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Abstract

Most of the major morbidities in the preterm newborn are caused by or are associated with 

oxygen–induced injuries and are aptly called “oxygen radical diseases in neonatology or ORDIN”. 

These include bronchopulmonary dysplasia, retinopathy of prematurity, periventricular 

leukomalacia, intraventricular hemorrhage, necrotizing enterocolitis and others. Relative hyperoxia 

immediately after birth, immature antioxidant systems, biomolecular events favoring oxidative 

stress such as iron availability and the role of hydrogen peroxide as a key molecular mediator of 

these events are reviewed. Potential therapeutic strategies such as caffeine, antioxidants, non-

steroidal anti-inflammatory drugs, and others targeted to these critical sites may help prevent 

oxidative radical diseases in the newborn resulting in improved neonatal outcomes.
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1. INTRODUCTION

Reactive oxygen species (ROS) play a key role in the development of a wide range of 

neonatal diseases including intraventricular hemorrhage (IVH) [1], periventricular 

leukomalacia (PVL) [2], chronic lung disease/bronchopulmonary dysplasia (CLD/BPD) [3–

6], necrotizing enterocolitis (NEC) [7], apnea of prematurity (AOP), and retinopathy of 

prematurity (ROP) [8–10], thus giving rise to the term “oxygen radical diseases in 
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neonatology (ORDIN)” [11, 12]. Extremely low gestational age neonates (ELGANs) who 

are born at 23–27 weeks of gestation, and weighing <1250 grams are particularly vulnerable 

to oxidative stress and often require oxygen therapy with mechanical ventilation which 

accentuate their susceptibility to injury. At this gestational age, lung development and 

respiratory control are extremely immature [13] and predispose the ELGAN to continuous 

fluctuations in arterial oxygen saturation (SpO2), or intermittent hypoxia (IH) episodes, 

many of which are not responsive to an increased inspired oxygen concentration [3, 13]. 

Unlike IH in adults and older children with sleep apnea, neonatal IH is a developmental 

disorder. The lungs of ELGANs are in the canalicular stage of development and the 

respiratory control mechanisms are underdeveloped [14]. Combined immature respiratory 

control, relatively supraphysiological oxygen, and immature antioxidant defense 

mechanisms to scavenge damaging oxygen byproducts, contribute to the pathophysiology of 

many neonatal diseases.

The goal of this review is to summarize the known mechanisms underlying oxygen induced 

retinopathy (OIR) focusing on IH and ROS, and to highlight recent data emerging from our 

laboratory that utilizes a unique OIR model that simulates AOP and IH experienced by 

ELGANs and produces characteristics consistent with severe ROP. Mechanisms learned 

from the OIR model may be potentially applicable to all neonatal diseases related to 

oxidative injuries. This review emphasizes the biomolecular vulnerability of the preterm 

newborn to oxidative injuries and organ damage caused by the interactive actions of relative 

hyperoxia after birth, immature oxidative stress defenses, biochemical events favorable to 

oxidative injuries, and the importance of hydrogen peroxide in the pathogenesis of these 

diseases (Figure 1). Our recent findings point to the importance of curtailing ROS 

accumulation and oxidative stress during the early postnatal period. Timely use of 

appropriate pharmacological agents to prevent rather than treat oxidative stress may mitigate 

severe OIR.

2. APNEA OF PREMATURITY AND NEONATAL INTERMITTENT HYPOXIA

AOP is defined as cessation of breathing lasting longer than 15–20 seconds and/or 

accompanied by arterial oxygen desaturation and bradycardia in ELGANs. The incidence of 

AOP varies with the degree of prematurity, from 7% at 34–35 weeks of gestational age to 

15% at 32–33 weeks, 54% at 30–31 weeks, and nearly 100% at <28 weeks [14], and is the 

most common cause of IH in ELGANs [3, 4, 13, 15]. Apneas of less than 10 seconds in 

duration can result in a reduction in oxygen saturation of up to 40% [15] even though these 

episodes may not be recorded on regular cardiorespiratory monitors currently employed in 

the neonatal intensive care unit (NICU). IH is defined as brief, repetitive cycles of arterial 

oxygen desaturations followed by re-oxygenation or IHR (recovery from IH) in normoxia or 

hyperoxia with supplemental oxygen [16]. An IH event is usually defined as a decline in 

SaO2 by 5% lasting <3 minutes in duration [13–18]. Episodes of IH, often called 

desaturations, frequently occur independent of apnea in preterm babies on mechanical 

ventilation. IHR that follows IH induces damaging mitochondrial ROS, which not only 

causes oxidative stress and injury, but also activates signaling mechanisms to counteract 

those induced by IH. After numerous episodes, occurring within minutes of each other, a 
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“critical” point is achieved where the mechanisms induced by IH become indistinguishable 

from those induced by IHR [19].

The merging of the above mechanisms has profound deleterious effects on mitochondrial 

homeostasis and redox state [20]. IH is inflammatory and can lead to impairment of multiple 

neonatal systems including the brain [21], liver [22], and kidneys [23–25]; the latter two are 

major sites of drug metabolism and excretion. This is especially important since ELGANs 

are exposed to numerous drugs during the first few weeks of life. Due to its relatively high 

lipid content and ability to produce ROS, the liver is uniquely susceptible to lipid 

peroxidation (a self-propagating chain reaction that involves hydrogen peroxide reacting 

with elemental iron to form the hydroxyl radical) and IH injury [23]. Studies have shown 

that IH impairs drug metabolizing ability of several commonly used drugs in the NICU, 

including gentamicin, phenobarbital, acetaminophen, and theophylline [26], which lead to 

substantial variation in pharmacokinetic profiles and drug responses in ELGANs [27, 28].

3. MITOCHONDRIA AND ROS

Mitochondria are present in each cell’s cytoplasm. The total number per cell varies from less 

than a hundred up to several thousand, depending on the amount of energy required by the 

cell [29]. Mitochondria participate in intracellular signaling, apoptosis, and in the 

metabolism of amino acids, lipids, cholesterol, steroids, and nucleotides. However, the 

primary role of mitochondria is the generation of adenosine triphosphate (ATP) through 

oxidative phosphorylation (OXPHOS) and oxygen consumption. Therefore, mitochondria 

are important oxygen sensors. During normoxia, energy from ATP is produced in the 

mitochondrial respiratory chain, a group of five enzyme complexes situated on the inner 

mitochondrial membrane [29]. Reduced cofactors (NADH and FADH2) generated from the 

metabolism of carbohydrates, proteins, and fats donate electrons to complex I and complex 

II. These electrons flow between the complexes down an electrochemical gradient shuttled 

by complexes III and IV and by two mobile electron carriers, ubiquinone (ubiquinol, 

coenzyme Q10) and cytochrome c. The liberated energy is used by complexes I, III, and IV 

to pump protons out of the mitochondrial matrix into the intermembrane space. This proton 

gradient is harnessed by complex V to synthesize ATP from adenosine diphosphate (ADP) 

and inorganic phosphate [30–33]. The process of OXPHOS depends critically on the 

integrity and impermeability of the inner mitochondrial membrane; defects in the 

complexes, cofactors, or the machinery that transcribes, assembles, and maintains them 

result in interruptions of mitochondrial ATP supply [33].

Mitochondrial respiration accounts for about 90% of cellular oxygen uptake, and 1–2% of 

the oxygen consumed is converted to ROS [34, 35]. The factors that control ROS production 

include the oxygen availability to the mitochondria, the redox state of the mitochondrial 

complexes, and mitochondrial membrane potential [36]. In addition to its role in energy 

production, mitochondrion is the major producer of ROS [37], and a prime target for the 

damaging effect of ROS [38]. The principal ROS is superoxide anion (O2
·−) which is rapidly 

dismutated to the more stable hydrogen peroxide (H2O2) and O2, generated as byproducts of 

normal aerobic metabolism [39]. Although complexes I and III are main sites of 

mitochondrial O2
·−/H2O2 production, complex III is the major source during oxidative stress 
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[40–42]. Under physiological conditions O2
·−/H2O2 serves to communicate between 

mitochondria and the rest of the cell [43] whereas under hypoxic conditions, the ROS are 

released resulting in the stabilization of hypoxia inducible factors (HIFs) and the induction 

of genes responsible for metabolic adaptation to low oxygen [44]. It has become 

increasingly clear that ROS are produced not only during IHR, but also during ischemia [45–

47] and hypoxia. During ischemia O2
·−/H2O2 levels increase, antioxidant defenses are 

overwhelmed, and other ROS are formed by ROS-induced ROS release [39, 48]. The source 

of O2
·−/H2O2 generation during cell hypoxia is likely complex III [49]. O2

·−/H2O2 generated 

at complex III would be released into the inner mitochondrial membrane rather than into the 

matrix as H2O2 is readily permeable to the inner mitochondrial membrane [50, 51]. This 

leads to opening of the mitochondrial permeability transition pore [52] and initiation of 

apoptosis [53]. Therefore, it is the stable and membrane-permeable H2O2 that is the most 

abundant reactant that, in excess, likely leads to damage to cell structure and function. 

Indeed, H2O2 is central to the tissue and organ damage in oxidative stress and injury.

4. ROS AND ANTIOXIDANTS

ROS are scavenged by mitochondrial, cytosolic, and peroxisomal antioxidant systems 

including superoxide dismutases (SODs). SODs are the primary ROS-detoxifying enzymes 

[54], and 3 types exist in the cell: copper- and zinc-containing SOD (Cu, ZnSOD, or SOD1), 

manganese-containing SOD (MnSOD, or SOD2), and extracellular SOD (ECSOD, or 

SOD3) [55]. SOD1 is found primarily in the cytoplasm [55]. SOD3 is localized to the 

extracellular region [56]. SOD2 is found exclusively in the mitochondrial matrix [57, 58]. 

All 3 forms of SOD catalyze the dismutation of O2
·− into H2O2 and O2. SOD does not 

prevent the formation of H2O2, and in some cases, can actually enhance H2O2 production. 

H2O2 is one of the most abundant ROS [59], and being membrane permeable, it easily and 

rapidly diffuses through biological membranes by using water channels, or aquaporins [51, 

60]. H2O2 is tightly regulated and is the only ROS that requires several enzymes for 

deactivation and removal. Under physiological conditions it acts as a second messenger and 

modulator of cell signaling [61], allowing the mitochondria to act as oxygen sensors [62].

Although a therapeutic goal may be to reduce ROS, particularly during oxidative stress, too 

much scavenging or the wrong kind of scavenging may eradicate protective physiological 

mechanisms. We reported that administration the SOD mimetic, MnTBAP alone actually 

worsened OIR in rats [63], suggesting that overexpression of these enzyme systems could 

lead to excessive H2O2. Because ROS also play a significant physiological role, the effects 

may be deleterious. For example, SOD activity is dynamically regulated within optimal 

ranges—the lower limit is sufficient to remove mitochondrial O2
·− production and the upper 

limit is kept low enough to avoid excess H2O2 production [64]. SOD expression is induced 

or suppressed to match ROS production, such that more ROS lead to more SOD, more SOD 

leads to more H2O2. The cell uses multiple enzyme systems to catalyze the decomposition 

of H2O2 into water and O2. One involves glutathione peroxidase (GPx), two forms of which 

have been identified in mitochondria [65, 66]. Catalase is another important enzyme used by 

cells to decompose H2O2 [67, 68]. Catalase converts two molecules of H2O2 into two 

molecules of H2O and one molecule of O2, and therefore, catalase works best with high 

concentrations of H2O2 [54]. Catalase is found primarily in peroxisomes, but can also be 
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found in the cytoplasm. Peroxidases are responsible for the detoxification of up to 90% of 

mitochondrial H2O2 and even more than that of cytosolic H2O2 [69, 70].

Antioxidant systems are compromised in ELGANs who require oxygen therapy [71]. 

Immature antioxidant systems can lead to H2O2 accumulation in the mitochondria and 

subsequent accumulation in the cytosol. Many critically ill oxygen-exposed ELGANs 

require blood transfusion for anemia which gives them a large dose of iron; H2O2 

accumulation will likely react with iron to form the highly reactive hydroxyl radical which 

damages cellular components such as proteins, lipids, and DNA [72, 73] resulting in defects 

in signaling pathways [74]. Diverting iron to the path of erythropoiesis using recombinant 

human erythropoietin (EPO) has been shown to decreases oxidant injury in premature 

rabbits [75]. H2O2 and hydroxyl radicals readily attack the polyunsaturated fatty acids of the 

fatty acid membrane in the retina, initiating a self-propagating chain reaction, a key 

mechanism underpinning the development of severe ROP [76].

5. ROS AND HIF1α

Mitochondria are natural O2 sensors because complex IV is where O2 binding and O2 

consumption occur [77], and O2 sensing by the cell is actually carried out by ROS [78–80]. 

Therefore, ROS are not only deleterious, but are essential participants in cell signaling [81–

83]. For example, H2O2 are principal regulators of the HIF family of transcription factors 

[78–80, 84–86]. H2O2 damages DNA, cellular membranes, and organelles resulting in 

autophagy and HIF activation [87–89]. H2O2 is a master regulator of oxidative stress-

induced endothelial cell dysfunction. It has been referred to as the “fertilizer” of cancer 

metabolism [90]. If the accumulation of H2O2 is not limited, it can diffuse to the cytosol or 

participate in a chain of reactions that generate more ROS, and/or activate and stabilize 

HIF1α [78, 91, 92]. Both HIF1α and HIF2α can be modified by ROS in a direct and 

indirect manner [93]. Both HIF1α and HIF2α could be prevented from hydroxylation and 

degradation by increasing ROS generation. Therefore, ROS are important regulators of the 

HIF system, and the crosstalk between ROS and HIF is an important pathophysiological link 

[91, 93, 94].

HIF1α is a transcription factor that regulates the cellular response to O2 homeostasis. HIF1α 
upregulates the expression of many genes including those responsible for angiogenesis, 

glycolysis, cell growth, cell survival, and metastasis [95, 96]. When O2 is adequate, HIF1α 
is hydroxylated by prolyl hydroxylase domain-containing proteins (PHDs). Upon 

hydroxylation, HIF1α binds to the Von Hippel-Lindau tumor suppressor protein (pVHL) 

which leads to its ubiquitination and subsequent degradation [97–99]. During hypoxia, the 

energy for hydroxylation and ubiquitination is inadequate in the cell and HIF1α does not 

bind to pVHL. Thus, it stabilizes, accumulates, and translocates to the nucleus where it 

binds to the hypoxia responsive elements (HREs) within about 100–200 genes including 

vascular endothelial growth factor (VEGF) and EPO [100], initiating their expression and 

activation of glycolysis, angiogenesis, and erythropoiesis [95–103]. In order to activate gene 

transcription, HIF recruits a range of gene-specific co-factors that acetylate histones, change 

chromatin structure, and facilitate epigenetic modifications [104]. Multiple studies have 

demonstrated that ROS regulate the hypoxia signal transduction pathway that mediates 
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HIF-1α stabilization [105–107]. During reoxygenation following an IH episode, or IHR a 

cascade of events occurs leading to hemorrhage and cell death. Hemorrhage occurs as a 

result of restitution of flow through severely injured microvasculature allowing leakage of 

intravascular fluids and cells into interstitial spaces. We have shown this phenomenon in our 

oxygen-induced retinopathy model [19, 63, 108, 109], suggesting that IHR accelerates cell 

injury.

6. ROS AND RETINOPATHY OF PREMATURITY

ROP is a leading cause of childhood blindness worldwide. In the United States, 

approximately 16,000 preterm infants develop ROP annually, and with improving neonatal 

care and survival of ELGANs, the incidence is rising in developing countries [110, 111]. 

ROP is a developmental vascular disorder characterized by abnormal growth of retinal blood 

vessels in the incompletely vascularized retina of ELGANs [112–114]. It is especially severe 

in the sickest, most immature infant requiring long-term mechanical ventilation and oxygen 

therapy. The incidence of severe ROP varies from 33% to 50% at 23 weeks of gestation, 

13% to 23% at 24 weeks of gestation, and 9% to 17% at 25 weeks of gestation [115]. The 

incidence of detached retinas and blindness has not appreciably declined, and only 20% of 

infants with threshold ROP achieve normal vision despite early treatment. Early studies by 

Ashton et al. [116–118] demonstrated that exposure to oxygen causes vaso-obliteration and 

vaso-proliferation when room air breathing is resumed. Those early studies led to a two-

phase hypothesis of ROP where vaso-obliteration or phase 1 begins at preterm birth with the 

transition from an intrauterine to extrauterine environment causing a rise in PaO2 of 30–35 

mm Hg to 55–80 mmHg and loss of placental and maternal growth factors. During this 

phase, exposure to supplemental oxygen, suppresses retinal growth factors such as VEGF, 

insulin-like growth factor (IGF)-1 and EPO, which are already compromised due to preterm 

birth and poor nutrition [119] leading to arrest and retraction of the developing retinal 

vessels. This is followed by vaso-proliferation or phase 2 which begins at approximately 32–

34 weeks [120]. As the infant matures, the avascular retina becomes metabolically active, 

inducing a second phase of retinal neovascularization [121]. This phase of ROP is driven by 

hypoxia and subsequent upregulation of VEGF and IGF-1 which leads to abnormal vascular 

overgrowth into the vitreous, retinal hemorrhages, retinal folds, dilated, and tortuous 

posterior retinal blood vessels, or “Plus” disease, and retinal detachment [122].

With advancement in neonatal care, not only has ROP been eradicated in those relatively 

more mature preterm infants (>31 weeks), but survival of ELGANs increased, leading to a 

“new” form of ROP that involves AOP with IH and IHR. The retina is one of the highest 

oxygen-consuming tissues of the body, exceeding even that of the brain [123–125]. This 

high energy demand requires abundant numbers of mitochondria per cell [126] and the 

highest amount of mitochondria are in the photoreceptors. Defects in energy metabolism 

lead to visual deficits and blindness. The immature retina of ELGANs is hypersensitive to 

any disturbances or changes in oxygen [8], and it is now widely accepted that ROP is a 

disease resulting from oxidative stress [127–129]. Studies have shown that the vaso-

obliterative phase of ROP may not only be caused by the lack of angiogenic factors, but also 

by endothelial cell damage due to increased levels of ROS [130–132]. The high 

susceptibility of the immature retina to ROS is further accentuated by compromised 
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autoregulation of the retinal blood flow [133], high rate of oxidative metabolism, significant 

stores of free iron that react with H2O2 by the Fenton reaction to form the highly reactive 

hydroxyl radicals that lead to lipid peroxidation [134–137]. Developmental deficiencies in 

defenses against ROS during neonatal IH also account for neonatal oxidative injuries [71, 

138]. Specifically, high levels of H2O2 stabilize HIF1α and activate nuclear factor kappa B 

(NFkB) which promotes aberrant angiogenesis, neovascularization, and inflammation [57, 

68, 77, 79].

Using a new paradigm that encompasses the strengths of the previous paradigm, we 

established different patterns of IH episodes and the outcome of severe OIR. The data 

showed that clustered IH episodes produced a more severe form of OIR than regularly 

dispersed IH episodes [108]. This finding was later corroborated in ELGANs [10]. In this 

model, grouping desaturations with minimal time for recovery between episodes caused the 

retina to remain hypoxic for a longer period of time. Timely treatment is difficult and may 

add to the reduction in therapeutic potential of drugs when administered in IHR. This led us 

to the question of how many IH episodes (or desaturations) can the immature retina sustain 

before a “point of no return” is achieved such that the retina is not responsive to treatment, 

and therefore, not salvageable. We discovered that the maximum number of clustered IH 

episodes that the rat retina can sustain before irreparable damage is achieved is 6. This was 

associated with accumulation of H2O2, SOD, and HIF1α accumulation during IHR [19]. 

Our unique model consistently resulted in severe OIR retinal hemorrhage, enlarged vessels, 

vascular tufts, vascular tortuosity, and vascular overgrowth [19, 63, 108, 109, 139]. Retinal 

hemorrhage occurring during IHR may be the result of restitution of blood flow through 

severely injured microvasculature allowing leakage of intravascular fluids and cells into 

interstitial spaces [140]. Each preceding episode contributed to limited recovery from the 

following episode, thus setting the stage for the irreparable damage. In addition to these 

classic ROP characteristics, this model produced persistence of hyaloid vessels, chronic 

gliosis, and retinal folds or rosettes, in the photoreceptor layer, and possibly retinal 

detachment. Using this IH/IHR model, we administered a MnSOD mimetic (MnTBAP) to 

rats during early postnatal life to determine whether exogenous SOD in IH is protective. We 

found that high doses of MnTBAP caused severe OIR during IHR [63]. This was associated 

with modifications of many genes that regulate OXPHOS. These findings suggested that 

exogenous SOD alone is not protective, but instead may actually induce ROS. As a follow-

up, we examined whether co-administration of MnTBAP with catalase would improve H2O2 

scavenging and ameliorate oxidative stress in human retinal endothelial cells. Our findings 

indicate that catalase or MnTBAP alone provided better protection than their co-

administration (EUK-134) for HIF1α and VEGF reduction [141]. Collectively, our studies 

provide evidence that oxidative stress and ROS, particularly H2O2, are important regulators 

of IH and IHR-induced OIR, and that the molecular links between IH (and IHR), ROS and 

HIF1α involve regulation of MnSOD.

7. CONCLUSIONS

ROP is a marker of a much more sinister neonatal long term outcome. Motor impairment, 

cognitive impairment, and severe hearing loss were 3 to 4 times more common in children 

with severe ROP than those without [142]. The complex and multifactorial etiology of ROP 
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precludes the use of a single therapeutic agent, as no one therapy has proven to be effective 

without adverse effects. These drugs act through different mechanisms and synergistic 

approaches should be considered to target oxidative stress and ROS accumulation, as well as 

the inflammatory mechanisms associated with ROP. Caffeine citrate, which is used 

worldwide and is standard of care for AOP [143, 144] has been shown to have antioxidant 

properties [145], to significantly reduce the incidence of severe ROP [146], and to normalize 

aberrant retinal proteomic profiles in OIR [147]. Non-steroidal anti-inflammatory drugs 

(NSAIDs) have also been shown to reduce the incidence of ROP [148]. Caffeine and NSAID 

synergism was protective against severe OIR using our IH/IHR model [139]. This novel 

therapeutic approach to prevent and/or reduce severe ROP should be precisely timed to 

coincide with the “window” of ROS production. From our data, it is clear that H2O2 

overproduction must be curtailed, or be disposed efficiently to prevent the downstream 

effects that lead to retinal neovascularization. The use of safe and effective pharmacological 

strategies targeting various biochemical and molecular pathways must be implemented to 

ultimately prevent severe ROP and avert a lifetime of blindness and severe neurocognitive 

impairment.
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AOP apnea of prematurity

ATP adenosine triphosphate

ELGAN extremely low gestational age neonate

EPO erythropoietin

HIF hypoxia inducible factor

IGF-1 insulin-like growth factor-1

IH intermittent hypoxia

IHR recovery from intermittent hypoxia

NSAID non-steroidal anti-inflammatory drug

OIR oxygen-induced retinopathy

ORDIN oxygen radical diseases in neonatology

OXPHOS oxidative phosphorylation

pVHL Von Hippel-Lindau tumor suppressor protein

ROP retinopathy of prematurity
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ROS reactive oxygen species

SOD superoxide dismutase

VEGF vascular endothelial growth factor
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FIGURE 1. Mechanism of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) 
interaction with iron to form lipid peroxidation in micro preemies
In OXPHOS, electrons are transferred down the redox enzyme complexes located within the 

mitochondrial inner membrane. The electrons enter at either complex I or II and are 

transferred through coenzyme Q to complex III, then to cytochrome c, on to complex IV, and 

finally to oxygen to generate H2O. As a byproduct of OXPHOS, ROS are produced. When 

mitochondrial ROS production becomes excessive (as in the case of intermittent hypoxia and 

immature antioxidant systems) they can react with iron to cause lipid peroxidation.
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