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Note 

On a Functional Equation Related to Thurstone Models. 

JOHN I. YELLOTT, JR. 

Cognitive Science Program, School of Social Sciences, 

University of Ca&fornia, Irvine, California 92717 

If f and g are nonvanishing characteristic functions the functional equation 

&)&)g(--s - t) = f(as)f(at)f(--as - at) implies g(s) = e’“‘f (as), i.e., f and g corre- 
sponding to probability distributions of the same type. It is shown here that when f and g 
are allowed to vanish thig equation also has solutions in which f and g correspond to 
distributions of different types. The practical implication is that there are nonequivalent 
Thurstone models which cannot be discriminated by any choice experiment with three 
objects. 

The functional equation 

(where f and g are complex functions of a real variable) arises in connection with an 
identifiability problem in choice behavior described recently in this journal (Yellott, 
1977). Briefly, if f and g are the characteristic functions of probability distributions F 
and G, it can be shown that two “Thurstone models” FF and .%c (i.e., models identical 
to Thurstone’s Case V except that distribution F (or G) is substituted for the normal) 
are equivalent for all choice experiments with three objects iff (1) is satisfied for some 
positive constant a and all real s and t. If f or g is assumed to be a nonvanishing charac- 
teristic function, the unique solution to (1) is readily shown to be 

g(s) = eib8 f (us) (2) 

where b is any real constant. This means that F(x) = G(UX + b), and so when f is non- 
vanishing the predictions of Thurstone model FF can be completely duplicated by 
another model & iffF and G are distributions of the same type, i.e., both normal, both 
exponential, or whatever. This turns out to be true in particular for the double ex- 
ponential distribution function F(x) = e-6-“, which yields the Thurstone model corre- 
sponding to Lute’s Choice Axiom. 

However without the assumption that f or g is nonvanishing the argument used in 
the previous paper to establish the uniqueness of solution (2) does not go through, and 

266 
0022-2496/78/0173-0266$02.00/O 
Copyright 0 1918 by Academic Press. Inc. 
W rights of reproduction in any form resemed. 



THURSTONE MODELS 267 

consultation with J. Aczel indicated that it was not generally known whether any pair of 
characteristic functions that satisfy (1) must also satisfy (2).l (Examples of complex 
functions that satisfy (1) but not (2) are not hard to come by, but the question is whether 
they can also be characteristic functions.) Consequently in that paper I was forced to 
leave open the general question of whether two Thurstone models can be equivalent for 
experiments with three objects when F and G are distributions of different types. 

The purpose of this note is to lay this problem to rest by exhibiting a pair of charac- 
teristic functions! andg that satisfy (1) but not (2). The probability distributions F and G 
corresponding to this pair of characteristic functions both satisfy the technical require- 
ment for Thurstone models, i.e., the “difference distributions” 

&(x) = j-m F(x + A OF and --4) 44 = irn G@ + A WY) --m 
are continuous and strictly increasing, and so this example shows explicitly that two 
Thurstone models r’, and To can be completely equivalent for choice experiments with 
three objects even though their discriminal process distributions F and G are not of the 
sm type, i.e., F(N) # G(ax + b). C onsequently it is not possible to strengthen the 
theorems in Yellott (1977), contrary to my conjecture in that paper. 

Now for specifics. The characteristic function f of a probability distribution (i.e., 
cumulative distribution function) F is the Fourier-Stieltjes transform 

f(s) = 1-1 e-- dF(x) (3) 

(e.g., Feller (1966). Actually in probability theory it is customary to suppress the constant 
factor -2rr, and so the characteristic functions tabled in probability texts correspond to 
f(-s/2~r). However a pair of characteristic functions defined according to (3) will satisfy 
functional equation (1) iff f (-s/2?r) and g(-s/2tr) do also, and for present purposes 
it is convenient to use definition (3) in order to take advantage of Bracewell’s (1965) 
dictionary of transforms.) Recall that if f is absolutely integrable, the probability density 
function p, corresponding to F (i.e., pF(x) = F’(x)) is given by the inverse transform 

Now consider the functions 

SE(-1, l), 
s E (4,6), 
s e (-6, -4), 

= 0, elsewhere; (4) 

l Subsequently 2. Moszner (1977) has &en a general characterization of the solutions to Eq. (1). 
In an adjoining no& in this issue he shows how that translates into a characterization of the corre- 
sponding distribution functions. 
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g(s) = 1 - Is I, s E (-1, 11, 
= (--i/2)(1 - 1 s - 5 I), s 6 (4,6), 
= (i/2)(1 - I s + 5 I), s E (-6, -4), 
= 0, elsewhere. (5) 

(The graph off consists of three triangles centered at 0, 5, and -5; each has width 2 and 
the heights are 1 at the origin, & at &5. The graph of g consists of the same three triangles, 
but only the middle one lies in the real plane, while those centered at +5 lie in the 
imaginary plane, on opposite sides of the real axis.) We need to show that (i) f and g are 
characteristic functions, and (ii) they satisfy equation (1). To show the former, we invert 
both functions and obtain 

p&g = sinc2 (x)[l + cos lcM], 
p&f) = Sinc2 (x)[l + sin lolrx], 

r.9- 

1.4- 

.S- 

.4- 

-.I 
-3 -2 -I 0 I 2 3 

1.4- 

.9- 

-.I----J-- -3 _---___---_ -I 0 -------- 3 I 2 

(6) 

(7) 

FIG. 1. Top panel shows the density function Sine* (x)[l + cos lOn.v]. Bottom panel shows 
Sid (x)[l + sin 1077x]. 



THURSTONE MODELS 269 

where Sine (x) is Sin(7rz)/rx. (See Fig. 1.) This inversion is straightforward if we write (4) 
and (5) in the form 

f(s) = Tri (s) * [S(s) + v + -1, 

g(s) = Tri (s) * [S(s) - ‘*(’ z 5, + ‘*(’ l 5, ], 

where Tri (s) = 1 - 1 s 1 for s E (- 1, l), 0 elsewhere, S(s) is the Dirac delta, and * 
denotes convolution. Then (6) and (7) follow from that fact that Tr i(s) is the Fourier 
transform of Sinc2 (x), 6(s) the transform of the constant function 1, fi[S(s - 5) + 6(s + 5)] 
the transform of cos l(hrx, and (i/2)[S(s + 5) - S(s - 5)] the transform of sin 1onX 
(Bracewell, 1965). It is clear that (6) and (7) are both probability density functions, since 
both are nonnegative and integrate to 1. (This last is shown by the fact that f(O) = 
g(0) = 1.) It is also clear that the difference distributions D, and DG are continuous and 
strictly increasing, since they correspond to a continuous nonvanishing density. (Note 
that D, = D, , since If I2 = 1 g I”.) 

It remains then to show that (4) and (5) satisfy Eq. (1) (for Q = 1). This is simply a 
matter of considering the possible values of s and t. Let I,, denote the interval (- 1, l), 
1s the interval (4,6), I-, the interval (-6, -4), and R = (I,, u 1, u r$. Then suppose 

(1) s or t E R. Then both sides of (1) vanish. 

(2) Both s and t ~1,. Then -s - t is either in R, so that both sides of (1) vanish, 
or in I,, , in which case f and g agree factor by factor on both sides of (1). 

(3) SE.&,, tE1a.Then --s - t is either in R or ,5_, . In the first case both sides of 
(1) vanish. In the second case we have 

g(s) g(t) d-s - t) = Tri (s)(-i/2) Tri (t - 5)(i/2) Tri (-s - t + 5) 

= fNfWf(-s - t)- 

so (1) is satisfied. 

(4) s E 1, , t E I-, . This is equivalent to case 3. 

(5) s~1s,t~I;.Then-s- t < -8, i.e., ER, so both sides vanish. 

(6) ~~1-5, t EL, . This is equivalent to case 5. 

(7) s E 1-s , t G 1, . Then -s - t is either in R or I,, . In the latter case, g(s) g(t) = 
-i2f(s)f(t) and g(-s - t) =f(-s - t), so (1) is satisfied. 

This completes the proof. It is worth noting that an infinite number of suchf, g pairs 
could be constructed by centering the outside triangles at any &o (w > 5), in which case 
the corresponding densities p, and p, would be Sinc2 (x)[l + cos 2~~x1 and 
Sines (x)[l + sin 27~x1, all of which yield Thurstone models. Thus there are an infinite 
number of pairs of nonequivalent Thurstone models that cannot be distinguished by 
three object choice experiments. 
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