
µ1µ2E

(l)µ1µ2φ given in Eqs. (4.69).

Sewing this matrix element with two three-point scalar-graviton amplitudes in Eq. (4.54)

using the rule (4.62) leads to

MX2
l,n

(p, q) = 8(8πG)2i2(n−2)m1m
4
2

2(n− 2)!

n!

×
[
M(l)

n (ΠX
1 ) + 2(n− 2)M(l)

n (ΠX
2 ) +

1

2
(n− 2)(n− 3)M(l)

n (ΠX
3 )
]
, (4.103)

Ml,n(ΠX
k ) =

∫
dD`

(2π)D
(u1 · `)2l((u1 · `)2 + 1

2
q2)n−2

`2((`− p2)2 −m2
2)(`− q)2

(
q2

(u1 · `)2 + 1
2
q2

)k−1

M(ΠX
k ) , (4.104)

where k = 1, 2, 3.

Both M(ΠEk) and M(ΠBk ) have the same general structure:

M(ΠX
i ) = AXi (u1 · `)2((u1 · `)2 + 1

2
q2) +BX

i q
2(u1 · `)2

+ CX
i q

2((u1 · `)2 + 1
2
q2) +DX

i q
4(1− 2σ2)2 . (4.105)

The coefficients A, . . . , D for the amplitude with an insertion of an electric-type operator are
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given by

AE1 = 1 , BE1 = −2σ2 , CE1 = 0 , DE1 =
1

8
,

AE2 =
1

2
, BE2 =

1

8
(1− 8σ2) , CE2 = 0 , DE2 =

1

16
,

AE3 =
1

2
, BE3 = −1

2
σ2 , CE3 = 0 DE3 =

1

32
, (4.106)

while those for the amplitude with an insertion of the “magnetic” operator are

AB1 = 4 , BB1 = (1− 8σ2) , CB1 = −1 , DB1 =
1

2
,

AB2 = 2 , BB2 = −4σ2 , CB2 = −1

2
, DB2 =

1

4
,

AB3 = 0 BB3 =
1

4
(1− 8σ2) , CB3 = −1

4
, DB3 =

1

8
. (4.107)

In the soft limit, all integrals in the amplitude (4.103) are of the type

In,2l =

∫
dD`

(2π)D
|q|1−2(n+l)(u1 · `)2l((u1 · `)2 + 1

2
q2)n

`2(−2u2 · `)(`− q)2
; (4.108)

they can be evaluated in terms of the triangle integrals (4.72) found in Sec. 4.3.2:

In,2l =
n∑
u=1

Cu
n

(
−1

2

)n−u
I2(l+u)

= − i

32

(−)n+l

22l+n

Γ(l + 1
2
)

√
πΓ(l + 1)

(σ2 − 1)m2F1

(
1
2

+ l,−n, 1 + l, 1
2
(1− σ2)

)
, (4.109)

where Cu
n are binomial coefficients. In terms of these integrals, the three terms M(l)

n (ΠX
k )

making up the complete amplitude are

Ml,n(ΠX
k ) = AXk In+1−k,2(l+1) +BX

k In−k,2(l+1) + q2CX
k In+1−k,2l + (1− 2σ2)DX

k In−k,2l) ,

(4.110)
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with coefficients A, . . . , D given in (4.106) and (4.107). Using these building blocks it is

then straightforward to assemble the amplitudesME2
l,n

(p, q) andMB2
l,n

(p, q) in Eq. (4.103).

The eikonal phases follows by Fourier-transforming them to impact parameter space and

including the appropriate factors as in Eq. (4.80). Choosing n = 2 we recover the amplitudes

in Eqs. (4.77) and (4.81). Last, the two-body potential and the eikonal phase are related to

the leading-order amplitude in the usual way as in Eqs. (4.5) and (4.6).

The position-space analysis also works in this case. In fact. for this approach it is conve-

nient to sidestep the encoding of the tidal effects in a particular basis of higher-dimensions

operators and work directly with the susceptibility χ. From this perspective the matrix

element of an arbitrary tidal operator quadratic in the electric field is

MχEE(h(`1), h(`2), φ(p1), φ(p4)) = 2m1κ
2χµ1ν1µ2ν2(u1 · `1, ˆ̀

1;u1 · `2, ˆ̀
2)Eµ1ν1(`1, p1)Eµ2ν2(`2, p1)

+ (p1 ↔ p4, u1 ↔ u4). (4.111)

Bose symmetry guarantees that this is symmetric in the two gravitons, so the manipulations

in the previous section can be repeated here. The Fourier transform of the one-loop integrand,

after sewing the unitarity cut and evaluating the energy integral, is

MχEE(p, r) =
κ2

4m2

∫
dD−1`1

(2π)D−1

e−ir·`1

`2
1

∫
dD−1`2

(2π)D−1

e−ir·`2

`2
2

MχEE(h(`1), h(`2), φ(p1), φ(p4))
∣∣
εµν(`)→Tµν(p2)

(4.112)

=
m1κ

4

2m2

[
χµ1ν1µ2ν2(vẑ · i∇1,∇⊥1 ; vẑ · i∇2,∇⊥2 )Eµ1ν1(r1, p1)Eµ2ν2(r2, p1)

]
r1=r2=r

,

where v =
√
σ2 − 1, ∇⊥ = ∇− v2 ẑ (ẑ ·∇), and we have introduced different positions, ri,

for all the gravitons. They are to be set equal after the derivatives are evaluated. As before,

we can obtain the isotropic potential by first generating the on-shell amplitude through

Eq. (4.90) and Fourier transforming back to the position space. The eikonal phase can

either be obtained from Eq. (4.6) or directly from MχEE(p, r) via Eq. (4.93).
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4.3.5 Adding spin

It is not difficult to formally the calculation in the previous sections to include spin degrees of

freedom for the particle with momentum p2. It amounts to changing Tµν(p2) in Eqs. (4.70),

(4.86), (4.103) and (4.111) with TKerr
µν (p2, li) in Eq. (4.67) or its general form defined from

Eq. (4.63) and parametrized as in Eq. (4.68) and multiplying the resulting amplitude by the

product of spin-S polarization tensors.

With this replacement, the contraction of two electric-type tensors Eµ1µ2(`i, p1) is

Eµ1µ2(`1, p1)Eµ1µ2(`2, p1)
∣∣
εµν(`i)→T gen

µν (p2)
(4.113)

=
1

8
m4

2A(`1)A(`2)(8(` · u1)4 + 4(` · u1)2q2(1− 4σ2) + q4(1− 2σ2)2)

− i
4
m3

2A(`1)B(`2)q2σ(−4(` · u1)2 + q2(−1 + 2σ2))S2[u1, q]

+
i

2
m3

2(A(`2)B(`1) + A(`1)B(`2))` · u1σ(4(` · u1)2 + q2(1− 2σ2))S2[`, q]

− i
4
m3

2(A(`2)B(`1)− A(`1)B(`2))q2σ(4(` · u1)2 + q2(1− 2σ2))S2[`, u1]

+
1

2
m2

2B(`1)B(`2)(` · u1)2(−2(` · u1)2 + q2σ2)S2[eµ, q]S2[eµ, `]

+
1

2
m2

2B(`1)B(`2)(` · u1)2(2(` · u1)2 − q2σ2)S2[eµ, `]S2[eµ, `]

+m2
2B(`1)B(`2)` · u1((` · u1)2 − q2σ2)S2[`, q]S2[u1, q]

−1

2
m2

2B(`1)B(`2)q2((` · u1)2 − q2σ2)S2[`, p1]S2[u1, q]

−m2
2B(`1)B(`2)(` · u1)2σ2 S2[`, q]2

+
1

2
m2

2B(`1)B(`2)q2(−(` · u1)2 + q2σ2)S2[`, u1]2 +O(q5) ,

where `1 = `, `2 = q − ` and

S2[a, b] ≡ S(p2)µνaµbν , S2[eµ, a]S2[eµ, b] ≡ ηµνS(p2)µρaρS(p2)νσbσ . (4.114)

For vanishing spin, A(`i) = 1 and B(`i) = 0, only the first line of Eq. (4.113) survives and we
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recover Eq. (4.70). One may expand Eq. (4.113) to arbitrary order in spin. For example, to

first nontrivial order, which corresponds to inclusion of the spin-orbit interaction for particle

2, we find

Eµ1µ2(`1, p1)Eµ1µ2(`2, p1)
∣∣
εµν(`i)→T gen

µν (p2)
= Eµ1µ2(`1, p1)Eµ1µ2(`2, p1)

∣∣
εµν(`i)→Tµν(p2)

(4.115)

+
i

4
CBS1m3

2 σ(4` · u1S2[`, q] + q2 S2[u1, q])(4(` · u1)2 + q2(1− 2σ2)) +O((q · S)2) ,

where the first term on the right-hand side is given by Eq. (4.71).

It is straightforward, albeit tedious, to write out explicitly an integral representation of

the amplitude by plugging in Eq. (4.113) in Eq. (4.70). We will refrain however from doing

so, and rather only comment on its structure. In addition to the integrals in Eq. (4.72), the

spin dependence introduces also tensor integrals:

Iµ1...µsl =

∫
dD`

(2π)D
|q|−2l−s+1`µ1 . . . `µs(` · u1)l

`2(−2` · u2)(`− q)2
; (4.116)

they may be parametrized as a scalar integral Il[w, s] by contracting the free indices with an

arbitrary vector w, from which the desired tensor integral is extracted by taking s derivatives.

Note that, unlike the triangle integrals in Eq. (4.72), here the exponent l is not constrained

to be even. To leading order in spin only the vector integral is relevant. To this order,

Eq. (4.115) becomes:

ME2
l,2,S(p2)(p, q) = ε2 · ε3ME2

l,2
(p, q) (4.117)

+ 128(−1)lCBS1G2π2σ|q|2l+3
(
S2[u1, q]

(
(−1 + 2σ2)I2l + 4I2+2l

)
+ 4S2[eµ, q]

(
(1− 2σ2)Iµ1+2l − 4Iµ3+2l

))
m1m

3
2ε2 · ε3 +O((q · S)2) .

It is not difficult to evaluate in the usual way the vector integrals, by writing them as

a linear combination of u1, u2 and q and solving for the coefficients in terms of the scalar
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triangle integrals in Eq. (4.72). Alternatively, one may re-evaluate the integrals in Eq. (4.72)

by treating u1, u2 and q as uncorrelated vectors, differentiate s times with respect to u1 and

then impose u2
i = 1, ui · q = 0. For the vector integrals we find

Iµ2l+1 = −u
µ
1 − u

µ
2y

y2 − 1
I2l+2 . (4.118)

Thus, the amplitude with the first spin-dependent term for particle 2 is

ME2
l,2,S(p2)(φ(p1), φ(p2), φ(p3), φ(p4)) = ε2 · ε3ME2

l,2
(φ(p1), φ(p2), φ(p3), φ(p4)) (4.119)

− CBS1G2π3/2 Γ(1
2

+ l)

22l−5Γ(3 + l)
m3

2σ(−1 + σ2)l(−3 + (7 + 2l)σ2)|q|3+2lS2[p1, (iq)]ε2 · ε3 +O((q · S)2) .

To extract the two-body potential in terms of the rest-frame spin it is necessary to expand

the product of polarization tensors to leading order in spin, as discussed in Ref. [23]. Using

the relations

ε2 · ε3 =

(
1− i εrskp

r
2p
s
3S

k

m2(m2 + E(p2))
+O(S2q2)

)
+O(q) ,

εµνρσp1µp2νqρSiσ = (E1 + E2) (p× q) · Si , (4.120)

the amplitude becomes

ME2
l,2,S(p2)(φ(p1), φ(p2), φ(p3), φ(p4)) (4.121)

=ME2
l,2

(p)|q|2l+3 +

(
ME2

l,2
(p)

m2(E2 +m2)
+ (E1 + E2)ME2

l,2,1
(p)

)
|q|2l+3 i(p× q) · S2 +O((q · S)2) ,

where ME2
l,2,1

is the coefficient of S2[p1, (iq)] in Eq. (4.119) and, as before, the bar indi-

cates that all q dependence has been extracted. The two-body potential and the eikonal

phase are then extracted by three-dimensional and two-dimensional Fourier-transforms, in

terms of their spinless counterparts and the coefficient of the spin-dependent structure in
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the amplitude:

VE2
l,2,S2

(p, r) = VE2
l,2

(p, r)− (p× r) · S2

4E1E2|r|2l+8

24+2lΓ(4 + l)

π3/2Γ(−3
2
− l)

×

(
ME2

l,2
(p)

m2(E2 +m2)
+ (E1 + E2)ME2

l,2,1
(p)

)
+O((rS)2) , (4.122)

δE2
l,2,S2

(p, b) = δE2
l,2

(p, b) +
1

4m1m2

√
σ2 − 1

(p× b) · S2

|b|2l+7

24+2lΓ(7
2

+ l)

πΓ(−3
2
− l)

×

(
ME2

l,2
(p)

m2(E2 +m2)
+ (E1 + E2)ME2

l,2,1
(p)

)
+O((rS)2) . (4.123)

The position-space analysis extended to include spin degrees of freedom is equally straight-

forward. It amounts to substituting in Eqs. (4.87) and (4.112) the stress tensor Tµν(p2) by

the general spin-dependent one in Eq. (4.68) or, for the scattering off a Kerr black hole,

with TKerr
µν (p2) in Eq. (4.67). As already emphasized, T gen

µν (`i, p2) depends on the graviton

momentum `i which now makes a leading-order contribution because of the spin dependence.

Nevertheless, the contribution of T gen
µν (`i, p2) can be organized as a differential operator acting

on the position-space three-dimensional scalar propagator:

Eµ1µ2(r, p1) = Eµ1µ2(i∇, p1)
∣∣
εµν(`i)→T gen

µν (i∇,p2)

∫
dD−1`i

(2π)D−1

e−ir·`i

`2
i

. (4.124)

The structure of the stress tensor (4.67) implies that, for scattering off a Kerr black hole,

the complete spin dependence is governed by the non-Abelian Fourier transform

∫
dD−1`i

(2π)D−1

e−i(r̂−â)·`i

`2
i

, (4.125)

where r̂ = r 1l4 and â is a vector of matrices, (âσ)µν = εµνρσa
ρ, with a defined in Eq. (4.66).

One may evaluate it by formally expanding the integrand in â.

On general grounds, as discussed in Ref. [23], the impulse and spin kick is computed

from the eikonal phase (4.123) through the relations (4.8) agree with those computed from
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1

2 3

4

ℓ1 ℓn

Figure 4.2: The generalized cut for leading order contributions to nonlinear tidal operators. Each
blob is simply a (local) on-shell amplitude. The dark blob contains the Xn tidal operator. The
direction of graviton momentum flow is indicated by the arrows.

Hamilton’s equations of motion based on the two-body potential (4.122). The same holds

for the magnetic analog of Eqs. (4.123) and (4.122).

4.4 Nonlinear tidal effects

The amplitude with nonlinear tidal effect, i.e. the scattering with an Xn operator insertion,

where X stands for E or B, can be constructed from the unitarity cut in Figure 4.2. We

will mostly focus on leading contribution for such an operator in this section. In this case,

the simplifications described in Section 4.3.1 are all applicable. Namely, the amplitude

with Xn tidal operator is still comprised of linearized electric and magnetic Weyl tensor in

Eqs. (4.59) and (4.60); and the sewing of three-point amplitudes with the amplitude with Xn

tidal operator is effectively replacing the polarization εµν(`i) → Tµν(p2) for each graviton.

Start from the the unitarity cut in Figure 4.2. After sewing we find

MXn(p, q) =
κn

mn−1
2

∫
MXn(h(`1), . . . , h(`n), φ(p1), φ(p4))

∣∣
εµν(`i)→Tµν(p2)

× 1

`2
1`

2
2 · · · `2

n

[
i

(−2u2 · `1)

i

(−2u2 · `12)
. . .

i

(−2u2 ·
∑n−1

j=1 `j)

]
, (4.126)

where we integrate over `i with i = 1, . . . , n− 1 and
∑n

i=1 li = q.

As discussed in the previous section, we can include spin degrees of freedom for the field

without the tidal deformation by simply replacing in Eq (4.126) the point-particle stress
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tensor Tµν with that of the general spinning particle T gen
µν , cf. Eq. (4.68), or with that of a

Kerr black hole, cf. (4.67).

The calculations from position space and momentum space also follow similarly as before.

We discuss them in turn.

4.4.1 Leading order position-space analysis

Start with Eq. (4.126). Again we consider the rest frame of particle 2 in which we have

Eq. (4.73). The first step is to integrate out energy in potential region. Using the identity [51]

δ

(
n∑
i=1

`0
i

)[
i

(−2u2 · `1 + i0)

i

(−2u2 · `12 + i0)
. . .

i

(−2u2 ·
∑n−1

j=1 `j + i0)
+ perm

]
= πn−1

n∏
i=1

δ(`0
i ) ,

(4.127)

where perm is the rest of n! permutations of `1,...,n. Since the integrand is invariant under

permutations, this localizes all `0
i = 0 with a 1/n! prefactor

MXn(p, q) =
(−κ)n

(2m2)n−1 n!

∫ [
n∏
i=1

dD−1`i
(2π)D−1

1

`2
i

]
δ

(
q −

n∑
i=1

`i

)

×MXn(h(`1), . . . , h(`n), φ(p1), φ(p4))
∣∣
εµν(`i)→Tµν(p2)

, (4.128)

To evaluate this integral, we use the same manipulations as at one loop. First consider

the Fourier transform to position space

MXn(p, r) =

∫
dD−1q

(2π)D−1
e−ir·qM̃Xn(p, q)

=
(−κ)n

(2m2)n−1 n!

n∏
i=1

∫
dD−1`i

(2π)D−1

e−ir·`i

`2
i

MXn(h(`1), . . . , h(`n), φ(p1), φ(p4))
∣∣
εµν(`i)→Tµν(p2)

=
(−κ)n

(2m2)n−1 n!
MXn(h1, . . . , hn, φ(p1), φ(p4)|r), (4.129)
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where we use Eq. (4.87) to define

MXn(h1, . . . , hn, φ(p1), φ(p4)|r) (4.130)

≡
n∏
i=1

∫
dD−1`i

(2π)D−1

e−ir·`i

`2
i

MXn(h(`1), . . . , h(`n), φ(p1), φ(p4))
∣∣
εµν(`i)→Tµν(p2)

= MXn(h(`1), . . . , h(`n), φ(p1), φ(p4)|Xµ1µ2(`j, p1)→ Xµ1µ2(rj, p1), `j → i∇j)
∣∣∣
rj→r

.

As before all the coordinates rj are identified as r in the end. The above formula is very gen-

eral and applies to higher multipole operators or general susceptibilities similar to Eq. (4.112).

Recall thatMXn(h(`1), . . . , h(`n), φ(p1), φ(p4)) is only a function of Eµ1µ2(`i, p2), Bµ1µ2(`i, p2),

and Mandelstam invariants. The Fourier transform simply replaces them with their corre-

sponding in position-space expressions defined in Eqs. (4.87) and (4.94). As before, the

result of MXn(p, r) is generally not isotropic, because any u1 · ` in momentum space gener-

ates dependence on ẑ · `. To bring it into the isotropic form, we Fourier transform back to

momentum space, as in Eq. (4.90).

A simple example is the operator Eµ
νEν

ρEρ
µ, denoted as (E3). With the contraction of

three E tensors (4.87) given by

Eµν(r, p1)Eνρ(r, p1)Eρ µ(r, p1) =
3m6

2

4096π3|r|13

[
9(σ2 − 1)(r2 − z2)(σ2r2 − (σ2 − 1)z2) + 2r2

]
,

(4.131)

the graviton-scalar amplitude is

M(E3)(h1, h2, h3, φ(p1), φ(p4)|r) = 12κ3m1 Eµν(r, p1)Eνρ(r, p1)Eρ µ(r, p1) . (4.132)

Plugging into Eq. (4.129) then yields the four-scalar amplitude in position space

M(E3)(p, r) = −κ
6m1

2m2
2

Eµν(r, p1)Eνρ(r, p1)Eρµ(r, p1). (4.133)
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Using the Fourier transform formula in Eq. (4.91), we arrive the final result

M(E3)(p, q) =
−|q|6−4ε

2ε
M(E3)(p) =

18

11!!
G3m1m

4
2π
(7

4
− 9σ2 + 10σ4

) |q|6−4ε

ε
. (4.134)

An important feature of the position-space scalar-graviton amplitude (4.130), which we

already encountered in the one-loop analysis in Sec. 4.3.3, is that it factorizes into a product

of position-space E tensor, defined in Eq. (4.87) and its magnetic counterpart, perhaps with

additional derivatives. As explained in Section 4.2, the fact that these position-space tensors

have rank 3 implies that such a product can be further expressed as a sum of products of

traces of at most three factors. For example, Eq. (4.50) gives the decomposition of any

power of a rank-3 matrix in terms of in terms of traces of two and three such matrices. It

applies directly to the four-scalar amplitude with an insertion of (En) and expresses it as

a sum of four-scalar amplitudes with an insertion of (E2)n2(E3)n3 with n = 2n2 + 3n3. It

also applies directly to amplitudes with an insertion of (Bn). While the resulting amplitude

vanishes of n is odd, it also further simplifies if n is even. The parity-odd nature of Bµ,ν(r,p)

and position-space factorization imply that, to leading order, (B3) = 0 because there are

insufficient vectors to saturate the Levi-Civita tensor. Therefore, to leading order, the analog

of Eq. (4.50) for the magnetic operators reduces to,

(Bn=2k) =
1

2k−1
(B2)k . (4.135)

The amplitudes collected in the Appendix 4.A verify these formulas for up to n = 8.

The momentum-space four-scalar amplitude is related to the position-space four-scalar

amplitude by single (D − 1)-dimensional Fourier transform. The structure of the position-

space amplitude is essential. This observation allows us to evaluate amplitudes and the

corresponding two-body potentials to leading order for arbitrary operators.

Since the position-space scalar-graviton amplitudes with one insertion of either one of
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(E2), (B2) or (E3) have a similar structure, we will discuss them simultaneously, referring

to these operators as (O). They have the form,

M̃(O) = N(O)
1

rh

(
a(O) + b(O)

(r · u1)2

r2
+ c(O)

(r · u1)4

r4

)
, (4.136)

where N(O) is an operator-dependent normalization factor. For the three operators it is,

N(E2) = N(B2) = 24G2π2m1m
3
2 , N(E3) = 25G3π3m1m

4
2 , (4.137)

and the coefficients are

a(E2) =
3(1− 3σ2 + 3σ4)

2π2
, b(E2) =

9(1− 2σ2)

2π2
, c(E2) =

9

2π2
,

a(B2) =
9σ2(σ2 − 1)

2π2
, b(B2) =

9(1− 2σ2)

2π2
, c(B2) =

9

2π2
,

a(E3) = −3(2− 9σ2 + 9σ4)

8π3
, b(E3) = −27(1− 2σ2)

8π3
, c(E3) = − 27

8π3
. (4.138)

The exponent of the overall r factor is h = 6 for (O) = (E2) and (O) = (B2) and h = 9 for

(O) = (E3).

The position- space amplitude with an insertion of an operator made up of n such traces

is simply given by raising (4.136) to the nth power and adjusting the normalization factor,

M̃(O)n = N(O)n

[ 1

rh

(
a(O) + b(O)

(r · u1)2

r2
+ c(O)

(r · u1)4

r4

)]n
. (4.139)

The change in normalization factor is related to the normalization of the tree-level amplitude

with one insertion of the composite operator. We find

N(E2)n = N(B2)n = 22n+2G2nπ2nm1m
2n+1
2 , N(E3)n = 23n+2G3nπ3nm1m

3n+1
2 . (4.140)

To obtained the momentum-space scattering amplitude with an insertion of an arbitrary
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operator (O)n we first use twice the binomial expansion and put the position-space amplitude

in the form

M̃(O)n =
N(O)n

rnh

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
an−kO blO c

k−l
O

(
(r · u1)2

r2

)2k−l

. (4.141)

Using then the general tensor Fourier-transform relation (4.91) which enforces q · u1 =

q2/2→ 0 leads to the desired result:

M(O)n(p, q) =
N(O)n

|q|D−nh−1

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
an−kO blO c

k−l
O (4.142)

×
2D−hn−1πD/2(σ2 − 1)2k−lΓ(1

2
+ 2k − l)

sin(π
2
(D − hn− 1))Γ(1

2
(3 + hn−D))Γ(2k − l + 1

2
hn)

,

where D = 4 − 2ε. The two-body potential and the eikonal phase follow then straightfor-

wardly via Eqs. (4.9)-(4.12):

V(O)n(p, r) = −
N(O)n

4E1E2 |r|nh
n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
an−kO blO c

k−l
O (σ2 − 1)2k−lΓ(1

2
+ 2k − l)Γ(1

2
hn)

√
πΓ(2k − l + 1

2
hn)

,

(4.143)

δ(O)n(p, b) =
N(O)n

4m1m2 |b|nh−1

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
an−kO blO c

k−l
O (σ2 − 1)2k−l−1/2 Γ(1

2
+ 2k − l)Γ(1

2
(hn− 1))

Γ(2k − l + 1
2
hn)

.

As discussed earlier, parity and factorization of the position-space amplitude implies that,

to leading order in the classical limit, amplitudes with an insertion of an operator which has

at least one parity-odd factor vanish identically even if the operator is overall parity-even.

Thus, Eq. (4.50) with E → B implies that the approach described here yields the two-body

potential for all nonlinear tidal operators of the type (B2n).

The discussion above can be easily extended to cover amplitudes with one insertion of

(En). Eq. (4.50) expresses it as a linear combination of amplitudes with one insertion of

(E2)n2(E3)n3 with 2n2 +3n3 = n. The position space form of the latter involves a product of
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two factors analogous to the right-hand side of Eq. (4.139). Each of them can be binomially

expanded (with a slight simplification based on the equality b(E2)/b(E3) = c(E2)/c(E3) visible

in Eq. (4.138)) and put in a form analogous to the right-hand side of Eq. (4.141). Fourier-

transforming using Eq. (4.91) and putting together all terms leads to the momentum-space

amplitude with one insertion of (En).

The general formulas above show explicitly that the difference E2n − B2n is subleading

in the high-energy limit. This extends the observations of Refs. [28, 29] beyond the linear

order.

4.4.2 Order by order momentum-space analysis

The above position-space evaluation is a very effective means for evaluating leading con-

tributions to any given tidal operator. Momentum-space methods for evaluating the loop

integrals instead offer a straightforward way to systematically extend the results to higher or-

ders following the methods presented in Refs. [11–13]. Indeed following these methods, next

to leading order contributions to E2 and B2 tidal operators were evaluated in Ref. [21]. A

related approach for tidal operators based on world lines has been recently given in Ref. [29]

where additional E2 operators were evaluated.

Here we first re-evaluate the amplitudes in momentum space through C4 and then discuss

the extension to higher orders. The starting point is again the generalized cut shown in Figure

4.2. We evaluate the expressions in D-dimensions. Here we do not make use of the special

real-space factorization of the integrals discussed in the previous section, but rather simply

carry out the evaluation of the cut and then reduce the result to a basis of independent

momentum products. We can simplify the resulting expressions considerably by applying

the cut conditions and expanding in small momentum transfer q. Specifically, we can choose

a basis of momentum invariants which does not contain any of the products (p2 · `k), since
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the cut conditions give

(
−p2 +

k∑
i=1

`i

)2

−m2
2 = 0 → (p2 · `k) =

k∑
i=2

i−1∑
j=1

(`i · `j)−
k−1∑
i=1

(p2 · `i) , (4.144)

where the final term can be eliminated inductively starting with p2 · `1 = 0. Products of the

form (p3·`k) can then be eliminated using momentum conservation p3 = −p2−q = −p2−
∑
`i.

Since the cut graviton momenta scale as O(q), the cut conditions thus ensure that the scaling

of (p2 · `k) or (p3 · `k), which naively would be O(q), instead scale as O(q2). This greatly aids

in the simplification of the integrand after expanding in small q.

Unlike in the position-space analysis, the integrals do not decouple into a product, and

in general, the momentum-space integrals can be challenging to evaluate. To do so, we use

FIRE6 [52] which uses integration by parts methods [35] to reduce the integrals a single

master integral, which can then be evaluated either by direct integration or by differential

equations [53]. Evaluating the integrals is the most significant bottleneck for this method,

but the task is significantly aided by the use of special variables as described in [36],

p1 = −(p̄1 − q/2) , p4 = p̄1 + q/2 , p2 = −(p̄2 + q/2) , p3 = p̄2 − q/2 . (4.145)

The p̄i are orthogonal to q by construction: p̄i ·q = 0. As described in more detail in Ref. [36],

with these variables the matter propagators reduce to

1

(p2 + `1···i)
2 −m2

2

=
1

2p̄2 · `1···i
+O(q0) , (4.146)

so the matter propagators are linear in the loop momenta. In addition, we can define

normalized external momenta, ūµi = p̄µi /
√
m2
i − q2/4, such that ū2

i = 1 The net effect is that

the q2 dependence is scaled out of the integral so that it is only a function of a single-scale

ū1 · ū2 = σ +O(q2). Using these variables integral encountered at any order of perturbation
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Figure 4.3: The L-loop fan integral.

theory can then be converted to a single scale integral. Such integrals are quite amenable to

integration-by-parts methods, greatly speeding the evaluation.

The restriction to the potential region precludes pinching any propagators and the ex-

istence of irreducible scalar products. Thus, the result of IBP reduction is a single master

integral, with a coefficient given by powers of q dictated by dimensional analysis, as well as

a polynomial in σ. The master integral is the scalar fan integral in Fig. 4.3, which can be

easily evaluated by factorizing the loops by going to position space and Fourier transforming

back, with the result

I
(L)
fan =

∫ (L+1∏
i=1

dD`

(2π)D
1

`2
i

)
|q|2−Lδ(

∑
i `i − q)

(−2u2 · `1 + i0)(−2u2 · `12 + i0) · · · (−2u2 · `1···n−1 + i0)

=
iL+2

2L(4−2ε)πL( 3
2
−ε)

Γ
(

1
2
− ε
)L+1

Γ
(
(ε− 1

2
)L+ 1

)
Γ(L+ 2)Γ

(
(1

2
− ε)(L+ 1)

) |q|−2εL . (4.147)

At one loop this agrees with Eq. (4.76) with l = 0, and at two and three loops it yields

I
(2)
fan =

1

768π2

(q2)−2ε

2ε
+O(ε0) , I

(3)
fan = − i

49152π2
+O(ε) . (4.148)

The results of the IBP reduction at two loops gives the amplitudes with a single insertion
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of the tidal operators in terms of a single master integral:

M(E3) =
1024

385
π3G3m1m

4
2|q|6

(
7

4
− 9σ2 + 10σ4

)
I

(2)
fan ,

M(EB2) =
1024

1155
π3G3m1m

4
2|q|6

(
σ2 − 1

) (
1 + 10σ2

)
I

(2)
fan ,

M(B3) =ME2B = 0 . (4.149)

As expected, the parity odd operators E2B and B3 operator do not contribute.

At three loops, by reducing the integrand to the sole master integral we find the following

for the amplitudes with an insertion of the single trace operators,

M(E4) = −i 983

9031680
π4G4m1m

5
2|q|9(1231− 7304σ2 + 18590σ4 − 22880σ6 + 12155σ8)I

(3)
fan ,

M(B4) = −i 140569

9031680
π4G4m1m

5
2|q|9(σ2 − 1)2(1 + 10σ2 + 85σ4)I

(3)
fan ,

M(EEBB) = −i 10813

27095040
π4G4m1m

5
2|q|9(σ2 − 1)(41 + 689σ2 − 2925σ4 + 3315σ6)I

(3)
fan ,

M(EBEB) = i
10813

27095040
π4G4m1m

5
2|q|9(σ2 − 1)(25 + 481σ2 − 2925σ4 + 3315σ6)I

(3)
fan . (4.150)

Similarly, the amplitudes with double trace insertions evaluate to,

M(E2)2 = −i 983

4515840
π4G4m1m

5
2|q|9(1231− 7304σ2 + 18590σ4 − 22880σ6 + 12155σ8)I

(3)
fan ,

M(B2)2 = −i 140569

4515840
π4G4m1m

5
2|q|9(σ2 − 1)2(1 + 10σ2 + 85σ4)I

(3)
fan ,

M(E2)(B2) = −i 10813

4515840
π4G4m1m

5
2|q|9(σ2 − 1)(19 + 299σ2 − 975σ4 + 1105σ6)I

(3)
fan ,

M(EB)2 = 0 , (4.151)

It is not difficult to check that these results satisfy the four-dimensional relations described

in Section 4.2. In addition, they agree with the results obtained in the previous section for

tidal operators with arbitrary numbers of Es and Bs and collected in the Appendix for a

variety of operators up to E8 and B8.
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Figure 4.4: The generalized cuts that need to be evaluated at next to leading order for an Rn type
tidal operator.

1

2 3

4 1
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4

Figure 4.5: Sample diagrams for next-to-leading-order contributions for the R3 tidal operators
which are simple to evaluate.

An important aspect of the momentum-space approach is that it gives a systematic means

for obtaining corrections higher order in Newton’s constant for any operator insertion. For

example Fig. 4.4 shows the generalized cuts that would need to be evaluated to obtain the

next-to-leading order corrections from an C3 tidal operator. In the first of these cuts the

four-point amplitude can appear at any location on the top matter line. The mapping of the

integrands resulting from these cuts onto a integral basis generates a number of diagrams.

For example, in Fig. 4.5 we show a sample of the diagrams that that are quite easy to

evaluate for an R3 tidal operator, as we can again evaluate the integral using the real-

space technique presented in the previous section. More complicated diagrams that involve

1

2 3

4

2 3

1 4

2 3

41

Figure 4.6: Sample diagrams next-to-leading order contributions for the R3 tidal operators that
involve iteration contributions or nontrivial integrals.
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iteration contributions or non-trivial integrations are shown in Fig. 4.6. In these cases,

the integrals do not factorize, but the momentum-space approach of evaluating cuts and

reducing to a basis of master integrals will still be quite feasible. As noted in Refs. [15, 21]

the probe limit simplifies the evaluation of the contributions. In any case, it is clear that

amplitude methods can be applied beyond leading order to understand the systematics of

higher-dimension operators. We leave this to future studies.

4.5 Effective field theory extensions of GR

The same methods apply just as well to any operator, not just the tidal ones. For example,

we can consider the Rn operators arising from unknown short distance physics. Here we will

not classify such operators, but pick illustrative examples. The effect of operators up to R4

has already been discussed in some detail in Refs. [38–40]. In order to be concrete here we

discuss an effective action of the form

S =
1

16πG

∫
dDx
√
−g (−R + cKKµ1...ρnR

µ1ν1σ1ρ1Rµ2ν2σ2ρ2 · · ·Rµnνnσnρn) , (4.152)

where the first term is the usual Einstein-Hilbert action, and Kµ1...ρn merely gives the con-

traction between the Riemann tensors. Each independent contraction carries an independent

Wilson coefficient cK .

We construct the integrands for pure Rn modifications of gravity in a similar manner

as for those of the tidal operators. The leading contribution to the potential due to Rn

operators is captured by the cuts in Fig. 4.7. The diagrams in general are a product of two

fan diagrams, where all graviton legs, as well as the matter lines between the three point

vertices, are on shell, the exception being the case where (n − 1) on-shell gravitons attach

to one of the matter lines, while one graviton which we take to be off shell attaches to the

other matter line. In this case, it is convenient to include the matter line to which the single
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Figure 4.7: Cut for a general Rn type operator. In the case j = 1, it is convenient to take the
single graviton attaching to the bottom matter line as off shell and part of a tree amplitude
including the lower massive scalar line. All other gravitons and exposed matter lines are
taken on shell. The direction of graviton momentum flow is indicated by the arrows.

graviton propagator is attached as part of a single tree amplitude.

To evaluate the cuts in Fig. 4.7 we use the replacement derived above (see Eq. (4.62)).

This simplifies the form of the Riemann tensor:

Rµνρσ(`i)
∣∣
εµν(`i)→Tµν(pa)

= −1

2

(
`µi `

ρ
i

(
pνap

σ
a −

1

2
ηνσm2

a

)
− (σ ↔ ρ)

)
+((µ, ρ)↔ (ν, σ))+O(q3) ,

(4.153)

where pa and ma are the momentum and mass of the matter line the graviton attaches

to. When contracted in sequence with other gravitons attaching to the same matter line,

products involving the matter momenta in the above expression must reduce to pa ·pa = m2
a,

or the q scaling will become sub-leading, as shown in the previous section.

The cut corresponding to Figure 4.7 is simply a product of two fans,

CRn = Kµ1...ρnOµ1...ρj(`1, ..., `j; p1)Oµj+1...ρn(`j+1, ..., `n; p2) , (4.154)

where, for instance,

Oµ1...ρj(`1, ..., `j; p1) = Rµ1ν1σ1ρ1
1 · · ·Rµjνjσjρj

j

∣∣
εµν(`i)→Tµν(p1)

. (4.155)

As in previous sections, the integrands obtained after restoring the cut propagators are also
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well suited for applying position-space techniques. In this case, we must introduce a fictitious

momentum transfer q′ such that the integrand decouples in two parts, corresponding to the

two terms in Eq. (4.154) decouple, and the corresponding propagators attached to one matter

line or the other. The energy integrations can be carried out as in the previous sections with

the result

MRn(p, q) = Kµ1...ρn

∫
dD−1q′ δ(q + q′)

∫ ( j∏
a=1

dD−1`a
(2π)D−1

)
δ(
∑j

a=1 `a + q′)Oµ1...ρj(`1, ..., `j; p1)

`2
1 · · · `2

j

×
∫ ( n∏

a=j+1

dD−1`a
(2π)D−1

)
δ(
∑n

a=j+1 `a − q)Oµj+1...ρn(`j+1, ..., `n; p2)

`2
j+1 · · · `2

n

.

(4.156)

Writing

δ(q + q′) =

∫
dD−1x

(2π)D−1
ei(q+q′)·x (4.157)

and taking the Fourier transform of the amplitude we find

MRn(p, r) =

∫
dD−1q

(2π)D−1
e−iq·rMRn(p, q)

= Kµ1...ρn

∫
dD−1x

∫ ( j∏
a=1

dD−1`a
(2π)D−1

e−i`a·x

`2
a

)
Oµ1...ρj(`1, ..., `j; p1)

×
∫ ( n∏

a=j+1

dD−1`a
(2π)D−1

e−i`a·(r−x)

`2
a

)
Oµj+1...ρn(`j+1, ..., `n; p2)

= Kµ1...ρn

∫
dD−1xOµ1...ρj(x; p1)Oµj+1...ρn(r − x; p2) . (4.158)

The product in momentum space has become a convolution in position space over x, which

can be viewed as the position in the bulk, i.e. away from the massive particle trajectories,

at which the Rn operator is inserted. Note however that this formula does not have a

natural interpretation in position space, given that the energy integrals in each factor were

performed by going to the rest frame of different particles. In practice, as in previous
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Figure 4.8: The corrections from (a) R3 and (b,c) R4 operators that appear in EFT extensions of
GR. The double-line notation indicates that we have not used on-shell conditions on that line.

sections, this formula can be used by transforming one last time to momentum space, so

that the convolution is trivialized and each factor can be written in isotropic coordinates.

The inclusion of derivatives, ∇2mRn, or of spin on the matter lines poses no obstruction

to applying this method. In the former case one must organize the additional powers of loop

momentum in the integrand into either factor in analogy with Eq. (4.154). The factorization

argument carries over and the additional loop momenta become derivatives in position space

acting on either factor of Eq. (4.158). For the case of spin, the only difference is that

the Fourier transforms in Eq. (4.158) become non-Abelian Fourier transforms defined in

Eq. (4.125).

As simple examples, consider the cases of OR3 = Rµ1ν1
µ2ν2R

µ2ν2
µ3ν3R

µ3ν3
µ1ν1 and O(R2)2 =

(Rµ1ν1
µ2ν2R

µ2ν2
µ1ν1)

2. The contributing generalized unitarity cut for the R3 operator are

shown in Fig. 4.8(a) while the two potentially contributing cuts for the the R4 operator are

shown in Fig. 4.8(b,c). In the diagrams the double-line notation indicates that we have not

used on-shell conditions on that line, but consider the two connected blobs as part of a single

tree amplitude.6

After carrying out the integration, the R3 and R4 amplitudes are

MR3 =− 6cR3G2π2m2
1m

2
2(m1 +m2)|q|3(σ2 − 1) ,

M(R2)2 =− 27

315
c(R2)2G

3πm2
1m

2
2(m2

1 +m2
2)

(q2)3−2ε

2ε
(3σ2 − 1) , (4.159)

6Whether on-shell conditions are used on the intermediate leg corresponds to shifting the coefficient of
φRnφ operators.
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where we took the operators to have coefficient c3
R and c(R

2)2 respectively. Taking the

Fourier transform (4.12) to position space gives the potentials

VR3 =
18

E1E2

cR3G2m2
1m

2
2(m1 +m2)(σ2 − 1)

1

r6
,

V(R2)2 =
28

E1E2

c(R2)2G
3m2

1m
2
2(m2

1 +m2
2)(3σ2 − 1)

1

r9
. (4.160)

The OR3 amplitude and potential was obtained previously in Refs. [39, 40] and we find

agreement. In Ref. [39] the authors also evaluate the effect of an additional R3 operator,

G3 = OR3 −Rµνα
βR

βγ
νσR

σ
µγα ; (4.161)

this is related to tidal operators via a field redefinition up to operators that vanish in four

dimensions. This can be seen by evaluating its four-dimensional four-point amplitude, which

feeds into the two-graviton cut, using spinor-helicity methods [39]:

MG3(φ(p1), h++(k2), h++(k3), φ(p4)) ∝ [23]4(−q2 + 2m2
1) . (4.162)

Since this is a local contribution, it is already captured by tidal operators of the form E2,

B2. Interestingly, though, if this operator were present with a sufficiently large coefficient,

it would produce a result equivalent to the leading tidal Love numbers, even if these are set

identically to zero for black holes in Einstein gravity [32].

The leading PN contribution from the R4 operator (O(R2)2) was calculated in Ref. [38],

with which we find agreement. We can also easily determine that the other operators consid-

ered in Ref. [38] give no contribution to the leading conservative potential. The contribution

from O(R2)(RR̃) = (Rµ1ν1
αβε

αβ
µ2ν2R

µ2ν2
µ1ν1)(R

µ3ν3
µ4ν4R

µ4ν4
µ3ν3) is zero simply because it is

parity odd. The operator O(RR̃)2 = (Rµ1ν1
αβε

αβ
µ2ν2R

µ2ν2
µ1ν1)

2, while being parity even, con-

tributes zero at leading order, in analogy to the tidal operator O(EB)2 . In both cases, the
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factorization of the integrand in real space forces the separate parity-odd factors to evaluate

to zero, as discussed in Section 4.4.1

Here we refrain from evaluating the amplitudes for the R5 and higher operators. However,

in these cases, there is an additional link between the Rn extensions of Einstein gravity

and the tidal operators. After carrying out the soft expansion of the integrand for the

Rn operators, one encounters ultraviolet divergences that renormalize tidal operators [5].

For example, in principle the R5 operator, which produces a diagram with three gravitons

attached to one matter line and two attached to the other, could produce a UV subdivergence

and thereby renormalize E2 or B2 tidal operators (with additional derivatives). It would

be an interesting problem to systematically study this interplay for infinite sequences of Rn

operators.

4.6 Conclusions

In this paper we evaluated the leading-PM order contributions to the two-body Hamiltonian

from infinite classes of tidal operators using momentum space and position space scattering

amplitude and effective field theory methods. The same principles yield leading-PM order

Hamiltonian terms from tidal deformations probed by a spinning particle and also from

effective field theory modifications of general relativity. Our results offer a new perspective

on the general structure of linear and nonlinear tidal effects in the relativistic two-body

problem while also being of potential phenomenological interest.

Our analysis of E2 and B2 tidal operators arbitrary number of derivatives is similar

to that of Ref. [30], except that we use a basis of operators which aligns with the more

standard worldline tidal operators [5, 28]. Their Wilson coefficients are the same (up to

an overall normalization that we provide) with the worldline electric and magnetic tidal

coefficients which in turn are proportional to the corresponding multipole Love numbers.

By directly evaluating all relevant integrals we obtain explicit expressions for the two-body

180



Hamiltonian and the amplitude’s eikonal phase, from which both scattering and closed-orbit

observables can be found straightforwardly. We illustrated the inclusion of spin by working

out the leading-order tidal contributions from E2-type operators with arbitrary number of

derivatives for one object interacting with the spin of the other.

For tidal operators with arbitrary numbers of electric or magnetic components of the Weyl

tensor, the integrand for the leading-order contributions are not difficult to construct because

their building blocks are tree-level leading order on-shell matrix elements of the point-particle

energy-momentum tensor and of the tidal operator. The simple loop-momentum dependence

and the permutation symmetry of the three-point amplitude factors makes the integrals sim-

ple to evaluate. Indeed, Fourier-transforming all graviton propagators decouples all integrals

from each other, making it straightforward to write down explicit results for infinite classes

of tidal operators. We have verified that the results obtained this way thought direct mo-

mentum space integration. While position space methods make leading-order calculations

straightforward, momentum-space methods can be applied systematically, to arbitrary PM

order.

An interesting feature of gravitational tidal operators, which we exploited in their de-

scription, is their close similarity with gauge theory operators describing the interaction of

extended charge distributions with electromagnetic fields. This formal connection extends to

dynamical level double-copy relations. For leading-order contributions this is a straightfor-

ward consequence of the factorization of the linearized Riemann tensor into two gauge-theory

field strengths and of the factorization of the energy-momentum tensor into two gauge theory

currents. Such double-copy factorizations also hold for the energy-momentum tensor [23]. It

would be very interesting to investigate double-copy relations beyond the leading PM order.

In summary, in this paper we took some steps towards systematically evaluating contribu-

tions to the two-body Hamiltonian from infinite families of tidal operators. The leading order

in G results are remarkably simple, suggesting that much more progress will be forthcoming.
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4.A Appendix: Summary of Explicit Results

In this appendix we collect explicit results for scattering amplitudes with a tidal operator

insertion. Using Eq. (4.5), this immediately gives us the potential. Here we consider the

amplitudes with operator insertions of the type En−2mB2m. We express the amplitude in

terms of the variable σ = p1 · p2/m1m2. The general formulae for (E2)n, (B2)n and (E3)n

are given from Eq. (4.141) to Eq. (4.143) with the coefficients in Eq. (4.138). Here we give

explicit results corresponding up to 7 loops in the amplitudes approach. As noted in the

text, the amplitudes with an odd B-field insertions vanish by parity so we do not include

those. We also do not explicitly list cases where a trace contains an odd number of Bs since

these also vanish.

To list the amplitudes we scale out the powers of |q| from the scattering amplitudes,

following Eq. (4.9),

MX2n = |q|3(2n−1)MX2n = |q|3(2n−1)CX2n , (4.163)

for a tidal operator which we build from a total of 2n Es or Bs, independent of the trace

structure. For operators where total number of Es and B is odd the rescaling is bit difference

because of the appearance of a divergence

MX2n+1 = |q|6n−4nεMX2n = − 1

2n

1

ε
|q|6n−4nε CX2n+1 , (4.164)

The long-range classical contribution comes from the log q2 term that arises from expanding

in ε.

As discussed in Section 4.2, the potential is given in the two-body Hamiltonian is given

by a Fourier transform (4.5) and the eikonal phase is also given by Eq. (4.6). Carrying out
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the Fourier transform we have from Eq. (4.10) and Eq. (4.11)

VX2n = − 1

4E1E2

82n−1 Γ(3n)

π3/2Γ(3
2
− 3n)

CX2n

|r|6n
, (4.165)

δX2n =
1

4m1m2

√
σ2 − 1

82n−1 Γ(3n− 1
2
)

πΓ(3
2
− 3n)

CX2n

|b|6n−1
, (4.166)

where we only keep the finite term in ε. Similarly, for the odd powers

VX2n+1 =
1

4E1E2

(−1)n Γ(6n+ 2)

2π

CX2n+1

|r|6n+3
, (4.167)

δX2n+1 =
1

4m1m2

√
σ2 − 1

(−1)n−182n Γ(3n+ 1)2

π

CX2n+1

|b|6n+2
. (4.168)

For X2 we have,

C(E2) =
5

23
G2m1m

3
2π

2
(11

5
− 6σ2 + 7σ4

)
,

C(B2) =
5

23
G2m1m

3
2π

2(σ2 − 1)
(

1 + 7σ2
)
, (4.169)

where the parenthesis on the operator denote the matrix trace, as defined in Eq. (4.49)

For X3:

C(E3) = −22 32

11!!
G3m1m

4
2π
(7

4
− 9σ2 + 10σ4

)
,

C(EB2) = −22 3

11!!
G3m1m

4
2π(σ2 − 1)

(
1 + 10σ2

)
. (4.170)
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For X4:

C(E4) = − 11 · 13

212 (7!!)2
G4m1m

5
2π

2
(1231

143
− 664

13
σ2 + 130σ4 − 160σ6 + 85σ8

)
,

C(B4) = − 11 · 13

212 (7!!)2
G4m1m

5
2π

2(σ2 − 1)2
(

1 + 10σ2 + 85σ4
)
,

C(EEBB) = − 11 · 13

212 (7!!)2
G4m1m

5
2π

2(σ2 − 1)
(41

39
+

53

3
σ2 − 75σ4 + 85σ6

)
,

C(EBEB) =
11 · 13

212 (7!!)2
G4m1m

5
2π

2(σ2 − 1)
(25

39
+

37

3
σ2 − 75σ4 + 85σ6

)
,

C(E2)2 = 2C(E4) ,

C(B2)2 = 2C(B4) ,

C(E2)(B2) = − 11 · 13

211 (7!!)2
G4m1m

5
2π

2(σ2 − 1)
(19

13
+ 23σ2 − 75σ4 + 85σ6

)
. (4.171)

For X5:

C(E5) =
1

26 (19!!)
G5m1m

6
2π
(

1094− 8535σ2 + 24608σ4 − 32832σ6 + 17280σ8
)
,

C(E3B2) =
1

26 5 (19!!)
G5m1m

6
2π(σ2 − 1)

(
499 + 10144σ2 − 46656σ4 + 51840σ6

)
,

C(EBEBE) = − 1

25 5 (19!!)
G5m1m

6
2π(σ2 − 1)

(
61 + 1336σ2 − 7776σ4 + 8640σ6

)
,

C(EB4) =
32

22 5 (19!!)
G5m1m

6
2π(σ2 − 1)2

(
1 + 12σ2 + 120σ4

)
,

C(E3)(B2) =
3

24 5 (19!!)
G5m1m

6
2π(σ2 − 1)

(
61 + 1336σ2 − 7776σ4 + 8640σ6

)
,

C(E2)(EB2) =
3

25 5 (19!!)
G5m1m

6
2π(σ2 − 1)

(
85 + 1600σ2 − 5184σ4 + 5760σ6

)
,

C(B2)(EB2) = 2CEB4 . (4.172)
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For X6, X7, X8:

C(E6) =
17 · 19 · 35

221 52 (13!!)2
G6m1m

7
2π

2
(5558245

26163
− 328930

171
σ2 +

609305

81
σ4 − 144980

9
σ6

+
183425

9
σ8 − 14950σ10 + 5175σ12

)
,

C(B6) =
17 · 19 · 35

221 52 (13!!)2
G6m1m

7
2π

2(σ2 − 1)3
(

5 + 69σ2 + 575σ4 + 5175σ6
)
,

C(E7) = − 3

212 (31!!)
G7m1m

8
2π
(

1496063− 15991430σ2 + 71940660σ4

− 177188000σ6 + 253373120σ8 − 200648448σ10 + 69189120σ12
)
, (4.173)

C(E8) = −23 · 29 · 37 · 5
231 72 (19!!)2

G8m1m
9
2π

2
(57426585223

7293645
− 10076129056

105705
σ2 +

32319394660

63423
σ4

− 1227512720

783
σ6 +

82520830

27
σ8 − 3916416σ10 + 3294060σ12

− 1718640σ14 + 441595σ16
)
,

C(B8) = −23 · 29 · 37 · 5
231 72 (19!!)2

G8m1m
9
2π

2(σ2 − 1)4
(

35 + 620σ2 + 6138σ4 + 47740σ6 + 441595σ8
)
.

As noted in Section 4.4, in the high-energy limit, where σ is large, simple relations are visible

between amplitudes with E2 and B2 operators inserted [28, 29].
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