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ABSTRACT OF THE DISSERTATION

Harnessing Large-Scale Quantum Calculations for Predicting Material and Chemical
Properties

by

Anshuman Kumar

Doctor of Philosophy, Graduate Program in Materials Science and Engineering
University of California, Riverside, March 2023

Dr. Bryan M. Wong, Chairperson

Density functional theory (DFT) is a powerful method for probing chemical and

material properties and guiding the design of novel materials from first principles. How-

ever, the computational demands of large-scale and/or long-time DFT calculations can be

challenging. To address this limitation, this thesis employs the approximate DFT method,

density functional tight-binding (DFTB), as an alternative approach to DFT. The first part

of the thesis demonstrates the accuracy and reliability of DFT methods in describing the

electronic structure and properties of chemical and material systems. In the second part

of the thesis, we transition from DFT to analyze the accuracy and efficiency of DFTB in

performing large-scale electronic structure calculations. To achieve this goal, we have in-

terfaced DFTB with the cluster approach to statistical mechanics (CASM) program, which

allows for the efficient calculation of formation energies and convex hull. Furthermore, we

have extended the DFTB approach to perform long-timescale metadynamics calculations

on biochemical systems with the help of GPUs. GPU-enabled DFTB allows for an efficient

and accurate description of the free energy surfaces and provides valuable insight into the

viii



transition pathways. In summary, this thesis aims to accelerate ab initio computations by

enabling accurate and efficient prediction of material and chemical properties with DFTB.

GPU-enhanced DFTB is a powerful tool for exploring the electronic and thermodynamic

properties of complex materials, chemical, and biochemical systems, with potential appli-

cations in materials science, physics, and chemistry.
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Chapter 1

Introduction

1.1 Motivation

In the past decade, computational materials science has made great strides in

developing tools to predict the properties of chemical, material, and biological systems

from first principles. Density functional theory (DFT) based methods are among the most

accurate and efficient quantum simulation techniques for predicting electronic properties

in chemistry, physics, and materials science. These capabilities have enabled researchers

to understand the behavior of materials at the atomic level and to design materials with

specific functionalities. For example, they can be used to understand the structure-property

relationships of materials and identify new materials with desirable physical, chemical, or

electrical properties [9, 10]. This has broad implications for developing sustainable energy

sources, novel materials, and biomedical therapeutics [11–14]. DFT has been successfully

applied to various systems to compute properties, ranging from the formation energies of

alloys [4] and electronic transport properties of doped carbon nanotubes [6] to the optical
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response of peptides [1, 2], and polarizabilities of conjugated molecules [7]. However, these

DFT-based methods are computationally costly, and these calculations are computationally

prohibitive on a large length or long-time scale. To overcome this computational cost

associated with DFT, DFTB provide an alternate cost-effective, efficient, and accurate

approach for modeling the material and chemical systems.

The purpose of this thesis is to (i) assess the accuracy and effectiveness of DFT

methods in correctly describing the electronic structure of chemical and material systems,

(ii) extend DFTB methodology in performing large-scale electronic structure calculations by

interfacing it with cluster approach to statistical mechanics (CASM) software program, and

(iii) enable performance enhancement of metadynamics calculations with GPU-accelerated

DFTB approach. This thesis is divided into two parts. Part I (Chapters 3-6) focuses on

the application of DFT in predicting the electrical transport properties of doped carbon

nanotube [6], the role of the exchange-correlation functional in correctly capturing the

electronic structure of chemical systems [7], and using time-dependent DFT to calculate the

UV absorption and circular dichroism (CD) spectra to reflect conformational dependence

of peptides at high temperature [1, 2]. The second part of the thesis (Chapters 7 and 8)

consists of the density functional tight binding (DFTB) approach, which is an approximate

DFT method but computationally much cheaper and, thus, more efficient than DFT in

performing large-scale quantum calculations. Specifically, in chapter 7, we have leveraged

DFTB with the cluster approach to statistical mechanics (CASM) program to calculate

the formation energies and convex hull of binary compounds [4]. Using large-scale DFTB

calculations, we showed that DFTB could be used as an alternative approach (to DFT) to
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enable fast and accurate prediction of formation energies/convex hulls of binary alloys. In

chapter 8, we used GPU-enhanced DFTB to perform long-time-scale (∼10ns) metadynamics

simulations of alanine dipeptide and remdesivir [5]. Our DFTB metadynamics approach

showed two orders of magnitude performance enhancement compared to the DFT approach.

Also, our GPU-accelerated DFTB calculations qualitatively agree with computationally

intensive hybrid DFT benchmarks.

While this thesis covers a selection of my research work, all of my research works

at UC Riverside can be found at the Refs. [1–7,15–20].

1.2 Outline

The first part of the thesis, Chapters 3-6, describes the application of DFT methods

to study material and chemical systems. The goal of the section is to introduce the reader

to the DFT and time-dependent DFT methodologies, which enables predictive capability in

simulating the chemical and electrical properties of systems at the nanoscale. Specifically,

we study the transport properties of doped carbon nanotubes (CNT), the polarizability of

a π-conjugated chemical system, and the circular dichroism spectra of important biological

peptides. More details on the specific topics are as follows:

• Chapter 2 opens with an introduction to the density functional theory (DFT) and

time-dependent DFT to provide readers with a foundational understanding of these

theories and their relevance to the related work presented in the subsequent chapters.

• Chapter 3 includes the application of DFT describing the effect of doping carbon

nanotubes (CNT) with Lithium and Chromium atoms.
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• Chapter 4 comprehensively analyzes the linear polarizability and second-order hyper-

polarizability of conjugated oligomers. We compare the accuracy of various empirically

tuned and conventional range-separated functionals against CCSD(T) benchmarks.

We find that tuned range-separated functional is more accurate, especially when the

system can relax to a lower-energy broken-symmetry configuration.

• Chapters 5 and 6 investigate the UV absorption spectra and UV-CD spectra of a

series of cationic peptides in a vacuum and aqueous solution using time-dependent

DFT.

The second part of the thesis (Chapters 7 and 8) focuses more on extending the DFTB

approach to probe the electronic properties of material and chemical systems efficiently and

accurately.

• Chapter 7 leverages the DFTB approach for efficiently predicting the formation en-

ergies and convex hulls of SiC and ZnO alloys. By interfacing DFTB with CASM

program, we showed that the DFTB gives accurate results and can be used as an

efficient computational approach for calculating and pre-screening alloy formation en-

ergies/convex hulls.

• Chapter 8 uses the GPU-enhanced DFTB approach for efficient prediction of free

energies of biochemical systems. Specifically, we showed that converged free energy

surfaces of complex systems are accurately predicted at the quantum level using the

DFTB approach.
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Chapter 2

Density Functional Theory

This chapter summarizes the theories used extensively in this thesis. The content

of this chapter, in part or in full, is taken from my published works at Refs. [4] and [8].

2.1 Kohn-Sham Density Functional Theory

In Kohn-Sham DFT (KS-DFT), the electronic energy of a system is given by

E[ρ] = TKS[ρ] + Eext[ρ] + EH[ρ] + Exc[ρ]. (2.1)

All the terms in Eq. 2.1 are a functional of the electron density ρ. TKS[ρ] in Eq. 2.1 is

the kinetic energy of the electrons, Eext[ρ] is the interaction between the electrons and the

nuclei, EH[ρ] is the Hartree energy which is classical electrostatic energy of the electronic

density charge distribution, and Exc[ρ] is the exchange-correlation energy which describes

exchange and correlation quantum interactions. The electron density, ρ(r⃗), is expressed as
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the sum of one-electron wave functions, ψi, known as molecular orbitals (MOs).

ρ(r⃗) =
Ne

∑
i=1

∣ψi(r⃗)∣2. (2.2)

To construct the electron density, these MOs are obtained by solving the Kohn-Sham (KS)

eigenvalue equation:

[−1

2
▽

2
+Vext(r) + VH[ρ](r) + Vxc[ρ](r)]ψi(r) = ϵiψi(r). (2.3)

VH[ρ] and Vxc[ρ] in Eq. 2.3 are themselves functionals of the density and, thus, also of the

MOs, ψi, which are obtained after solving the KS eigenvalue equation (Eq. 2.3). However,

the KS eigenvalue problem in Eq. 2.3 cannot be solved directly and must be calculated

in an iterative fashion within a self-consistent field (SCF) method. The iterative process

starts with a set of guess wavefunctions, {ψi}, which are used to compute the terms in

Eq. 2.3. This then allows the calculation of a new set of MOs{ψi} by solving Eq. 2.3. The

resulting electron density is then used to calculate the electronic energy in Eq . 2.1. The

calculated electronic energy is compared to the previous iteration’s electronic energy, and if

the difference is below a determined convergence threshold, the iteration stops. Otherwise,

the guess wavefunctions are updated, and the process is repeated in a self-consistent way

until {ψi} and the energy in Eq. 2.1 are converged. The self-consistent field method ensures

that the electronic energy is minimized with respect to the electron density, and the KS

eigenvalue problem provides a set of one-electron wave functions that satisfy this condition.

The convergence of the iterative process is important to ensure that the electronic energy

and the electron density are accurately calculated, which in turn provides reliable predictions

of electronic structure and molecular properties.
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One of the key computational bottlenecks in KS-DFT is the numerous three-

dimensional integrals evaluated in each SCF step, which is extremely time-consuming. We

will see later that density functional tight binding (DFTB) uses pre-computed integrals in

each SCF cycle, and by doing so, its performance can be significantly faster (up to 2-3

orders of magnitude) than full DFT calculations.

2.2 Time-Dependent Density Functional Theory

As in ground-state density functional theory (DFT), TDDFT replaces the many-

body Schrodinger equation with a set of single-particle equations whose orbitals yield the

same density. However, in the case of TDDFT, one seeks the solution to the time-dependent

Schrodinger equation:

i
∂

∂t
ψel(r⃗; R⃗) = Ĥelψel(r⃗, t; R⃗) (2.4)

where r⃗ denotes the electronic coordinates, R⃗ denotes the nuclear coordinates, and t is time.

The electronic Hamiltonian Ĥel is given by

Ĥel = Tel + Vext + Vel−el (2.5)

where Tel is the kinetic energy of the electrons, Vext is the external potential due to the

nuclei and any other time-varying external potential (e.g., electric field), and Vel−el is the

electron-electron interaction. The Kohn Sham (KS) Hamiltonian is given by,

ĤKS = Tel + Vext(t) + VH + Vxc (2.6)

where VH is the Hartree potential, and Vxc is the exchange-correlation potential, which

together comprises the electron-electron interactions.
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The corresponding time-dependent KS equations for a set of N orbitals are given by,

ĤKSϕi(t) = i
∂

∂t
ϕi(t) (2.7)

The set of orbitals ϕi(t) generates a time-dependent density that equals the density of

the interacting system at all times. To study the linear response optical properties of the

system, a small external perturbation is introduced (“small” implies that the ground-state

structure is not completely destroyed). As electronic response properties such as excitation

energies and oscillator strengths depend only on the density, these can be obtained exactly

(in principle) within the KS formalism. Within the conventional linear-response approach,

the full time-dependent KS equations are simplified to obtain excited-state properties in the

frequency domain. Specifically, the excitation energy ω and corresponding excitation vectors

X and Y are obtained by solving the following non-Hermitian eigenvalue equation, [21]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B

C D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.8)

For a general hybrid exchange-correlation functional (discussed further below in

this section), the elements of matrices A and B are:

Aai,bj = δabδij(ϵa − ϵi) +Kai,bj , (2.9)

and

Bai,bj = Kai,jb, (2.10)

where ϵp is the pth KS molecular orbital energy. The indices i, j, . . . and a, b, . . . correspond

to occupied and virtual orbitals, respectively. K is the coupling matrix whose elements are

Kiaσ,jbτ = ⟨iaσ∣jbτ⟩+∬ ϕ
∗
iσ(r⃗1)ϕaσ(r⃗1)

∂
2
EXC

∂ρσ(r⃗1)∂ρτ(r⃗1)
ϕjτ(r⃗2)ϕ∗bτ(r⃗2)d3r⃗1d3r⃗2 +KHF

iaσ,jbτ .

(2.11)
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The first term on the right side is the Hartree integral

⟨iaσ∣jbτ⟩ = ∬ ϕ
∗
iσ(r⃗1)ϕaσ(r⃗1)

1

r⃗12
ϕjτ(r⃗2)ϕ∗bτ(r⃗2)d3r⃗1d3r⃗2, (2.12)

and K
HF
iaσ,jbτ is the mixed Hartree-Fock exchange integral, which is zero for pure functionals,

and for hybrid functionals is given by

K
HF
iaσ,jbτ = cxδστ ⟨jaσ∣ibτ⟩ , (2.13)

where cx is a constant mixing rate. The oscillator strength of the I
th

excited states is

defined as,

fI =
2

3
(EI − E0) ∑

ν=x,y,z

∣⟨ψ0∣ r⃗ν ∣ψI⟩∣2 , (2.14)

where ψ0 and ψI are the wavefunctions of the ground and the I
th

excited states with energies

E0 and EI , respectively. Within the linear-response TDDFT approach, this is implemented

as follows:

fI =
2

3
∑

ν=x,y,z

[∑
iaσ

d
ν
iaσ(ϵaσ − ϵiσ)

1
2F

I
iaσ]

2

, (2.15)

where d
ν
iaσ is the transition dipole moment given by,

d
ν
iaσ = ∫ ϕiσ(r⃗)r⃗νϕaσ(r⃗)d3r⃗, (2.16)

and F
I
iaσ is the response function.

For a more comprehensive review of DFT and TD-DFT, readers are encouraged

to review other literature [21–28].
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Chapter 3

Covalent Atomic Bridges Enable

Unidirectional Enhancement of

Electronic Transport in Aligned

Carbon Nanotubes

This chapter describes the effect of doping carbon nanotubes (CNT) with Lithium

and Chromium atoms. To quantify the dopants’ effect on transport properties of CNT, we

performed ab initio calculations via density functional theory coupled to non-equilibrium

Green’s function approach. This work was performed in conjunction with our collaboration

with experimentalists at Prof. Haddon’s group at the University of California, Riverside. It

was published as an article in the ACS Applied Materials & Interfaces, where the complete

research is provided [6].
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3.1 Introduction

Modern advances in understanding the chemical reactivity of carbon nanotubes

and graphene have produced a myriad of functional structures and devices, all designed

in a rational and predictive manner [29–35]. Chemistry-based approaches, in particular,

have played a central role in improving the processing, bio- and chemical compatibility,

separation, and alignment of carbon nanotubes, opening new opportunities in electronics,

optoelectronics, and sensors. The design of 2D and 3D architectures often relies on enabling

chemical techniques to interconnect carbon surfaces [36], which include e-beam welding [37],

metal soldering [38], laser irradiation, and rapid Joule heating [39], all of which have been

successfully used to create new bonds and connect carbon surfaces. Although the under-

lying mechanisms in these processes differ based on the approach, they all involve σ-bond

formation, that is, conversion of carbon atoms from the conjugated surface lattice from

sp
2
to sp

3
bonding. Thus, the introduced defects (sp

3
centers) ultimately compromise the

electronic properties of the material.

A different approach to interconnect graphitic surfaces is to utilize transition-

metal atoms with unfilled d orbitals that can efficiently overlap with the π-electrons of

the benzenoid lattice and form a hexahapto (η
6
) bond [40]. This type of covalent bond

does not introduce sp
3
defects in the conjugated carbon network and, therefore, is an

attractive approach for the design of electronic and optoelectronic materials with extended

dimensionality.

A number of transition metals with unfilled d orbitals are capable of forming the

η
6
bond to the benzenoid ring of the carbon nanotube walls. Thus, it has been shown
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experimentally that transition metals from group 6 (Cr, Mo, W) [41] and the first row (Ti,

V, Cr, Mn, Fe) [42] of the periodic table form η
6
bonds with SWNTs. Previous studies

on the covalent attachment of transition-metal atoms to the sidewalls of carbon nanotubes

revealed that Cr exerts the strongest effect on the SWNT film conductivity. This was

assigned to the internanotube (van der Waals) distance in SWNTs (0.315 nm) [43], which

closely matches the separation of 3.23 Å between the benzene rings in (η
6
–C6H6)2Cr [44].

Prior work on classic organometallic compounds shows that the benzene–benzene distances

are significantly larger in the case of other organometallic complexes including Mo and

W [45,46], resulting in a lower degree of functionalization of the carbon nanotubes.

In this study, we selected Cr as a classic 3d transition metal to form a hexahapto

bond with the π-system of carbon nanotubes for electronically coupling aligned SWNTs.

To further demonstrate that the organometallic hexahapto (η
6
) bond covalently bridges the

aligned SWNTs, we have conducted similar measurements with Li atoms deposited on the

aligned SWNT films. The interaction of alkali metals with SWNTs has been extensively

studied, and it is well understood that the transport mechanism involves electron transfer

from the lithium atom to the nanotube, leading to the enhancement of the density of states

near the Fermi level. We have selected Li as the reducing agent in our experiments because

experimentally Li deposition by e-beam evaporation is easier to control compared to other

alkali metals. This study demonstrates the effect of two types of chemical bonds on the

electronic transport properties of aligned SWNTs: (i) covalent hexahapto bonding and (ii)

ionic bonding (charge transfer, chemical doping). These two types of bonds induce conduc-

tivity enhancements in SWNT films that are governed by distinctly different mechanisms.
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Chemical doping with alkali metals results in electron transfer to the conduction band of

the SWNTs, and it has been shown to increase the conductivity of SWNT films by a factor

of ∼30 to 120 [47–50]. In contrast, bridging the benzenoid hexagonal surfaces of SWNTs

with a hexahapto-metal bond improves the contacts between the individual SWNTs and

can enhance the conductivity by a factor of 700 to 700 × 1000, depending on the SWNT

film morphology (film thickness, SWNT electronic structure) [42,51,52].

To explore the unidirectional modulation of the electronic properties of SWNT

films using covalent (organometallic) and ionic chemistry, the experimentalists have se-

lected semiconductor-enriched arc discharge SWNT thin films as a model system in which

the individual carbon nanotubes are aligned. As such, our theoretical model is also designed

with semiconducting SWNTs. The layered structure of the aligned SWNTs produces films

with electrical anisotropy—the resistivity values along the nanotube alignment direction are

significantly lower than those measured normal to the tube axis [53, 54]. We examine the

changes that hexahapto bonding of Cr and chemical doping with Li exert on the electrical

transport properties of the aligned thin nanotube films in longitudinal and transverse direc-

tions. First-principles, non-equilibrium quantum mechanical calculations provide a further

deeper understanding of the modifications in the electronic structure and mechanism of

electron transport in perpendicular and parallel SWNT films upon the formation of ionic

and covalent bonds with metal atoms. Our findings provide a rational path toward unidi-

rectional modulation of the electrical transport in aligned carbon nanotube films and the

design of crystalline carbon nanomaterials with novel electronic, magnetic, and possibly

superconducting properties.
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3.2 Theoretical Study and Methodology

All electronic structure calculations were performed with the FHI-aims electronic

structure package [55] for comparing the electron transport between the intertube (perpen-

dicular) and intratube (parallel) configurations of single-walled carbon nanotube (SWNT)

networks. FHI-aims is an all-electron electronic structure code based on numeric atom-

centered orbitals and provides an all-electron accuracy at a computational cost comparable

to plane-wave/pseudopotential implementations. The numeric atom-centered orbitals, in

conjunction with the grid localization used in the code, optimize the efficiency of the cal-

culation so that most of the time-consuming computations scale linearly with time. We

utilized the dispersion-corrected PBE-TS exchange-correlation functional [56, 57] in all of

our calculations because van der Waals interactions play a significant role in SWNT junc-

tions, and further details on the PBE-TS approach for carbon nanostructures are described

in ref [57].

Before performing the transport calculations, we carried out geometry relaxations

for a network of (14,0) SWNTs (arranged in a 2D array in the xy plane) until the largest

force component on all the atoms was below 10
−4

eV/Å. Periodic boundary conditions were

used in all calculations, and a vacuum layer of ∼100 Å was used in the z direction to prevent

spurious interaction of the 2-D SWNT network with its periodic image. Because of the size

of the large supercell used in our calculations, Fig. 3.1 we used a single Γ-point sampling

scheme for all our calculations. We neglected the spin dependence in both the ground-state

and transport calculations.
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The electronic transmission functions were computed for the two-terminal SWNT

network using the non-equilibrium Green’s function (NEGF) approach [58]. Each SWNT

was constructed from 12 unit cells, yielding a total of 678 atoms in the supercell for the

Li/Cr-SWNTs and 672 atoms for the pristine SWNTs. The first and last four unit cells

of the SWNTs are contained in Green’s function transport calculations of the semi-infinite

leads. To use preconstructed Green’s functions, the leads must maintain their shape in

the transport calculations, and therefore, relaxations of the lead atoms of the total system

were not carried out. With the assumption that the boundary between the leads and the

scattering region is non-reflecting, the Green’s function of the device was calculated from

the equation [59,60]

[E − Ĥ0 −∑
i

r

∑
i

(E)]Gr(r, r′;E) = δ(r − r
′), (3.1)

where E is the energy, Ĥ0 is the Hamiltonian of the scattering region, and ∑r
i is the self-

energy of the i
th

lead.

The Green’s functions G
r
and other operators in Eq. 3.1 are represented by ma-

trices in the basis of the numerical atomic orbitals. The solution of Eq. 3.1 for the Green’s

function requires knowledge of the Hamiltonian of the scattering region and the self-energy

of the semi-infinite leads. The Hamiltonian is obtained via a DFT calculation for the pe-

riodic structure as described above. To compute the self-energies of the leads, a standard

DFT calculation of the periodic infinite leads is performed, and Green’s function for the

semi-infinite leads is solved iteratively [61].
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As described above, a ground state DFT calculation with periodic boundary con-

ditions must be carried out for the scattering region and the semi-infinite leads to obtain

the retarded Green’s function G
r
. To compute the transmission functions for the entire

system, the energy levels of the ground-state solutions must be correctly aligned, and the

carbon 1s energy eigenvalue of the atoms in the lead region is used as the energy reference.

The transmission function for an SWNT junction between leads i and j is given by the

equation [59,60]:

T (E) = ∫
∂Ωi

∫
∂Ωi

∫
∂Ωj

∫
∂Ωj

dridr
′
idrjdr

′
jΓ1(ri, r′i)Gr(r′i, rj)Γ2(rj , r′j)Ga(r′j , ri) (3.2)

In Eq. 3.2, retarded Green’s function G
r
is a solution to Eq. 3.1, and the advanced

Green’s function G
a
is the Hermitian conjugate of G

r
. The Γ functions are given by the

relation Γi = i (∑r
i −∑a

i ), where ∑a
i is the Hermitian conjugate of ∑r

i , and ∑a
i describes

the coupling of the semi-infinite leads to the scattering region.

At zero temperature with no bias between the leads and the system, the conduc-

tance, G, of the nanotube junction in the Landauer formulation reduces to [58]

G =
2e

2

h
T (EF ), (3.3)

where e is the elementary charge, h is Planck’s constant, and T (EF ) is the value of the

transmission function at the Fermi energy, EF . In this work, the transport calculations are

performed with the system at zero bias with the same number of k-points as used in the

periodic boundary DFT calculations. To make a connection to our experimental results, we

calculate the linear response conductance (G) given by Eq. 3.3 as described above.
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Figure 3.1: (a) Optimized (14,0) SWNT with two metal atoms (Cr/Li) per computational
unit cell (denoted by the dotted red lines). The metal atoms are shown in blue. (b) (14,0)
SWNT junctions with Cr/Li considered in this work. The blue atoms show the scattering
region, and the black atoms represent the leads.

3.3 Results and Discussion

To understand our collaborators’ experimental findings, we used theoretical non-

equilibrium Green’s function calculations to describe the changes in the electronic structure

and properties of aligned Sc-SWNTs upon addition of chromium and lithium atoms. We

specifically chose (14,0) semiconducting SWNTs for our theoretical study because these nan-

otubes possess a diameter of ∼1.1 nm, which is close to the SWNT diameters used in our

experiments. The computational unit cell used in the calculations is shown in Figure 3.1(a).

The electronic transmission functions were computed for the two-terminal SWNT network

using the non-equilibrium Green’s function (NEGF) approach [59, 60]. This approach ap-

proximates the electron transmission by dividing the entire system into a central scattering

region and semi-infinite leads. An array of SWNTs connected via metal atoms with two

semi-infinite leads is illustrated in Figure 3.1(b).

The transmission function for intratube (parallel) and intertube (perpendicular)

transport within the 2D SWNT network is shown in Figure 3.2. When metal atoms are

added between the SWNTs, the transmission for both intratube and intertube transport
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increases. In the case of intratube electron transport, the transmission is more enhanced

with Li than for Cr, whereas for intertube transport, the opposite trend is observed, in

agreement with the experimental results. Figure 3.2 (a and b) shows the intertube and

intratube transport for the Cr- and Li-doped SWNTs. The large number of peaks near

the Fermi energy in the Cr-SWNT directly corresponds to openings of new transmission

channels.
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Figure 3.2: Intertube and intratube electronic transmission functions for (14,0) SWNT
junctions with Cr and Li dopant atoms compared to pristine SWNTs. The zero energy cor-
responds to the Fermi energy. Electronic transmission functions for (14,0) SWNT junctions
with (a) Cr atoms and (b) Li atoms. Electronic density of states for (14,0) (c) Cr-SWNTs
and (d) Li-SWNTs along with the projected density of states (PDOS) for each dopant atom.
(e, f) Total electron density (depicted by the blue isosurface) of (e) SWNTs + Cr and (f)
SWNTs + Li. The carbon atoms are shown in silver, and the same isosurface value is used
to depict the electron density for both systems. The arrows show the direction of inter and
intratube transport.
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These findings are consistent with the high density of states (DOS) near the Fermi

level (cf. Fig. 3.2c) of the Cr-SWNT that further enhances the intertube electron tunneling

between the SWNTs. Indeed, Fig. 3.2c shows that the total DOS near the Fermi level

can be traced to localized electronic states from the Cr atom itself. These localized states

hybridize with the C atoms on the SWNT and form conducting channels across the tube.

In this work, the transport calculations are performed with the system at zero bias

with the same number of k-points as used in the periodic boundary DFT calculations. To

make a connection to our experimental results, we calculate the linear response conductance

(G) given by the equation [59,60]:

G =
2e

2

h
∫ dE T (E) (− ∂f

∂E
) , (3.4)

The conductance for all configurations is summarized in Table 3.1. For intratube

(parallel) transport, the conductance for the Li-doped SWNT is an order of magnitude

larger than that of the Cr-SWNT configuration.

Orientation SWNT + Cr SWNT + Li

intratube transport 1.75 × 10
−5

1.52 × 10
−4

intertube transport 2.05 × 10
−5

4.97 × 10
−7

Table 3.1: Conductance (S) for the Intratube and Intertube Configurations

In stark contrast to the intratube case, the intertube (perpendicular) conductance

for the Cr-SWNT is two orders of magnitude higher than that for the Li-doped system.

These different trends in intratube versus intertube conductance are related to forming

bonds between the Cr atoms and the SWNTs. Specifically, the hybridization of the orbitals
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of the Cr atom and C atoms on the SWNT leads to the formation of conducting channels

across the two SWNTs. This can be seen in Fig. 3.2e,f where the charge density around the

Cr atoms significantly overlaps with the adjacent two SWNTs, thus enhancing intertube

transport. In contrast, a smaller charge density is observed near the Li atoms, which

hampers intertube transmission. We carried out a Hirshfeld charge analysis to further

analyze this more quantitatively. We found that Li transfers a more significant amount of

charge (0.175 e) to the SWNT compared to the Cr dopant atom (0.091 e), thus enhancing

intratube transmission.

3.4 Conclusion

We demonstrate that hexahapto bonds and doping have a dramatically different

effects on the unidirectional electrical transport in aligned Sc-SWNTs. The covalent η
6

bonds formed by the deposition of transition-metal atoms on aligned Sc-SWNTs increase

the transverse (intertube) conductivity of the films, in contrast to the doping effect of alkali

metals, which mainly affects the conductivity along the SWNTs. The distinctly different

effects that e-beam deposition of chromium and lithium brings about in the conductivity of

aligned SWNT films provide strong evidence for the formation of bis-hexahapto (η
6
) bonds

between the chromium atoms and the sidewalls of adjacent aligned SWNTs. Theoretical

calculations reveal a high density of states (DOS) near the Fermi level of the SWNTs upon

the addition of Cr atoms, which results in the opening of new transmission channels. The

increased DOS near the Fermi level is due to localized electronic states from the Cr atoms,

which hybridize with the carbon atoms of the SWNTs and form conducting channels across
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the nanotube. These studies have important implications for applications of carbon nan-

otubes in electronics and optoelectronics and provide a controlled means to design ordered

conjugated carbon structures with increased dimensionality of the electronic structure that

is expected to exhibit unique electronic, magnetic, and possibly superconducting properties.

Our findings have implications in the field of anisotropic conduction, which is of

great scientific and technological interest. Aligned SWNTs have been used as the building

blocks of high-performance transistors [62–66], light-emitting diodes [67], logic gates [68],

radio-frequency devices [69], transparent conductive films [70], sensors [71, 72] photodetec-

tors and photoswitches [73], and synaptic transistors [74]. The ability to modulate the

transport properties of aligned SWNTs in a controlled manner offers a route to expand

the functionality of these technologies. In fact, the combination of the unique anisotropic

properties of aligned SWNTs with well-defined arrays of metal nanoparticles can open new

frontiers in nanophotonics, plasmonics, and spintronics. Ordered gold nanoparticle ar-

rays coupled with aligned SWNTs have been successfully fabricated using standard e-beam

lithography processes [75].

Furthermore, ordered carbon nanotube structures with one-dimensional trigonal

channels are of interest as a carbon host for intercalated metal atoms [50]. The insertion

of transition metals between pairs of aligned SWNTs would generate compounds analogous

to graphite-intercalated compounds (GICs) in which the ionic bond characteristic of the

GICs is replaced by covalent bis-hexahapto bonds [76]. Apart from the degree of charge

transfer, the interplanar separation between the covalently complexed benzene rings of the

SWNTs is much smaller in comparison to the distances reported in the charge transfer
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(ionic) GICs [77], some of which are superconductors [78,79]. Our study demonstrates that

the organometallic bond is able to function as an interconnect between graphene surfaces

without inducing structural rehybridization or greatly perturbing their electronic structure.

These findings have important implications for the design of ohmic contacts for carbon-

based and organic electronics. Additionally, a variety of ligands can be used to stabilize the

electronic properties of the organometallic functionalized carbon surfaces; thus, a recent

study suggests the (η
6
-graphene) Cr(CO)3 complex as a robust quantum Hall resistance

standard [80].
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Chapter 4

Linear Polarizabilities and Second

Hyperpolarizabilities of

Streptocyanines: Results from

Broken-Symmetry DFT and New

CCSD(T) Benchmarks

This chapter’s work resulted from collaborating with a former lab colleague, Lihua

Xu. We contributed equally to performing the DFT calculation, analyzing the results,

creating tables, and addressing the reviewers’ comments. Lihua Xu wrote the original

manuscript. I contributed to the review of the manuscript before publication. This is

published as a full article in the Journal of Computational Chemistry [7].
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4.1 Introduction

Cyanine dyes comprise a subset of π-conjugated organic systems that exhibit re-

markably strong linear and nonlinear optical (NLO) response electronic properties [81–90].

In the past 50 years, these NLO properties have been harnessed in a variety of advanced

materials and technologies such as electro-optic waveguide devices [91, 92], memory de-

vices [93–95], three-dimension fluorescence microscopy [96,97], and nanofabrication [98,99].

To further enhance their usage in next-generation optical technologies, significant effort has

been focused on achieving a detailed understanding of the electronic structure–property

relationships20 that govern their performance in realistic materials. As such, predictive

computational methods, particularly quantum chemical methods, offer a rational approach

for guiding future experimental efforts to obtain tailored NLO properties in these functional

π-conjugated systems [100].

Historically, wavefunction-based techniques, particularly coupled-cluster methods

and Moller–Plesset perturbation theory (MP2 or MP4), have been used to provide accu-

rate predictions for both the linear polarizability (α) and second hyperpolarizability (γ)

in various NLO materials [101]. While it is generally accepted that the coupled-cluster

method with single and double excitations and perturbative triple excitations (CCSD(T))

is widely viewed as the “gold standard” in quantum chemistry, its usage as a routine com-

putational screening tool is significantly limited due to its immense computational cost

(particularly for very large systems) [102–105]. Conversely, methods such as Kohn–Sham

density functional theory (DFT)26 have garnered significant attention because of their fa-

vorable balance between computational cost and accuracy in large organic and inorganic
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NLO materials [103, 106]. However, the specific choice of the exchange-correlation (XC)

functional in DFT still poses a practical problem since the accurate prediction of both

α and γ is particularly challenging for most DFT methods [103, 107]. In particular, XC

functionals such as the local density approximation (LDA), generalized gradient approxi-

mation (GGA), and even conventional hybrid functionals that contain a fixed percentage

of exact-exchange fail to provide an accurate description of polarizabilities in one dimen-

sional π-conjugated polymers [103, 108]. These difficulties can be traced to the lack of a

field-induced counteracting term in the response part of the XC functional [109].

In a very recent paper by Wang et al. [110], the authors examined the second hyper-

polarizability (γ) in a series of streptocyanine systems (Fig. 4.1 ) using non-empirically tuned

range-separated functionals and second-order Moller–Plesset perturbation theory (MP2) as

benchmark standards. Based on their MP2 benchmarks, the authors concluded that hy-

perpolarizabilities and other electronic structure–property relationships, such as bond order

alternation parameters (which are used in the design of π-conjugated molecular and polymer

active materials), were predicted poorly with DFT methods.

To provide further insight into the surprising DFT trends reported by Wang et

al. [110], we present new calculations using a variety of range-separated DFT functionals

with new CCSD(T) and CCSD(T)-F12 calculations. Contrary to their previous studies, we

find that the electronic ground states for several of the streptocyanine oligomers are not

closed-shell singlets, which can be obtained by allowing the system to relax to a lower-energy

broken-symmetry solution (this effect is similar to a recent paper published by our group

which also found that enhanced accuracy with range-separated DFT could be obtained
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Figure 4.1: Chemical structure of streptocyanine oligomers (n = 1–9) studied in this work.
The linear polarizability (α) and second hyperpolarizability (γ) are computed along the
z-axis shown in figure.

for other conjugated systems with a broken-symmetry solution [103]). In short, broken-

symmetry effects arise when the restricted (closed-shell) wavefunction becomes unstable

toward an unrestricted (open-shell) solution [111, 112]. To provide a stringent verification

of our results, we carried out new CCSD(T) and explicitly correlated CCSD(T)-F12 calcu-

lations as benchmark standards in our study. It is important to note that Wang et al. [110]

commented that their MP2 benchmarks likely underestimated γ by about 30%; as such, our

CCSD(T) and CCSD(T)-F12 calculations permit a new assessment of the MP2 benchmarks

by comprising the most complete and accurate calculations of polarizabilities and hyper-

polarizabilities for the streptocyanine systems to date. We present a detailed analysis for

all of these aforementioned effects and discuss the implications of using broken-symmetry

effects and high-level CCSD(T) benchmarks for calculating polarizabilities and bond order

alternation properties in these challenging streptocyanine systems.
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4.2 Theory and Methodology

The primary goals of this study are to assess the linear polarizabilities (α) and

second hyperpolarizabilities (γ) for streptocyanines using broken-symmetry range-separated

density functional methods as well as to provide new high-level CCSD(T) and CCSD(T)-

F12 benchmarks for these systems. The various quantum chemical methods utilized in this

study are briefly reviewed below.

In contrast to conventional hybrid functionals [113, 114], the range-separated ap-

proach mixes short-range density functional exchange with long-range Hartree–Fork (HF)

exchange by partitioning the electron–electron repulsion operator into short- and long-range

parts (i.e., the mixing parameter is a function of electron coordinates). In the Coulomb-

Attenuating Method (CAM) proposed by Yanai et al. [114–116], the most general form of

the range-separated approach is given by the following partitioning

1
r12

=
1 − [a + b ⋅ erf(ω ⋅ r12)]

r12
+

[a + b ⋅ erf(ω ⋅ r12)]
r12

, (4.1)

where erf stands for the standard error function, r12 is the interelectronic distance between

electrons 1 and 2, and ω is the range-separated parameter in units of Bohr
−1
. The parame-

ters, a and b, satisfy the following inequalities: 0 ≤ a + b ≤ 1, 0 ≤ a ≤ 1, and 0 ≤ b ≤ 1. The

partitioning in Eq. 4.1 allows a contribution of HF exchange over the entire range by a factor

of a, while the parameter b allows us to incorporate long-range asymptotic HF exchange by

a factor of (a + b). Previously, we [117–123] and others [124, 125] have shown that main-

taining a full 100% contribution of asymptotic HF exchange (i.e., constraining a + b = 1),

was essential for accurately describing valence excitations in relatively simple molecular sys-

tems. Therefore, in the present work on the streptocyanine system, we fix the parameters
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a = 0.0 (no short-range exchange) and b = 1.0 in conjunction with self-consistently tuning

the range-separation parameter ω in the LC-ωPBE functional to satisfy DFT-Koopmans’

theorem [126–128]. Briefly, this theorem states that the energy of the highest occupied

molecular orbital, ϵHOMO, is equal to the negative of the ionization potential, –IP, for the

exact exchange-correlation functional. The ionization potential is typically computed via a

∆SCF energy difference between the neutral and cationic electron system. Although several

numerical schemes exist for self-consistently tuning ω to satisfy DFT-Koopmans’ theorem,

one widely used approach is to numerically minimize the following objective function, J
2
:

J
2
= [ϵωHOMO(N) + IP

ω(N)]2 + [ϵωHOMO(N + 1) + IP
ω(N + 1)]2, (4.2)

where ϵ
ω
HOMO(N) and ϵωHOMO(N +1) are the HOMO energies of the N and N +1 electron

systems, respectively. Similarly, IP
ω(N)] and IPω(N + 1)] are the ionization potentials of

the N and N + 1 electron systems computed with the same ω value as respectively. Since

DFT-Koopmans’ theorem does not directly relate the negative of the LUMO energy to the

electron affinity (EA), the second term in Eq. 4.2 takes into account the N + 1 electron

system to indirectly tune the LUMO energy of the N electron system.

To determine the optimal range-separation ω values for each oligomer, we carried

out several single-point energy calculations by varying ω from 0.0 to 0.4 (in increments of

0.02) for each of the N , N + 1, and N − 1 electronic states. A spline interpolation was

then used to refine these optimal ω values, which were then subsequently used in final

LC-ωPBE calculations for each streptocyanine oligomer. For all of the oligomers, we also

carried out a DFT stability analysis to converge (if possible) toward a lower-energy broken-

symmetry solution, which allows for an unrestricted spin state and a reduction in the
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symmetry of the orbitals. This additional stability analysis is necessary since very recent

work by us had shown that large conjugated systems will favor a lower energy broken-

symmetry configuration with DFT methods that inherently contain a large percentage of

HF exchange (such as range-separated methods) [103].

To maintain a consistent comparison with the previous study of Wang et al., the

same geometry optimization procedure from Ref. [110] was used throughout this work (i.e.,

all molecular geometries were optimized at the ωb97x/cc-pVTZ level of theory with C2v

symmetry constraints). The Cartesian coordinates for all of the oligomers investigated in

this study are tabulated in the Supporting Information for completeness. Since all of the

streptocyanine oligomers possess C2v symmetry, the linear polarizability (α), and second

hyperpolarizability (γ) are dominated by the longitudinal tensor component along the z-

axis (cf. Fig. 4.1). As such, we only report the z-component of the linear polarizability

and second hyperpolarizability in this study, which we calculated with a custom-developed

code as second- and fourth-order numerical derivatives of the energy with respect to the

external electric field strength. In these calculations, the following finite field amplitudes

in atomic units (1 au = 5.14226 × 10
11
V /m) were selected: F = 0.0, 1 × 10

−4
, 2 × 10

−4
,

4 × 10
−4
, 8 × 10

−4
, 16 × 10

−4
, and 32 × 10

−4
au. To assess the accuracy of the various

DFT calculations, we also carried out large CCSD(T)/6-311G(d,p) and explicitly corre-

lated CCSD(T)-F12 calculations as benchmark standards. We specifically chose to use

the 6-311G(d,p) basis for all of our calculations since MP2/6-311G(d,p) benchmark cal-

culations by us (see Results and Discussion section) demonstrated that this basis set was

large enough to closely reproduce the MP2/Def2-TZVPD benchmarks originally used by
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Wang et al. [110] (while, at the same time, the 6-311G(d,p) basis is small enough to use

for our computationally-expensive CCSD(T) calculations). Extremely accurate electronic

energies can be obtained with CCSD(T)-F12 approaches (typically at a higher level of ac-

curacy than conventional CCSD(T) with the same basis) since these methods construct

a wave function that depends explicitly on the interelectronic coordinates. As such, the

explicitly correlated CCSD(T)-F12 methods exhibit dramatic improvements in basis set

convergence, and results of quintuple-zeta quality that were obtained with smaller triple-ζ

basis sets have previously been shown [129–131]. All linear polarizabilities (α) and second

hyperpolarizabilities (γ) were obtained from self-consistent CCSD(T)-F12a energies since

extensive benchmarks have indicated that the CCSD(T)-F12a variant gives better results

than CCSD(T)-F12b, particularly for smaller basis sets24 (the F12b variant differs from the

F12a method by the inclusion of an additional energy correction that approximately doubles

the magnitude of the coupling between the conventional and explicitly correlated pieces of

calculation [104,129]). Taken together, the α and γ values resulting from the CCSD(T)-F12

method serve as an additional check on both the DFT and CCSD(T) calculations as well as

provide new high-quality benchmarks for the streptocyanine system. It is also worth men-

tioning that the previous study by Wang et al. [110] utilized lower-level MP2 calculations

as benchmark standards, and the present work significantly extends this previous study

by providing new, high-level CCSD(T) and CCSD(T)-F12 benchmarks to more stringently

assess the merits/deficiencies of DFT methods for the various streptocyanine oligomers.

Finally, we also computed Mayer bond order and bond order alternation (BOA)

parameters [132] to assess the electronic mixing between resonance structures for selected
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streptocyanine oligomers. The atomic Mayer bond order, IAB, between two adjacent atoms,

A and B, is defined by the following:

IAB = ∑
a∈A

∑
b∈B

[(PS)ba(PS)ab + (P s
S)ba(P s

S)ab] , (4.3)

where P , P
S
, and S correspond to the total density matrix, spin density matrix, and overlap

matrix, respectively. The BOA is the average difference in bond orders between adjacent

carbon–carbon bonds in the π-electron conjugated bridge in the geometry-optimized ground

state [133]. As such, the BOA provides a good measure and predictor of linear and nonlinear

optical (NLO) properties. Since all of the streptocyanine oligomers in our calculations were

optimized under C2v symmetry constraints, we calculated the BOA as the mean value of

the absolute bond order difference of adjacent atoms in the π-conjugation bridge (i.e., the

carbon-carbon backbone depicted in Fig. 1) according to the following expression:

BOA = avg(∣I12 − I23∣ + ∣I34 − I45∣ + ∣I56 − I67∣ +⋯), (4.4)

All CCSD(T) and CCSD(T)-F12 calculations were carried out with the MOLPRO

package [134], and all DFT calculations were performed with the Gaussian 09 software

package [135]. The numerical differentiations required to obtain α and γ were calculated

with custom-developed codes, and the Multiwfn 3.3.9 package [136] was utilized to calculate

the various bond order parameters.

4.3 Results and Discussion

Figure 4.2 shows the objective function, J
2
[cf. Eq. 4.2], as a function of the range-

separated parameter, ω, for the various streptocyanine oligomers obtained with (a) the
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Figure 4.2: Plots of the objective function, J
2
[cf. Eq. 4.2], as a function of the range-

separated parameter, ω, for streptocyanines using the non-empirically tuned LC-ωPBE
functional (A) without broken-symmetry solutions and (B) with symmetry-broken solutions.
The yellow-shaded region denotes regions (primarily for the n = 5–9 oligomers) where a
broken-symmetry solution is obtained.

conventional LC-ωPBE functional and (b) an LC-ωPBE approach that allows for a broken-

symmetry (BS) solution. A broken-symmetry solution was obtained by performing a full

DFT stability analysis to give a lower-energy broken-symmetry solution (if possible). Fig-

ure 4.2b shows that a broken-symmetry solution is obtained at the LC-ωPBE/6-311G(d,p)

level of theory for large values of ω. This result is in line with a previous study by our

group which showed that π-conjugated systems undergo an electronic symmetry breaking

as a function of backbone length [103]. Since the chemical structure of the streptocya-

nine system is composed of successive single-double carbon–carbon bonds, the π orbitals

are much more strongly conjugated along the backbone. Furthermore, from a more the-

oretical standpoint, a lower-energy broken-symmetry configuration is more favored if the

DFT method contains a higher percentage of HF exchange [112, 137–140], (such as range-

separated functionals with large values of ω). It is also interesting to note that only the

streptocyanine oligomers with more than 4 monomer units will exhibit broken-symmetry
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Figure 4.3: Spin density difference (blue = positive spin density and red = negative spin
density) obtained with LC-ωPBE ω = 0.33 for the various streptocyanine oligomers.

configurations where the alpha and beta spin densities alternate through the whole back-

bone of the molecule when ω is sufficiently large. Moreover, the long-range ordering of the

spin density still persists when the length of the streptocyanine chain is increased. This can

be ascribed to electron localization of the p orbitals on the carbon atoms, which results in

an antiferromagnetic pattern that can be visualized as alternating spin density differences in

Figure 4.3. Only streptocyanines with monomer units from n = 5 to 9 are shown since the

ground states for the smaller streptocyanines are closed-shell singlets and do not exhibit an
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Figure 4.4: Spin density difference (blue = positive spin density and red = negative spin
density) obtained with LC-ωPBE ω = 0.33 for the lowest-energy electronic state of a dis-
torted n = 9 streptocyanine oligomer.

antiferromagnetic pattern. While the present work focuses on streptocyanine oligomers pos-

sessing a C2v symmetry (i.e., to permit a consistent and fair comparison with the previous

study by Wang et al. [110]), it is natural to ask whether a broken-symmetry solution is still

obtained if the molecular symmetry is significantly reduced. To test this effect, we distorted

the largest streptocyanine oligomer by intentionally introducing a cis-conformational “kink”

in the original all-trans-conformation backbone, as shown in Figure 4.4. On convergence,

we found that the broken-symmetry solution is more stable and 0.08 eV lower in energy

than the closed-shell (restricted) solution at the LC-ωPBE DFT (ω = 0.33) level of theory.

As such, these calculations show that a broken-symmetry solution can still persist in the

midst of disorder, and one should still check for these broken-symmetry effects when the

molecular symmetry is reduced.

Table 4.1 lists the optimally tuned ω values as a function of size for the various

streptocyanine oligomers. As the optimally tuned ω values are the same for both the LC-

ωPBE and LC-ωPBE (BS) levels of theory, we only list the values for the former in Table 4.1.

Interestingly, both the optimal ω numerical values and their electronic properties (such as

the HOMO or IP energies) are not affected by the broken-symmetry solutions since the
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shaded regions (where these broken-symmetry solutions occur) are located to the right of

the minima of all the J
2
curves, as shown in Figure 4.2. From Table 4.1, the optimal ω values

reflect the trend that larger-sized streptocyanine oligomers have smaller optimal ω values

compared to smaller-sized oligomers, and for all cases, these are smaller than the “default” ω

value of 0.33. These findings are in line with the nonempirically tuned ω values (shown in the

parentheses in Table 4.1) reported by Wang et al [110]. Moreover, a similar size-dependence

has already been reported in several other chemical systems [103,119,120,128,141,142]. All

the subsequent linear polarizability (α) and second hyperpolarizability (γ) calculations were

evaluated using the optimum ω values summarized in Table 4.1.

Table 4.1: Nonempirically tuned ω values for streptocyanine at the LC-ωPBE/6-311G(d,p)
level of theory. Values in parentheses in the second column denote the nonemperically tuned
LC-ωPBE/Def2-TZVPD values by Wong et al. [110]

n LC-ωPBE

1 0.254 (0.244)
2 0.230 (0.222)
3 0.210 (0.203)
4 0.194 (0.188)
5 0.180 (0.175)
6 0.168 (0.164)
7 0.158 (0.154)
8 0.149 (0.146)
9 0.142 (0.138)
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Table 4.2 gives a concise summary and analysis of α and γ for streptocyanine

systems containing up to nine monomer units as obtained by the LC-ωPBE DFT (ω =

0.33, 0.40, and nonempirically tuned values) and MP2 methods in comparison to the new

high-level CCSD(T) and explicitly correlated CCSD(T)-F12 benchmarks. Table 4.2 also

includes the broken-symmetry (BS) HF and DFT solutions to allow for a direct compari-

son with the closed-shell DFT values. It is worth noting that while the broken-symmetry

HF and DFT polarizabilities are numerically quite different from each other, the spatial

spin density differences are similar, and the broken-symmetry HF densities resemble those

shown in Figure 4.3. Additionally, the results in the parentheses for the MP2 and LC-

ωPBE (ω = tuned) functionals were taken from Ref. [110]. As can be seen in Table 4.2,

there are only minor discrepancies between our calculations and the prior MP2 bench-

marks by Wang et al. [110], which justifies our use of the 6-311G(d,p) basis set for the

DFT, MP2, and CCSD(T) calculations in the present study. Another minor discrepancy

is the finite-field expressions used in the current work; specifically, Wang et al., calcu-

lated hyperpolarizabilities via finite differences of the dipole moment using the expression

γ = [µz(2∆z)− 2µz(∆z)+ 2µz(−∆z)− µz(2∆z)]/[2(∆3
z)], where µz is the dipole moment

component along the z-axis and ∆z (= 0.0003 au) is the variation of the electric field. In our

study, however, we directly fitted the energies (as a function of the external electric field)

to second- and fourth-order polynomials to evaluate α and γ, respectively. We specifically

chose to calculate γ using finite differences of energies since the CCSD(T) and CCSD(T)-F12

dipole moments from the correlated coupled-cluster density matrix are not available in most
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standard quantum chemistry codes. All of our DFT and CCSD(T)/CCSD(T)-F12 results

for α and γ were computed using the polynomial fitting procedure discussed above, which

we found in previous work [103] to be more stable than other numerical techniques such

as the Romberg differentiation procedure. All mean absolute errors (MAE) were computed

with respect to the CCSD(T)/6-311G(d,p) benchmarks to allow for a consistent comparison

with DFT calculations.

At this point, it is natural to ask whether our CCSD(T) values are accurate bench-

marks for our DFT calculations. Particularly, in light of our previous discussion on broken-

symmetry effects in DFT, one can naturally inquire whether broken-symmetry CCSD(T)

calculations should be used as reference values instead. First, to check for possible non-

dynamical correlation effects in our restricted HF-reference CCSD(T) calculations, the T1

diagnostic for all streptocyanine oligomers was also computed. We obtained T1 values rang-

ing from 0.0148 to 0.0207 for the n = 1 to n = 9 streptocyanine oligomers, which indicate

that these conjugated systems are relatively well described by a single-reference electron

correlation method. Second, we also carried out new unrestricted CCSD(T) benchmark

calculations obtained from a broken-symmetry HF reference determinant (UHF-CCSD(T)).

Surprisingly, we found that all of the UHF-CCSD(T) energies were larger (i.e., less stable)

than their restricted CCSD(T) counterparts, further verifying (in conjunction with the

T1 diagnostic discussed previously) that correlation effects are properly handled at the

single-reference restricted CCSD(T) level of theory. The failure of UHF-CCSD(T) to yield

accurate energies for these systems seems paradoxical, particularly since our DFT calcula-

tions seem to imply that the symmetry-broken reference state is a more correct zeroth-order
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Figure 4.5: Percent relative error (compared to CCSD(T) benchmarks) of (A) linear po-
larizability and (B) second hyperpolarizability as a function of streptocyanine length for
different approximation levels of theory.

description of the system (compared to the restricted reference state). In a seminal review

on coupled-cluster methods [143], Lee and Scuseria stated,“when performing approximate

electron correlation calculations, it is better to use a symmetry constrained reference func-

tion rather than a symmetry broken reference function. . . This is in spite of the fact that the

symmetry broken reference function possesses lower energy, and these conclusions appear

to be valid whether discussing spin symmetry or spatial symmetry.” Our CCSD(T) and

UHF-CCSD(T) trends are in agreement with Lee and Scuseria’s observations, giving us

additional confidence that the restricted HF-reference CCSD(T) calculations are accurate

benchmarks for our DFT calculations (instead of the broken-symmetry CCSD(T) results).

Figure 4.5 depicts the percent relative errors in the linear polarizability (= ∣[αcomp.−

αCCSD(T )]/αCCSD(T )∣ × 100%) and the second hyperpolarizability

(= ∣[γcomp. − γCCSD(T )]/γCCSD(T )∣ × 100%) with respect to oligomer chain length, where

the subscript “comp.” denotes the various computational methods surveyed and CCSD(T)
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is the benchmark reference. For conciseness, we do not plot the broken-symmetry HF re-

sults in Fig. 4.5 since the relative errors are extremely large and off-scale. In Fig. 4.5A, the

DFT results overshoot the CCSD(T) reference values for the linear polarizability, and the

overestimation is expected to further increase with size as the curves have not attained a

characteristic plateau in the asymptotic limit. When n = 9, most of the LC-ωPBE vari-

ants yield a fairly large relative error (> 40%) for the linear polarizability, except for the

broken-symmetry LC-ωPBE ω = 0.33 and LC-ωPBE ω = 0.40 functionals. For 1 ≤ n ≤ 4,

the relative errors are very similar among the DFT methods irrespective of whether they

include broken-symmetry effects or whether ω is nonempirically tuned or not. A remarkably

different behavior can be observed from both the LC-ωPBE ω = 0.33 (BS) and LC-ωPBE ω

= 0.40 (BS) functionals in which the relative error surprisingly decreases after n = 5 and n

= 4, respectively. As such, allowing the system to converge toward a lower-energy broken-

symmetry solution improves the accuracy in the linear polarizability (although the relative

error increases after n = 7 for the LC-ω PBE ω = 0.40 (BS) functional). In their previous

work, Wang et al. [110] showed that these errors could be reduced when electron correla-

tion is perturbatively included at the MP2 level of approximation; however, our CCSD(T)

benchmarks indicate that the MP2 polarizabilities still show significant errors ( 25%) that

increase as a function of size. As such, our results indicate that the MP2 method should not

be used as reliable benchmarks for polarizabilities, in contrast to the previous MP2 study

by Wang et al [110]. It is interesting to note that the LC-ωPBE ω = 0.33 (BS) functional

gives the best agreement with the lowest MAE value of 55.16× 10
−24

esu compared to the

CCSD(T) benchmarks. As far as α is concerned, the MAEs can be summarized in the fol-

41



lowing order: LC-ωPBE ω = 0.33 (BS) < LC-ωPBE ω = 0.40 (BS) < MP2 < LC-ωPBE ω =

0.40 < LC-ωPBE ω = 0.33 < LC-ωPBE ω = tuned < LC-ωPBE ω = tuned (BS). According

to this sequence, the LC-ωPBE ω = 0.33 (BS) and LC-ωPBE ω = 0.40 (BS) functionals

are in better agreement with the CCSD(T) benchmarks than their counterparts without

broken-symmetry solutions (a reduction in MAE from 143.75 × 10
−24

to 55.16 × 10
−24

esu

and from 141.45 × 10
−24

to 71.00 × 10
−24

esu, respectively).

Turning to the second hyperpolarizability (γ) in Fig. 4.5b, we observe significantly

larger deviations—for the smallest oligomer (n = 1), all levels of theory except MP2 show

extremely large relative errors. In addition, the curves resulting from the LC-ωPBE ω

= tuned, LC-ωPBE ω = tuned (BS), LC-ωPBE ω = 0.33, and the LC-ωPBE ω = 0.40

functionals reach a characteristic plateau in the asymptotic limit at around 100% relative

error. Similar to the linear polarizability, the LC-ωPBE ω = 0.33 (BS) and LC-ωPBE ω =

0.40 (BS) functionals exhibit a nonmonotonic behavior as a function of size. Specifically,

the relative errors for both of these functionals fluctuate near 2 ≤ n ≤ 5 and subsequently

decrease for n ≥ 5. Overall, the overestimation is more severe for γ than α for both the

DFT and MP2 methods. In our study, the γ values resulting from the LC-ωPBE ω = tuned

functional closely mirror those from Wang et al. [110], with the exception of the n = 1

and 2 monomer units which they mentioned were underestimated compared to the default

LC-ωPBE functional. Similarly, our MP2 results are in relatively good agreement with

those reported by Wang et al., as shown in Table 4.2. Nevertheless, the relative error of

the MP2 method compared to the CCSD(T) benchmarks is still quite sizeable and reaches

an asymptotic limit of around 80%. These trends in the relative error are consistent with
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that observed for the linear polarizabilities depicted in Figure 4.5A, emphasizing the fact

that electron correlation effects beyond MP2 (i.e., at the CCSD(T) level of theory) play

a major role in π-conjugated systems. For γ, we noticed that the LC-ωPBE ω = 0.33

(BS) method still gives the most accurate results due to its lowest MAE value of 73,740.40

(10-36 esu) among all other methods. To summarize, the MAEs for γ can be summarized

as follows: LC-ωPBE ω = 0.33 (BS) < MP2 < LC-ωPBE ω = 0.40 (BS) < LC-ωPBE

ω = 0.40 < LC-ωPBE ω = 0.33 < LC-ωPBE ω = tuned < LC-ωPBE ω = tuned (BS).

Among all the DFT methods examined here, the LC-ωPBE ω = 0.33 (BS) functional is the

most accurate for calculating both α and γ for the streptocyanine system (although none

of the DFT methods still predict the correct sign of γ for the shortest oligomer), indicating

the importance of including broken-symmetry effects when calculating polarizabilities and

hyperpolarizabilities for this chemical system.
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Figure 4.6: BOA for the n = 6 streptocyanine oligomer as a function of the range-separated
parameter ω for LC-ωPBE and LC-ωPBE (BS), respectively

The bond order alternation (BOA) gives a predictor of linear and nonlinear optical

(NLO) properties since it provides a measure of the electronic mixing between resonance

structures in a π-conjugated system. Figure 4.6 demonstrates the relationship between the

BOA and ω for the streptocyanine hexamer (n = 6) computed with the LC-ωPBE and

LC-ωPBE (BS) functionals. Within the 0 ≤ ω ≤ 0.2 range, both LC-ωPBE and LC-ωPBE

(BS) exhibit similar trends for the BOA (which is not surprising, since broken-symmetry

effects come into play for larger values of ω). The BOA increases monotonically with ω

for the conventional LC-ωPBE functional; however, for the LC-ωPBE (BS) functional, an

inflection point occurs near ω = 0.3, at which the BOA decreases initially then moderately

increases once again.
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Figure 4.7: Structure–property relationships as a function of the range-separation parame-
ter, ω, for the n = 6 streptocyanine oligomer: (A) LC-ωPBE α values, (B) broken-symmetry
LC-ωPBE α values, (C) LC-ωPBE γ values, and (D) broken-symmetry LC-ωPBE γ values.

Figure 4.7 depicts the trends in α and γ as a function of ω for the n = 6 streptocya-

nine oligomer. Our trends in α and γ are similar to the closed-shell calculations for the n = 7

streptocyanine oligomer reported by Wang et al [110]. However, when we allow the system

to relax to a lower-energy broken-symmetry configuration, we obtain extremely different

trends: α increases incrementally from ω = 0 to 0.3 and subsequently grows substantially,

whereas γ decreases moderately until ω = 5, at which point it then diminishes rapidly.

These qualitatively different trends are due to the extended/delocalized antiferromagnetic
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electron pattern (cf. Fig. 4.3) resulting from the broken-symmetry formalism (which, in

turn, arises from a large amount of Hartree–Fock exchange present at large ω values). In

other words, increasing ω in a conventional closed-shell range-separated DFT calculation

leads to an over-localization of electron [119,120] and, hence, decreasing linear polarizability

(cf. Fig. 4.7a). However, allowing the system to relax to a lower-energy broken-symmetry

configuration will instead delocalize electrons into the extended patterns seen in Fig. 4.3,

yielding a linear polarizability that increases as a function of ω, as seen in Fig. 4.7b.

4.4 Conclusion

Within this extensive theoretical study, we have analyzed a variety of range-

separated DFT, MP2, CCSD(T), and CCSD(T)-F12 methods for predicting the linear

polarizability (α) and the second hyperpolarizability (γ) in a series of π-conjugated strepto-

cyanine oligomers. Contrary to previous studies, we have found that the electronic ground

states for several of the streptocyanine oligomers are not closed-shell singlets, which can be

obtained by allowing the system to relax to a lower-energy broken-symmetry solution. Our

extensive analyses are complemented by new large-scale CCSD(T) and explicitly correlated

CCSD(T)-F12 calculations that comprise the most complete and accurate benchmarks of

α and γ for the streptocyanine systems to date. Based on these new benchmarks, we find

that the broken-symmetry LC-ωPBE ω = 0.33 functional yields the most accurate results

among the various DFT methods for predicting both α and γ. In addition, our CCSD(T)

calculations indicate that the MP2 benchmarks used in previous studies still exhibit sig-

nificant errors (∼25% for α and ∼100% for γ) and, therefore, the MP2 calculations should
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not be used as reliable benchmarks for polarizabilities or hyperpolarizabilities. Finally, we

explored other structure–property relationships, such as bond order alternation (BOA) pa-

rameters, to assess the electronic mixing between resonance structures in the π-conjugated

streptocyanine system. From our BOA analysis, we observe qualitatively different trends

(compared to the conventional closed-shell calculations) for both α and γ that result from

the broken-symmetry formalism. Taken together, our new CCSD(T) and CCST(T)-F12

benchmarks in conjunction with our broken-symmetry range-separated DFT calculations

(1) highlight the importance of incorporating electron correlation effects beyond MP2 (i.e.,

at the CCSD(T) level of theory) for benchmarking both α and γ in π-conjugated streptocya-

nines and (2) emphasize the importance of testing for a lower-energy open-shell configuration

when calculating nonlinear optical properties for these systems.
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Chapter 5

A New Interpretation of the

Structure and Solvent Dependence

of the Far UV Circular Dichroism

Spectrum of Short Oligopeptides

This work resulted from collaboration with Prof. Reinhard Schweitzer-Stenner in

the Department of Chemistry at Drexel University. Prof. Reinhard assisted with the initial

manuscript preparation. This work is published in the Chemical Communication journal. [1]
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5.1 Introduction

Far UVCD spectroscopy is one of the most employed approaches for determining

the secondary structure of proteins and peptides in solution [144, 145]. Each secondary

structure gives rise to a fingerprint with a characteristic sequence of positive and negative

maxima. The structural sensitivity of the UVCD spectra results from the orientational

dependence of couplings between electronic transitions in different peptide groups [146].

Unfolded and disordered proteins, polypeptides, and even very short tripeptides

such as glycylalanylglycine (GAG) frequently exhibit UVCD spectra with a pronounced

negative maximum at ca. 190 nm. Additionally, poly- and oligopeptides with a substantial

alanine or proline content exhibit a weak positive maximum at ca. 214 nm (Fig. 1) [147,148].

The conventional understanding of such CD spectra is that they arise from a random coil

state in which the backbone of the peptide samples the entire sterically allowed region of the

Ramachandran plot.1 However, this notion was already challenged ca. fifty years ago when

Tiffany and Krimm assigned it to a polyproline II (pPII) conformation that exhibits dihedral

angles of ϕ = -70
◦
and ψ = 140.6

◦
[149]. Their interpretation was challenged because it

was generally believed that short peptides cannot adopt any well-defined conformation in

aqueous solution. However, thanks to the work of Woody and colleagues [150–153], Tiffany

and Krimm were eventually proven to be correct. Today, we know that the very pronounced

pPII signal in the spectrum of alanine-containing peptides reflects the high propensity of

the corresponding amino acid residue for this conformation [154,155].
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Figure 5.1: UV ECD spectrum of cationic GAG in water measured as a function of tem-
perature. The arrow indicates the direction of the changes below 200 nm. The inset shows
the difference spectrum calculated by subtracting the spectrum measured at 10

◦
C from the

spectrum taken at 90
◦
C. Taken from ref. [146] and modified.

While the relationship between the strongly negatively-biased positive couplet in

Fig. 5.1 and the pPII conformation has been firmly established over time, an explanation

of the underlying physics turned out to be challenging. Generally, the UVCD spectra of

secondary structures are explained in terms of excitonic coupling models, which describe

the rotational strength of electronic transitions in terms of either dipole moments or tran-

sition charge densities associated with individual electronic transitions between the HOMO

and the lowest unoccupied MOs of individual peptide groups [150, 156]. The canonical

UVCD spectra were thus described by considering interactions between the π(HOMO) →

π
∗
(LUMO) (NV1) and n → π

∗
transitions, which were shown to produce considerable ro-

tational strength at the wavelength position of the latter. The n → π
∗
transition is barely

visible in the corresponding absorption spectra owing to its rather small electronic transi-
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tion dipole moment. The rotational strength, however, is written as the dot product of the

electric and magnetic transition dipole moment so that it can become detectable even in

the absence of a visible contribution to the absorption spectrum.

The above model can only account for symmetric CD signals where the integrated

intensities of the negative and positive bands are identical. Apparently, this notion does not

apply to the pPII signal in Fig. 5.1. To remedy the situation, several attempts have been

made to include polarization effects in the formalism for the rotational strength [150, 157].

Empirically, the polarizability tensor is treated as a ground state property with empirical

values for chemical bonds listed in the literature.

We wondered whether a more definite physical assessment of the UVCD spectra

of short peptides could be provided by time-dependent density functional theory (TDDFT)

calculations. Previous studies [158–160] have utilized TDDFT calculations to examine the

underlying physics of the CD spectra of model peptides and proteins in their folded state.

A similar investigation of unfolded peptides is still outstanding. We recently performed

DFT calculations on four different cationic GxG peptides (x = A, V, I, L) in implicit and

explicit water (10 H2O molecules) in order to obtain the energetics of their pPII and β-

strand conformations [161]. For the present study, we used the optimized geometry of these

two conformations in TDDFT calculations at the ωB97X-D/cc-pVTZ level of theory to

calculate the UVCD and corresponding absorption spectra of GAG in implicit and explicit

water [161]. We specifically chose the ωB97X-D functional for our studies since it contains

an asymptotically-correct (range-separated) portion of nonlocal exchange in conjunction

with dispersion corrections, which are essential for accurately predicting charge-transfer ex-
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citations and hydrogen-bonding interactions [162], respectively. It is also important to note

that prior work by Neto et al. [163] has shown that the optimal range-separated parameter,

ω, required to accurately predict excited states in the explicit solvent is 0.25, which is already

close to the default value of ω = 0.2 used in the ωB97X-D functional. To test the effects

of (1) changing the range-separation value, (2) using different exchange–correlation func-

tionals, (3) utilizing a larger basis set (such as aug-cc-pVTZ), and (4) altering the positions

of explicit water molecules, we spot-checked our calculations by comparing the computed

ECD spectra obtained separately with each of these effects. As shown in Figs. A1-A.4 in

Appendix A, we did not observe any significant change in the ECD spectra within the rel-

evant wavelength range, which further validates our choice of the ωB97X-D/cc-pVTZ level

of theory used in our studies.
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5.2 Results and Discussion

Figure 5.2: ECD spectra of GAG in implicit (upper panel) and explicit water (lower panel)
calculated for the optimized pPII conformation,

Fig. 5.2 shows the calculated CD spectra and the underlying electronic transitions

of the pPII conformation. The corresponding absorption spectra are displayed in Figs.

in Appendix A for GAG in the pPII and β-conformation, respectively. The CD spectra

exhibit a negatively-biased positive couplet with a positive maximum at 202 nm and a

negative maximum at 172 nm, which resemble the shape of a canonical pPII signal. As one
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would expect, the calculated CD maxima and corresponding absorption bands are at higher

energies than the corresponding experimental values, from which they appear blueshifted

by 14 and 18 nm. The couplets obtained with implicit and explicit water are very similar.

It is slightly redshifted from the position of the corresponding absorption band for implicit

water, whereas it coincides with the absorption band for explicit water.

Experimentally, the CD spectrum of the β-strand conformation exhibits a negative

couplet with a weak and broad negative maximum at ca. 212 nm, and a positive maximum

at ca. 190 nm, similar to the difference spectrum shown in Fig. 5.1 [145, 152, 164]. The

calculation for the optimized β-strand structure of GAG in implicit water reproduces the

experimental spectrum only partially (Fig. 5.3). The spectrum in the region between 220

and 160 nm exhibits local maxima at 202 and 172 nm, respectively. The latter is red-

shifted relative to the corresponding absorption band. In contrast to this result for implicit

water, the CD spectrum of the β-strand conformation in explicit water meets the consis-

tency criterion. It features a positive maximum at 176 nm (slightly redshifted from the

absorption band) and a broad negative maximum at 202 nm. The much closer correspon-

dence between the spectrum calculated with explicit water and the experimental spectrum

suggest the necessity of performing calculations on peptide–water clusters for a good repro-

duction of β-strand CD spectra. This result is generally in line with the findings of other

researchers16,21 who found that the inclusion of explicit solvent is essential for calculations

aimed at reproducing the CD spectra of folded polypeptides.
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Figure 5.3: ECD spectra of GAG in implicit (upper panel) and explicit water (lower panel)
calculated for the optimized β-strand conformation.

It is generally believed that the absorption band at 190 nm results from a π →

π
∗
transition between the HOMO and LUMO, and the corresponding CD spectra reflect

excitonic couplings between electronic transitions of different peptide groups [150]. Our

calculations reveal a more complex and significantly different picture. The band at 176

nm, which corresponds to the 190 nm band in the experimental spectrum, reflects contri-

butions from multiple electronic transitions, each of which is produced by configurational

interactions from electron transfer excitations between occupied and unoccupied molecular
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orbitals. The number and oscillator strength of these transitions depend on the peptide

conformation as well as on the water model. In the CD spectrum of the explicit water

model, the negative maximum of the pPII signal reflects two major and two minor con-

tributions. The corresponding band in the β-strand spectrum is dominated by a single

transition. Since the analysis of the excitations involve complex configuration interactions

(CI) composition, we employ natural transition orbitals [165] (NTO) to analyse the nature

of these excitations. NTOs provide a compact representation of the orbitals and offer a con-

venient way to visualize excitations via ‘hole’ and ‘particle’ descriptors, respectively. Some

of the natural transition orbitals involved in these transitions are in part delocalized over

both peptide groups and the alanine residue between them. Others are more localized at

one of the peptide groups and/or the C-terminal carboxylate group. (Figure in Appendix

A). The lowest energy peak is dominated by the second excited state, and visualization

of the NTOs implies charge transfer character for this excitation. The hole is localized

towards the alanine residue, and the particle is localized towards the carboxylate group.

The negative dominant peak involves the fifth and sixth excited states, and NTOs depict

the redistribution of electrons away from the carboxylate group. A list of relevant energies

with their rotatory strength for the first five excited states are provided in Tables S2 and

S3 (ESI) for GAG in the pPII and β conformations, respectively.

The influence of water and geometric conformation on the electronic structure

of GAG can be inferred from the Figures in Appendix A which depict the NTOs that

contribute most to the relevant excited states. The influence of explicit water and the

backbone conformation can be illustrated by a comparison of corresponding NTOs. For
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implicit water, the holes of pPII and the β-strand are both mostly localized in the plane of

the C-terminal peptide group, while the corresponding particle is localized perpendicular

to the plane of the C-terminal peptide group. Hence, the underlying transition clearly

has charge-transfer character. For GAG in the pPII conformation with implicit water, the

corresponding NTOs contribute around 99% to the transition into the first excited state at

around 202 nm. Similarly, the negative maximum at around 170 nm arises from the fourth

excited state where the relevant NTOs contribute nearly 93% for this transition. The hole

is mostly delocalized across the two peptide bonds while the particle is localized mostly

on the N-terminal peptide group. We note that in the negatively-biased positive couplet

observed here in the CD spectra, the peaks are dominated by a transition into a single

excited state rather than by an admixture of multiple excited-state transitions, as we will

see for the case of spectra obtained with explicit water molecules around the GAG in the

pPII conformation.

In explicit water, the NTOs of the β-strand conformation are delocalized over both

peptide groups and the Cα–Cβ bond of the alanine residue. Both the hole and particle

of the pPII conformation are delocalized over the C-terminal peptide and the adjacent

carboxylate group for the first and second excited states. For the fifth excitation, which

contributes to the negative peak in the CD spectra, the particle is delocalized over both

peptide groups while the hole is localized at the alanine residue. In both cases the hole

exhibits contributions from water orbitals. The particle, however, involves less water. In the

β-strand conformation, water molecules hydrogen-bonded to the peptide groups contribute

to the NTO whereas the particle does not exhibit a recognizable contribution from water
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molecules. The simulation of the CD spectrum for GAG adopting a β-strand conformation

in explicit water yielded a positively-biased negative couplet. The lowest-energy peak arises

from transitions into the first and second excited state which are very close in energy.

From Fig. in Appendix A, we note that the negative peak at around 202 nm arises from

transitions into the first and second excited state that have no significant charge transfer.

We do not show particle/hole pairs for the second excited-state transition since they are

very similar to those of the first excited-state transition. The positive peak at around 178

nm is dominated by transitions into the fourth excited state. The NTOs show a slight

charge-transfer character in which the hole is more localized towards the alanine residue,

and the particle is localized at the peptide bond at the C-terminal carboxylate group.

5.3 Conclusion

Taken together, our results show that the electronic structure of accessible excited

states are far more complicated than generally envisaged. The degree of NTO delocalization

is both structure and solvent dependent. Water is involved in the NTOs of both states,

though the distribution depends on the conformation. These results reveal that the classical

excitonic coupling models are unsuitable for describing the electronic structure of polypep-

tides and that the explicit consideration of hydrogen bonded water (not just the effect of

hydrogen bonding) is pivotal for understanding the energetics and electronic structure of

peptides. Apparently, one does not have to invoke polarization effects due to very high-lying

electronic transitions to reproduce the experimental CD spectra of pPII conformations.
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The very fact that the UVCD spectra of very short peptides and unfolded polypep-

tides or proteins look practically indistinguishable strongly suggests that the results ob-

tained for GAG offer some general insight about the electronic structure of unfolded pep-

tides and proteins. UVCD spectra of different GxG peptides exhibit the similar negatively-

biased signals, which differ only in terms of the peak intensities of their negative and positive

maxima. Some of the peptide spectra do not show the latter. This reflects different pPII/β-

strand mixtures [146,152,156]. The structure dependence of the delocalization of occupied

orbitals invalidates Flory’s isolated pair hypothesis, which is in line with experimental re-

sults [166, 167]. The huge difference between the corresponding occupied MOs of GAG in

implicit and explicit water strongly suggest that solvation energies of different residues are

not additive.

One might wonder whether a calculation for only two equilibrium conformations

can really account for the observed CD spectra. Since the energy landscape is relatively flat,

peptides still sample a significant portion of the Ramachandran plot. For GAG, this is par-

ticularly true for the glycine residues, while the conformation space of the alanine residues

is rather restricted [147]. However, the similarity of UVCD spectra of GxG peptides with

rather different positions of pPII and β-strand-like distributions suggest that the spectra

are either pPII or β-like as long as the peptide samples the Ramachandran plot about a

ψ-value of 100
◦
. Hence, a consideration of the peptide’s dynamics by means of MD/DFT

calculations would most likely solely vary the amplitudes of the calculated CD couplet. Any

attempt to explicitly account for electronic peptide–water interactions would require that

a hydration shell be included in the TDDFT part of the calculations.
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Chapter 6

Water-Mediated Electronic

Structure of Oligopeptides Probed

by Their UV Circular Dichroism,

Absorption Spectra, and

Time-Dependent DFT Calculations

This work resulted from collaboration with Prof. Reinhard Schweitzer-Stenner’s

group in the Department of Chemistry at Drexel University. I exclusively performed all the

TD-DFT calculations and wrote the manuscript and the supporting information. Prof. Rein-

hard provided his assistance with the initial drafting of this manuscript. This work is

published in The Journal of Physical Chemistry B. [2]
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6.1 Introduction

Short peptides that contain only a few amino acid residues are generally assumed

to be in a so-called random coil state. For individual residues, the generic Ramachandran

plot suggests that they sample the entire sterically accessible space, which is considered to

be nearly isoenergetic. With the exception of proline and glycine, this space and, thus, the

conformational ensemble would be very similar for all amino acid residues [168–175]. In

such a case, it makes sense to assume that the random coil conformations can be repre-

sented by a single absorption spectrum. However, over the past 15 years, experimental and

computational studies have revealed that individual residues differ with regard to the con-

formational sampling, with the conformational entropy of short peptides and disordered and

unfolded proteins being significantly less than assumed [147,148,151,166,176–180]. Recent

results from MD and DFT computations have pointed to the same direction [155,181–186].

All residues predominantly sample the upper left quadrant of the Ramachandran plot, and

they differ mostly in terms of their population of the polyproline II (pPII) (ϕ > −100◦, ψ

> 100
◦
) and β-strand region (ϕ ≤ −100◦, ψ > 100

◦
). The former is stabilized enthalpically

while the latter is favored entropically [174].

Besides NMR and vibrational spectroscopies, UV circular dichroism (UV-CD) has

emerged as a suitable tool to distinguish between different conformational ensembles of

short peptides and unfolded proteins [146,150,187–189]. Owing to the preponderance of the

sampling of pPII and β-strand-like conformations [148, 190], all spectra exhibit a negative

maximum around 190 nm, the intensity of which reflects the pPII content of the distribution.

If the pPII content is high, a weak positive maximum also appears in the region at 215 nm.
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Generally, the intensities of both maxima decrease with increasing temperature because of

the increasing population of β-strand-like conformations [146,189,191]. It is widely assumed

that the conformational changes involving a pPII ↔ β-strand transition lead exclusively to

changes in the UV-CD signal due to an excitonic coupling mechanism. However, a recent

computational analysis of the electronic transitions underlying the UV-CD spectra of the

cationic GAG in explicit water suggests that the electronic structure of pPII and β-strand

are different in both the ground and excited states of the peptide [1]. We therefore wondered

whether these differences are also reflected by the corresponding far-UV absorption (UV-A)

spectra.

While far UV-CD spectroscopy has been the spectroscopic technique of choice for

the secondary structure analysis of proteins for over a period of 60 years (if we include its

predecessor, optical rotary dispersion spectroscopy), [145,156,192] the corresponding UV-A

spectra have been mostly neglected after a period of exploration in the 1950s and 1960s [193–

195]. The neglect of this topic has several reasons. The UV-A spectrum of peptide/protein

backbones generally displays one broad band with a peak in the region between 190 and

200 nm [196] that overlaps with a broad absorption band of water. Compared with the

respective UV-CD spectrum, its structure sensitivity is generally considered as somewhat

limited. While UV-A spectra of β-sheets and α-helices differ with regard to their respective

molar absorptivities due to the hypochronism of the latter, the spectra of β-sheets and

so-called random coil conformations were reported to be similar to each other [196]. As a

consequence, they do not appear as suitable tools for the analysis of unfolded peptides and

proteins. Amino acid residues with sulfhydryl groups or unsubstituted amide bonds can
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contribute to the far UV-A spectra, whereas their contribution to the corresponding UV-

CD spectrum does not seem to be significant [195]. Overall, the lack of major fingerprints

in the UV-A spectra of peptides makes it a less widely studied tool compared to UV-CD

for structure analysis.

To check whether the UV-A spectra of statistical coil-type conformations can still

be distinguished, this study compares the temperature dependence of the UV absorption

of a series of Gly-x-Gly tripeptides (GxG), where the middle -x- residue is a nonaromatic

residue guest in the minimal neighbor environment of glycine residues. To shed some light on

the origin of the observed changes, we performed time-dependent density functional theory

(TDDFT) calculations of UV-CD and UV-A spectra for a selected number of cationic GxG

peptides in explicit and implicit water. Recently, we showed that the explicit consideration

of water is necessary to calculate the UV-CD spectrum of GAG in β-strand conformations.

Our results revealed rather complicated electronic structures of the investigated peptides,

which are inconsistent with the traditional excitonic coupling approach [1]. Herein, we

further show that (1) the background (water) corrected UV-A absorption spectra of most

of the investigated GxG peptides depend on the temperature below 200 nm, and (2) this

temperature dependence depends on the choice of the host residue. Generally, our results

shed new light on the charge-transfer character of electronic transitions that give rise to

the well-studied UV-CD and UV-A spectra of peptides and proteins. Our results call

for a critical assessment of theoretical models that have been used to model respective

polypeptide and protein spectra over the past 70 years.
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6.2 Methodology

6.2.1 TDDFT Calculations

All quantum mechanical calculations were performed using the Gaussian 09 pro-

gram package [197]. We optimized the geometry of the peptides after obtaining the coor-

dinates from the Supporting Information reported by Ilawe et al. [198] These calculations

were followed by a harmonic frequency analysis to assess whether the stationary points

obtained were local minima. After this, we performed excited-state TDDFT calculations to

obtain the UV absorption and electronic circular dichroism spectra of the peptides. Previ-

ous studies [158–160] have utilized TDDFT calculations to examine the underlying physics

of the CD spectra of model peptides and proteins in their folded state. A similar inves-

tigation of unfolded peptides was performed in our previous work [1]. This work expands

the previous study to include other variants of short peptides. As discussed before, we

recently performed DFT calculations on the cationic GAG peptide in implicit and explicit

water to obtain the energetics of their pPII and β-strand conformations. The present study

considers the optimized geometry of these two conformations of GxG (x = A, I, L, V, and

R) peptides for subsequent TDDFT calculations at the ωB97X-D/cc-pVTZ level of theory

to calculate the UV-CD and corresponding UV-A spectra of GxG in implicit and explicit

water. To add a GxG peptide with a charged side chain to this list, we first optimized

the geometry of pPII and β strand conformation of GRG in implicit and explicit water (10

H2O) and subsequently calculated absorption and UV-CD spectra with TDDFT. The water

positions in explicit water models were chosen based on a previous study of ours [161], which

was based on MD/DFT studies of hydrogen-bonded water molecules [199]. We specifically
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chose the ωB97X-D/cc-pVTZ functional for our studies since it contains an asymptoti-

cally correct (range-separated) portion of nonlocal exchange in conjunction with dispersion

corrections, which are essential for accurately predicting charge-transfer excitations and

hydrogen-bonding interactions. It is also important to note that prior work by Neto et

al. [163] has shown that the optimal range-separated parameter, ω, required to accurately

predict excited states in the explicit solvent is 0.25, which is already close to the default

value of ω = 0.2 used in the ωB97X-D/cc-pVTZ functional. We showed in our previous

work that (1) changing the range separation value, (2) using different exchange-correlation

functionals, (3) utilizing a larger basis set (such as aug-cc-pVTZ), and (4) altering the posi-

tions of explicit water molecules did not change the spectra significantly within the relevant

wavelength range (see Supporting Information).

To explore how the UV-CD spectra change when more excited-state electronic

transitions are included, we also performed additional TDDFT calculations with 50 excited-

state transitions. We did not observe any difference between the UV-CD spectra computed

with 30 and 50 excited-state transitions in the relevant wavelength range (see Support-

ing Information). Therefore, we calculated the absorption and UV-CD spectra within the

relevant wavelength range at the ωB97X-D/cc-pVTZ level of theory and 30 excited-state

transitions for this work. We followed the same method reported in our previous study [1]

to obtain UV-CD and absorption spectra. The spectral region covered by our calculation

comprises two bands that are generally termed NV1 and NV2. Experimentally, NV1 appears

at around 190 nm in peptide and protein spectra and is generally assigned to a HOMO →

LUMO transition of the peptide π-electron system. NV2 generally appears at much lower
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wavelengths and is thought to be mostly assignable to the C = O bond. As we will show in

this paper, the electronic underpinnings of the two bands are more complex. The Support-

ing Information contains optimized geometries of all GxG peptides, detailed absorption and

UV-CD spectra with the underlying transitions, comparisons between spectra of different

conformations, lists of NV1 and NV2 transition peaks, and tables with a detailed list of the

first five excited states.

Figure 6.1: UV-CD spectra of cationic GxG (x = A, L, V, I, and R) in water measured
at room temperature (20 C). Individual dichroism values of these spectra were reported by
Toal et al. [166].

.

6.3 Results and Discussions

6.3.1 TDDFT Calculations of CD and Absorption Spectra

TDDFT calculations were performed for five peptides with side chains, i.e., GAG,

GVG, GIG, GLG, and GRG in explicit and implicit water for the respective pPII and β-
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strand conformations. The explicit water calculation considered 10 water molecules that

are either hydrogen-bonded to the peptide and are inserted in a hydrogen-bonding network

of water molecules. The structures for the four aliphatic peptides were recently obtained by

geometry optimization [161]. Additionally, we optimized the geometries of cationic GRG

for pPII and β-strand conformations in explicit (10 H2O) and implicit water to explore a

situation in which the side-chain transitions can be expected to contribute to the measured

absorptivity below 180 nm to a significant extent. We calculated the CD as well as the

absorption spectra for these peptides and with both water models. Figs. 6.2 and 6.3 depict

the respective spectra obtained with the explicit water model. As usual, the energies of

electronic transitions are overestimated by our TDDFT calculations. Hence the wavelength

ranges in Figs. 6.2 and 6.3 are all blue-shifted relative to that of the experimental spectra

in Fig. 6.1. Experimental limitations rule out measuring any absorption and CD spectra

below 185 nm.

The following observations are noteworthy. First, all explicit water calculations

yielded the classical feature of pPII, namely negatively biased couplets with a negative

maximum at 175 nm and a positive maximum at 210 nm. For β-strand conformations

in explicit water, we observed nearly equally intense positive and negative maxima at ca.

185 and 205 nm, respectively. For GLG, the two extrema are very weak. None of the

calculations with implicit water reproduce this couplet signal. This underscores the earlier

reported notion that explicit water must be considered to account at least quantitatively

for the spectra of β-strand conformations [1].
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The influence of explicit water and geometric conformation on the electronic struc-

ture can be inferred from dissimilar rotational strengths of the NV1 transition peaks ob-

tained for the β conformations. The implicit water calculation yielded a series of transitions

with mostly weak negative rotational strengths. In explicit water, one of these transitions

gains a positive rotational strength, giving rise to the positive maximum that is character-

istic of the experimental β-strand CD spectra. Differences between the results of the two

water models are less pronounced for pPII, where the negative maximum associated with

the NV1 band comprises several transitions with negative rotational strengths.

Figure 6.2: Calculated UV-CD spectra of cationic GxG (x = A, I, L, V, and R) peptides
in their β and pPII conformation with explicit water.

68



The calculated absorption spectra (see Fig. 6.3 for explicit water) display two

major absorption bands: one around 140 nm and another between 170 and 180 nm. Con-

ventionally, they would be interpreted as indicating the peptide groups’ NV2 and NV1

transitions from the π-orbital HOMO to the two lowest π
∗
-orbital LUMOs [194, 195], but

as we show below, this assignment would be way too simplistic. However, for the sake of

conciseness, we term the corresponding bands NV1 and NV2 in the following.
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Figure 6.3: Calculated distributions of oscillator strengths associated with bands NV1 and
NV2 in the pPII and β-strand conformations of the indicated GxG peptides (x = A, I, L,
V, and R) obtained with the explicit water model. The sticks represent the underlying
electronic transitions.
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As can be inferred from Fig. 6.3, the NV1 bands of β strands exhibit higher

oscillator strengths than their respective pPII conformations for the aliphatic peptides GAG,

GIG, GLG, and GVG in explicit water. Only for GRG does the pPII intensity of NV1 exceed

that of the corresponding β conformation. It is also noteworthy that the β conformations

of GVG, GIG, and GLG exhibit lower transition energies for their NV1 transition peaks

than the corresponding pPII, with the average difference of 1.2 nm.

Figure. 6.3 shows the calculated distributions of oscillator strengths associated

with bands NV1 and NV2 in the pPII and β-strand conformations of the investigated GxG

peptides (x = A, I, L, V, and R) obtained with the explicit water model. The corresponding

distributions obtained with the implicit water model are depicted in SI. In the absorption

spectra of the β-strand conformations of the aliphatic peptides, the respective transitions

into the fourth excited state dominate the NV1 peak region. For the corresponding pPII

conformations, transitions into the fourth and the fifth excited states account for most of

the NV1 absorption peak. The NV2 band of the aliphatic peptides is just the envelope of

a rather large number of electronic transitions (Fig. 6.3). The influence of the water model

on the calculation of the NV2 band is significant. First, the explicit consideration of water

molecules leads to an increase of transitions and thus an increase of the overall oscillator

strengths. Second, the dispersion of NV2 transitions is significantly more pronounced in

the pPII conformations. As a consequence, the corresponding NV2 bands appear sharper

with higher peak intensities in the β-strand conformations compared with their respective

of the pPII conformations.
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The calculated absorption spectra of both the β and pPII conformation of GRG

in implicit water show a peak at around 160 nm and a shoulder at around 142 nm (Figure

S8). The shoulder disappears when the absorption spectra are calculated with the explicit

water model, and the absorption spectra show distinct peaks at around 168 nm (162 nm)

and 148 nm (144 nm) for the β (pPII) conformation (Fig. 6.3). The NV1 peaks for both

the β and pPII conformation have excited-state transitions with a large oscillator strength

(0.50). None of the calculated absorption spectra of the other GxG peptides showed such a

large oscillator strength for a transition into any excited states.

6.3.2 Comparison of Experimental and Computational Spectra

In view of the apparent superiority of the explicit water model regarding the

calculation of the CD spectra of β-strand conformations, we solely compare experimental

and explicit water spectra. The pPII spectra of all aliphatic peptides are very similar, which

suggests that the rotational strength of this conformation does not depend very much on

the nature of the side chain. This is an important finding for any quantitative analysis

of the UV-CD spectra of unfolded peptides. The situation is somewhat different for the

β-strand conformation. The corresponding spectra are similar for GAG, GIG, and GVG,

while the rotational strength of GLG is much less. These results suggest that the different

intensities of the negative maxima in Fig. 6.1 are a good indicator of pPII propensities.

Our computational results also explain why the experimental spectra of GAG and GLG

are very similar even though the pPII propensity of the latter (0.56) is significantly lower

than that of the former (0.79) [147], since a weaker positive maximum of the β-strand

leads to a more intense negative maximum of pPII/β mixtures. It should be noted that
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the absolute dichroism displayed by the calculated spectra indicate a much larger rotational

strength than the experimental ones. However, it has to be noted as well that the respective

rotational strengths that emerged from the calculations with the implicit water model are

even larger to a significant extent. This observation suggests that the involvement of water

molecules decreases the rotational strength, and one could therefore expect that calculations

with an even larger number of water molecules would tune the CD signals into the correct

order of magnitude.

At first glance, the calculated UV-A spectra do not seem to account for the ob-

served temperature dependence of the NV1 band. For all four peptides, they indicate a

more intense band in the β-strand conformation. The observed temperature dependence

suggests the very opposite behavior. However, a closer analysis of the data suggests a dif-

ferent picture. First, for reasons described above, one has to take into account that the

NV2 bands of the β-strand conformation are significantly sharper than those of the corre-

sponding pPII state, which leads to a drop of intensity between the two bands. This is fully

consistent with the observed intensity loss at the high-energy site of the NV1 band. Second,

a comparison of the NV1 oscillator strengths calculated with implicit and explicit water

reveals important differences that reflect the pivotal role of hydration water. For GAG,

GIG, and GVG, the combined oscillator strength of transitions 4 and 5 of the respective β-

strand conformations were calculated to be a factor of 1.4–1.5 larger in the implicit than in

the explicit water spectra. The difference between the corresponding pPII spectra is much

less pronounced (ca. 1.1). GRG is a special case because of side chain contributions that

apparently make the contributions to the β-strand spectrum comparable for both models.
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Our results suggest that explicit water reduces the NV1 oscillator strengths mostly in the

β-strand conformation. This effect is very likely to be more pronounced for a peptide with

a complete hydration shell. As a consequence, the overall NV1 oscillator strength of the β-

strand would become less than that of the respective pPII conformation, in agreement with

our experimental results. Therefore, the temperature dependence of the UV absorption

spectra of the investigated peptide reflects the degree by which water affects the electronic

transitions in the β-strand. Furthermore, it is safe to infer a concomitant increase in the

oscillator strength of NV2 from our results. At the current level of theory, it is not possible

to quantitatively interpret the temperature dependence of the investigated GxG peptides.

Only for protonated GDG, available experimental data provide us with an explanation of

the very weak temperature dependence of the UV-A (Figure S3). As shown by Rybka et

al. [200], the conformational distribution of the central D residue of this peptide at room

temperature is dominated by β-strand conformations and various turn-like conformations.

Only 20% of the peptides sample pPII. As a consequence, a further increase of the β-strand

population should not cause a significant temperature dependence of the UV-A, particu-

larly because the turn-like content of the Ramachandran distribution is nearly temperature

independent [184].

6.3.3 NTO Analysis

The contribution of peptide and terminal groups as well as side chains and hy-

dration water of GxG peptides to NV1 transitions can be obtained by a natural transi-

tion orbital (NTO) analysis, which is based on the singular value decomposition of the

one-particle transition density matrix. The resulting frontier orbitals can represent any
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one-electron property associated with the electronic transition. As such, NTOs provide a

compact representation of the orbitals and offer a convenient way to visualize excitations

via occupied hole and virtual particles. The NTO analysis was also employed to determine

the difference between the electronic structure of pPII and β of investigated GxGs based on

the nature of the excitations, which results in the observed absorption and UV-CD spectra.

An NTO analysis imparts further impetus in characterizing the dichotomy in the spectra

for β and pPII conformations. The influence of water and the backbone conformation on

the electronic structure of GxGs can be inferred from Figures 6.4-6.8 for explicit (check

the Supporting information for implicit water calculations). These figures depict the NTOs

that can be attributed to the dominant transitions. The influence of explicit water and the

backbone conformation can be illustrated by a comparison of corresponding NTOs.

Figure 6.4: Natural transition orbitals (NTOs) of GAG in the (a) pPII and (b) β confor-
mations. The panels give the excited-state number, associated eigenvalue (w), transition
energy (ω), wavelength (λ), and oscillator strength (f).
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The transition into the fifth excited state gives rise to the NV1 band obtained for

the pPII conformation of GAG (Fig. 6.4). The particle is mostly delocalized across the

two peptide bonds, while the hole is delocalized mostly on the N-terminal peptide group.

For GAG in the β-strand conformation, the particle associated with the most intense fourth

transition is mostly delocalized across the two peptide groups. The corresponding transition

of the hole to the particle involves the transfer of some electron density from the alanine

residue to the peptide groups. For GIG, the visualized NTOs associated with the NV1

band of the pPII conformation suggest that particles are mostly localized at the carboxylate

group while the hole is predominantly localized at the C-terminal peptide group. In the

corresponding β-strand conformation, the particle is delocalized over both peptide groups,

whereas the hole is mostly localized at the N-terminal peptide bond (Fig. 6.5). In the case

of GLG, transitions into excited states 4 and 5 both contribute to the NV1 band of the pPII

conformation. An analysis of the hole and particle for the fourth excited state shows that

the hole is localized at the carboxylate group, while the particle resides at the C-terminated

peptide bond. The fifth excitation shows a hole slightly localized at the leucine residue and

predominantly at the N-terminated peptide bond, whereas the particle is delocalized across

both the peptide bonds. A third transition (number 21) contributes significantly to the

NV1 absorption. Both the hole and particle are delocalized over the peptide backbone. The

hole exhibits some minor contributions due to the side chain. For the respective β-strand

conformation, the NTO analysis yields a different picture. The particle is delocalized over

the ammonium group and the adjacent peptide bond with some admixture from the Cα–C
′

bond, whereas the hole is localized on the leucine residue. Hence, this transition again has
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a charge-transfer character. We wondered whether this was a very peculiar character of

the electronic transitions that leads to the very weak CD signal of this conformation. For

the pPII conformation of GVG (Fig. 6.7), both the fourth and fifth excitations contribute

to the NV1 band. The hole in the fourth excited state is localized at the carboxylate

group, whereas the particle resides at the C-terminal peptide bond group. For the fifth

excitation, the hole is mostly localized on the valine residue, and the particle is delocalized

across the peptide bonds. Some of the NTOs associated with the NV1 band of the β-strand

conformation of GVG are delocalized over both the peptide group and the valine residue

between them. The hole in the fourth excited state is delocalized over both the peptide

groups while the particle is localized at the ammonium group.

Figure 6.5: Natural transition orbitals (NTOs) of GIG in the (a) pPII and (b) β confor-
mations. The panels give the excited-state number, associated eigenvalue (w), transition
energy (ω), wavelength (λ), and oscillator strength (f).
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Figure 6.6: Natural transition orbitals (NTOs) of GLG in the (a) pPII and (b) β confor-
mations. The panels give the excited-state number, associated eigenvalue (w), transition
energy (ω), wavelength (λ), and oscillator strength (f).

Figure 6.7: Natural transition orbitals (NTOs) of GVG in the (a) pPII and (b) β confor-
mations. The panels give the excited-state number, associated eigenvalue (w), transition
energy (ω), wavelength (λ), and oscillator strength (f).

78



Figure 6.8: Natural transition orbitals (NTOs) of GRG in the (a) pPII and (b) β confor-
mations. The panels give the excited-state number, associated eigenvalue (w), transition
energy (ω), wavelength (λ), and oscillator strength (f).

For all the peptides investigated in this study, the NTOs in explicit water exhibit

contributions from water molecules. In the pPII conformations of GIG, GLG, and GVG,

the particles of the NTOs responsible for NV1 transition are mostly localized over the

carboxylate group. The NTOs of the β conformations are more delocalized over the water

molecules than the NTOs of the corresponding pPII conformation. This observation is

consistent with the previously discussed influence of explicit water on the oscillator strength

of both NV1 and NV2.

The NV1-related NTOs of GRG are peculiar in that the dominant transition of

the respective pPII conformation is completely localized on the side chain (both hole and

particle). The situation is somewhat different in the β-strand conformation. While tran-

sition 8 is still mostly localized on the side chain, transition 19 has some charge transfer
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character involving a hole localized over the C-terminal peptide, the C-terminal carboxylate

group, and water, while the particle is nearly entirely on the carboxylate group (Fig. 6.8).

In the β conformations of GAG, GIG, GLG, GVG, and GRG, NTOs responsible for

the NV2 transition are mostly localized on the water molecules that are around the peptides.

For the corresponding pPII conformations of these peptides, the NTOs are mostly on the

peptides’ main chain, except for GRG in which the NTOs are mostly on the side chain of

the peptide.

The NV2 transition peaks in the absorption spectra of the pPII conformation

for GAG, GIG, GLG, and GVG red-shifts by around 4–5 nm when using an explicit water

model. The corresponding NV2 transition bands of the β conformation red-shifts by around

7–8 nm. This shift in the NV2 peak suggests again that the absorption spectra of the β

conformation of the corresponding peptides—GAG, GIG, GLG, and GVG—are affected

more by the explicit water model than their pPII counterparts.

Taken together, the results of our NTO analysis suggest that the electronic struc-

ture of the ground and excited state of the investigated peptides changes with its confor-

mation and depends on the character of the side chain. The contribution of water in the

hydration shell is substantial for the NV2 transition and significant only in the more ex-

tended β-strand conformation. Quite a few of the dominant electronic transitions have a

charge-transfer character; some of them involve the side chains. These findings call into

question how the electronic system of polypeptides and proteins have been treated thus far.

This issue is briefly discussed below.
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6.3.4 Comparison with Literature

Over the past 70 years, a multitude of papers have been published on identifying

the underlying physics of the CD and absorption spectra of polypeptides and proteins. In

particular, efforts have focused on explaining the spectra of regular secondary structures.

Both the oldest and newest attempts are built on the validity of the excitonic coupling

model [150, 156, 192, 194, 201, 202], which assumes that the electronic ground state of a

polypeptide can be approximately described as a superposition of individual peptide molec-

ular orbitals that are localized on the respective peptide groups. Hence, the respective wave

function could be written as a product of wave functions of individual peptide groups. NV1

excitations, which are generally assigned to a HOMO → LUMO transition, cause a delo-

calization of electronic states. The coupling between transitions has earlier been described

by the transition dipole formalism while more recent attempts consider electrostatic inter-

actions between charge distributions [201, 202]. This type of modeling has persisted in the

literature because it had a lot of success, particularly in regard to the prediction of the UV-

CD spectra of right-handed helical conformations. However, our results suggest that the

basic assumptions on which this model is built might be incorrect. First of all, our results

suggest that one cannot assign NV1 to a single transition. Second, we found that the char-

acter of the transitions and the resulting excited electronic states are side-chain-dependent.

Some transitions might have a charge transfer character where the electron moves from the

side chain to the orbitals that are delocalized over peptide groups. The degree of delocal-

ization in the excited state is conformation and peptide dependent. Moreover, the role of

water cannot be neglected for extended β-strand conformations.
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Such a direct influence of water has not yet been taken into account in the field. Another

implication of our results deserves to be emphasized. Currently, most of the force fields

used for molecular dynamics simulations are built on the assumption that the torsional

force with respect to the dihedral angles ϕ and ψ does not depend on the respective side

chain [182, 184, 203–205]. Only recently have attempts been made to consider the specific

influence of side chains on the potential function associated with the backbone dihedral an-

gles [206, 207]. The obtained involvement of side-chain MOs in the highest occupied states

of peptides and the partially delocalized character of the electronic ground state argues in

favor of side-chain-dependent torsional forces. The contribution of water orbitals to the

electronic ground state, particularly of the β-strand conformation, suggests the necessity to

modify the way how backbone–water interactions are accounted for in molecular dynamic

force fields. In this context, the question arises whether force fields with force constants ob-

tained from DFT calculations on model peptides in the gas phase or even in implicit water

can sufficiently describe the energetics and dynamics of peptide/protein backbones [183].

It is obvious that a more complete picture than that reported in this paper could

be gained by TDDFT calculations with a larger number of hydration water molecules. DFT-

based geometry optimizations of tripeptides have recently been achieved with up to 30 water

molecules [199,208]. The corresponding TDDFT calculations would be very computational

expansive. Combined MD-TDDFT calculations would only provide an improvement if the

hydration shell would become part of the TDDFT part of the calculation.
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6.4 Conclusion

The experimental UV-A spectra of some cationic GxG peptides in water indicate

that the two dominant conformations, namely polyproline II and β-strand, have different

absorption spectra. This notion is supported by TDDFT calculations for a selection of

aliphatic peptides with a hydration shell of 10 water molecules. Our calculations also

account for the UV-CD spectra of these peptides. The computational results strongly

suggest that the two canonical NV1 and NV2 bands (the latter is obtainable only with

synchrotron radiation) are composed of multiple transitions that result from configurational

interactions between numerous transitions. The dispersion of these transitions depends

on the backbone conformation and in part on the side chain. Many of the individual

transitions have a charge-transfer character. Transitions involving water MOs contribute

predominantly to the β-strand conformation. Our results contradict the basic assumption

of the excitonic coupling models that are generally used for the theoretical analysis of CD

and absorption spectra of polypeptides and even proteins.
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Chapter 7

Efficient Predictions of Formation

Energies and Convex Hulls from

Density Functional Tight Binding

Calculations

This chapter’s aim is to accelerate the calculation of formation energies and convex

hull at different compositions of binary alloys. I exclusively interfaced DFTB with CASM

and performed all the CASM+DFT/DFTB calculations. Zulfikhar Ali helped with drafting

the manuscript. We contributed equally to the analysis of the convex hull results. This

work is published as a full article in the Journal of Materials Science and Technology. [4]
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7.1 Introduction

Point defects, such as vacancies, play a vital role in the electronic and structural

properties of semiconductor materials. These properties ultimately dictate the performance

of electronic devices, structural alloys, and functional materials; therefore, a deep under-

standing of vacancies at the atomistic level can provide a rational path towards their im-

provement [209–212]. One of the most important quantities to characterize a defect is its

formation energy, which can, in principle, be computed with Density Functional Theory

(DFT) [213, 214]. Although accurate and widely transferable, DFT can be computation-

ally prohibitive for the routine exploration of the numerous types of defects in material

systems. Alternatively, semi-empirical methods, such as Density Functional Tight Bind-

ing (DFTB) [215–218], have recently emerged as efficient approaches for addressing these

computational bottlenecks. In particular, the DFTB formalism has already been used to cal-

culate a variety of large systems such as metallic nanoparticles [219,220], explicitly-solvated

chromophores [103], massive biological structures [221], molecules/clusters with numerous

conformations [222,223], and immense nanostructures [224].

To enable fast and accurate calculations of formation energies, we combined DFTB

with the Clusters Approach to Statistical Mechanics (CASM) [225, 226] software package

to predict thermodynamically stable phases of materials for the first time. Specifically,

our new capability allows the rapid and accurate calculation of formation energies and the

convex hull (if favorable). In short, the convex hull provides a global view of the relative sta-

bilities of structures after the formation energies are calculated. Although computationally

demanding, the calculation of formation energies and convex hulls has enabled the discovery
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of new materials, including superconducting hydrides [227–231], metal nitrides [232], and

metal carbides [233]. Predicting the convex hull for general materials is time-consuming

since it requires the classification of a vast number of energy minima on the lattice energy

surface. Software programs, such as USPEX [234,235] and CALYPSO [236,237] have been

used to explore the vast compositional phase space of these materials. Compared to other

crystal structure prediction codes, the main advantage of CASM is its ability to evaluate

the kinetic and thermodynamic properties of multi-component crystalline solids using group

theoretical techniques.

Using this new capability, we calculate the formation energies of various sili-

con carbide (SiC) and zinc oxide (ZnO) configurations to highlight the efficiency of our

DFTB+CASM implementation. SiC is one of the most promising materials for high-

temperature, radiation-resistant, power and high-speed electronics [238–241]. ZnO is an

affordable, earth-abundant, wide band gap transparent conducting oxide with applications

in electronics, optoelectronics, pharmaceuticals, sensors, and catalysis [242]. ZnO crystal-

lizes in many forms, with hexagonal wurtzite (B4), zinc blende (B3), and cubic rocksalt

(B1) being the most common. Using SiC and ZnO as representative examples, we compare

the accuracy and efficiency of DFTB and DFT for predicting formation energies and convex

hulls of these binary compounds.

Our paper is organized as follows: 7.2 gives a brief overview of DFTB, DFT,

structure generation algorithm in CASM, formation energies, and convex hulls. 7.3 provides

computational details and 7.4 presents our results and discussion. Finally, we conclude with

closing remarks and a summary in 7.5.
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7.2 Theory and Methodology

7.2.1 DFT and DFTB

Both the DFT and DFTB theory used in the calculations of electronic and struc-

tural properties of alloys are covered in chapter 2 and chapter 8, respectively. As such,

readers are encouraged to refer to these chapters for a condensed review of these theories.

Simulations parameters used for the calculations are present in the Computational Details

section 7.3.

7.2.2 Structure Generation with CASM

Figure 7.1: Flowchart of the structure generation algorithm used in the CASM software
package to enumerate structures.

The algorithms in the CASM software package that enumerate symmetrically dis-

tinct configurations utilize an approach based on Hermite Normal Forms of integer matri-

ces [243,244]. The following is a brief outline of the algorithm [245]:
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1. All Hermite normal form (HNF) matrices are generated for each superlattice of size

n.

2. Symmetry of the parent lattice is used to remove rotationally equivalent superlattices,

thus shrinking the list of HNF matrices.

3. For each index n of the superlattice, the Smith normal form (SNF) is determined for

each HNF in the list.

(a) A list of possible labelings (atomic configurations) is generated for each SNF,

which is a list of all k
n
numbers in a base k, n-digit system. For the labels, the

first k letters of the alphabet, (a, b, ⋯) are used.

(b) Incomplete labelings, where each of the k labels (a, b, ⋯ ) does not appear at

least once, are removed.

(c) Labelings that are equivalent under the translation of the parent lattice vectors

are removed. This reduces the list labelings by a factor of ∼ n.

(d) Labelings that are equivalent under an exchange of labels, i.e., a⇌ b, are removed

(for example, the labeling aabbaa is removed from the list because it is equivalent

to bbaabb).

(e) Superperiodic labelings that correspond to a non-primitive superstructure are

removed. This can be done without using the geometry of the superlattice.

4. Labelings are removed for each HNF that are permuted by symmetry operations (of

the parent lattice) that leave the superlattice fixed.
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7.2.3 Formation Energy

The formation energy, e
f
, is normalized per primitive unit cell of a particular

atomic configuration, σ. For a binary compound ABx (in this work, atom A is Si/Zn, and

atom B is C/O), the formation energy can be calculated with the expression:

e
f(σ) = e(σ) − e

ref(x), (7.1)

where e
f(σ) is the formation energy of configuration σ, e(σ) is the DFT/DFTB total energy

(normalized per primitive unit cell) of configuration σ, and e
ref(x) is the DFT/DFTB total

energies (normalized per primitive unit cell) of reference state with composition x. The

energy of the reference state, e
ref(x), is calculated from the following expression:

e
ref(x) = eref(x1) + (x − x1)

e
ref(x2) − e

ref(x1)
x2 − x1

, (7.2)

where e
ref(x1) and e

ref(x2) are the DFT/DFTB calculated total energies (normalized per

primitive unit cell) of the reference states with composition x1 and x2, respectively. The

composition, x, can be calculated from the expression:

x = 1 − (Bn/An), (7.3)

where Bn and An denote the number of C (O) and Si (Zn) atoms in the unit cell, respectively.

A value of x = 1 implies that the unit cell has only Si (Zn) atoms, while x = 0 implies that

the unit cell consists of an equal number of Si (Zn) and C (O) atoms. In this study, we

chose x1 and x2 as 0 and 1, respectively. Setting x1 = 0 and x2 = 1 in Eq. 7.2, the reference

state energy, e
ref(x), for a composition x simplifies to:

e
ref(x) = eref(x1 = 0) + x (eref(x2 = 1) − e

ref(x1 = 0)) . (7.4)
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7.3 Computational Details

The general workflow of our calculations is depicted in Fig. 7.1. We explore ther-

modynamically stable compositions for binary compounds of the form A2B2(1−x) using the

following four steps: (1) determination of the most stable crystal structure at a fixed com-

position x using CASM integrated with DFTB, (2) calculation of the formation energy e
f

of the compound with respect to its composition at x = 0 and x = 1, (3) repeating the same

calculations by changing x, and (4) plotting the formation energy per fixed composition, e
f

vs. x. Details of each step are given below.

7.3.1 CASM

To generate the configuration space for the various material compositions, we start

with the primitive unit cell of 2H-SiC and B4-ZnO (the 2H prefix denotes a two-layer hexag-

onal symmetry stacking periodicity). The 2H-SiC unit cell is shown in Fig. 7.3, where the

large green atoms represent silicon, and the small gray atoms are carbon. The crystal

structure is an AB-type covalent bond crystal, and each Si atom is surrounded by four C

atoms. Each 2H-SiC unit cell contains two Si and two C atoms. The space group of 2H-SiC

is P63mc, and the lattice parameters are shown in Table 7.1. B4-ZnO (Wurtzite) has a

similar unit cell as 2H-SiC, but is not shown here for brevity. Table 7.1 also lists the lattice

parameters of the 2H-SiC and B4-ZnO unit cells used to generate different configurations.

Both 2H-SiC and B4-ZnO follow the AB type stacking sequence. We consider a binary

ordering between two C/O atoms and a vacancy at the C/O lattice sites in the unit cell.

All symmetrically distinct supercells and derivative configurations (up to a supercell vol-
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ume that is 4 times the primitive unit cell) were generated using the algorithm developed

by Hart et al. [245, 246] in the CASM code. This algorithm enumerates superlattices and

atomic configurations in a geometry-independent way using the concept of quotient groups

associated with each superlattice to determine all unique atomic configurations. We fol-

low the standard procedure for calculating the formation energy/convex hull [247] using

DFT/DFTB with the CASM code.

Figure 7.2: General workflow in our DFTB+CASM implementation for calculating forma-
tion energies and the convex hull.

After defining the basis and lattice vectors of the system, the symmetrically dis-

tinct configurations are generated using the CASM software package. All configurations

in symmetrically distinct supercells were generated in 2H and B4 symmetries for SiC and

ZnO, respectively. The primitive unit cell, as shown in Fig. 7.3, was used to generate the

401 derivative supercell configurations for each SiC and ZnO system. In the last panel of

Fig. 7.2, we calculate the total energies for each configuration via DFT and DFTB.
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Figure 7.3(a) Lattice Vector a⃗ Figure 7.3(b) Lattice Vector b⃗

Figure 7.3(c) Lattice Vector c⃗

Figure 7.3: Primitive unit cells used to generate the various supercells and configurations.
Using the CASM software package, we generate all symmetrically distinct configurations
with the stoichiometry Si2C2. Panels (a), (b), and (c) show the primitive cell in different
orientations. Light green and grey atoms represent Si and C, respectively.

7.3.2 DFT Calculations

Density functional theory calculations were carried out with the Vienna Ab Initio

Software Package (VASP) code [248, 249]. We used projector augmented wave (PAW)

pseudopotentials [250, 251], and the generalized gradient approximation (GGA) exchange-

correlation functional, as parameterized by Perdew, Burke, and Ernzerhof (PBE) [252]. We

calculated the total energies using a plane-wave energy cutoff of 400 and 520 eV for SiC and

ZnO, respectively. All of our calculations used the standard VASP pseudopotentials for all

of the atoms. We used a Γ-point centered Monkhorst-Pack k-point mesh (approximately
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Table 7.1: Initial lattice parameters of SiC (2H) and ZnO (B4).

Structure
Lattice Vectors (Å) Lattice Angles
a b c α β γ

SiC (2H) 5.54 6.09 6.43 105.50
◦

89.91
◦

117.18
◦

ZnO (B4) 5.56 6.19 6.45 105.21
◦

89.94
◦

116.80
◦

12×12×6) for both SiC and ZnO, and the total energies were found to be suitably converged

with this k-point sampling. The k-point sampling differs depending on the unit cell of each

configuration, and the CASM software package keeps the mesh density constant for all

configurations [253]. In all the optimizations, the geometry was relaxed such that all the

forces were less than 0.04 eV/Å. The energy convergence for the electronic degree of freedom

was set to 10
−5

eV. While performing geometry optimizations, the atomic positions, lattice

parameters, and angles were allowed to relax for each structure.

7.3.3 DFTB Calculations

As discussed earlier, DFTB is an approximate tight-binding scheme with a low

computational cost due to the use of parameterized integrals and a minimal valence basis

set [254–260]. In the present study, we used the self-consistent charge formulation of DFTB

(SCC-DFTB) in its second-order scheme (DFTB2) [261], which includes the second-order

term in the DFT energy expansion around the reference density [261]. Previous studies have

shown DFTB to be particularly well suited for describing both SiC and ZnO materials [262–

266]. In all of our SiC DFTB calculations, we used a recent DFTB parameterization that

accurately reproduces a large dataset of DFT calculations, which includes potential energy

surfaces, energies, and forces [267]. We designate the SiC SK files from Ref. [267] as SKfIV
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throughout this paper. For our ZnO DFTB calculations, we used standard parameters

from the znorg-0-1 SK set [268, 269]. We used a similar k-point mesh as mentioned in the

DFT calculations section. In all of our DFTB calculations, the geometry was relaxed with

periodic boundary conditions such that all the forces were less than 0.04 eV/Å, and the

SCC convergence tolerance was set to 10
−5

a.u. Both the DFT and DFTB calculations were

carried out in a spin-unpolarized formalism. After optimizing the structures, the formation

energies and convex hull plots were produced using bash and python scripts.

7.3.4 Formation Energy

As depicted in the last panel of Fig. 7.2, the formation energy for each struc-

ture is calculated. The ‘total energy.sh’ script creates a file that contains the optimized

DFT/DFTB ground state energy of each of the configurations. In the next step, the ‘for-

mation energy.py’ python script reads the ground-state energies and uses Eqs. 7.2 and 7.1 to

compute the formation energy of each of the configurations. Finally, the ‘plot convex hull.py’

python script is used to plot the convex hull from the DFT/DFTB computed formation en-

ergies. In the case of SiC, we constructed the convex hull by connecting all the minima of

the negative formation energies at various compositions, x, with straight lines.
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7.4 Results and Discussion

Using the configuration space described above, we generated distinct compositions

up to 4 times the primitive unit cell volume, which produces a total of 401 symmetrically

distinct configurations for SiC and ZnO, each. The DFT and DFTB energies of all the

enumerated configurations were calculated to obtain the formation energy using Eq. 7.1.

7.4.1 SiC

Convex Hull

Figure 7.4(a) DFT Figure 7.4(b) DFTB (SKfIV)

Figure 7.4: Formation energy convex hull for the Si-C binary system computed with DFT
and DFTB. Panel (a) shows the DFT formation energy. Panel (b) shows the DFTB for-
mation energy calculated using the SKfIV SK files. Each point corresponds to a different
crystal structure.

Figs. 7.4(a) and (b) show the formation energies of various SiC configurations

calculated with DFT and DFTB, respectively. Although the DFT and DFTB calculations

find different minima on the convex hull plot, the results match qualitatively. DFTB predicts

a minimum at composition x = 0.75 while DFT has a minimum nearby at x = 0.875.

The two minima structures in the DFTB convex hull plot at x = 0.75 and x = 0.875
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have a formation energy difference of 0.025 eV. This small energy difference is due to the

approximations in the SK parameters inherent to the DFTB formalism.

The most probable reason for this small discrepancy in the formation energy is

the parameterization of the repulsive DFTB potential between the Si and C atoms in the

SKfIV SK files. The repulsive potentials in the SKfIV SK files result in a much stronger

repulsion between the Si and C atoms, increasing the bond length between the atoms in

the structures, which alters their energetics.

A similar phenomenon was also observed for in a previous study using TiO2 DFTB

SK files [270]. Nevertheless, our results show that the DFT and DFTB formation energies

for SiC are similar; if more accurate results are desired, configurations near the convex hull

could be first down-selected via DFTB and subsequently refined/re-calculated with DFT

to improve their accuracy (which would be more efficient than computing all 401 structures

with DFT alone).
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Structure Comparison

Figure 7.5(a) DFT Figure 7.5(b) DFTB (SKfIV)

Figure 7.5: Comparison of SiC structural parameters (located on the convex hull) after
optimization with (a) DFT and (b) DFTB (SKfIV), visualized along lattice vector c⃗. Bond
lengths are in Angstroms, and light green and grey atoms represent Si and C, respectively.

The most stable crystal structure obtained via DFT and DFTB is depicted in

Fig. 7.5. DFTB predicts a minimum at x = 0.75 while DFT gives a minimum nearby at x =

0.875. The two minima structures in the DFTB convex hull plot at x = 0.75 and x = 0.875

have a formation energy difference of 0.025 eV. As discussed in the previous section, this

discrepancy in the minima for the DFTB formation energy results from approximations in

the repulsive potential between the Si and C atoms in the SKfIV SK files. Moreover, the

crystal structures at x = 0.875 obtained via DFT and DFTB show the same P1 symmetry,

which consists of eight Si atoms and one C atom in the unit cell (see Fig. 7.5). Since both

the DFT and DFTB calculations correctly predict the same crystal structure and relative

ratio of Si/C at x = 0.875, our results show that DFTB can be employed as an efficient

computational approach tool for calculating and pre-screening formation energies.

Fig. 7.5 compares the DFT and DFTB optimized structural parameters of the

most stable configurations at the convex hull minimum located at x = 0.875. Two types
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Table 7.2: Comparison of optimized lattice parameters of the minima structure calculated
with DFT and DFTB for SiC.

Method
Lattice Vectors (Å) Lattice Angles
a b c α β γ

DFT 6.15 6.15 6.16 121.39
◦

97.24
◦

110.62
◦

DFTB (SKfIV) 6.27 6.27 6.40 119.38
◦

99.60
◦

109.24
◦

of Si atoms exist in the unit cell: one that is bonded to only Si atoms and another which

is bonded with one C atom. Each Si and C atom has a coordination number of 4. As

can be seen in Fig. 7.5(a), the Si-C bond length ranges from 1.93 to 2.38 Å in the DFT-

optimized structure. Fig. 7.5(b) shows the bond lengths between various Si and C atoms

of the DFTB-optimized structure. DFTB predicts slightly longer bond lengths for almost

all the Si-C bonds, which on average are longer by 0.06 Å compared to DFT calculations.

Table 7.2 compares the optimized lattice parameters of the minimum structure calculated

with DFT and DFTB. DFTB overestimates the optimized lattice parameters and predicts

slightly longer lengths for a⃗, b⃗, and c⃗.

As stated earlier, the discrepancy in the structural parameters is due to the pa-

rameterization of the repulsive DFTB potential between the Si and C atoms in the SKfIV

SK files. The repulsive potentials used in the SKfIV SK files result in a much stronger re-

pulsion between the Si and C atoms which increases the bond length between the atoms in

the structures. Previous work has also shown that DFTB predicts longer lattice parameters

for systems containing C atoms [271].
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7.4.2 ZnO

Formation Energy

Figure 7.6(a) DFT Figure 7.6(b) DFTB (znorg-0-1)

Figure 7.6: Formation energy of the ZnO binary system obtained from DFT and DFTB.
Panel (a) shows the DFT formation energy, and panel (b) shows the DFTB formation
energy calculated using the znorg-0-1 SK files. Each point corresponds to a different crystal
structure.

We now proceed to ZnO, which is an even more complex material but shows more

accurate results between DFT/DFTB. The wurtzite (B4) structure is the most stable form

of ZnO at ambient conditions in nature [272]. The zinc blende (B3) structure of ZnO has a

less stable cohesive energy than the B4 structure, and is, therefore, energetically unfavorable

at zero temperature and pressure [273]. As such, we enumerated various ZnO configurations

starting with the B4-ZnO unit cell. We obtain a significant performance improvement for

ZnO structures optimized via DFTB (more details on efficiency are discussed in the next

section). It is interesting to note that both the DFT and DFTB calculations do not find a

convex hull in the formation energy plots of the Zn2O2(1−x) binary compounds. As shown

in Fig. 7.6, the calculated formation energies are all positive, showing no stable minima

structure predicted at any composition x. A previous study reported similar findings of
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positive formation energies when oxygen vacancies were introduced in the ZnO lattice [274].

Specifically, these previous studies showed that defects often induce occupied states in the

bandgap and increase the formation energy [275–278].

7.4.3 Efficiency Analyses for DFT and DFTB

In this section, we give a detailed analysis of the computational timings and effi-

ciency of DFT and DFTB. Fig. 7.7 compares the wall time per SCF iteration step (WT-SCF)

as a function of the number of electrons in various ZnO configurations. As the number of

electrons increases, the WT-SCF increases rapidly for both DFT and DFTB. For example,

the DFT WT-SCF for a 30-electron ZnO configuration is around 16 seconds, whereas a

120-electron configuration is roughly 134 secs. Fitting the DFT WT-SCF data to a cubic

polynomial gives a high R
2
correlation coefficient of 0.92, indicating an O(N3) scaling,

where N is the number of electrons. This scaling can be attributed to matrix diagonaliza-

tion in KS DFT, which is an O(N3) process, where N is the size of the matrix. Similarly,

fitting the DFTB WT-SCF data gives an O(N) linear scaling with an R
2
of 0.91. For all

configurations, the DFTB WT-SCF is less than 6 secs, which is significantly faster than

DFT. As can be seen from Fig. 7.7, the DFTB WT-SCF for a ZnO configuration with 138

electrons is an order of magnitude faster than DFT. It is worth mentioning that although

the DFTB WT-SCF is more efficient than DFT, DFTB geometry optimizations may take

more SCF cycles compared to DFT, which may result in a small loss in efficiency.
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Figure 7.7: Comparison of DFT and DFTB wall times per SCF iteration step as a function
of the number of electrons in various ZnO configurations. Each vertical bar value was
calculated by averaging multiple configurations having the same number of electrons.

Computational Timings for SiC

Figs. 7.8(a) and (b) compare computational timings for geometry optimizations

of various Si2C2(1−x) structures using DFT (VASP) and DFTB (DFTB+). In general, the

DFTB calculations take significantly less time compared to DFT, and Fig. 7.8(b) shows

that DFTB can be an order of magnitude faster than DFT in some cases. For most con-

figurations, the DFTB calculations required more SCF cycles for geometry optimization

compared to DFT; however, the total compute time for DFTB is still significantly smaller.
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Figure 7.8(a) DFT Figure 7.8(b) DFTB (SKfIV)

Figure 7.8: Comparison of wall times for geometry optimization of various Si2C2(1−x) com-
positions calculated via DFT and DFTB. Panel (a) shows the wall time for optimizing each
configuration using DFT. Panel (b) shows the ratio between the DFT and DFTB wall times
for a geometry optimization of each configuration. Each point corresponds to a different
crystal structure.

Computational Timings for ZnO

Fig. 7.9 compares wall times for geometry optimization for various Zn2O2(1−x)

binary compounds calculated via DFT and DFTB. As in the case of SiC, Fig. 7.9(b) shows

that DFTB is an order of magnitude faster than DFT in most cases. It is important to

note that DFTB is almost 40 times faster than DFT for Zn2O2(1−x) binary compounds (see

Fig. 7.9(b)), whereas the maximum performance enhancement of DFTB is only 10 times

for Si2C2(1−x). In general, as the number of electrons in the system increases, we show that

DFTB exhibits more performance gains than conventional KS DFT calculations.
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Figure 7.9(a) DFT Figure 7.9(b) DFTB (znorg-0-1)

Figure 7.9: Comparison of wall times for geometry optimization of various Zn2O2(1−x)
compositions calculated via DFT and DFTB. Panel (a) shows the wall time for optimizing
each configuration using DFT. Panel (b) shows the ratio between the DFT and DFTB
wall times for a geometry optimization of each configuration. Each point corresponds to a
different crystal structure.

Finally, Fig. 7.10 compares the total time (sum of individual wall times) for the

geometry optimization of Si2C2(1−x) and Zn2O2(1−x) binary compounds. For Si2C2(1−x),

the total time for geometry optimization of all 401 configurations is around five days for

DFTB, whereas the DFT calculations require nearly ten days. The difference in perfor-

mance between DFTB and DFT for Zn2O2(1−x) is even more significant - DFTB geometry

optimizations take approximately five days, whereas the DFT calculations take nearly 18

days (more than 3 times longer than DFTB). As mentioned previously, larger systems

such as ZnO (which contain more electrons), scale more favorably with DFTB, resulting in

speedups that can be orders of magnitude faster than conventional DFT methods.
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Figure 7.10: Comparison of DFT and DFTB total wall times for geometry optimization of
all SiC and ZnO configurations. The DFTB calculations used the SKfIV and znorg-0-1 SK
files for SiC and ZnO, respectively.

7.5 Conclusion

In closing, we have interfaced DFTB with the CASM software package for the first

time to enable routine and efficient calculations of formation energies and convex hulls. Our

extensive calculations show that DFTB can be used as an efficient screening tool to com-

pute the numerous formation energies (and convex hull if it exists) of complex materials.

To highlight the efficiency and accuracy of our approach, we calculated and compared the

formation energies of SiC and ZnO with both DFT and DFTB. We find that the DFTB

approach enables extremely efficient calculations of formation energies in a completely un-

biased manner to predict low-lying metastable phases over the entire composition space. By
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comparing the convex hull/formation energy from both approaches, we found that DFTB

gives similar trends as the DFT calculations. Finally, we performed an extensive bench-

mark of the computational timings for both DFT and DFTB and found that the DFTB

calculations can be an order of magnitude faster (larger systems give even higher compu-

tational efficiency). Moreover, we show that DFTB gives accurate results and can be a

computationally cheaper alternative to DFT. In summary, our DFTB+CASM implemen-

tation allows for an efficient exploration (up to an order of magnitude faster than DFT)

of formation energies and convex hulls, which researchers can use to routinely probe other

complex systems.
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Chapter 8

GPU-Enhanced DFTB

Metadynamics for Efficiently

Predicting Free Energies of

Biochemical Systems

This chapter describes the free energy surfaces (FES) of alanine dipeptide and

remdesivir calculated using DFTB and classical force field. We perform large-scale metady-

namics calculations on the Azure cloud to evaluate FES. To overcome the limitation associ-

ated with the classical approach in modeling biochemical systems, we use the quantum-based

DFTB approach. Employing GPU acceleration, we showed that the GPU-DFTB can be

used as a highly efficient and effective (more accurate than Amber) method in capturing

the quantum interactions at the atomic level. We collaborated with Dr. Giulia Palermo’s
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group at the University of California, Riverside, to perform the classical Amber calcula-

tions of remdesivir. Prof. Giulia’s group wrote the Amber calculations section (8.3.1) and

performed the classical calculations for remdesivir. This work is published as an article in

the journal Molecules, where the complete research is provided. [5]

8.1 Introduction

Molecular dynamics (MD) simulations are used to study a wide range of dynamic

atomistic effects, including free energetics of chemical processes [279–281], protein fold-

ing [282,283], self-assembly [284], nucleation [285–287], glass formation [288,289], and chem-

ical dynamics in solutions at interfaces [290]. The relevant physical processes in these studies

are often rare events where a property of interest occurs on a time scale not accessible via

simulation (within a reasonable amount of time) due to the presence of a large energy barrier

separating local minima along the free-energy landscape. This well-recognized limitation

of MD has led to the development of metadynamics approaches [291, 292] to enhance the

sampling of free-energy states and the rare events that allow the crossing of very high free-

energy barriers [293]. Metadynamics is often applied in conjunction with classical molecular

dynamics, where the atomistic interactions are approximated by classical force fields that

are predetermined functions of the atomic coordinates.

When coupled with metadynamics, classical force field simulations of large systems

can be used to estimate the structure and thermodynamics of relatively complex chemicals

and materials. However, classical force fields can be inaccurate [281] and fail to capture the

quantum interactions at the electronic level. For example, chemical reactions in which bonds
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are broken/formed cannot be directly simulated using the most common force fields [294,

295]. Additionally, force fields are fitted to experimental data under specific conditions,

which makes their transferability to other situations challenging [296,297]. To remedy these

issues, ab initio metadynamics generated from density functional theory (DFT) calculations

can be used to accurately capture bond breaking and formation in various chemical dynamics

processes. In DFT-based metadynamics, interatomic forces are computed on the fly [298,

299], leading to more computationally demanding calculations than classical metadynamics

simulations. Moreover, the enormous computational cost associated with the DFT sampling

of free energies restricts its applicability to relatively small chemical systems (less than

20 atoms) [300]. A promising alternative is the use of semiempirical methods such as

density functional tight binding (DFTB), which can serve as a bridge between (efficient

but inaccurate) MD and (costly but accurate) DFT calculations. In previous studies, our

group and others have used DFTB calculations to gain computational speedups of up to

2–3 orders of magnitude compared with those of conventional DFT calculations [103, 219–

221,224,260,301–303].

In a previous work [221], we developed a massively parallelized heterogeneous

CPU+GPU approach for carrying out large-scale DFTB MD simulations (2 ps) of an entire

explicitly solvated protein (HIV protease) for the first time. Building on our experience

with GPU-enhanced DFTB simulations of large biochemical systems, we now apply these

techniques to long-term metadynamics simulations (10 ns). Because the computational

bottleneck in metadynamics simulations is the diagonalization of the Hamiltonian matrix

(which is performed several times during a single molecular dynamics trajectory) [221],
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many of our GPU-acceleration techniques can be harnessed for these calculations. To further

accelerate our metadynamics calculations, we used massively parallelized cloud computing,

which has recently emerged as a new computational platform for running large, complex

electronic structure calculations. We first validate our approach by calculating the free-

energy surface of alanine dipeptide (ADP), a chemical system typically used as a reference

standard in the scientific literature for benchmarking metadynamics algorithms. Our GPU-

based DFTB calculations are compared against the results obtained from classical force

fields and hybrid DFT (PBE0) methods (the latter is the most accurate benchmark of ADP

to date). Finally, to further extend our GPU-enhanced DFTB approach, we also carried

out a 10 ns metadynamics simulation of remdesivir, which is prohibitively out of reach for

routine DFT-based metadynamics calculations. Based on our benchmark tests, analyses,

and extensions to large biochemical systems, we highlight the use of our GPU-based DFTB

approach for accurately and efficiently predicting the free-energy surfaces/thermodynamics

of large biochemical systems.
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8.2 Theory and Methodology

8.2.1 DFTB Formalism

We briefly discuss the DFTB formalism in this section since it is used extensively to

calculate free-energy surfaces/thermodynamics of biochemical systems in this study. Specif-

ically, we used the third-order expansion of the Kohn–Sham (KS) DFT energy around a

reference density, which is commonly referred to as DFTB3. To derive the DFTB3 total

energy, the DFT total energy expression [254] is chosen as the starting point, which is given

by [260]

E[ρ(r)] = T [ρ(r)] + Eext + EH + Enn + Exc[ρ(r)], (8.1)

where T is the kinetic energy of the electrons, Eext is the electron–nuclei interaction energy,

EH is the mean-field (Hartree) energy, Enn is the interaction energy of the nuclei, and Exc

is the exchange-correlation (XC) energy.

To obtain the expression of the DFTB3 total energy, a Taylor series expansion of

Equation (8.1) around the reference density, ρ
0(r), is carried out up to third order in the

density fluctuations, δρ(r). The reference density is constructed as a superposition of atomic

densities ρ
0
A(r) on neutral atom A, i.e., ρ

0(r) = ∑
A

ρ
0
A(r). Substituting ρ(r) = ρ0(r)+ δρ(r)

into Equation (8.1) and invoking a minimal basis set with a monopole expansion (among

other approximations) [301], we obtain the DFTB3 total energy given as

EDFTB3 =

occ

∑
i

⟨ψi∣ Ĥ0 ∣ψi⟩ +
1

2

M

∑
AB

∆qA∆qBγ
h
AB +

1

3

M

∑
AB

∆q
2
A∆qBΓAB +

1

2

M

∑
AB

V
AB
rep

= EBS + Eγ + EΓ + Erep.

(8.2)

The second, third, and fourth summations in Equation (8.2) run over the number of atoms,
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M, in the system. The first term, EBS, in Equation (8.2) is a sum over occupied orbital

energies and corresponds to the band-structure energy. It can be obtained from the diag-

onalization of the non-self-consistent DFTB Hamiltonian Ĥ
0
, whose matrix elements are

given by [304]:

H
0
µν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϵ
free atom
µ , if µ = ν

⟨ϕµ∣ T̂ + νeff[ρA0 + ρ
B
0 ] ∣ϕν⟩ , if µ ∈ A, ν ∈ B, A ≠ B

0, if A = B, µ ≠ ν

(8.3)

where ϕµ and ϕν form a minimal Slater-type atomic basis, with µ and ν representing the

indices of the valence atomic basis function associated with atoms A and B, respectively.

In Equation (8.3), T̂ is the kinetic energy operator, ρ
I
0 is the reference density of neutral

atom I, and νeff is an effective Kohn–Sham potential. To obtain H
0
µν , we first calculate ϕµ,

ϕν , and ϵ
free atom
µ by solving a modified Kohn–Sham equation given by [305]:

[−1

2
▽

2
+ V

eff]ϕµ/ν(r) = ϵµ/νϕµ/ν(r), (8.4)

where V
eff

is the pseudoatomic potential, which includes the confinement potential [305].

Based on the form of Equation (8.3), only two-center elements are treated within

the DFTB framework, which are explicitly calculated using analytical functions. Specifi-

cally, the Hamiltonian and overlap matrix elements are stored in Slater–Koster (SK) files

for all pairs of chemical elements as a function of the distance between atomic pairs. As

such, no explicit integral evaluation occurs during the simulation, which significantly im-

proves the computational efficiency of the DFTB method [221, 306]. The second term in

Equation (8.2), Eγ , accounts for the charge fluctuation contributions to the energy, where
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γ
h
AB describes the effective on-site electron–electron interaction [305]. The third term, EΓ,

captures the changes in chemical hardness with respect to atomic charge, which improves

the description of localized charges [261, 307]. The last term, Erep, is a sum of pairwise

repulsive functions, which are obtained by fitting to the DFT calculations of reference

structures/molecules [256]. Similar to the Hamiltonian and overlap matrix elements, Erep

is pre-tabulated and stored in SK parameter files. By applying the variational principle, we

obtain the Kohn–Sham equations [301]:

M

∑
ν

cνi (Hµν − ϵiSµν) = 0, ν ∈ B and ∀A, µ ∈ A, i (8.5)

Sµν = ⟨ϕµ∣ϕν⟩, ∀µ ∈ A, ν ∈ B. (8.6)

The DFTB Hamiltonian, Hµν , in Equation (8.5) is given by:

Hµν = ⟨ϕµ∣ Ĥ0 ∣ϕν⟩

+ Sµν

M

∑
ξ

∆qξ (
1

2
(γAξ + γBξ) +

1

3
(∆qAΓAξ +∆qBΓBξ) +

∆qξ
6

(ΓξA + ΓξB)) , (8.7)

where µ ∈ A, ν ∈ B, and Sµν are the overlap matrix of the atomic orbitals; ∆qA/B = qA/B−

q
0
A/B is the net charge of atom A/B. The summation in the second term of Equation (8.7)

is performed over the number of atoms, M, in the system, and γAB is an analytical function

of the interatomic distance. Because the atomic charges depend on the one-particle wave

functions, ϕi, Equation (8.5) must be iteratively solved by repeatedly diagonalizing the

updated Hamiltonian until self-consistency is reached. This particular step is typically per-

formed numerous times during a DFTB-MD simulation and accounts for 90–95% of the total

wall time [308]. To overcome this computational bottleneck, we previously implemented a

GPU-enabled eigensolver [221] to efficiently diagonalize the Hamiltonian in Equation (8.5).
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8.2.2 Hamiltonian Diagonalization

As discussed in the previous section, the primary bottleneck in DFTB-based MD

simulations is the diagonalization of the Hamiltonian matrix in Equation (8.7), which is

typically performed numerous times along an MD trajectory [221]. The Hamiltonian diag-

onalization can be classified as a generalized symmetric definite eigenvalue problem of the

form:

A ⋅ x = λB ⋅ x, (8.8)

where A and B are real and symmetric matrices, respectively; B is positive definitive; λ is

the eigenvalue; and x is the eigenvector. Applying a Cholesky factorization on matrix B

(B = L ⋅ LT
, where L is a lower triangular matrix), Equation (8.8) can easily be reduced

to a standard symmetric eigenvalue problem (C ⋅ y = λy, where C = L
−1
AL

-T
and y =

L
T
x), which facilitates Hamiltonian diagonalization. Standard diagonalization routines

can then be employed to solve the standard symmetric eigenvalue problem to obtain the

eigenvalues and eigenvectors. In our previous study, we implemented GPU enhancements

for the QR, Divide-And-Conquer, and RelativelyRoubust diagonalization routines [309] in

an older version of the DFTB+ code [221]. In the DFTB v19.1 code [308], only the Divide-

And-Conquer eigensolver routine is enhanced with GPU parallelization via the MAGMA

library [310]. Since this particular routine is extensively used during the metadynamics

simulations in our study (via Hamiltonian diagonalization, which occurs numerous times in

each MD trajectory), we briefly review this routine in the following section.
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8.2.3 Divide-And-Conquer

The Divide-And-Conquer eigensolver is based on recursively breaking down a prob-

lem into two or more sub-problems, which are subsequently solved to obtain a solution to

the original problem [221]. This algorithm takes advantage of deflation [311], which occurs

when an eigenpair of a submatrix of a tridiagonal matrix is an eigenpair of a larger matrix.

After Equation (8.8) is reduced to a standard symmetric eigenvalue problem of the form

C ⋅ y = λy, the matrix C is reduced to a block-tridiagonal matrix, T:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

T1 0 0 0

β 0 0

0 0 β

0 0 0 T2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (8.9)

The Divide-And-Conquer approach uses the fact that a block-tridiagonal matrix is very

close to a block-diagonal matrix [311], T̃, having the following form:

T̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

T̃1 0 0 0

0 0 0

0 0 0

0 0 0 T̃2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (8.10)
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Because of its block-diagonal form, the eigenvalues and eigenvectors of the full matrix T̃ can

be obtained from diagonalizing T̃1 and T̃2; as such, solving these two smaller problems is

almost always faster than solving the original problem. First, the block-tridiagonal matrix,

T, is written as a block diagonal matrix, T̃, plus a correction, C, i.e.,

T = T̃ + C (8.11)

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

T̃1 0 0 0

0 0 0

0 0 0

0 0 0 T̃2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 β β 0 0

0 0 β β 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (8.12)

The eigenvalues and eigenvectors of T̃1 and T̃2 are subsequently calculated by recursively

calling the Divide-And-Conquer algorithm. In the last step, the eigenvalues and eigenvectors

of the original matrix T are built.

The Divide-And-Conquer algorithm scales as O(n3) [312], where n is the matrix

dimension. The steps used in the Divide-And-Conquer eigensolver are summarized in the

following algorithm flowchart. [311]
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Algorithm 1: The tridiagonal Divide-And-Conquer algorithm.

For a real symmetric tridiagonal matrix T ∈ Rn×n
, this algorithm computes the

spectral decomposition of T = QΛQ
T
, where Λ is a diagonal matrix of eigenvalues

and Q is an orthogonal matrix.

if T is 1 × 1 then

return Λ = T and Q = 1

else

Partition T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 0

0 T2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ρuu
T

Use T1 to obtain Q1 and Λ1 as output

Use T2 to obtain Q2 and Λ2 as output

Construct D + ρvv
T
from Λ1, Λ2, Q1, and Q2

Find the eigenvalues, Λ, and eigenvectors, Q
′
, of D + ρvv

T

Construct Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1 0

0 Q2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅ Q′
, which are the eigenvectors of T

return Λ and Q

8.2.4 Metadynamics

Metadynamics is an accelerated sampling method that can be used to explore the

free-energy landscape of a system as a function of collective variables (CVs) [291]. Within

this formalism, a history-dependent bias potential composed of Gaussian functions is added

to the Hamiltonian of the system. These external potentials “fill” the underlying free-

energy basins, thus enabling an efficient exploration of the free-energy landscape. In well-

tempered metadynamics (WT-MetaD) simulations, the Gaussian height is decreased during
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the simulation, which avoids overfilling the free-energy basins and ensures convergence of

the final bias potential to the actual free energy (within a constant) [292, 313]. As such,

WT-MetaD simulations address the convergence problems associated with conventional

metadynamics and allow the exploration of physically relevant regions of conformational

space [314]. The WT-MetaD bias potential VB(s, t) at time t is constructed from the sum

of Gaussian “hills” [292]:

VB(s, t) =
t
′
<t

∑
t′=τ,2τ,...

W exp [−βVB(s, t
′)

γ ] exp [−∑
i

(si − si(t′))2

2σ2i
] , (8.13)

whereW is the initial height of the bias potential, τ is the time between deposited Gaussians,

β = (kBT )−1 (where kB and T are the Boltzmann constant and temperature, respectively),

γ is the bias factor, and σi is the width of the Gaussians for the ith CV in the set, s, of

collective variables. The first exponential term in Equation (8.13) decreases the height of

the deposited Gaussians where previous bias potentials had been added. This reduction

in the Gaussian height reduces the error and avoids exploring high free-energy states that

are thermodynamically irrelevant [315]. The bias factor γ determines the rate at which

the magnitude of the newly added potential decreases; a lower bias factor leads to a faster

decrease in the bias potential. The last exponential is a product of Gaussians in the direction

of the i
th

CV with width σi and centered at the CV value at time t
′
. Using this approach,

the system’s dynamics are enhanced, and different conformations are explored by adding

an extra force (potential) to the system. The additional bias force for the i
th

atom is given

by [315]:

F
B
i (t) =

∂VB(s, t)
∂s

»»»»»»»»s=s(t)
∂s(r)
∂ri

»»»»»»»»r=r(t)
. (8.14)
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In Equation (8.14), VB is the bias potential, s is a set of collective variables, r contains the

position vector of all atoms, and ri is the position vector of the i
th

atom. If the confor-

mational space is sampled for a sufficiently long simulation time, the free-energy landscape

over CV(F (s)) is obtained from the bias potential using the following expression [292]:

lim
t→∞

VB(s, t) = −
(γ − 1)
γ F (s). (8.15)

8.3 Computational Details

The free energy, potential energy, and entropy landscapes of ADP and remdesivir

were calculated using the GROMACS [316] and DFTB+ [308] software programs for clas-

sical and quantum metadynamics simulations, respectively. Both the classical and DFTB

calculations were performed on a single remdesivir molecule without any explicit or implicit

solvent. The following sections provide the detailed settings and parameters used in our

study for each of these approaches.

8.3.1 Amber Calculations

All-atom molecular dynamics simulations for the remdesivir molecule were per-

formed with the Amber ff19SB force field [183] and generalized Amber force field (GAFF) [317]

parameters via AntechAmber to collect an overall ensemble with a 2 µs sampling. It

is important to note that although classical force fields are parameterized and validated

under explicit-solvent conditions, they are routinely used in calculations performed in

vacuo [318–320]. Charge parameters for remdesivir were assigned using a restrained elec-

trostatic potential (RESP) [321] charge in vacuo. The structure of remdesivir was obtained
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from the Protein Data Bank (PDB ID: 7BV2). The remdesivir structure was first optimized

at the DFT/B3LYP/6-31G(d,p) level of theory using Gaussian 09 [135], and the RESP

charges were calculated. All bond lengths involving hydrogen atoms were constrained using

the SHAKE algorithm. Temperature control (300 K) was performed via Langevin dynam-

ics [322] with a collision frequency of γ = 1 ps. The system was then subjected to energy

minimization. The system was further heated from 0 to 100 K in a canonical ensemble

(NVT) by running two simulations of 5 ps each and imposing position restraints of 100 kJ

mol
−1

Å
−2
. The temperature was further increased to 200 K in ≈100 ps of MD simulations

in the NVT ensemble while reducing the restraint to 25 kJ mol
−1

Å
−2
. Subsequently, all

restraints were released, and the temperature of the system was raised to 300 K in a single

NVT simulation of 500 ps. After ≈1.1 ns of equilibration, ≈10 ns of NVT runs were carried

out. All classical MD simulations were performed with the GPU-enhanced version of AM-

BER 20 [323]. The well-equilibrated system was used as starting point for the subsequent

well-tempered (WT) metadynamics [292] simulations.

A structural assessment of remdesivir was performed using metadynamics sim-

ulations, which determined the conformational preferences of the dihedral angles in the

main scaffold. Gaussian hills with an initial height of 1.2 kJ mol
−1

and a hill width of

0.35 kJ mol
−1

were applied to the system. In this WT scheme, Gaussian functions were

rescaled with a bias factor of 10. The temperature was kept constant by a V-rescale ther-

mostat (NVT step) with a coupling constant of τ = 0.1 ps. The Lincs [324, 325] method

was applied to constrain covalent bond lengths, allowing an integration step of 2 fs. The

GROMACS 2019.6 [316] software package interfaced with the PLUMED plugin package
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2.6.4 [326] was employed, and the “sum hills” tool from the PLUMED package was used to

compute the free-energy surfaces.

8.3.2 DFTB calculations

All DFTB calculations in this study utilized high-performance computing hard-

ware (40 Intel Xeon Platinum 8168 CPUs and 8 NVIDIA Volta V100 GPUs) executed on

virtual machines (VMs) from Microsoft Azure cloud computing resources. Using the high-

performance computing container maker (HPCCM) [327], an open-source tool for deploying

the HPC components into container images, we created a docker image on the Azure cloud

for DFTB v19.1 with the required libraries and dependencies (Intel MKL, Open MPI, Cuda,

PLUMED v2.6 [326], and MAGMA v2.5.3 [310]). As such, this study also demonstrates the

viability and readiness of cloud computing for high-performance computing workloads for

first-principles computational approaches [328,329]. In the present study, we used the self-

consistent-charge formulation of DFTB (SCC-DFTB) in its third-order scheme (DFTB3),

which includes the third-order term in the DFT energy expansion around the reference

density [261]. We used the 3ob-3-1 Slater–Koster parameter set and its corresponding Hub-

bard derivative parameters, which have been previously shown to work well for biochemical

systems [330–332]. We included DFT-D3 dispersion effects [333,334] to accurately describe

the London dispersion interactions in these biochemical systems. All the initial geometries

for our metadynamics calculations were relaxed with nonperiodic boundary conditions (i.e.,

a cluster geometry), such that all the forces were less than 0.04 eV Å
−1
. All the DFTB

calculations were performed without any implicit or explicit solvent. All subsequent meta-

dynamics calculations were performed after running an NVT equilibration for 2 ps. For all
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the metadynamics runs, the temperature in the NVT ensemble (T = 300 k) was controlled

using a Nose–Hoover thermostat [335,336]. Metadynamics calculations were performed with

the PLUMED code [326] patched with DFTB+ [308]. All of our DFTB-based MD simula-

tions used a time step of 1.0 fs, and all metadynamics calculations were carried out until

the free energy converged with respect to each CV. In our metadynamics calculations, the

height and width of the Gaussian hills were set to 1.2 and 0.35 kJ mol
−1
, respectively. The

deposition rate of the Gaussian hills was 500 MD steps, and a bias factor of 10 was used.

Finally, we used the “sum hills” tool in the PLUMED package to compute the free-energy

surfaces. To obtain the potential energy/entropy surfaces, we calculated the local average of

the internal energy computed on a (ϕ, ψ) grid using our in-house pandas-based [337] python

scripts. To smoothen the noise in our energy/entropy surfaces for visualization purposes,

we used a Gaussian filter.

8.4 Results and Discussion

8.4.1 Timing Benchmarks

To evaluate the computational speedup gained from our heterogeneous CPU+GPU

DFTB metadynamics calculations, we benchmarked the timings for carrying out eight SCC

iterations of the first MD step on protease (PDB ID: 6LU7), which consists of 5,029 atoms.

Table 8.1 compares the performance of various combinations of CPUs (Intel Xeon Platinum

8168) and GPUs (NVIDIA Volta V100) for performing eight SCC steps using the Divide-

And-Conquer eigensolver in DFTB+. As shown in Table 8.1, the introduction of GPUs

provides a significant speedup of nearly 140%. While this speedup is only for eight SCC
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steps in a single MD step, this improvement scales exponentially for full MD calculations

because multiple SCC steps are performed during each MD step. It is also worth mentioning

that increasing the number of GPU cores from two to four did not enhance performance.

One possible reason is the steep communication overhead associated with data transfer

from the CPU to GPU, which adversely affected computational performance. Moreover,

the matrix dimension is “only” 12,642 × 12,642, which is too small for effective multi-GPU

scaling. It is also interesting to note that increasing the number of CPUs from four to eight

did not increase performance. One of the reasons for this is Amdahl’s law [338], which

limits the scaling based on the dimension of the matrices being solved (which, in turn,

depends on the size of the molecular system studied). Based on our benchmark timings

(Table 8.1), a hardware configuration of two CPUs and two GPUs gave the best timings

for calculations on protease 6LU7. We also performed similar benchmarks with both ADP

and remdesivir and found that two CPUs and two GPUs also provided the most optimal

hardware configuration for efficient metadynamics simulations.
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Table 8.1: Comparison of timings for various hardware configurations for carrying out 8
SCC iterations on protease 6LU7.

Hardware Configurations
Wall Clock (min)

Number of CPUs Number of GPUs

40 4 23.43

20 4 7.74

10 4 7.98

8 4 7.89

4 4 5.59

8 2 5.87

4 2 5.17

2 2 3.89

8 1 6.05

4 1 3.95

2 1 3.93

1 1 32.45

8 0 14.74

1 0 59.09
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8.4.2 Metadynamics Benchmarks on Alanine Dipeptide

To assess the efficiency and accuracy of our DFTB-based metadynamics calcula-

tions, we first performed a benchmark analysis with alanine dipeptide (ADP). In the scien-

tific literature, ADP is frequently used as the archetypal system to evaluate the performance

of various enhanced sampling methods, including, for example, the extended harmonic su-

perposition approach [339], replica exchange solute tempering [340], string methods [341],

as well as numerous metadynamics approaches [292, 342, 343]. The most accurate first-

principles calculation of the free-energy surface of ADP to date is an ab initio molecular

dynamics (AIMD) simulation at the PBE0 level of theory by de Pablo et al. using the

adaptive biasing force method [300]. Two dihedral angles, ϕ and ψ, shown in Figure 8.1,

are chosen as the collective variables (CVs) and are used to describe the thermodynamics

of ADP. Using these two dihedral angles as CVs, we were able to identify three different

minima in a Ramachandran plot, which describes the peptide’s secondary structure. The

first minimum, denoted as β, is located at (ϕ, ψ) = (−2.5, −2.5) radians and shows an

almost-planar geometry. The second and third minima (located at (ϕ, ψ) = (−1.5, 1.2) and

(1.0, −1.2) radians, respectively) are stabilized by an intramolecular hydrogen bond and

are denoted as C7eq and C7ax, respectively.
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Figure 8.1: Molecular structures of three metastable minima: (a) β, (b) C7eq, and (c) C7ax

of alanine dipeptide, which is composed of 22 atoms. Each panel depicts the two dihedral
angles (ϕ, ψ) used to bias and analyze our calculations. The H, C, N, and O atoms are
shown in white, cyan, blue, and red, respectively.

Figure 8.2 depicts the FES of the alanine dipeptide projected onto the ϕ and ψ

dihedral angles obtained from well-tempered metadynamics simulations at 300 K. Figure 8.2

compares the FES of ADP obtained with the Amber99sb classical force field (Figure 8.2a),

DFT at the PBE0 level of theory (Figure 8.2b), and DFTB3 (Figure 8.2c). The data used

to plot Figure 8.2a,b were taken from Ref. [ [300]]. As described in Ref. [ [300]], there are

clear differences between the DFT-PBE0 and classical force fields. These differences in the

FES are distinctly visible near the maximum located at (ϕ, ψ) = (2.3, 1.2) radians in the

Ramachandran plot, which is more pronounced in the AIMD calculations. In addition, the

Amber99sb force field predicts a significantly larger barrier that spans the entirety of ψ at

ϕ = 2.2 radians, which restricts conformational transitions across the dihedral angle.

In contrast with the classical force field results, the FESs obtained with DFT-PBE0

and DFTB3 (Figure 8.2) have the same general morphology and show some similar trends.

In particular, both DFT-PBE0 and DFTB3 predict the same local minima regions on the

Ramachandran plots (the β, C7eq, and C7ax local minima/metastable states are indicated by

the ●, ■, and ▼ markers, respectively, in Figure 8.2). Moreover, DFT-PBE0 and DFTB3
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predict the same maxima regions on the FES, which are located at approximately ϕ = 0

radians. Although morphologically similar, the DFT-PBE0 and DFTB3 FESs do exhibit

some differences. DFTB3 predicts a much smaller barrier that spans the entirety of ψ at

ϕ = 2 radians, likely allowing conformational transitions across the dihedral angle. The

most noticeable discrepancies between the DFTB3 and DFT-PBE0 FESs appear at the

center of the plots at (ϕ = 0, ψ = 0) radians. The DFTB3 plot shows a maximum near (0,

0) radians that is surrounded by two valleys constituting natural pathways between the C7eq

and C7ax minima. The FES region near (0, 0) radians predicted by DFT-PBE0 shows no

distinct local maxima; nevertheless, both DFTB3 and DFT provide similar geometries for

the two C7ax and C7eq conformations. Moreover, our energies and geometries are consistent

with those in Ref. [ [344]], where the authors also used DFTB to calculate the FES of

ADP. Taken together, our results demonstrate that DFTB3 reproduces the main features

of the DFT-PBE0 FES (despite slight underestimation of barrier heights); most importantly,

finite-temperature configurational properties/energetics predicted by DFTB3 are typically

more accurate than those predicted by classical force fields.
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Figure 8.2: Two-dimensional free-energy surface of alanine dipeptide as a function of the
backbone dihedral angles, ϕ and ψ, obtained from well-tempered metadynamics simula-
tions using (a) classical MD with the Amber99sb force field, (b) DFT-PBE0 calculations,
and (c) SCC-DFTB3 calculations. The red, cyan, and yellow points in panels (a–c) repre-
sent the local minima obtained using the Amber99sb force field, PBE0, and SCC-DFTB3,
respectively. ●, ■, and ▼ denote the β, C7eq, and C7ax minima/metastable structures,
respectively.
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To understand the origin of the FES differences, we further investigated the con-

tribution of internal energy and entropy to the free energy in the MD simulations. The

change in free energy is given by

∆A(ϕ, ψ) = ∆U(ϕ, ψ) − T∆S(ϕ, ψ), (8.16)

where A is the free energy, U is the internal energy, T is the temperature, and S is the

entropy. The internal energy contribution to the FES was calculated using the local average

of the internal energy computed during the MD simulations on a (ϕ, ψ) grid. The entropic

term, T∆S, was calculated from the difference between the internal and free energy (i.e.,

∆A(ϕ, ψ) − ∆U(ϕ, ψ)). Figure 8.3 compares the potential energy surfaces obtained from

the various methods. The classical force field predicts a higher internal energy than the

DFT-PBE0 and DFTB3 methods in the region corresponding to ϕ = 2 radians, which

is also reflected in the FES in Figure 8.2. The differences between the DFT-PBE0 and

DFTB3 FESs are mirrored here, as the barriers predicted by the PBE0 functional are

higher than those calculated by DFTB3 in the region corresponding to ϕ = 2 radians. The

PES obtained from the classical MD, DFT-PBE0, and DFTB3 approaches differ most in

the low-probability states (i.e., states with high energy values): DFTB3 and DFT-PBE0

predict similar locations of the local minima, whereas the classical Amber force field gives

quite different results.
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Figure 8.3: Two-dimensional potential energy surface of alanine dipeptide as a function of
the backbone dihedral angles, ϕ and ψ, obtained from well-tempered metadynamics simu-
lations using (a) classical MD from the Amber99sb force field, (b) DFT-PBE0 calculations,
and (c) SCC-DFTB3 calculations. The red, cyan, and yellow points in panels (a–c) repre-
sent the local minima obtained using the Amber99sb force field, PBE0, and SCC-DFTB3,
respectively. ●, ■, and ▼ denote the positions of the local minima.
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The entropic contributions to the free energy also exhibit significant differences

(Figure S1). The classical force field predicts a low entropy compared with the DFT-PBE0

and DFTB3 approaches. The entropy maxima for all three cases are located near the same

locations as their corresponding FES and PES maxima. The DFTB3 plot in Figure S1c

shows that two of the minima correspond to C7eq and C7ax, while the third one located

at (ϕ, ψ) = (−0.5, −3) radians does not correspond to a minimum in the FES or a well-

defined structure. The classical force field severely underestimates the entropic contribution

to the free energy because entropy is not explicitly included in the fitting of the force field.

As such, our GPU-enhanced DFTB calculations support the recent claim [300] that the

entropic contribution is essential for obtaining an accurate description of large peptides,

especially for folding and unfolding processes. In particular, our DFTB3 calculations for

the FES/PES qualitatively agree with computationally intensive DFT-PBE0 benchmarks,

whereas classical force fields give significant errors.

Most importantly, the computational effort/time for our DFTB calculations is sig-

nificantly less than that of full DFT (while still being more accurate than classical MD).

As reported in a previous study by de Pablo et al. [300], the DFT-PBE0 calculations took

4.5 weeks to carry out a 1.5 ns metadynamics simulation. However, our DFTB metady-

namics simulation on ADP (22 atoms) took only ≈18 hours to obtain a 5 ns converged FES,

indicating that our GPU-DFTB approach is nearly two orders of magnitude faster than

DFT-PBE0. As noted previously, because the diagonalization algorithm scales as O(n3)

(where n is the matrix dimension), increasing the system size twice would incur an eight-fold

increase in computational cost. Therefore, a system size of ≈80 atoms is well within the
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capabilities of our GPU-enhanced DFTB approach (i.e., a metadynamics simulation of 10

ns would take ≈21 days), which cannot be easily obtained with DFT-based metadynamics.

8.4.3 Large-Scale GPU-DFTB Metadynamics Simulations of Remdesivir

With our GPU-enhanced DFTB approach validated against the high-level DFT-

PBE0 ADP benchmarks, we then proceeded with metadynamics calculations of remde-

sivir as a proof-of-concept example of a system that is impractical to calculate with full

DFT. Remdesivir has garnered recent attention in treating various ailments [345–347] and

is a structurally complex molecule consisting of three key fragments: an adenine analogue

base, a pentose sugar unit, and a phosphoramidate side chain. Broadly, predicting the

FES landscape of promising drug candidates can guide the calculation of binding affinities

and/or transition pathways to accelerate the drug design process. As such, the use of accu-

rate computational approaches to efficiently predict the FES (such as the GPU-enhanced

DFTB approach used here) can provide essential thermodynamic information for directed

structure-based drug design.

As mentioned previously, converged metadynamics calculations with full DFT on

large chemical systems such as remdesivir are impractical. More specifically, previous DFT-

PBE0 metadynamics calculations on the 22-atom ADP molecule required 4.5 continuous

weeks of computing time [300], and simulations on the 77-atom remdesivir molecule at that

same level of theory would take several months. As such, the remdesivir metadynamics

calculations in this study are excellent extensions of our GPU-enhanced DFTB capability

to highlight and test its computational limits. To compare our DFTB3 calculations against

those of conventional MD approaches, we also carried out classical Amber force field metady-
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namics calculations. Figure 8.4 shows the structure of remdesivir with the dihedral angles,

ϕ, and ψ, used to bias the metadynamics calculations.

Figure 8.4: Molecular structure of remdesivir, which is composed of 77 atoms. The two
dihedral angles, ϕ, and ψ, are used to bias and analyze our calculations. The H, C, N, O,
and P atoms are shown in white, cyan, blue, red, and yellow, respectively.

Before calculating the FES, we examined the convergence of our DFTB WT-

MetaD simulations by calculating the free energy as a function of time. In general, when

a metadynamics simulation is converged, the resulting FES profiles are similar within a

constant offset. Figure S2, in the Supporting Information, depicts the FES calculated

every 0.5 ns up to a total time of t = 10.0 ns. We found that the FES did not change

appreciably from t = 9.0 to 10.0 ns (other than a constant offset), which indicates that our

simulations fully converged. Figure S3 shows the one-dimensional free energies (extracted

from the full-dimensional metadynamics calculations) along the dihedral angles ϕ and ψ as

a function of simulation time. We found that the free-energy differences of -6.92 and -3.80

kJ/mol associated with the basins near ϕ = −2 and 2 radians and ψ = −2 and 1 radians,

respectively, did not change appreciably, which indicated the FES calculations converged.
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Figure 8.5 depicts the FES of remdesivir projected onto the ϕ and ψ dihedral

angles calculated from well-tempered metadynamics simulations at 300 K via the Amber-

ff19SB force field (Figure 8.5a) and DFTB3 (Figure 8.5b) approaches. The energy barriers

and transition pathways for each of the plots were computed using the nudged elastic band

(NEB) method as implemented in the Metadynminer package [348]. Using these two CVs

for remdesivir, we were able to identify two dominant minima in a Ramachandran plot (see

points A/B and C/D for the Amber force field and DFTB3 approaches, respectively), which

describe the metastable structures of the molecule.

There are clear differences between the DFTB3 and classical force field predictions

for the FES. The most discernible difference is near the maximum at (ϕ, ψ) = (2.8, 2.8)

radians in the Ramachandran plot, which is less pronounced in the DFTB3 calculations. In

addition, the Amber-ff19SB force field predicts a much larger barrier that spans the entirety

of ψ at ϕ = 1.4 radians, likely restricting conformational transitions across the dihedral an-

gle. In addition, the DFTB3 calculations predict a much smaller barrier that spans the

entirety of ψ at ϕ = 2 radians, likely allowing conformational transitions across the dihedral

angle. The local energy maximum predicted by DFTB3 near (ϕ, ψ) = (1.0, 1.5) radians

is surrounded by a valley that constitutes natural pathways between the two minima at

(ϕ, ψ) = (−0.50, 0.72) and (1.80, 0.72) radians. The region near ψ = 0.72 radians predicted

by DFTB3 is significantly different as there are no prominent maxima. Both DFTB3 and

Amber provide similar geometries for the dominant minima near (ϕ, ψ) = (−0.50, 0.72)

radians (points B and D in Figure 8.5). To assess the accuracy of the DFTB3 and Amber

calculations, we carried out single-point hybrid-DFT calculations on remdesivir geometries
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extracted from points A, B, C, and D to understand which of the two approaches are

consistent with the more-accurate DFT calculations. Table S1 in the Supporting Informa-

tion shows that the hybrid DFT calculations predict the molecular geometry at point C

to lie lower in energy than any of the geometries extracted from points A, B, or D. As

such, this test indicated that DFTB3, which predicts point C to be the global minimum

in Figure 8.5b, is consistent with full DFT (in contrast, the Amber calculations shown in

Figure 8.5a incorrectly predict the global minimum to lie at point A).
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Figure 8.5: Two-dimensional free-energy surface of remdesivir as a function of the backbone
dihedral angles, ϕ and ψ, obtained from well-tempered metadynamics simulations using
(a) classical MD from the Amber-ff19SB force field and (b) SCC-DFTB3 calculations.
Points A/B and C/D represent the dominant minima along the transition pathway (shown
as a dotted line) obtained from the classical Amber force field and DFTB3 calculations,
respectively.
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Similar to our analysis on ADP, we investigated the origin of the FES differences

by computing the contribution of internal energy and entropy for remdesivir. Figure 8.6

compares the potential energy surfaces obtained from the classical and DFTB3 approaches.

The classical force field predicts higher internal energy than the DFTB3 methods in the

entire region near ψ = 2 radians, which is also reflected in the FES in Figure 8.5. The

differences between the Amber and DFTB3 FES are mirrored here, as the barriers predicted

by the Amber calculations are higher than those predicted using DFTB3 in the region near

ψ = 2 radians. These differences are also observed for the global minimum, which the Amber

force field predicts to be less stable. Similar to ADP, the remdesivir PES predicted by Amber

and DFTB3 differ most in the low-probability states. Figure S4 shows the entropic energy

surfaces obtained using various methods. The classical force field predicts a higher entropy

than DFTB3 in the region corresponding to ϕ = 2 radians, which is also reflected in the

FES in Figure 8.5. The differences between the DFT-PBE0 and DFTB3 FES are mirrored

here, as the barriers predicted by the PBE0 functional are higher than those calculated at

the DFTB3 in the region near ϕ = 2 radians.
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Figure 8.6: Two-dimensional potential energy surface of remdesivir as a function of the
backbone dihedral angles, ϕ and ψ, obtained from well-tempered metadynamics simulations
using (a) classical MD from the Amber-ff19SB force field and (b) SCC-DFTB3 calculations.
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In summary, our results emphasize the importance of including quantum effects for

accurately probing the metadynamics of remdesivir. In particular, our DFTB3 and Amber

classical field calculations give qualitatively different predictions for the remdesivir FES. To

estimate the accuracy of these two computational approaches, we carried out benchmark

tests showing that the DFTB3 results are much more consistent with full DFT than the

Amber classical force field. The resulting errors in the Amber classical force field manifest

themselves in the FES by overestimating the internal energy contribution, particularly in the

high free-energy remdesivir configurations. Taken together, our results show that our GPU-

enhanced DFTB approach is a promising approach for accurately calculating the long-term

metadynamics of remdesivir, which cannot be easily carried out with full DFT calculations.

8.5 Conclusions

In conclusion, we have extended our GPU-enhanced DFTB approach to enable

efficient simulations of long-term metadynamics calculations of complex biochemical sys-

tems. Carrying out metadynamics calculations on these large biochemical systems is a

natural extension of our GPU-enhanced DFTB approach because the diagonalization of the

Hamiltonian matrix is performed several times during a single MD trajectory, which can

be accelerated with massively parallelized GPUs. To enable these large simulations, we

also carried out these calculations on Microsoft’s Azure cloud platform to demonstrate the

viability of cloud computing resources for quantum simulations.

After testing the performance of our GPU-DFTB approach on various hardware

configurations for optimal performance, we verified the accuracy of our computational ap-

138



proach by calculating the free-energy surfaces of alanine dipeptide, which is a standard

reference system for evaluating the performance/accuracy of enhanced sampling methods.

In contrast to classical force fields, which give qualitatively different results than DFT-PBE0

benchmarks, we found that our GPU-enhanced DFTB calculations are in good agreement

(with a much lower computational cost) with the computationally intensive DFT-PBE0

benchmarks. To further extend our GPU-enhanced DFTB approach, we also carried out a

10 ns metadynamics simulation of remdesivir, which is prohibitively out of reach for routine

DFT-based metadynamics calculations. To the best of our knowledge, this is the first time

that a quantum-based FES has been calculated for remdesivir for a relatively long sampling

time of 10 ns. We found the free-energy surfaces obtained from classical and DFTB3 cal-

culations differ significantly. Compared to DFTB3, the classical force field overestimates

the internal energy contribution of high free-energy states in remdesivir, which produces

dissimilar transition pathways that connect different minima on the free-energy surface.

Taken together, our calculations and benchmark studies indicate that GPU-enhanced DFTB

metadynamics is a promising technique for sampling the long-term thermodynamics of bio-

chemical systems that require more accuracy than classical force fields but cannot be easily

calculated with full DFT methods.
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Chapter 9

Harnessing Deep Neural Networks

to Solve Inverse Problems in

Quantum Dynamics:

Machine-Learned Predictions of

Time-Dependent Optimal Control

Fields

This chapter’s work resulted from collaborating with a former lab colleague, Xian

Wang. We contributed equally to designing the machine learning model to obtain the
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amplitude and frequency of the optimal electric field required for enabling desired electronic

transitions in quantum systems. Xian Wang independently designed the neural network for

directly predicting the electric field (section 9.4). All parts of this work are included for

completeness. This work is published in Physical Chemistry Chemical Physics journal [3].

9.1 Introduction

Inverse problems arise in many domains of quantum dynamics, with quantum opti-

mal control being one of the most well-known examples. In the context of molecular systems,

the field of quantum optimal control [349] seeks to steer a chemical system from a known

initial state to a desired target state via an external field, E(t), typically a tailored elec-

tromagnetic pulse. Predicting the explicit time-dependence of E(t) is central to providing

critical initial conditions for experiments across multiple chemical physics domains includ-

ing light-harvesting complexes [198, 350–353], quantum information processing [354–356],

laser cooling [357, 358], and ultracold physics [359, 360]. As such, the capability to fully

harness these optically-driven systems has tremendous potential to grow as we understand

how to control the excited-state quantum dynamical processes that govern these systems.

Although several approaches and algorithms have been proposed on optimizing

quantum control fields (each with their own purposes and advantages [361–364]), all of

these prior approaches are iterative in nature and require complex numerical methods to

solve for these optimal control fields. Due to the nonlinear nature of these dynamical

optimization problems, the number of iterations and floating point operations required

by these algorithms can be extremely large, leading to extremely slow convergence (even
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for relatively simple one-dimensional problems [363, 365]). Furthermore, when an optimal

control field for a new quantum mechanical system is desired, the entire iteration process has

to be re-started de novo since the algorithm has no prior “memory” of previously converged

cases. Because of these computational bottlenecks, we wondered whether machine learning,

particularly deep neural networks (DNNs), could offer a promising approach for obtaining

solutions to this complex, inverse problem in quantum dynamics.

In recent years, machine learning has emerged as a powerful tool in the physi-

cal sciences for finding patterns (particularly those that evade human intuition) in high-

dimensional data. While the majority of machine learning efforts in the chemical sci-

ences have focused on equilibrium properties such as thermodynamic, [366–368], struc-

tural, [369–372] and ground-state properties [373–375] (to name just a select few), consider-

ably less attention has focused on non-equilibrium dynamical processes, such as the explicitly

time-dependent optimal fields discussed previously. As such, the use of machine learning in

this largely unexplored application of quantum dynamics is a first step towards the design

of machine-learned, time-dependent fields for efficiently controlling directed electron/energy

transfer in these complex systems.

To this end, we present the first machine learning effort for solving time-dependent

quantum control problems in reduced-dimensional chemical systems. These dynamical time-

dependent systems pose a unique challenge for conventional machine learning techniques,

and we investigate a variety of approaches for predicting optimal control fields, E(t), in

these systems. The present paper is organized as follows: Section II briefly outlines the

basic concepts of quantum control and the requisite datasets used by the machine learning
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approaches in our work. Section III describes a neural network approach for predicting the

frequency and amplitude content of the power spectrum in the frequency domain (i.e., the

Fourier transform of E(t)), whereas Section IV provides a cross-correlation neural network

approach for directly predicting E(t) in the time domain. Finally, Section V concludes

with a brief discussion and perspective look at potential future applications of our machine

learning approach.

9.2 Theory and Computational Methodology

9.2.1 Brief Overview of Quantum Control

Since the main purpose of this work is to harness machine learning techniques for

controlling dynamic chemical systems, we only give a brief overview of quantum optimal

control and point the interested reader to several topical reviews in this area. [376–379]

For chemical systems, the quantum optimal control formalism commences with the time-

dependent Schrödinger equation for describing the temporal dynamics of nuclei, which, in

atomic units is given by

i
∂

∂t
ψ(x, t) = [− 1

2m

∂

∂x2
+ V (x) − µ(x)E(t)]ψ(x, t). (9.1)

In the equation above, x denotes the reduced coordinate along a chosen reaction path, [380–

383] m is the effective mass associated with the molecular motion along the reaction path,

[384,385] V (x) is the Born-Oppenheimer electronic energy of the molecule, µ(x) is the dipole

moment function, E(t) is the time-dependent external electric field, and ψ(x, t) represents

the probability amplitude for the motion of the nuclei along the reduced coordinate path.
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Both V (x) and µ(x) can be obtained from a standard quantum chemistry calculation by

carrying out a relaxed potential energy scan. [386,387]

With x and V (x) properly chosen/computed, Eq. (9.1) allows us to mathematically

answer the question: “Given an electric field E(t), how does an initial state, ψ0(x, t = 0),

evolve after some final time T has elapsed?” However, as mentioned in the Introduction,

the field of quantum optimal control is an inverse problem and instead seeks the answer to

the “inverse” question: “If we want to reach a desired final state ψN−1(x, t = T ) at time

T (after N − 1 propagation steps), what does the functional form of E(t) look like?” To

be more mathematically precise, quantum control seeks the functional form of an external

electric field, E(t), that maximizes the functional J [ψN−1, E] given by

J [ψN−1, E] =
»»»»»»»»
∫

∞

−∞
ψ
∗
f (x)ψN−1(x)dx

»»»»»»»»

2

− α∫
T

0
E(t)2dt, (9.2)

where ψf is a known desired final target wavefunction (given by the user), and ψN−1 is ob-

tained after applying N −1 successive propagation steps of the time-dependent Schrödinger

equation (i.e., Eq. 9.1). It should be noted that the first term in Eq. (9.2) is essentially a

measure of the similarity of the final target and the propagated wavefunction. The second

term in Eq. (9.2) is a fluence and acts as a penalty to prevent unphysically large values of

the electric field, where α is a positive constant (set to 0.001 in this work) to be chosen by

the user. Providing accurate and efficient answers to this inverse question is the ultimate

goal of the machine-learning approaches described in this work.
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9.2.2 Generation of Datasets Used for Machine Learning

To generate the data required for our machine learning approaches, we utilized the

NIC-CAGE (Novel Implementation of Constrained Calculations for Automated Generation

of Excitations) program developed in our previous work. [388] Given a potential, V (x),

this program iteratively calculates a numerical representation of E(t) that enables a ≈100%

transition probability between two desired electronic transitions (which, in this work, are

the ground and first-excited state, schematically shown in Figs. 9.1a and 9.1b. In simple

terms, our NIC-CAGE program can be seen as a black box that accepts potential functions,

V (x), as input and subsequently outputs optimal electric fields, E(t), corresponding to the

inputted potentials. It is important to note that the optimal electric field, E(t), can also be

represented in the frequency domain as a power spectrum, σ(ω), by applying a fast Fourier

transform (FFT) to E(t) (cf. Fig. 9.1c). In this work, we seamlessly switch between the

time and frequency domains to provide different machine learning approaches for predicting

optimal control fields in these dynamic systems.

While the NIC-CAGE program [388] can obtain transition probabilities with no-

table accuracy (typically over 97%), it can take hundreds of iterations (or longer) to converge

to the final electric field for each potential. Moreover, as mentioned in the Introduction,

when a new potential is inputted, the iteration process has to be re-started anew since the

program has no prior memory of previously converged cases. For these reasons, the predic-

tion of optimal electric fields for a general potential energy function is a natural application

for a data-driven solution. To generate a large dataset for our machine learning approaches,

a vast number of potentials were generated as input to the NIC-CAGE program to produce
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Figure 9.1: Schematic example of (a) a potential well, V (x), as a function of intermolecular
distance x. The horizontal dashed lines denote the energy levels of the ground and first
excited state, and their respective probability wavefunctions, ∣ψ(x)∣2, are depicted as blue
curves above the energy levels; (b) the optimal electric field E(t) required to excite the
transition between the ground and the first excited state; (c) the corresponding power
spectrum σ(ω) as a function of frequency ω, obtained from the fast Fourier transform of
E(t).

corresponding optimized electric fields. These potential-field pairs served as the training,

validation, and test sets for our DNNs.

Our complete dataset consisted of 36,118 randomly generated potential functions,

V (x), each of which was evaluated across 192 points in one dimension. For all of these

potential functions, the effective mass, m, and dipole moment, µ(x), were set to 1 and x,

respectively. To enable statistical flexibility in this dataset, each potential was constructed
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by the summation of three Gaussian functions with varying amplitudes, widths, and centers,

according to the following equation: [389]

V (x) = −
3

∑
i=1

Aiexp [−
(x − µi)2

2∆2
i

] (9.3)

Specifically, our dataset was created by randomly sampling each of the parameters with the

following ranges: amplitude A ∈ [1, 10], center µ ∈ [-3, 3], and width ∆ ∈ [0.5, 2]. As such,

each potential function can be fully described by nine randomly generated parameters. In

addition, we also visualized this parameter space and found that all parameters were evenly

distributed within the selected range, indicating that the randomly generated potential

functions sufficiently span this phase space (cf. Fig. 9.2). Each of the 36,118 potential

functions was inputted into the NIC-CAGE code, which resulted in an optimized electric

field evaluated across 30,000 points in the time domain.

Figure 9.2: Plot of all 36,118 potentials sampled in this work. The center region of the V (x)
space is densely packed and fully sampled, indicating that the full set of these potentials
sufficiently explores this phase space. The side regions of the figure are not filled by the
potential energy curves since the range of the Gaussian centers, µ, were intentionally kept
small to prevent the wavefunctions from spreading outside the x ∈ [-8.0, 8.0] range.
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Of the 36,118 potentials examined in this work 26,000 were used for the training

set, 5,000 were utilized for the validation set, and the remaining 5,118 potentials were

designated for the test set. We ensured that the number of potentials used in the training,

validation, and test sets were exactly the same for each training instance to ensure that the

results could be compared.

9.2.3 General Neural Network Architectures

We employed feedforward neural networks (FNNs) for this work due to their sim-

plicity as well as their ability to learn complicated mappings between input and target

spaces. The FNN architectures used here can be classified as a deep network architecture,

with the depth in each network arising from the stacking of multiple hidden layers. Each

hidden layer accepts output from the previous layer as input, and returns a non-linear ac-

tivation as the output. It is worth nothing that the predictive accuracy of the FNNs can

be sensitive to several key hyperparameters and training methods, such as the number of

hidden layers, the number of nodes in each layer, the learning rate, and the regularization

method. As such, multiple models and parameters were tested in this work (i.e., we also

tested convolutional neural networks but found that the best results were obtained with

FNNs), and we only present FNN architectures and parameters in Sections III and IV with

the best performance.
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9.3 Neural Networks for Predicting the Resonance Frequency

and Amplitude, σ(ω)

In this section, we describe our first machine learning approach, which utilizes

FNNs to predict the frequency and amplitude of the power spectrum, σ(ω), in the frequency

domain. As briefly mentioned in Section II. B., the power spectrum is obtained by a

standard numerical procedure in which a fast Fourier transform of a properly converged E(t)

is first computed, followed by taking its absolute value. It is worth mentioning that because

of the last absolute value operation, the phase of the original electric field is inherently lost

and, therefore, only the amplitude and frequency were predicted with our FNNs in this

section. To this end, we utilized two independent FNNs to separately learn the frequency

and amplitude, and a schematic of the FNN architecture used for both of these predictions

is shown in Fig. 9.3.
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Figure 9.3: Architecture of the FNN used to predict the amplitude and resonance frequency
of the power spectrum, σ(ω). The FNN starts with an input layer composed of 192 units
(which correspond to the potential, V (x), evaluated across 192 points), followed by four
hidden layers of various sizes. The output layer is composed of 1 unit to predict either the
amplitude or resonance frequency of σ(ω).

Table 9.1: Hyperparameters and settings of the FNNs used for predicting the amplitude
and frequency of the optimized E(t).

Output purpose Amplitude Frequency

Neural network structure Feedforward Feedforward

Activation ReLU ReLU

Learning rate 0.0001 0.0005

Loss function MSE MSE

Regularization L2 L2

Regularization coefficient 0.0001 0.0005

Mini-batch size 1024 1024

Number of hidden layers 4 4

Number of units in hidden layers 96, 64, 32, 16 96, 64, 32, 16
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Upon closer inspection of the original test set used in this work, we noticed that

66 of the optimal E(t) fields had extremely large amplitudes (i.e., these specific electric

fields were characterized by amplitudes that were an order of magnitude larger than the

average E(t) in the test set). Since electric fields with these large amplitudes are difficult

to construct in a realistic experiment, we eliminated these 66 data points (they account for

only 1.29% of the 5,118 data points), and we designated this dataset as our pruned test set.

The input for each of our independent FNNs was the potential V (x) (consisting of 192 data

points), whereas the output was the single value of the frequency or amplitude, as depicted

in the last step of Fig. 9.3. Both of these two FNNs were constructed and trained using a

Tensorflow [390] backend with GPU acceleration powered by NVIDIA CUDA libraries [391].

In each FNN model, all of the weight matrices were initialized with random values satisfying

a normal distribution, while all the biases were initialized to 0.001. We chose our loss

function based on the definition of the mean square error (MSE), given by the following

equation:

loss =
∑N

i=1(ytrue − ypred)2

N
(9.4)

where N is the mini-batch size, ytrue is the true frequency/amplitude of σ(ω) obtained from

the NIC-CAGE program, and ypred is the frequency/amplitude predicted by the machine

learning algorithm. An L2 regularization of the weights was applied to prevent overfitting,

and the built-in Adam optimizer was utilized. The training, validation, and test sets were

kept the same size, and after several tests, we found that the optimal learning rates and

regularization coefficients were different for these two FNNs, while all other optimal hyper-

parameters had the same values. Table 9.1 summarizes the optimal hyperparameters used
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in each of these FNNs.

Table 9.2: FNN metrics for predicting the amplitude and frequency, respectively.

Output Amplitude Frequency

Number of epochs for best performance ∼1000000 ∼1000000

Loss on original test set 509.1925 286.1925

R
2
for pruned test set 0.6036 0.9814

Fig. 9.4 depicts the results of our machine-learned amplitudes and frequencies.

The diagonal line in each plot represents a perfect match between the machine-learned

predictions and true values (obtained with 1,000,000 epochs). To further quantify this

performance, we computed a coefficient of determination (R2) for measuring the similarity

between ypred and ytrue:

R
2
= 1 −

∑N
i=1(ypred − ytrue)2

∑N
i=1(ypred − ŷpred)2

(9.5)

where N is the batch size, and ŷpred is the average of all the ypred values in the batch.

A perfect agreement between ypred and ytrue yields an R
2
value of 1. As visually shown

in Fig. 9.4 and from the R
2
values listed in Table 9.2, our machine learning approaches

were more accurate in predicting the resonance frequency compared to the amplitude. This

difference in performance suggests that the machine-learned mapping from the potential

to the amplitude is much more complicated than the mapping from the same potential to

the resonance frequency. More concretely, the frequency has a more clear/intuitive physical

meaning, which is equal to the energy difference between the ground- and first-excited state.

However, the amplitude is much more sensitive to the underlying shape of the potential,

V (x), and this sensitivity contributes to the error in predicting the amplitude with our
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neural network. This difference in predictive performance can also be seen by comparing

the figures of the R
2
values vs. the epoch number on the validation set. In particular, the R

2

values for predicting the frequency show a smooth progression, while that for the amplitude

fluctuates significantly as shown in Figs. 9.5c and 9.5d. We also investigated the sensitivity

of our results to the size of our training set and found that the accuracy of the machine-

learned predictions decreased with the training set size. Specifically, when the training set

was reduced to only 10,000 potentials, the R
2
values for predicting the resonance frequency

and amplitude in the same validation set decreased to 0.93 and 0.41, respectively. As such,

these statistics showed that a sufficiently large training set was necessary to enable accurate

machine-learned predictions for these optimal control fields.

We also explored the option of predicting the entire power spectrum instead of just

the primary resonance frequency and amplitude. Several attempts were made along those

lines, including reducing the size of the output to 800 rather than 15,000 (since the resonance

peaks typically had small frequencies), choosing a cross-entropy loss function instead of the

MSE, fixing the lineshape of the output to be a Gaussian or symmetric Lorentzian to reduce

the number of units (i.e., to 3) required in the output layer to predict the power spectrum,

etc. Unfortunately, all of these attempts failed in predicting the correct amplitude of the

power spectrum, although some of them were quite successful in predicting the resonance

frequency. We attribute these failures to the sharpness of the resonance peak in the power

spectrum. Due to the limited resolution inherent to the discrete σ(ω) data, each peak only

consisted of a few data points and, therefore, the linewidth was not well-resolved. In other

words, since the linewidth of the resonance peak in σ(ω) was inherently imprecise, the FNN
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was unable to converge to a proper mapping of the power spectrum. In addition, we also

tested one-dimensional convolutional neural networks (CNNs) for predicting the frequency

and the amplitude as well as the entire power spectrum. Unfortunately, the results obtained

with CNNs were less accurate than those obtained with the FNN approaches used here.

Because of these limitations, we investigated other FNN architectures to learn mappings

between V (x) and E(t) in the time domain. This is motivated by the fact that if E(t)

can be accurately predicted using FNNs in the time domain, σ(ω) could also be accurately

resolved (since σ(ω) is merely the Fourier transform of E(t)), and we discuss these strategies

in the next section.

Figure 9.4: Density plots of the machine-learned predicted vs. true (a) amplitudes and (b)
frequencies. The diagonal line in each plot represents a perfect match between the machine-
learned predictions and true values. Both plots were obtained with 1,000,000 epochs.
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Figure 9.5: Plot of loss vs. number of epochs for FNN predictions of (a) the amplitude and
(b) resonance frequency. R

2
values for the FNN-predicted (c) amplitude and (d) resonance

frequency. All plots were generated from the validation dataset.

9.4 Neural Networks for Directly Predicting the Electric Field,

E(t)

While Section III focused on predicting the power spectrum, σ(ω), in the frequency

domain, we now investigate whether the electric field in the time domain, E(t), can be

predicted with a machine learning approach. Predicting these dynamic fields as an explicit

function of time presents unique challenges for machine learning approaches. In particular,

while σ(ω) in the frequency domain contains no phase information, E(t) in the time domain

does contain an explicit phase dependence (cf. Fig. 9.1b) that requires additional care, which

we discuss in further detail below.
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To predict E(t) as an explicit function of time, we constructed an FNN with three

hidden layers, which was trained with the same GPU-accelerated Tensorflow [390] backend

and NVIDIA CUDA libraries [391] used in Section III. Our FNN, depicted in Fig. 9.6, was

designed such that the number of units increases as data flows towards the output layer.

Specifically, the input layer was composed of 192 units (which correspond to the potential,

V (x), evaluated across 192 points), followed by three hidden layers having 300, 500, and

750 units, respectively. The output layer, which outputs the electric field as a function of

time, was composed of 1,000 (or fewer) units. Similar to the FNN used in Section III, the

activation for both the input and hidden layers was chosen to be a ReLU function without

any leaky or bounded modification. Since the output array is expected to be sinusoidal with

a zero base, the activation of the output layer was chosen to be a tanh function to enable

the output of negative values. All of the weight matrices were initialized with random

values satisfying a normal distribution, while all the biases were initialized to 0.001. We

chose the same loss function (cf. Eq. (4)), L2 regularization, and Adam optimizer described

previously in Section III for our FNN. Based on several tests of our data, we found that a

regularization coefficient of 0.001 was optimal for balancing regression speed and overfitting.

For the specific case of excitations from the ground to the first-excited state, we

noticed that the optimal electric field, E(t), could be closely approximated with a sinu-

soidal function (with a single frequency and amplitude) regardless of the potential function

used. Because of this periodicity, the time-dependent trends in these electric fields could

be accurately captured by only considering a smaller portion of the entire periodic signal.

To this end, we only extracted 1,000 (or fewer) representative data points within the entire
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Figure 9.6: Architecture of the FNN used to predict the electric field, E(t). The FNN
starts with an input layer composed of 192 units (which correspond to the potential, V (x),
evaluated across 192 points), followed by three hidden layers of various sizes. The output
layer is composed of 1,000 (or fewer) units and is directly interfaced with a cross-correlation
algorithm to predict the final electric field, E(t).

30,000-point electric field for our output set. This simplification allowed us to train our

machine learning models more easily due to constraints in holding this large amount of

data in RAM, the immense computing time, and associated GPU resources.

In the same spirit of reducing the number of physically relevant parameters needed

for our machine-learning efforts, we also explored whether the transition probability was

sensitive to the specific phase factors or amplitudes directly obtained from the NIC-CAGE

code. To test the first assumption, we inputted several electric fields with different phase

shifts, φ (but having the same optimized frequency and amplitude that gives the desired

transition), as an initial guess into the NIC-CAGE code (cf. Fig. 9.7a). All of these phase-

shifted electric fields gave a transition probability close to unity (with the NIC-CAGE code

exiting immediately without further iterations), indicating that the transition probability

was not dependent on the phase. However, when we tested the second assumption by in-
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putting electric fields with different amplitudes as an initial guess into the NIC-CAGE code

(cf. Fig. 9.7b), we observed a completely different phenomenon. Specifically, all of these ini-

tial conditions resulted in several subsequent iterations that eventually reverted/converged

to the same optimal E(t) form (cf. Fig. 9.7c). Taken together, both of these benchmark

tests indicate that the optimal E(t) is insensitive to the phase but highly dependent on

the amplitude. As such, these tests allow us to construct a streamlined FNN using a cross-

correlation technique for predicting E(t) in the time domain (without having to directly

predict the phase factor since it has no physical effect on the dynamics), which we describe

in further detail below.

For the ground to first-excited state transitions examined in this work, each of the

optimal control fields, E(t), can be nearly characterized by a single amplitude, frequency,

and phase, φ. Since we showed previously that the transition probability is insensitive to

φ, a conventional neural network may be unable to learn any patterns that map between

V (x) and φ, since the phase is arbitrary and has no physical meaning. To sidestep this

difficulty, we used a cross-correlation approach to shift the predicted E(t) by a series of

different phase values. In essence, this generates multiple E(t) functions with exactly the

same frequency and amplitude but with a variety of different phases.
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To this end, 150 shift-matrices were constructed by shifting the identity matrix

along rows with a “roll” function. To more concretely illustrate how we automated these

phase shift operations in our machine learning approach, we denote E(t) as a row vector

given by,

E(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E1

E2

⋮

E999

E1000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T

(9.6)

Therefore, E(t) can be trivially written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E1

E2

⋮

E999

E1000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E1

E2

⋮

E999

E1000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T

⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 . . . 0 0

0 1 0 0

⋮ ⋱ ⋮

0 0 1 0

0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (9.7)
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By shifting the diagonal entry of the identity matrix, the phase of E(t) can be

“rolled” or shifted as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E1000

E1

E2

⋮

E999

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E1

E2

⋮

E999

E1000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T

⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 . . . 0 0

0 0 0 0

⋮ ⋱ ⋮

0 0 0 1

1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (9.8)

Using this approach, the predicted E(t) can be shifted along the time axis by 0 to 150

increments when multiplied by the matrix in Eq. 9.8. As such, each output array was

spanned to a set of 150 arrays with exactly the same frequency and amplitude, but with

different phases, φ. We also tested the accuracy of this approach by using a smaller number

of shift matrices but found that at least 100 of these arrays were needed to sufficiently

sample the entire phase space of φ ∈ [0, 2π] (i.e., each new array shifts the phase, φ, by at

least 2π/100, and 100 or more arrays were necessary to ensure that the phase within the

interval [0, 2π] was sufficiently represented to give accurate results). With these 150 shift

matrices in hand, the MSE loss was computed for each prediction, and when the phase of

the prediction matched that of the true E(t), the MSE loss was minimized. The weights

and biases of the neural network were then updated using a back-propagation algorithm

based on the minimum loss value. It is worth noting that our cross-correlation approach

was only used to train the neural network, and after the neural network was successfully

trained, the cross-correlation procedure was no longer needed to process/predict new data.
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Table 9.3: Hyperparameters and settings of the FNN used for predicting E(t) in the time
domain.

Neural network structure Feedforward

Activation
ReLU (hidden layers)

tanh (output layer)

Learning rate 0.0001

Loss function MSE

Regularization L2

Regularization coefficient 0.001

Mini-batch size 1024

Multiplicative pre-factor of E(t) 80

Maximum phase-shift in cross-correlation 150 increments

Table 9.4: FNN metrics for predicting E(t) in the time domain with the 600-, 800-, 1000-
output-layer-unit models.

Number of output layer units 600 800 1000

Number of epochs for best performance ∼30,000 ∼40,000 ∼50,000

Loss on original test set 25.0653 44.5876 68.2800

R
2
for amplitude on pruned test set 0.3702 0.2594 0.1485

R
2
for frequency on original test set 0.9550 0.9381 0.9370
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We optimized some of the hyperparameters used by our cross-correlation neural

network approach for the training set, and the optimal learning rate was chosen to be 0.0001.

A mini-batch of 1,024 input arrays was chosen from the training set for each training epoch,

and the training set was fully shuffled after each epoch. Since the electric fields outputted by

the NIC-CAGE program had amplitudes on the order of ∼ 0.01, all of the electric fields were

multiplied by 80 to avoid numeric underflows and allow the weights and biases to converge

faster in our machine learning algorithms. We chose a scaling factor of 80 to ensure that the

processed electric field would not exceed 1, since the tanh function used in our output layer

has a range of [-1, 1]. Table 9.3 summarizes our selection of hyperparameters and settings

used to predict E(t) in the time domain.
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To reduce the large RAM requirements and computational effort for our machine

learning algorithms, we reduced the number of units for predicting E(t) to 600 and 800

from our original 1000-output-layer-unit model. The number of hidden layer units were also

reduced to 300, 400, 500, and 300, 450, and 600, while the size of the input layer remained

the same. This reduction in the number of points had a negligible effect on predicting the

frequency of E(t), as shown in Figs. 9.8 a-c. In these plots, the predicted E(t) is shifted

with the proper phase to allow a more straightforward comparison. Both the frequency

and amplitude agree well, and these results show that our cross-correlation approach is

able to address the previous issues associated with the random phase of E(t). Similar to

the tests carried out in Section III, we also investigated the sensitivity of our results to

the size of our training set and found that the accuracy of the machine-learned predictions

decreased with the training set size. Specifically, when the training set was reduced to only

10,000 potentials, the R
2
values for predicting the resonance frequency and amplitude in

the same validation set decreased to 0.89 and -0.02, respectively. Similar to our findings

in Section III, these statistics showed that a sufficiently large training set was necessary

to enable accurate machine-learned predictions for these optimal control fields, even in the

time domain. Nevertheless, it is still worth noting that when the cross-correlated FNN

approach was applied to E(t) fields with large amplitudes (which were originally pruned

from the test set as discussed in Section III), the machine learning algorithm was able to

still accurately predict the resonance frequency, as shown in Fig. 9.8(d), which indicates the

robustness of this approach.
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To quantitatively demonstrate that the machine-learned and true E(t) are in ex-

cellent agreement, a fast Fourier transform was applied to both of these data sets. The

amplitude and frequency of σ(ω) were then compared for each data point in the validation

and test set. As before, we computed R
2
values (cf. Eq. 9.5) for each of our 600-, 800-, and

1000-output-layer-unit models, and all of these configurations showed similar R
2
statistics,

which are summarized in Table 9.4. The loss and R
2
of the training and validation sets

were recorded every 1,000 epochs. The figures in the Supplementary Information show that

the 1000-output-layer-unit DNN was sufficiently trained at ∼50,000 epochs, and further

training introduces overfitting (∼30,000 and ∼40,000 epochs were required for the 600- and

800-output-layer-unit DNN to reach a minimal loss). It is also worth mentioning that batch

normalization and dropout approaches (among others) are machine-learning techniques that

could also be used to prevent overfitting of the data; however, since we did not observe any

severe overfitting of our training set, we did not employ these techniques in our work. Never-

theless, the R
2
for predicting the frequency on the validation set converged to an impressive

∼0.95 value for all three models (cf. Supplementary Information), and both Figs. 9.8 and

D.2 show that reducing the number of units in the layers of our cross-correlation neural

network approach did not adversely affect its predictive performance.
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Figure 9.7: (a) Optimized electric field, E(t), with various phase shifts, φ. The blue data
points denote the optimized E(t) obtained directly from the NIC-CAGE code. The red
curve is the same E(t) with a phase shift of π/2, and the green curve is E(t) with a phase
shift of π. When each of these electric fields are used as initial guesses for propagating the
time-dependent Schrödinger equation, all of them gave a transition probability close to unity
(which shows that the transition probability is insensitive to the phase, φ). (b) Optimized
electric field, E(t), with various amplitudes. The blue data points denote the optimized
E(t) obtained from the NIC-CAGE code, and the red and green curves denote the same
E(t) with amplitudes multiplied by 2 and 0.5, respectively. When each of these electric
fields were used as initial guesses for time propagation, all of them reverted/converged
back to the E(t) with the original amplitude shown in panel (c), which indicates that the
transition probability depends critically on the electric field amplitude. (d) Power spectra,
σ(ω), of the various E(t) fields depicted in (a), showing that they coincide with each other,
as expected.
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Figure 9.8: Comparisons of true (red) and machine-learned predicted (blue) E(t) fields. The
electric fields correspond to the same potential, but with (a) 600, (b) 800, and (c) 1,000 units.
(d) True (red) and machine-learned (blue) E(t) for a different potential characterized by a
large amplitude. When the true E(t) has a much larger amplitude, the machine learning
algorithm is still able to accurately predict the resonance frequency but underestimates the
amplitude.
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Figure 9.9: Density plots of the predicted and true amplitude for the (a) 600-, (b) 800-
, and (c) 1000-output-layer-unit model, respectively. Density plots of the predicted and
true resonance frequency for the (d) 600-, (e) 800-, and (f) 1000-output-layer-unit model,
respectively. The diagonal line in each plot represents a perfect match between the machine-
learned predictions and true values.

In addition, we also investigated the effect of using only 2 hidden layers to predict

E(t) with 1,000 units. As shown in the Supplementary Information, the density plot ob-

tained with a 2-hidden-layer FNN was more sparse and spread out. Furthermore, the R
2

values for predicting the frequency on the validation set never exceeded 0.87, showing that

the 2-hidden-layer neural network underfitted the data (cf. Supplementary Information).
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On the other hand, we also recognized that increasing the number of hidden layers beyond

3 would possibly improve the accuracy of our neural network; however, this modification

would also incur an immense computational cost. Specifically, training our 3-hidden-layer

FNN to predict E(t) required ∼256 GB of RAM and 20 hours on high-performance GPUs.

Further training with additional layers would require even more memory and GPU time,

which we felt was impractical since we already obtained impressive R
2
values greater than

0.95 with our 3-hidden-layer FNN. As such, these benchmark configuration tests indicated

that the use of 3 hidden layers in our neural network was sufficient and practical for ac-

curate predictions. Most importantly, the density plots in Fig. D.2 show that both the

resonance frequencies and amplitudes predicted by our cross-correlation neural network ap-

proach demonstrate an impressive agreement with the brute-force (and computationally

expensive) quantum control results obtained with the NIC-CAGE program.

9.5 Conclusion

In conclusion, we have presented the first machine-learning effort for solving ex-

plicit time-dependent quantum control problems in reduced-dimensional chemical systems.

Using a variety of deep neural networks, we have shown that the prediction of optimal

control fields is an inverse problem that naturally lends itself to a machine-learning ap-

proach. Regarding efficiency, we have shown that our machine learning approach only

requires knowledge of the potential, V (x), to yield a reliable prediction of an optimal con-

trol field, E(t). In other words, a user can simply input a variety of potentials into our

neural network model to obtain optimal control fields without having to do a computa-
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tionally expensive time-dependent quantum control calculation. In terms of accuracy, we

have shown that deep neural networks can predict these optimal control fields within 96%

accuracy by directly learning the underlying patterns between V (x) and E(t).

While this work focused on reduced-dimensional quantum systems, we anticipate

that the machine-learning techniques explored in this work could be applied to other ap-

plications of increasing complexity. For example, we envision that some of the machine

learning tactics used here could serve as a first step towards solving more complex quan-

tum dynamics problems in higher dimensions. The use of reduced-dimensional techniques

to address full 3D quantum dynamics problems is similar in spirit to ongoing efforts that

use machine-learned, ground-state, 1D exchange-correlation functionals [389, 392] for full

three-dimensional chemical problems [393]. Finally, we also anticipate that the machine

learning techniques used here could be harnessed to predict optimal electric fields for other

higher-lying transitions, which are known to exhibit more complex patterns in the time

and frequency domains [388]. In particular, cross-correlation neural network approaches,

which were used to overcome problems associated with the random phase of E(t), could be

useful in (1) predicting optimal electric fields for other higher-energy excitations in the time

domain or (2) enabling the prediction of the full absorption/emission spectra of molecules

since the absorption spectra are merely the Fourier transform of E(t). Taken together,

these machine learning techniques show a promising path towards cost-effective statistical

approaches for designing control fields that enable desired transitions in quantum dynamical

systems.
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Chapter 10

Conclusions

We have performed large-scale quantum calculations via DFT and DFTB to eval-

uate the electronic, optical, and thermodynamic properties of various complex chemical,

biochemical, and material systems. Specifically, by integrating DFTB in CASM, we showed

that DFTB could be used as an alternative approach to DFT for calculating and pre-

screening formation energies and convex hulls. Finally, in the end, we showed that by using

hardware accelerators such as GPUs with DFTB, large-scale metadynamics calculations on

complex chemical systems could be performed in a relatively short timeframe.

In particular, Chapter 3 demonstrates the role of DFT calculations in character-

izing the transport properties in doped carbon nanotubes (CNTs). Specifically, using DFT

and theoretical calculations, we showed that doping CNTs with Cr atoms results in a high

density of states (DOS) near the Fermi level, which facilitates opening new transmission

pathways for electrons’ conduction resulting in enhanced conductivity. This study has im-

portant implications for the field of anisotropic conduction, which has garnered significant
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scientific and technological interests.

In chapter 4, we performed an extensive analysis of various range-separated DFT

methods along with the wavefunctions-based MP2, CCSD(T), and CCDSD(T)-F12 ap-

proaches for predicting the linear polarizability (α) and second hyperpolarizability (γ) of

π-conjugated streptocyanine oligomers. We found that the electronic ground states for sev-

eral streptocynanines are not closed-shell singlets (contrary to the previous studies on these

conjugated systems). Our new benchmark found that broken-symmetry LC-ωPBE ω=0.33

functional gives the most accurate results among various DFT methods for predicting both

α and γ.

In chapters 5 and 6, using time-dependent DFT calculations on peptides, we found

the electronic transitions that resulted in the experimentally observed UVCD spectra of

polyproline II and β-strand conformations. Our calculations revealed multitudes of elec-

tronic transitions governed by configurational interactions between multiple molecular or-

bitals transitions of comparable energy. We also showed that reproducing the CD spectra

of polyproline II and β-strand conformations requires the explicit consideration of water

molecules.

In chapter 7, we introduced DFTB to overcome the computational costs associated

with DFT calculations. Specifically, we interfaced DFTB with the CASM software package

to calculate the formation energies and convex hulls efficiently. Using SiC and ZnO as

representative examples, we show that DFTB gives accurate results and can be used as an

efficient computational approach for calculating and screening electronic properties.
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In chapter 8, we used the GPU-enhanced DFTB approach for the efficient pre-

diction of free energies of complex biochemical systems. Specifically, we showed that con-

verged free energy surfaces of complex systems could be accurately predicted/described at

the quantum level using the DFTB approach. Finally, in chapter 9, as an example of a

machine-learning application in accelerating quantum computation, we design the neural

network to obtain the optimal electric field required for electron transitions in quantum

systems.

In conclusion, this thesis demonstrates the importance of performing quantum cal-

culations to characterize complex chemical and material systems accurately. We emphasize

the importance of DFTB in performing these quantum calculations relatively quickly (com-

pared to DFT) without compromising the accuracy of the results. DFTB, in conjunction

with GPUs, provides an accelerated approach to performing large-scale quantum calcula-

tions of complex systems. As such, GPU-DFTB provides a powerful tool for exploring the

electronic and thermodynamic properties of complex materials and chemical systems, with

potential applications in materials science, physics, chemistry, and biochemistry.
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Appendix A
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Structure and Solvent Dependence

of the Far UV Circular Dichroism

Spectrum of Short Oligopeptides
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Figure A.1: ECD spectra of explicitly-solvated GAG in the optimized pPII conformation
calculated with different range-separation values of ω = 0.20 and 0.25.

Figure A.2: ECD spectra of explicitly-solvated GAG in the optimized pPII conformation
calculated with different exchange-correlation functionals
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Figure A.3: ECD spectra of explicitly-solvated GAG in the optimized β-strand conformation
calculated with different basis sets.

Figure A.4: ECD spectra of explicitly-solvated GAG in the optimized pPII conformation
with different configurations of explicit water molecules
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Figure A.5: Absorption spectra of GAG in the β conformation calculated at the
ωB97XD/cc-pVTZ level of theory in (a) implicit and (b) explicit water.

Figure A.6: Absorption spectra of GAG in the pPII conformation calculated at the
ωB97XD/cc-pVTZ level of theory in (a) implicit and (b) explicit water.
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Figure B.1: UV absorption spectra of cationic GAG in water at pH = 2 without background
subtraction taken at 10, 30, 50, and 70

◦
C.
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GCG GMG

GTG GKG

GDG GNG

Figure B.2: Background-corrected UV absorption spectra of GxG (x = C, M, T, K, D, and
N) taken at 10, 30, 50, and 70

◦
C. The spectra for GKG, GNG, and GRG were measured

with a pathlength of 50 µm, whereas a pathlength of 100 µm was used for the GDG spectra.
The peptide concentration was 10 mM.
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GAG GIG

GLG GVG

GRG

Figure B.3: Calculated UVCD spectra of GxG (x = A, I, L, V, and R) in the β conformation
with implicit and explicit water. The sticks in the respective figures represent the rotatory
strength (velocity) of the individual electronic transitions.
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GAG GIG

GLG GVG

GRG

Figure B.4: Calculated UVCD spectra of GxG (x = A, I, L, V, and R) in the pPII confor-
mation with implicit and explicit water. The sticks in the respective figures represent the
rotatory strength (velocity) of the individual electronic transitions.
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(a) Amber99sb

(b) PBE0

(c) DFTB3

Figure C.1: Comparison of the entropic term, T∆S, of alanine dipeptide as a function of the
backbone dihedral angles, ϕ and ψ, obtained from well-tempered metadynamics simulations
using (a) classical MD with the Amber99sb force field, (b) DFT-PBE0 calculations, and
(c) SCC-DFTB3 calculations. The red, cyan, and yellow points in panels (a), (b), and (c)
represent the local minima on the FES (cf. Fig. 8.2) obtained using the Amber99sb force
field, PBE0, and SCC-DFTB3, respectively. ●, ■, and ▼ denote the β, C7eq, and C7ax

metastable structures, respectively.
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(a)

(b)

Figure C.2: Convergence of the free energy surface of remdesivir as a function of time with
respect to the dihedral angles, (a) ϕ and (b) ψ, using well-tempered metadynamics. The
light-green shaded region in each plot indicates converged values. The red dots in panels
(a) and (b) represent the local minima at which the free energy difference is calculated in
Fig. C.3.
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(a)

(b)

Figure C.3: (a) Free energy difference between the basins near ϕ = -2 and 2 radians (shown
as red dots at t = 10 ns Fig. C.2(a)) as a function of simulation time. (b) Free energy
difference between the basins near ψ = -2 and 1 radians (shown as red dots at t = 10 ns
in Fig. C.2(b)) as a function of simulation time. The light-blue shaded region in each plot
indicates converged values.
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Table C.1: Relative energies of local minima (points A, B, C, and D in Fig. 8.5) calculated
at the PBE0 and B3LYP levels of theory using the 6-311++g(d,p) basis set.

PBE0 (kJ/mol) B3LYP (kJ/mol)

EA 1.26 1.49

EB 1.46 2.69

EC 0 0

ED 3.22 3.27
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(a) Amber-ff19SB

(b) DFTB3

Figure C.4: Comparison of the entropic term, T∆S, of remdesivir as a function of the
backbone dihedral angles, ϕ and ψ, obtained from well-tempered metadynamics simulations
using (a) classical MD from the Amber-ff19SB force field and (b) SCC-DFTB3 calculations.

Some of the codes used in this work can be downloaded from Github.
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Figure D.1: Plots of the loss vs. the number of epochs for the (a) 600-, (c) 800-, and (e)
1000-output-layer-unit model for the validation dataset. Plots of R

2
values for the predicted

frequency vs. the number of epochs for the (b) 600-, (d) 800-, and (f) 1000-output-layer-unit
model for the validation dataset. (g) Plot of R

2
values for the predicted amplitude vs. the

number of epochs for the 1000-output-layer-unit model for the validation dataset. Using
the R

2
definition in the main text, the amplitude R

2
becomes negative-valued, which also

manifests itself in the the 600- and 800-output-layer-unit models (not plotted here). (h)
Plot of R

2
values for the predicted frequency vs. the number of epochs for the 1000-output-

layer-unit model when only 2 hidden layers are used.
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Figure D.2: Density plot of the predicted and true resonance frequencies for the (a) 600-
output-layer-unit model for the unscaled amplitude (i.e., when the amplitude is not multi-
plied by 80), and (b) 1,000-output-layer-unit model with only 2 hidden layers. The diagonal
line in each plot represents a perfect match between the machine-learned predictions and
the true values. The vertical color bar in each sub-plot indicates the density of the data
points.
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and pressure on the electronic transport properties of crossed nanotube junctions:
formation of a schottky barrier. Journal of Physics: Condensed Matter, 23(11):112203,
2011.

[60] Tomi Ketolainen, Ville Havu, and Martti J Puska. Enhancing conductivity of metallic
carbon nanotube networks by transition metal adsorption. The Journal of Chemical
Physics, 142(5):054705, 2015.

[61] San-Huang Ke, Harold U Baranger, and Weitao Yang. Electron transport through
molecules: Self-consistent and non-self-consistent approaches. Physical Review B,
70(8):085410, 2004.

[62] Seong Jun Kang, Coskun Kocabas, Taner Ozel, Moonsub Shim, Ninad Pimparkar,
Muhammad A Alam, Slava V Rotkin, and John A Rogers. High-performance electron-
ics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature
nanotechnology, 2(4):230–236, 2007.

[63] Phaedon Avouris et al. Thin film nanotube transistors based on self-assembled.
Aligned, Semiconducting Carbon Nanotube ArraysACS Nano, 2(12):2445–2452, 2008.

[64] Melburne C LeMieux, Mark Roberts, Soumendra Barman, Yong Wan Jin, Jong Min
Kim, and Zhenan Bao. Self-sorted, aligned nanotube networks for thin-film transis-
tors. Science, 321(5885):101–104, 2008.

[65] Yilei Wang, Suresh Kumar Raman Pillai, and Mary B Chan-Park. High-performance
partially aligned semiconductive single-walled carbon nanotube transistors achieved
with a parallel technique. Small, 9(17):2960–2969, 2013.

[66] Gerald J Brady, Austin J Way, Nathaniel S Safron, Harold T Evensen, Padma
Gopalan, and Michael S Arnold. Quasi-ballistic carbon nanotube array transistors
with current density exceeding si and gaas. Science advances, 2(9):e1601240, 2016.

[67] Jana Zaumseil, Xinning Ho, Jeffrey R Guest, Gary PWiederrecht, and John A Rogers.
Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors.
ACS nano, 3(8):2225–2234, 2009.

[68] Koungmin Ryu, Alexander Badmaev, Chuan Wang, Albert Lin, Nishant Patil, Lewis
Gomez, Akshay Kumar, Subhasish Mitra, H-S Philip Wong, and Chongwu Zhou.
Cmos-analogous wafer-scale nanotube-on-insulator approach for submicrometer de-
vices and integrated circuits using aligned nanotubes. Nano Letters, 9(1):189–197,
2009.

196



[69] Coskun Kocabas, Simon Dunham, Qing Cao, Kurt Cimino, Xinning Ho, Hoon-Sik
Kim, Dale Dawson, Joseph Payne, Mark Stuenkel, Hong Zhang, et al. High-frequency
performance of submicrometer transistors that use aligned arrays of single-walled
carbon nanotubes. Nano letters, 9(5):1937–1943, 2009.

[70] Tejas A Shastry, Jung-Woo T Seo, Josue J Lopez, Heather N Arnold, Jacob Z Kelter,
Vinod K Sangwan, Lincoln J Lauhon, Tobin J Marks, and Mark C Hersam. Large-
area, electronically monodisperse, aligned single-walled carbon nanotube thin films
fabricated by evaporation-driven self-assembly. Small, 9(1):45–51, 2013.
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[159] Jakub Kaminský, Jan Kubelka, and Petr Bour. Theoretical modeling of peptide α-
helical circular dichroism in aqueous solution. The Journal of Physical Chemistry A,
115(9):1734–1742, 2011.
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