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Abstract
As of 2020, 807,920 individuals in the U.S. had end-stage kidney disease
(ESKD) with about 70% of patients on dialysis, a life-sustaining treat-
ment. Dialysis patients experience high mortality rates where frequent
hospitalizations are a major contributor to morbidity and mortality.
There is growing interest in identifying the risk factors for the corre-
lated outcomes of hospitalization and mortality among dialysis patients
across the U.S. Utilizing national data from the United States Renal
Data System (USRDS), we propose a novel multivariate varying coef-
ficient spatiotemporal model to study the time dynamic effects of risk
factors (e.g., urbanicity and area deprivation index) on the multivari-
ate outcome of hospitalization and mortality rates, as a function of time
on dialysis. While capturing time-varying effects of risk factors on the
mean, the proposed model also incorporates spatiotemporal patterns of
the residuals for efficient inference. Estimation is based on the fusion
of functional principal component analysis and Markov Chain Monte
Carlo techniques, following basis expansions of the varying coefficient
functions and multivariate Karhunen-Loéve expansion of region-specific
random deviations. The finite sample performance of the proposed
method is studied through extensive simulations. Novel applications to
the USRDS data highlight significant risk factors of hospitalizations and
mortality as well as characterizing time periods on dialysis and spatial
locations across U.S. with elevated hospitalization and mortality risks.
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1 Introduction
As of 2020, the number of individuals with prevalent end-stage kidney disease
(ESKD) in the U.S. was 807, 920, where about 70% of patients with ESKD
were on the life-sustaining treatment of dialysis [1]. Patients on dialysis have
a high burden of complex comorbid conditions, and the overall mortality rates
are 10-20 times higher than the general population [1, 2]. Moreover, they expe-
rience frequent hospitalizations (around 2 per person-year (PPY)), which is a
major source of morbidity and mortality [1]. Hence, modeling of the correlated
multivariate outcome of hospitalization and survival rates in the U.S. dialysis
cohort is of interest for more targeted patient monitoring.

Prior studies have shown important spatiotemporal variations in both hos-
pitalization and survival rates. ESKD patients typically remain on dialysis
for the duration of their lives or until kidney transplantation and their needs
change as they stay longer on dialysis. Hence an important time index along
which rates have been shown to vary is time since initiation of dialysis, where
elevated hospitalization and mortality rates have been reported within the first
3 to 6 months of initiation of dialysis [3–8]. In addition to time-dynamic vari-
ation, there has been significant spatial variation reported in hospitalization
and mortality rates across U.S., with the highest rates observed in health ser-
vice areas (HSAs) from the North East and lowest in HSAs from the West
[1, 9–11]. Hence, there is a compelling need for multivariate modeling of hos-
pitalization and mortality rates to identify time-dynamic/time-varying effects
of region-specific risk factors (e.g., urbanicity and area deprivation index) that
contribute to differences in longitudinal hospitalization and mortality risks
observed across the U.S., while adjusting for spatiotemporal correlations in
the data.

Multivariate varying coefficient modeling is an effective tool in study-
ing time-varying effects of covariates on multivariate longitudinal response.
Estimation typically relies on effective decompositions of the varying coeffi-
cient functions (VCFs) via local polynomial [15–17, 19], or basis expansions
[20–24], similar to the univariate case. Literature on multivariate varying
coefficient models that include space-time varying coefficients or incorporate
spatiotemporal correlations in the data are limited. Gelfand et al. [25] con-
sidered multivariate space-time varying coefficient models, while Congdon et
al. [26] and Cheng et al. [27] incorporated spatial correlations in the residu-
als. However, all three approaches model time as discrete. In our application
of multivariate modeling of hospitalization and mortality risk across HSAs in
U.S., space is modeled as discrete, since HSAs (regions with relatively self-
contained infrastructure for the provision of hospital care) across U.S. are fixed
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and time is modeled as continuous, since we are interested in drawing inference
along the continuous time index of duration on dialysis.

While there is extensive literature on multivariate spatiotemporal modeling
where space and time are both modeled as discrete, the literature on discrete
space and continuous time modeling is limited. For multivariate spatiotempo-
ral models with discrete space and continuous time covariances, Zhang et al.
[12] proposed a separable structure for the multivariate space-time covariance,
while Hepler et al. [13] and Baer et al. [14] considered nonseparable space-
time covariances with quite restricted linear or user-defined parametric forms
in the temporal modeling. Recently, Qian et al. [29] proposed a multivariate
spatiotemporal functional principal analysis model (MST-FPCA) with nonsep-
arable space-time covariances, which couples dimension reduction in modeling
nonparametric time trends through data-driven lower dimensional multivariate
eigenfunctions with modeling of spatial correlations via a parametric condi-
tional autoregressive (CAR) correlation structure. However, all these works do
not include time-varying effects of covariates.

To quantify the time-varying effects of risk factors on the correlated mul-
tivariate outcome of hospitalization and mortality rates in the dialysis cohort
while incorporating spatiotemporal correlations in the data, where space is
taken to be discrete and time is modeled as continuous, we propose a novel
multivariate varying coefficient spatiotemporal model (MV-VCSTM). In addi-
tion to modeling time-varying effects of covariates on the multivariate outcome,
MV-VCSTM also includes region-specific time-varying multivariate random
deviations in the model to account for the remaining multivariate spatiotem-
poral correlations in the data that are not explained by covariates. Similar to
developments in Qian et al. [29], time-varying trends of the random deviations
are modeled nonparametrically based on data-driven lower dimensional mul-
tivariate eigenfunction bases. Spatial correlations are induced through a CAR
model assumed among region-specific scores, leading to a nonseparable struc-
ture on the multivariate space-time covariance. Estimation and inference in
the proposed MV-VCSTM, simultaneously targeting multivariate time-varying
coefficient functions and a multivariate spatiotemporal process poses a major
computational challenge, especially in higher dimensional data applications.
To achieve computational efficiency, the proposed estimation and inference
relies on multiple computational savings. First, while the multivariate varying
coefficient functions are expanded using thin-plate spline bases, region-specific
random deviations are expanded via data-driven multivariate eigenfunctions,
which significantly reduces the number of parameters estimated associated
with basis expansions. The multivariate eigenfunctions used in the expansion
of the region-specific random deviations are derived based on only univari-
ate functional principal component analysis (FPCA), avoiding smoothing over
higher than 2-dimensional covariance surfaces, leading to major computational
savings as the dimension of the multivariate outcome increases. The estima-
tion of the multivariate eigenfunctions relies on univariate eigenfunctions and
the estimated spatial correlation structure among the region-specific scores
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obtained from univariate FPCA. Estimation of this spatial correlation struc-
ture requires multivariate CAR (MCAR) modeling, which also poses challenges
in higher dimensions. To handle this challenge, the MCAR structure is mod-
eled via a linear combination of independent latent Gaussian processes with
a CAR correlation structure, effectively lowering the dimension in estimation.
Once the multivariate eigenfunctions for bases expansions of the region-specific
random deviations are obtained, we target the multivariate time-varying coef-
ficient functions and region-specific deviation scores as well as the needed
spatial parameters via Markov Chain Monte Carlo (MCMC) in a Bayesian
hierarchical modeling framework.

The paper is organized as follows. Section 2 introduces the proposed MV-
VCSTM, and outlines the proposed estimation and inference procedures. The
application to modeling of hospitalization and mortality rates in the U.S. dial-
ysis cohort is based on data from the national USRDS database, containing
longitudinal hospitalization and mortality rates from 367 HSAs across U.S. and
is outlined in Section 3. Simulations to study the finite sample performance
of the proposed methodology, including comparisons with multivariate vary-
ing coefficient models that do not incorporate spatiotemporal dependencies
observed in the residuals are presented in Section 4, followed by a discussion
given in Section 5.

2 Proposed Multivariate Varying Coefficient
Spatiotemporal Model (MV-VCSTM)

2.1 Model specification
Let i = 1, . . . , n index regions, k = 1, . . . , T index time (months) after
transition to dialysis and j = 1, . . . , J (J ≥ 2) index the dimensions of the J-
dimensional multivariate outcome vector, Yi(tk) = {Y (1)

i (tk), . . . , Y
(J)
i (tk)}>.

In our data application, the multivariate outcome considered contains region-
specific monthly hospitalization and mortality rates (i.e. J = 2). The
region-specific rates are obtained as averages of dialysis facility-specific rates
within regions (i.e., HSAs). Rates at the dialysis facility level are defined as
the ratio of the total number of patient hospitalizations or deaths to the total
patient follow-up time for that specific facility at month k. Even though they
are obtained monthly, rates are multiplied by 12 to allow interpretations as
per person-year (PPY), consistent with annual national reporting of USRDS.
Finally, region-specific rates are analyzed for a total of 24 months (i.e., 2 year
follow-up) after transitioning to dialysis. Note that we opt to model the mul-
tivariate response as continuous data similar to the works of [9, 28, 29] and is
amenable for functional data modeling.

To study the time-varying effects of risk factors on the multivariate response
(of hospitalization and mortality rates), the proposed MV-VCSTM includes
P covariates Xi = (Xi1, . . . , XiP )T and P time-varying coefficient functions
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β(j)(t) = {β(j)
1 (t), . . . , β

(j)
P (t)}T associated with each covariate,

Y
(j)
i (t) = XT

i β
(j)(t) + U

(j)
i (t) + ε

(j)
i (t), for j = 1, . . . , J. (1)

In (1), the remaining spatiotemporal variations in the data after adjusting for
time-varying effects of risk factors are captured by the latent region-specific
deviations, denoted by U (j)

i (t), while εi(t) = {ε(1)i (t), . . . , ε
(J)
i (t)}T denotes the

i.i.d. measurement error with different variances along different dimensions of
the multivariate outcome (ε(j)i (t) ∼ind N(0, σ2

j )). Note that in the formulation
in (1), the covariates are taken to be time-invariant, to mimic our data applica-
tion. However, the developments can be extended easily to include time-varying
covariates by changing the design matrix.

The latent region-specific deviations Ui(t) = {U (1)
i (t), . . . , U

(J)
i (t)}T are

further decomposed via

Ui(t) =

∞∑

`=1

ρi`ψ`(t),

where ρi` denotes the region-specific principal component (PC) scores and
ψ`(t) = {ψ(1)

` (t), . . . , ψ
(J)
` (t)}T denote multivariate eigenfunctions which form

an orthonormal system,

〈〈ψ`,ψ`′〉〉 :=

J∑

j=1

〈ψ(j)
` , ψ

(j)
`′ 〉2 =

J∑

j=1

∫

T
ψ
(j)
` (t)ψ

(j)
`′ (t)dt = δ``′ ,

with δ``′ = 1 if ` = `′, and δ``′ = 0 otherwise. Under the classic multivariate
FPCA framework [30, 32], the multivariate PC scores {ρ` = (ρ1`, . . . , ρn`)

T :
` = 1, 2, . . .} are assumed to be uncorrelated, with zero means and Var(ρi`) =
λ`, where λ`’s denote the eigenvalues. Similar to univariate FPCA, the multi-
variate eigenfunctions describe directions of leading modes of variation in the
different dimensions of the multivariate functional response, while the eigen-
values quantify the amount of variation explained along the identified modes
of variation. In most applications the expansion can be truncated to include
only a few number (denoted below with L) of eigencomponents explaining
most of the variation in the data, leading to effective dimension reduction of
the high-dimensional data.

To capture the remaining spatiotemporal correlation among regions, that
is not explained by the time varying effects of regional risk factors, we induce a
parametric CAR structure on the region-specific PC scores ρi`, deviating from
the classic FPCA framework. Note that there are no repetitions of data over
space, necessitating the adoption of a parametric spatial modeling approach.
More specifically, let the n × n adjacency matrix W = {wii′} describe the
neighborhood structure of the regions, where wii′ = 1 if regions i and i′

(i 6= i′) are neighbors, denoted by i ∼ i′, and wii′ = 0 otherwise. By con-
vention, the diagonal elements of W are set to zero. Further, let D denote
the diagonal matrix with elements di =

∑
i∼i′ wii′ , representing the total
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number of neighbors of regions. Then a Markov Random Field [33] (Chap-
ter 4.2) specifies the full conditional distribution for the `th PC score ρi` for
region i as a weighted average of the `th PC scores from neighboring regions:
ρi` | {ρi′`}i 6=i′ ∼ N(ν

∑
i′∼i wii′ρi′`/di, α`/di), where α` denotes the variance

component and ν the spatial correlation parameter. Through Brook’s lemma
[42], the joint distribution of the `th PC scores ρ` = (ρ1`, . . . , ρn`)

T takes
the form ρ` ∼ N

(
0, α`(D − νW )−1

)
, where the scalar ν is constrained to lie

between bounds given by the inverse of the minimum and maximum eigenval-
ues of the matrix D−1/2WD−1/2 for the precision matrix (D− νW )/α` to be
positive definite. Note that CAR models are commonly used in modeling latent
components of hierarchical models to capture possible correlations among the
observations of interest, such as the spatial correlations within a neighborhood
structure. In our MV-VCSTM modeling, the assumed CAR structure among
the region-specific scores facilitates borrowing of spatial information across
neighboring regions, acting similar to a spatial smoother.

In the proposed modeling, the latent process Ui(t) capture remaining spa-
tiotemporal variations in the outcome (after adjusting for time-varying effects
of covariates). Since the multivariate eigenfunctions vary across time, the spa-
tial correlation induced also varies across time (through the product of the
region-specific scores and the eigenfunctions) and since the eigenfunctions are
allowed to vary across different eigencomponents and different dimensions of
Ui(t), the proposed modeling is able to induce different spatiotemporal corre-
lations across ` and j (via the linear combination of different scores multiplying
different multivariate eigenfunctions). Note also that the proposed modeling
implies a nonseparable space-time correlation structure on Ui(t), since the
covariance of Ui(t) is a weighted linear combination (weighted by α`) of the
spatial correlation induced across regions through the adjacency (W ) and
neighborhood matrices (D) multiplying different eigenfunctions. Hence the
assumed spatiotemporal structure is flexible and does not make restrictive
assumptions such as separability, as is common in spatiotemporal modeling.

Finally, the constant measurement error variance assumed across time does
not imply that the variance of the region-specific deviations (after adjusting for
time-varying effects of covariates) or the variance of the outcome itself is not
allowed to change across time. After accounting for the time-varying effects of
covariates, the remaining spatiotemporal variation of the multivariate outcome
is modeled via multivariate FPCA with spatially correlated region-specific
scores. Hence, the leading directions of temporal variation in the multivariate
outcomes (after adjusting for time-varying effects of covariates) are modeled
via the multivariate eigenfunctions. A measurement error component with a
constant variance in time is typical in multivariate FPCA [30, 32], since time-
varying variance structure on the measurement error would not be identifiable
after the nonparametric modeling of the temporal variation via multivariate
eigenfunctions.
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2.2 Estimation and inference
The proposed algorithm begins by fitting a multivariate varying coefficient
model to the observed data under the working independence assumption
(Step 1). The multivariate residuals obtained from this initial fit, denoted
by Ei(t) = {E(1)

i (t), . . . , E
(J)
i (t)}T, are used as a proxy of the remaining

spatiotemporal deviations Ui(t) in the data. Steps 2-4 target the lower dimen-
sional data-driven multivariate eigenfunction bases (ψ`(t)) to be used in the
expansions of the spatiotemporal deviations Ui(t) in the data. Multivariate
eigenfunctions are targeted using univariate eigenfunctions of the different
dimensions of the multivariate residual Ei(t) and the between eigencomponent
dependencies of the univariate PC scores ξ̂ of Ei(t) (reflecting the dependency
structure between the different dimensions of the multivariate outcome) (Steps
2-3). Hence, the multivariate eigenfunctions (ψ`(t)) are derived based only on
univariate FPCA employed on the different dimensions of Ei(t). Multivariate
FPCA involves smoothing over four or more dimensional covariance surfaces,
which can be quite cumbersome in terms of computational costs. By compari-
son, the proposed MV-VCSTM relies only on univariate FPCA, which involves
smoothing over only two-dimensional covariance surfaces (even for J > 2),
leading to greater computational gains for higher dimensional outcome (i.e. as
J increases).

Note that the multivariate conditional autoregressive (MCAR) modeling
needed for targeting the between eigencomponents covariance of ξ̂ is fitted via
a linear combination of independent latent Gaussian processes with a CAR cor-
relation structure, achieving further dimension reduction and computational
savings (Step 3). Once the data-driven multivariate eigenfunction bases for
Ui(t) are estimated and the multivariate varying coefficient functions (VCFs)
β(j)(t) are expanded onto thin-plate spline bases, spline coefficients needed for
estimation of the multivariate VCFs, multivariate PC scores ρi` and variance
components (α`, ν and σ2) are targeted via a Bayesian hierarchical model
(Step 5), followed by inference based on posterior distributions of the penalized
spline coefficients and the multivariate PC scores.

Additional computational gains achieved in the proposed algorithm are
based on the choice of multivariate eigenfunctions as a basis set for the expan-
sion of Ui(t). Since they are estimated based on the data, a lower number of
them are enough typically to explain leading directions of variation in the data
(compared to a pre-determined basis set), leading to a parsimonious model and
additional computational savings in Step 5 of the proposed algorithm. More-
over, because eigenfunctions are estimated from the data, they carry additional
interpretations as dominant modes of variation in time. While the proposed
estimation procedure is outlined in the algorithm below, key features in each
step are detailed further in this section. The R codes and a tutorial for imple-
menting the MV-VCSTM algorithm are made publicly available on Github
(https://github.com/dsenturk/MV-VCSTM).
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Estimation Algorithm
Step 1: Fit a multivariate varying coefficient model to the observed data under
the working independence assumption and obtain the multivariate residuals
Ei(t) = {E(1)

i (t), . . . , E
(J)
i (t)}T.

Step 2: Employ univariate FPCA on E
(j)
i (t) to target univariate eigenfunc-

tions and the univariate PC score vector ξ̂.
Step 3: Decompose dependencies among ξ̂ into a between eigencomponent Σb
and a within eigencomponent Σw (between region) variation via an MCAR
correlation structure.

Step 4: Target the multivariate eigenfunctions ψ`(t) using the estimated
univariate eigenfunctions and eigenvectors of the estimated Σb.

Step 5: Expanding the stochastic deviations Ui(t) on the estimated multivari-
ate eigenfunctions and the VCFs β(j)(t) on thin-plate spline bases, target the
VCFs β(j)(t), multivariate PC scores (ρi`) and the variance components (α`,
ν, and σ2) within a Bayesian hierarchical modeling framework via MCMC.

Step 1: A multivariate varying-coefficient model is fit to the observed data
under the working independence assumption (referred to as MV-VCM):
Y

(j)
i (t) = XT

i β
(j)(t) + ε

(j)
i (t), where ε(j)i (t) is assumed to be i.i.d. MV-VCM is

implemented using the built-in gam function in the R package mgcv, where thin-
plate splines are used in estimation of the VCFs and the smoothing parameters
are selected using restricted maximum likelihood (REML). The multivariate
residuals from this initial fit, denoted by Ei(t) = {E(1)

i (t), . . . , E
(J)
i (t)}T, cap-

ture the remaining spatiotemporal variation in the data that is not explained
by the time varying effects of risk factors and are used as a proxy for the
region-specific deviations Ui(t).

Step 2: Univariate FPCA is employed on E
(j)
i (t) separately along each

dimension of the multivariate residuals. More specifically, in jth dimension,
the empirical covariance is calculated as Ĝ(j)(t, t′) =

∑n
i=1E

(j)
i (t)E

(j)
i (t′)/n.

Next, a two-dimensional penalized smoothing is applied to the off-diagonal
elements of Ĝ(j)(t, t′) via the built-in gam function in the R package mgcv.
The diagonal entries of Ĝ(j)(t, t′) are removed in smoothing, since they are
prone to measurement error. The two-dimensional penalized smoothing yields
the univariate eigenfunction {φ̂(j)m (t) : m = 1, . . . ,Mj} and PC score estimates
{ξ̂(j)im : i = 1, . . . , n; m = 1, . . . ,Mj}. The smoothing parameters are selected
by REML and the number of eigencomponents Mj is selected using the frac-
tion of variance explained (FVE), where FVE > 99% is used in applications
to retain enough information at this initial step of the algorithm.

Step 3: Next, the univariate PC score vector ξ̂Ti =

(ξ̂
(1)
i1 , . . . , ξ̂

(1)
iM1

, . . . , ξ̂
(J)
i1 , . . . , ξ̂

(J)
iMJ

) is modeled using an MCAR correlation
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structure. Let Ξ = [ξ̂1, . . . , ξ̂n]T denote the n ×M+ score matrix, combining
the score vectors from all subjects, where M+ = M1 +M2 + . . .+MJ denotes
the total number of eigencomponents retained across all J dimensions of
Ei(t). Stacking the columns of Ξ leads to the nM+×1 score vector ξ̂ = vec(Ξ)
that is modeled as a linear combination of M+ independent latent Gaussian
processes with a CAR correlation structure [34],

ξ̂
nM+×1

= ξ
nM+×1

+ e
nM+×1

= ( A
M+×M+

⊗ I
n×n

) f
nM+×1

+ e
nM+×1

. (2)

In (2), f = (fT1 , . . . , f
T
M+)T denotes the vector of stacked n× 1 latent Gaussian

processes f` ∼ N(0, (D − νW )−1), ` = 1, . . . ,M+, where D and W are as
defined in Section 2.1 and ν denotes the common spatial smoothing parameter,
A = {a``′}, 1 ≤ `′ ≤ ` ≤M+, denotes an M+×M+ full rank lower triangular
matrix and e ∼ N(0, τ2 InM+) denotes the vector of measurement errors,
assumed to be uncorrelated with ξ. Note that the distribution of f can be given
as N

(
0, IM+ ⊗ (D − νW )−1

)
, leading to the decomposition of the covariance

Σ of ξ into between eigencomponent (Σb ≡ AAT) and within eigencomponent
(Σw ≡ (D − νW )−1) variation

Σ
nM+×nM+

=( A
M+×M+

⊗ I
n×n

)Bdiag{(D − νW )
n×n

−1
, . . . , (D − νW )−1}(AT ⊗ I)

= AAT

M+×M+
⊗(D − νW )

n×n
−1 ≡ Σb

M+×M+

⊗ Σw
n×n

,

where Bdiag(·) denotes a block-diagonal matrix and ξ is MCAR (ν,Σb).
While the between eigencomponent variation captures the dependency between
the eigencomponents from univariate expansions, the within eigencomponent
(between region) variation captures the spatial dependency among the regional
units. Note that representation of ξ as a linear combination of independent
spatial Gaussian processes modeled with a CAR correlation structure, via the
lower triangle matrix A, allows for easy implementation of the MCAR model
in WinBUGS, without the need for operations with large covariance matrices
and without the need to check for positive-definiteness of covariance matrices
in each iteration of the algorithm.

The parameters of the MCAR model are targeted via MCMC. Ele-
mentwise priors are imposed on the lower-triangular matrix A: a`` ∼
Log-normal(µa`` , σ2

a``
) and a``′ ∼ N(µa``′ , σ

2
a``′

) for 1 ≤ `′ < ` ≤ M+. In
addition, an Inverse Gamma (IG) (aτ2 , bτ2) prior is imposed on the measure-
ment error variance τ2, and a Uniform prior is used for the spatial correlation
parameter ν with the parameters constrained to lie between bounds given
by the inverse of the minimum and maximum eigenvalues of the matrix
D−1/2WD−1/2 (denoted by aν , bν , respectively). The posterior distribution we
seek can be expressed as

π(a``, a``′ , ν,τ
2 | ξ̂) ∝ N(ξ̂ | ξ, τ2)×N

(
ξ | 0, AAT ⊗ (D − νW )−1

)
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×
M+∏

`=1

Log-normal(a`` | µa`` , σ2
a``

)×
M+∏

`=1

`−1∏

`′=1

N(a``′ | µa``′ , σ2
a``′

)

×Unif(ν | aν , bν)× IG(τ2 | aτ2 , bτ2).

Model parameters are sampled from the posterior distributions using MCMC
with Gibbs sampling and random walk metropolis as implemented in Win-
BUGS.

Step 4: The multivariate eigenfunctions are targeted using the univariate
eigenfunctions φ̂(j)m (t) of E(j)

i (t) estimated in Step 2 and the eigenvectors ĉ`,
` = 1, . . . ,M+, of the between eigencomponent variation Σ̂b targeted in Step
3 as

ψ̂
(j)
` (t) =

Mj∑

m=1

[ĉ`]
(j)
m φ̂(j)m (t), ` = 1, . . . ,M+, j = 1, . . . , J. (3)

For justification of (3), we refer the reader to Web Appendix A of [29],
where the authors show that the variance components α`’s are also the
eigenvalues of the between-eigencomponent covariance matrix Σb in the
context of a spatiotemporal model. This link enables the targeting of each
dimension of the multivariate eigenfunction ψ̂

(j)
` (t) as a linear combination

of the estimated univariate eigenfunctions φ̂(j)m (t) for that dimension with
weights equal to the corresponding entries in the eigenvector of the estimated
between-eigencomponent covariance matrix Σb of the univariate scores. More
specifically, the weights equal the mth entry of [ĉ`]

(j) ∈ RMj , the jth block of
the `th eigenvector ĉ` of Σ̂b (equal to the posterior mean of Σb), where they
enable incorporation of the dependence among different eigencomponents into
the multivariate eigenfunctions.

Step 5: Expanding the stochastic deviations Ui(t) on the estimated multivari-
ate eigenfunctions from Step 4 and the VCFs β(j)(t) on thin-plate spline bases,
the VCFs, multivariate PC scores (ρi`) and the variance components (α`, ν,
and σ2) are targeted via a hierarchical Bayesian modeling framework. Note
that once the multivariate eigenfunctions are targeted in Steps 1-4, the para-
metric CAR assumption on the multivariate PC scores is pivotal in allowing
likelihood-based inference via a Bayesian framework.

Consider the expansion of the VCFs β(j)(t) = {β(j)
1 (t), . . . , β

(j)
P (t)}T onto

penalized low-rank thin-plate spline bases:

β(j)
p (t) ≈ u(j)p0 + u

(j)
p1 t+

Q∑

q=1

v(j)pq |t− κq|3, for p = 1, . . . , P, (4)

where κ1 < κ2 < . . . < κQ denote the fixed knots and u
(j)
p0 , u

(j)
p1 and

v
(j)
p = (v

(j)
p1 , . . . , v

(j)
pQ)T denote the expansion coefficients. The number of knots



Springer Nature 2021 LATEX template

11

Q utilized in applications is typically selected between 3 − 20 to ensure the
desired flexibility [35, 36], and κq is taken to be the sample quantile of the
time points corresponding to probability q/(Q+ 1).

The P-splines, including a penalty matrix ΩQ with (q′, q)th entry |κq′−κq|3,
penalizing the coefficients of |t−κq|3, can be fitted using the transformed model

β(j)
p (tk) ≈ u(j)p0 + u

(j)
p1 t+

Q∑

q=1

ṽ(j)pq zkq, for p = 1, . . . , P, (5)

where ṽ(j)p ≡ (ṽ
(j)
p1 , . . . , ṽ

(j)
pQ)T = Ω

1/2
Q v

(j)
p with cov(ṽ

(j)
p ) = σ2

ṽpj
IQ and zkq

denotes the (k, q)th entry of the transformation Z = ZQΩ
−1/2
Q of the design

matrix ZQ with kth row equaling {|tk − κ1|3, . . . , |tk − κQ|3} [36].
The hierarchical model combining expansions of the VCFs on thin-plate

spline bases and expansion of Ui(t) on the estimated multivariate eigenfunc-
tions ψ̂(j)

` (t) can be given as

Y
(j)
i (tk) =

P∑

p=1

Xip

(
u
(j)
p0 + u

(j)
p1 t+

Q∑

q=1

ṽ(j)pq zkq

)
+

M+∑

`=1

ρi`ψ̂
(j)
` (tk) + ε

(j)
i (tk),

for j = 1, . . . , J and k = 1, . . . , T , where ṽ
(j)
pq ∼ N(0, σ2

ṽpj
), ρ` =

(ρ1`, . . . , ρn`)
T ∼ N(0, α`(D − νW )−1) and ε

(j)
i (tk) ∼ N(0, σ2

j ). Using nor-
mal priors for u(j)p0 ∼ N(0, σ2

up0j
) and u

(j)
p1 ∼ N(0, σ2

up1j
), inverse Gamma

priors for the variance components σ2
ṽpj
∼ IG(aσ2

ṽpj

, bσ2
ṽpj

), σ2
j ∼ IG(aσ2

j
, bσ2

j
),

α` ∼ IG(aα`
, bα`

) and a Uniform prior for ν ∼ Unif(aν , bν), the posterior
distribution we seek can then be expressed as

π(u
(j)
p0 , u

(j)
p1 , ṽ

(j)
p ,ρ`, ν, α`, σ

2
j | Y (j)

i (t),Xi, Z, ψ̂
(j)
` (t),M+)

∝
n∏

i=1

T∏

k=1

J∏

j=1

N


Y (j)

i (tk) | {
P∑

p=1

Xip(u
(j)
p0 + u

(j)
p1 t+

Q∑

q=1

ṽ
(j)
pq zkq) +

M+∑

`=1

ρi`ψ
(j)
` (tk)}, σ2j




×
J∏

j=1

IG(σ2j | aσ2
j
, bσ2

j
)×

J∏

j=1

P∏

p=1

N
(
u
(j)
p0 | 0, σ

2
up0j

)
×

J∏

j=1

P∏

p=1

N
(
u
(j)
p1j | 0, σ

2
up1j

)

×
J∏

j=1

P∏

p=1

Q∏

q=1

N
(
ṽ
(j)
pq | 0, σ2ṽpj

)
×

J∏

j=1

P∏

p=1

Q∏

q=1

IG

(
σ2ṽpj | aσ2

ṽpj

, bσ2
ṽpj

)

×
M+∏

`=1

N
(
ρ` | 0, α`(D− νW)−1

)
×
M+∏

`=1

IG(α` | aα` , bα`)×Unif(ν | aν , bν).

Model parameters are sampled from the posterior distributions using
MCMC as implemented in WinBUGS. Since M+ is the total number of
univariate eigencomponents retained in the FPCA decompositions of E(j)

i (t)
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across the J dimensions, the total number (L) of multivariate eigencompo-
nents retained in expansions of Ui(t) could be chosen to be smaller thanM+ in
applications whereM+ may be large. Following [29], we recommend the use of
the estimated variance components α̂`, ` = 1, . . . ,M+ in formulating the frac-
tion of variance explained (FVE) in the choice of L, since they are established
as the eigenvalues of the between eigencomponent covariance of the univariate
PC scores (see Web Appendix A of [29]).

VCFs β(j)
p (t) are targeted by mean of the posterior draws for u(j)p0 +u

(j)
p1 t+

∑Q
q=1 ṽ

(j)
pq zkq, based on posterior draws for u(j)p0 , u

(j)
p1 and ṽ(j)p . Simultaneous

credible bands for the VCFs are obtained along each dimension j as follows.
Let f(t) denote a single VCF observed at time points tk for k = 1, 2, . . . , T in
one dimension. Further let f̂(t) and SD{f(t)} denote the mean and standard
deviation of f(t) based on a total of B MCMC samples f (b)(t) and let cδ denote
the (1 − δ) sample quantile of maxk=1,...,T | {f (b)(tk) − f̂(tk)}/SD{f(tk)} |,
b = 1, 2, . . . , B. Then the (1 − δ) simultaneous credible band (CB) for f(t)

in that dimension is given by [f̂(tk) ± cδSD{f(tk)}] [31]. In addition, using
the estimated multivariate eigenfunctions from Step 4 and taking β̂(j)(t) and
ρ̂i` as the mean of the posterior samples on the VCFs and the multivariate
eigenscores, respectively, region-specific prediction of the multivariate outcome
is targeted by

Ŷ
(j)
i (t) = XT

i β̂
(j)(t) +

L∑

`=1

ρ̂i`ψ̂
(j)
` (tk) for j = 1, . . . , J.

When different dimensions of the residuals Ei(t) obtained in Step 1 have
large differences in their range or if they exhibit different amounts of varia-
tion, standardization of the residuals may be considered along each dimension
E

(j)
i (t), to obtain interpretable multivariate functional principal components

[32, 37, 38]. The standardization can be carried out by Ẽ(j)(t) = s
1/2
j E(j)(t)

where sj =
{∫
T V̂ar

[
E(j)(t)

]
dt
}−1

, to guarantee that the integrated variance
along the rescaled residuals equals one [32]. In this way all dimensions of the
multivariate residuals contribute equal amounts of variation to the analysis,
similar to the standardization in classical multivariate principal component
analysis (PCA).

3 Data Analysis

3.1 Description of the USRDS study cohort and
region-specific risk factors

The USRDS is a large national database which collects data on nearly all
patients with ESKD in the U.S. We include patients aged 18 years or older who
transitioned to dialysis between January 1, 2005, and September 30, 2013 in
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our study cohort and include a maximum follow-up of two years (beginning on
day 91 of dialysis, after 90 days to establish a stable treatment modality, and
with the last date of follow-up on December 31, 2015). Regional units are taken
to be Health Service Areas (HSAs) with relatively self-contained infrastructure
for the provision of hospital care in the contiguous U.S., including the District
of Columbia. Region-specific multivariate outcome is obtained as the average
of facility-specific hospitalization and mortality rates, calculated monthly per
person-year (PPY) over the two year follow-up. In obtaining facility-specific
rates, we exclude facilities with less than 10 patients in any one month follow-
up interval to obtain stable facility-specific hospitalization and mortality rates
over time (17.4% facilities excluded). At the region level, we merge HSAs to
guarantee that each region contains at least 5 facilities (reducing available
HSAs from 719 to 402) and merge HSAs to ensure that the total number
of months with zero mortality rate is limited to one-third of the two-year
follow-up, to further stabilize region-specific inference. The final study cohort
contains 367 regions/HSAs after the second merging, where majority (61.6%)
of the resulting 367 regions are unmerged, and 15.0%, 8.4%, and 15.0% of
the regions consist of merging 2, 3, and > 3 original HSAs, respectively. The
mean region-specific hospitalization and mortality rate in the final cohort are
1.810 and 0.073 PPY, respectively. Detailed descriptions of the study cohort,
exclusion rules and region merging algorithms are deferred to Supplementary
Information Appendix A.

The proposed modeling includes urbanicity, area deprivation index (ADI)
and medical underservice index (MUI) as region-specific covariates. Urbanicity
is assigned by categorizing HSAs into the three classes of large metropolitan,
small metropolitan or non-metropolitan regions. Categorization of HSAs are
assigned according to the class that majority of the counties within each HSA
fall into, determined by the urban-rural classification scheme of the National
Center for Health Statistics (https://www.cdc.gov/nchs/data_access/urban_
rural.htm). Non-metropolitan regions are taken as the reference group. ADI,
consisting of 17 education, employment, housing-quality, and poverty mea-
sures, captures the socio-economic status of HSAs [39]. The rank-based index,
taking on values between 0 and 100 (higher values correspond to lower socio-
economic status and higher deprivation), is available at the census block
group level (available at https://www.neighborhoodatlas.medicine.wisc.edu),
and is averaged over census block groups within each HSA to arrive at the
HSA level index. The last covariate, MUI, takes on values between 0 and
1 to reflect the medical service availability within each HSA (higher indices
corresponding to higher underservice). The index is released by the Health
Resources and Services Administration at the census tract/county subdivision
level at https://data.hrsa.gov/tools/shortage-area, where medically under-
served tracts/subdivisions are areas with too few primary care providers, high
infant mortality, high poverty or a high elderly population. The proportion of
census tracts/county subdivisions that are designated as underserved is first
targeted for each county, and county MUIs are then averaged within each HSA
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to arrive at the HSA-level MUI index. ADI and MUI are mean-centered for
ease of interpretation in modeling.

3.2 Results

3.2.1 Time-varying effects of region-specific covariates

The estimated time-varying effects of the region-specific covariates are given in
Figure 1. The time-varying y-intercepts represent the hospitalization (Figure
1 (a)) and mortality (Figure 1 (b)) rates of an “average” non-metropolitan
region (reference group) with mean ADI of 58.948 and MUI of 0.502. The
highest rates in both outcomes (2.023 PPY for hospitalization and 0.083 PPY
for mortality) are observed within the first three months after transitioning
to dialysis where both rates steadily decline during the first year on dialysis.
While hospitalization rates continue to decline after the first year, mortality
rates remain relatively stable in the second year on dialysis. Figures 1 (c)-
(j) display the estimated effects of risk factors (solid) with simultaneous 95%
credible bands (dashed), overlaying horizontal lines at zero (gray) included for
reference. Large metropolitan regions have significantly higher hospitalization
rates than non-metropolitan regions (reference group), especially at initiation
of dialysis, where the effect gradually weakens in the second year on dialysis.
Similarly, ADI is significantly positively associated with hospitalizations, espe-
cially during the first and a half years on dialysis, suggesting that regions with
higher deprivation level have higher hospitalization risk. The effects of small
metropolitan regions and MUI are not found significant on hospitalizations
as the credible bands include zero, indicating that small metropolitan regions
have similar hospitalization rates to non-metropolitan regions, and medical ser-
vice availability is not found to be significantly associated with hospitalization
rates. Note that none of the covariates have significant effects on mortality,
indicating that hospitalization rates are more susceptible to urbanicity and
socioeconomic status of a region than mortality in the dialysis population.

To further assess the effects of the identified risk factors (being a large
metropolitan region with a high ADI index) on hospitalization and mortality
rates, Supplementary Information Figure S1 displays predicted hospitaliza-
tion and mortality trajectories for two hypothetical regions, one that is a
large metropolitan with 95% percentile ADI, and the other a non-metropolitan
region with 5% percentile ADI (while MUI kept at the mean level of 0.502).
The 95% simultaneous credible bands (shaded) for the predicted hospitaliza-
tion and mortality trajectories are formed based on the draws from Ỹ

(j)
i (t) =

XT
i β̂

(j)(t) without the region-specific random effects, corresponding to each
posterior draw of the multivariate varying coefficient functions, and following
the algorithm outlined at the end of Section 2.2 for forming 95% simultaneous
credible bands with f(t) = Y

(j)
i (t). A large metropolitan with 95% percentile

ADI is predicted to have higher hospitalization and mortality rates, compared
to a non-metropolitan region with 5% percentile ADI, although the differ-
ence is not found significant with credible bands overlapping throughout the
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two-year follow-up for both outcomes. Moreover, while the difference of hospi-
talization rates between the two regions is relatively stable across the two-year
follow-up, the difference of morality rates between these two regions is larger
during the first year on dialysis.

3.2.2 Spatiotemporal patterns of hospitalization and
mortality rates

In addition to modeling the time-varying effects of the above risk factors, the
proposed MV-VCSTM also models the remaining spatiotemporal patterns in
the data via time-varying region-specific stochastic deviations Ui(t). Multi-
variate FPCA is utilized in reducing the dimension of Ui(t), where spatial
correlations are induced among the region-specific eigenscores. A total of four
and three eigencomponents are retained in univariate FPCA decompositions
of hospitalization and mortality, respectively, explaining 99.02% and 99.17%
of the total variation. The estimated multivariate eigenfunctions based on the
univariate FPCA decompositions are given in Figure 2 with estimated spa-
tial variance parameters α̂1 = 6.964, α̂2 = 0.259, α̂3 = 0.151, α̂4 = 0.149,
α̂5 = 0.021, α̂6 = 0.017, and α̂7 = 0.016. The leading four multivariate
eigenfunctions (given in Figures 2 (a)-(b)) mainly explain variation in hospital-
ization rates, while the last three (given in Figure 2 (c)-(d)) explain variation in
mortality. Among the multivariate functions that mostly explain variability in
hospitalization, the leading eigenfunction describes constant variation through-
out the two-year follow-up, while the remaining three highlight variation in
the first and last six months on dialysis (second eigenfunction), variation at 18
months and at end of the two year follow-up (third eigenfunction) and finally
at one year and 18 months on dialysis (fourth eigenfunction). Among the mul-
tivariate eigenfunctions that mostly explain variation in mortality, the leading
one (5th eigenfunction) explains constant variation over the two-year follow-
up (similar to the leading eigenfunction explaining mostly constant variation
in hospitalization) (given in Figure 2 (c)-(d)). The sixth multivariate eigen-
function explains variation in mortality at one year and 18 months on dialysis,
while the seventh highlighting variation in mortality at 5 and 10 months on
dialysis. The leading time-varying variation in hospitalization observed within
the first six months of dialysis is consistent with higher hospitalization rates
observed at initiation of dialysis, while higher variation in the last six months
of follow-up may be related to the decrease in sample size of the study cohort
at the end of the two year follow-up.

To assess the spatial and temporal variation jointly in hospitalization and
mortality risk while accounting for the time-varying effects of region-specific
covariates on the multivariate outcome, Figure 3 displays raw hospitalization
(a) and mortality (b) rates as well as region-specific predictions from MV-
VCSTM at 3 month, 12 months and 18 months after initiation of dialysis.
Overall both set of maps highlight elevated hospitalization and mortality rates
in the “band” from Massachusetts to southern Texas (darker blue), and a
decreasing trend in both rates for longer follow-up times on dialysis (consistent
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with the decreasing trends of the estimated y-intercepts for both outcomes).
There are also outcome-specific trends with different spatial patterns among
hospitalization and mortality risk in some regions, such as some HSAs in north-
ern California, Oregon, Montana, and Idaho have relatively low hospitalization
rates but elevated mortality rates, whereas some HSAs in Florida and Arizona
with relatively high hospitalization rates have low mortality rates. Note that
the predicted maps correspond closely to the raw maps, especially for hospital-
ization risk, indicating the satisfactory fit of the proposed MV-VCSTM model.
Mortality risk is harder to predict than hospitalization risk, however the pro-
posed MV-VCSTM leads to the smallest prediction error also for mortality,
compared to reduced models that ignore the spatiotemporal correlations in the
region-specific deviations.

The estimated spatial correlation parameter of ν̂ = 0.875, inducing cor-
relations between neighboring HSAs ranging from 0.19 to 0.60, confirm that
there is still significant spatiotemporal variation remaining in the data, after
adjusting for time-varying effects of covariates. To visualize the remaining
spatial patterns in the data, Figure 4 (a)-(b) display the residuals Ei(t) (aver-
aged across time) obtained from the initial multivariate varying coefficient
model (MV-VCM) fit to the data in Step 1 under the working independence
assumption. To assess the model fit of MV-VCSTM, Figure 4 also displays the
predicted region-specific deviations Ui(t) (Figure 4 (c)-(d)) and residuals from
MV-VCSTM (Figure 4 (e)-(f)) averaged across follow-up time. Maps of the
residuals Ei(t) from MV-VCM and the predicted Ui(t) both confirm the sig-
nificant spatial variation remaining in the data after adjusting for time-varying
effects of covariates. In addition, the similarity between these two maps show
that the predicted region-specific deviations are able to capture the remain-
ing spatial variation in the data effectively. By comparison, the residuals from
MV-VCSTM are quite small without any obvious spatial correlation pattern,
implying that the spatiotemporal correlation has been effectively modeled by
MV-VCSTM.

Next, the proposed MV-VCSTM fits are compared to fits from two reduced
multivariate varying coefficient models that ignore the spatiotemporal cor-
relations in the region-specific deviations using prediction error. The first
comparative model is the multivariate varying-coefficient model (MV-VCM)
from Step 1 of the MV-VCSTM estimation algorithm, fitted under the work-
ing independence assumption. MV-VCM, while accommodating time-varying
effects of covariates on the multivariate outcome, ignores the spatiotemporal
correlations remaining in the data after adjusting for time-varying effects of
covariates. Different from MV-VCM, the second comparative model, referred
to as the multivariate varying-coefficient temporal model (MV-VCTM) incor-
porates temporal trends in the error modeling after adjusting for time-varying
effects of covariates: Y (j)

i (tk) = XT
i β

(j)(tk)+U
(j)
i (t)+ε

(j)
i (tk), where U (j)

i (t) =∑L
`=1 ρi`ψ

(j)
` (tk) with ψ(j)

` (t) denoting the multivariate eigenfunctions and ρi`
denoting the corresponding multivariate PC scores. Different from the pro-
posed MV-VCSTM, the PC scores ρi` in MV-VCTM are assumed to be i.i.d
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across regions, ignoring the spatial correlations in the region-specific devia-
tions. Similar to MV-VCSTM, MV-VCTM is also fitted using Bayesian hierar-
chical modeling (implemented via WinBUGS), where region-specific deviations
are expanded on multivariate eigenfunctions and VCFs are expanded using
penalized thin-plate splines. The estimation algorithm for MV-VCTM also
starts with an initial MV-VCM fit to the data, but targets the multivariate
eigenfunctions by the multivariate functional principal components of [32].
We compare the three model fits using relative mean squared deviation error
(MSDE), i.e., MSDEŶ (j)(t) =

∫
{Y (j)

i (t) − Ŷi
(j)

(t)}2dt/
∫
{Y (j)

i (t)}2dt. Note
that MSDE is reported from the training data, since in case of a data split
or cross-validation, the PC scores for the left out regions cannot be predicted
based on the proposed CAR structure with a fixed neighborhood structure.
The MSDE results are reported in Table 1. As expected, MV-VCM, ignoring
the spatiotemporal correlation of the error leads to the largest MSDEs, followed
by MV-VCTM (which ignores the spatial correlation of the error). By com-
parison, the proposed MV-VCSTM leads to the smallest MSDEs in modeling
both hospitalizations and mortality. As will be shown through the simulation
studies summarized in the next section, modeling of the spatiotemporal cor-
relations in the errors via MV-VCSTM, not only leads to smaller prediction
error for the outcome trajectories, but it also improves efficiency in inference
on the VCFs (evaluated via coverage probability and length of the associated
credible bands).

4 Simulation Studies
Finite sample properties of the proposed estimation and inference algorithm
are studied via simulation studies with varying number of regions and measure-
ment error variance for multivariate response from two and three dimensions
under aligned and misaligned designs where data from different regions are
observed at aligned and misaligned time points, respectively. In addition, we
compare the finite sample performance of the proposed MV-VCSTM to that
of the two comparative models MV-VCTM and MV-VCM introduced above,
which ignore the spatial and spatiotemporal correlations of the error term,
respectively.

4.1 Simulation design
In the simulation case with two-dimensional multivariate response with aligned
time points, the bivariate response is simulated using

Y
(j)
i (tk) = XT

i β
(j)(tk) +

L∑

`=1

ρi`ψ
(j)
` (tk) + ε

(j)
i (tk) for j = 1, 2,

where tk, k = 1, . . . , 24, denote the equidistant grid of time points between
0 and 1, mimicking the 24 month aligned follow-up in our data application.
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In the misaligned design, 50% random missingness is induced for each region
to achieve region-specific misaligned time points where tk, k = 1, . . . , 48,
denote the equidistant grid of time points between 0 and 1, and each region
is observed at a total of 24 time points after the induced missingness. The
covariates Xi = {1, Xi1, Xi2}T, i = 1, . . . , n, include a y-intercept term,
where Xi1, Xi2 are generated from a bivariate normal distribution with mean
(0, 0)T, variance 1 and covariance 2−0.5. The time-varying coefficient function
β(j)(tk) = {β(j)

1 (tk), β
(j)
2 (tk), β

(j)
3 (tk)}, j = 1, 2, is set to:

β
(1)
0 (t) =

1

5
exp(2t− 1), β

(1)
1 (t) =

1

2
t(1− t), β

(1)
2 (t) =

1

8
(1− t)2,

β
(2)
0 (t) =

3

10

√
2t+

1

10
, β

(2)
1 (t) =

1

2
(t− 0.5)2, β

(2)
2 (t) =

1

8
t2.

The multivariate eigenfunctions ψ`(tk) = {ψ(1)
` (tk), ψ

(2)
` (tk)}T, ` = 1, 2, 3

(for L = 3), are generated using 11 Fourier basis functions on the interval
T = [0, 2]. While ψ(1)

` (t), ` = 1, 2, 3, are taken to be the 4th, 5th and 8th
Fourier basis functions evaluated on [0, 1], respectively, ψ(2)

` (t), ` = 1, 2, 3, are
set to equal 4th, 9th and 8th basis functions evaluated on [1, 2], shifted to the
left by 1 and multiplied by a random sign. The sign of ψ(2)

` (t), ` = 1, 2, 3,
are selected to guarantee that the multivariate eigenfunctions are orthonor-
mal on [0, 1]. A CAR structure is induced on the multivariate PC scores
ρ` = (ρ1`, ρ2`, . . . , ρn`)

T. More specifically, the score vector ρ` is generated
from a multivariate normal distribution with mean 0 and covariance matrix
α`(D−νW )−1, whereW denotes the adjacency matrix andD denotes the diag-
onal matrix with the total number of neighbors for each region, as described
in Section 2.1. The matrices W and D are specified using the map of n = 49
states in the contiguous U.S. (including the District of Columbia) and the
map of the n = 367 HSAs from our data application. The spatial variance
parameters α`’s are taken to be α1 = 2.4, α2 = 1.2 and α3 = 0.6, and the
spatial correlation parameter ν is set to 0.97. Finally, the measurement errors
εi(tk) = {ε(1)i (tk), ε

(2)
i (tk)}T ∼ N

(
(0, 0)T, diag(σ2

1 , σ
2
2)
)
, where σ2

1 = σ2
2 = σ2

equal 0.2 and 2 corresponding to low and high noise simulation cases, respec-
tively. Details on generation of data for the simulation with three-dimensional
multivariate response is deferred to Supplementary Information Appendix B.

4.2 Results
The relative mean squared deviation error (MSDE), MSDEθ̂(t) = [

∫
{θ̂(t) −

θ(t)}2dt]/
∫
{θ(t)}2dt (for a generic function θ(t)), and the mean squared error

(MSE), MSEθ̂ = (θ − θ̂)2/θ2 (for a generic parameter θ), are utilized to
assess estimation of the time-varying and time-invariant parameters, respec-
tively. In addition to the time-varying model parameters, MSDEs of the
estimated region-specific deviations Û (j)

i (t) and predicted outcome trajectories
Ŷ

(j)
i (t) are also reported. Reported summaries exclude outlier MSDE values
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(MSDE> 5) for Û (j)
i (t) with denominator values close to zero (less than 2%).

All VCFs are modeled with penalized thin-plate spline basis functions using
Q = 3 number of knots. Results were found to be robust to varying choice of
number of knots in a sensitivity analysis. Details on the specific prior settings
used in the Bayesian modeling of Steps 3 and 5 of the estimation algorithm
are deferred to Supplementary Information Appendix C. Reported results are
based on a total of 200 Monte Carlo runs. While the MCMC in Step 3 of the
estimation algorithm uses two parallel chains with 15000 iterations (5000 burn-
in), the MCMC in Step 5 uses one chain with 15000 iterations (5000 burn-in)
and returns one out of every ten samples. All Markov chains are verified to
have good mixing and convergence properties and the trace plots are given in
Supplementary Information (Figure S2 and S3).

The mean MSDE and MSE values from four simulation set-ups with aligned
time points and two sets of total number of regions (n = 49 and n = 367)
and two error variances (σ2 = .2 and σ2 = 2.0) are reported in Tables 2 for
the two-dimensional multivariate response. All error measures decrease with
increasing number of regions, as expected. In addition, MSDEs for all quan-
tities also decrease with decreasing noise level σ2, while MSEs for variance
components are comparable across the two noise levels, showing that the pro-
posed MV-VCSTM can remove effects of measurement error under both error
settings. Even under n = 49 and the higher error variance, error measures are
small, signaling a good fit. Error measures for n = 49 and σ2 = .2 and 2.0 from
two-dimensional multivariate outcome with misaligned time points (reported
in Table S1) and from three-dimensional multivariate outcome with aligned
time points (reported in Table S2) follow similar trends, demonstrating that
the proposed MV-VCSTM methodology is still effective when time points may
be misaligned across regions and with response in higher dimensions. The esti-
mated VCFs from the simulation runs with the 5th, 50th and 95th percentile
MSDEs based on n = 49 and n = 367 regions are given in Figures S4 and
Figure S5, respectively. In addition, the estimated multivariate eigenfunctions
from runs with the 5th, 50th and 95th percentile MSDEs based on n = 49 and
n = 367 regions are displayed in Figures S6 and Figure S7, respectively. The
estimates track the true functions, where quantities are estimated better with
increasing number of regions and decreasing error variance, as expected.

Finally, the finite sample performance of the proposed MV-VCSTM is
compared to two multivariate varying coefficient models, MV-VCTM and MV-
VCM, which ignore the spatial and spatiotemporal correlations of the error
term, respectively. Model comparisons at varying error variance for n = 49 and
n = 367 regions are summarized in Tables S3 and Table 3, respectively, for
the two-dimensional multivariate response (results for the three-dimensional
response from n = 49 are deferred to Table S4). Models are compared with
respect to MSDEs of VCFs, region-specific deviations Û (j)

i (t), outcome pre-
dictions Ŷ (j)

i (t), as well as the VCF coverage probabilities (CP) and the
corresponding length of 95% credible bands (CBs). Intervals reported for MV-
VCM are approximate 95% pointwise empirical confidence intervals obtained
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by the gam function in the R package mgcv. Simultaneous CBs for MV-VCTM
are formed in the same way as MV-VCSTM, based on posterior samples of the
VCFs. MV-VCM, ignoring the spatiotemporal correlations in the errors, has
the worst performance among the three models, with higher MSDE for the y-
intercept VCF and the predicted response trajectories Ŷ (j)

i (t) and significant
under coverage for the y-intercept VCF in both dimensions. The proposed
MV-VCSTM, incorporating spatiotemporal correlations in the error leads to
the lowest MSDEs out of all three methods where length of the CBs are also
smaller compared to those from MV-VCTM as well, signaling improved effi-
ciency in inference. The length of CBs for MV-VCSTM tend to be larger in
the misaligned case, which is expected with misalignment adding additional
variation to estimation. Nevertheless, the advantages of MV-VCSTM stay the
same over the comparator methods of MV-VCM and MV-VCTM, in terms of
leading to the smallest MSDE for varying coefficient functions, region-specific
deviations and multivariate predictions, as well as CBs with the highest cover-
age probability and the smallest length, also in the misaligned time points case.
Results given in Table S4 for the three-dimensional multivariate outcome fol-
low similar trends. Note that CPs reported from MV-VCTM and MV-VCSTM
are higher than the nominal level, as expected, as Bayesian CBs tend to be
conservative [40, 41].

5 Discussion
A novel multivariate varying coefficient spatiotemporal model (MV-VCSTM)
is proposed to study time-varying effects of risk factors jointly on hospital-
ization and mortality rates in the U.S. dialysis population. In addition to
adjusting for time-varying regression effects of covariates which are character-
ized as functions of time that patients stay on dialysis, the proposed modeling
approach accounts for the remaining joint spatiotemporal patterns of hospi-
talization and mortality rates among geographic regions (HSAs). To address
challenges in estimation and inference in high-dimensional multivariate out-
come settings, the proposed estimation relies on multiple dimension reduction
techniques. The region-specific random deviations are expanded on multi-
variate eigenfunctions (which leads to representations in lower dimensions,
involving only a few multivariate eigenfunctions), which are targeted using
only univariate FPCA expansions, leading to significant computational savings
by avoiding smoothing over high dimensional covariance surfaces. Expansions
using multivariate eigenfunctions not only help achieve computational sav-
ings, they also lead to extra interpretations in modeling, via capturing the
leading directions of temporal variation in the errors (after adjustment for
time-varying effects of risk factors). Additional computational savings are
achieved in MCAR modeling using independent latent Gaussian processes with
a CAR correlation structure. Hence, the proposed modeling, while leading
to a nonseparable space and time covariance structure in the outcomes, can
still easily scale up to multivariate response in higher dimensions. Modeling
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the spatiotemporal correlations in the errors via MST-VCSTM is shown to
improve the efficiency of inference on the VCFs through simulation studies.
Finally, applications of the proposed methodology to USRDS data lead to the
discovery of significant risk factors (large metropolitan and ADI) for hospi-
talization rates. In addition, the proposed MV-VCSTM leads to identification
of “hot” spots (with high rates in both hospitalization and mortality or with
differing patterns in the outcomes) and time periods with elevated rates after
transitioning to dialysis.

Data Availability The release of the data used in this paper is gov-
erned by the National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK) through the USRDS Coordinating Center. The data can
be requested from the USRDS through a data use agreement.

Supplementary Information The supplementary material for this article,
including referenced appendices, is available online. The R code and documen-
tation for implementing the proposed MV-VCSTM on simulated datasets are
provided on Github at https://github.com/dsenturk/MV-VCSTM.
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Table 1: The mean MSDEs from predicted multivariate response trajectories
using MV-VCM, MV-VCTM, MV-VCSTM fits to the USRDS data.

MV-VCM MV-VCTM MV-VCSTM
Hospitalization 0.048 0.045 0.015
Mortality 0.321 0.314 0.236



Table 2: The mean MSDE of VCFs, eigenfunctions, region-specific deviations
and multivariate response trajectories, and MSE for variance components and
spatial correlation parameters from four simulation settings with aligned time
points, two sets of total number of regions and two sets of measurement error
variance σ2. Results are based on two-dimensional multivariate response and
200 Monte Carlo runs.

Number of regions, n 49 regions 367 regions

Noise level, σ2 0.2 2 0.2 2

MSDE

β̂
(1)
0 (t) 0.0033 0.0178 0.0003 0.0015
β̂
(2)
0 (t) 0.0031 0.0236 0.0003 0.0011
β̂
(1)
1 (t) 0.0017 0.0096 0.0004 0.0020
β̂
(2)
1 (t) 0.0013 0.0093 0.0002 0.0015
β̂
(1)
2 (t) 0.0011 0.0126 0.0001 0.0011
β̂
(2)
2 (t) 0.0009 0.0093 0.0001 0.0012
ψ̂
(1)
1 (t) 0.0795 0.0872 0.0105 0.0179
ψ̂
(2)
1 (t) 0.0821 0.0846 0.0104 0.0176
ψ̂
(1)
2 (t) 0.0960 0.1222 0.0164 0.0265
ψ̂
(2)
2 (t) 0.1060 0.1208 0.0168 0.0281
ψ̂
(1)
3 (t) 0.0349 0.1697 0.0048 0.0157
ψ̂
(2)
3 (t) 0.0333 0.1769 0.0050 0.0172
Û

(1)
i (t) 0.0465 0.3447 0.0416 0.2775

Û
(2)
i (t) 0.0470 0.3516 0.0418 0.2789

Ŷ
(1)
i (t) 0.0251 0.3499 0.0244 0.2010
Ŷ

(2)
i (t) 0.0205 0.2152 0.0196 0.1594

MSE

α̂1 0.0985 0.1067 0.0284 0.0300
α̂2 0.0260 0.0347 0.0091 0.0156
α̂3 0.0188 0.0696 0.0150 0.0246
ν̂ 0.0067 0.0070 0.0066 0.0067
σ̂2(1) 0.0022 0.0023 0.0005 0.0005
σ̂2(2) 0.0023 0.0024 0.0004 0.0005



Table 3: The mean MSDE of VCFs, deviations Û (j)
i (t) and predictions Ŷ (j)

i (t),
along with coverage probabilities (CPs, %) and length of the 95% credible
bands for n = 367 regions from MV-VCM, MV-VCTM, and MV-VCSTM,
respectively. Results are based on two-dimensional multivariate response with
aligned time points and 200 Monte Carlo runs.

# regions 367 regions

Noise level 0.2 2

Model MV-VCM MV-VCTM MV-VCSTM MV-VCM MV-VCTM MV-VCSTM

MSDE

β̂
(1)
0 (t) 0.0691 0.0513 0.0003 0.0828 0.0606 0.0015
β̂
(2)
0 (t) 0.0690 0.0514 0.0003 0.0829 0.0613 0.0011
β̂
(1)
1 (t) 0.0005 0.0009 0.0004 0.0039 0.0031 0.0020
β̂
(2)
1 (t) 0.0006 0.0008 0.0002 0.0026 0.0026 0.0015
β̂
(1)
2 (t) 0.0012 0.0009 0.0001 0.0017 0.0024 0.0011
β̂
(2)
2 (t) 0.0011 0.0008 0.0001 0.0026 0.0022 0.0012
Û

(1)
i (t) / 0.2045 0.0416 / 0.4150 0.2775

Û
(2)
i (t) / 0.2049 0.0418 / 0.4161 0.2789

Ŷ
(1)
i (t) 0.6748 0.0282 0.0244 0.6777 0.2168 0.2010
Ŷ

(2)
i (t) 0.5763 0.0222 0.0196 0.5853 0.1734 0.1594

CP (%)

β̂
(1)
0 (t) 33.71 100 100 30.06 100 100
β̂
(2)
0 (t) 31.48 100 100 28.08 100 100
β̂
(1)
1 (t) 100 100 100 98.96 97.5 99.5
β̂
(2)
1 (t) 100 100 100 99.98 100 100
β̂
(1)
2 (t) 100 100 100 100 100 100
β̂
(2)
2 (t) 100 100 100 100 100 100

Length

β̂
(1)
0 (t) 0.192 1.136 0.955 0.339 1.158 0.920
β̂
(2)
0 (t) 0.196 1.341 0.897 0.349 1.347 0.784
β̂
(1)
1 (t) 0.227 0.412 0.265 0.285 0.557 0.334
β̂
(2)
1 (t) 0.221 0.553 0.428 0.355 0.666 0.427
β̂
(1)
2 (t) 0.213 0.363 0.278 0.277 0.519 0.333
β̂
(2)
2 (t) 0.237 0.472 0.318 0.280 0.601 0.443
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Fig. 1: Estimated time-varying effects (solid) of covariates: y-intercept, large
metropolitan, small metropolitan, area deprivation index (ADI) (centered) and
medical underservice index (MUI) (centered), along with their 95% simulta-
neous credible bands (dashed), in modeling hospitalization (a, c, e, g, i) and
mortality (b, d, f, h, j) rates among the U.S. dialysis population. Horizontal
lines at zero are included in gray for reference.
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Fig. 2: Estimated multivariate eigenfunctions for hospitalization (a, c) and
mortality (b, d). The leading four multivariate eigenfunctions (a, b) mainly
explain variation in hospitalization, while the last three multivariate eigen-
functions (c, d) mainly explain variation in mortality. The zero horizontal lines
are included in gray for reference.



Fig. 3: The raw and predicted hospitalization (a) and mortality (b) rates from
the 3rd, 12th, and 18th months on dialysis for all HSAs.
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Fig. 4: The residuals Ei(t) (averaged across time) obtained from the ini-
tial multivariate varying coefficient model fit to the data under the working
independence assumption (a-b), the predicted region-specific deviations Ui(t)
averaged across follow-up time (c-d), and the residuals (averaged across time)
obtained from the proposed MV-VCSTM (e-f) for hospitalization (a, c, e) and
mortality (b, d, f).
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Appendices

Online Appendix A. Details on the USRDS Study Cohort
The main eligibility criteria for the study cohort are that (a) patients survive the first 90 days of dialysis
and do not recover renal function or receive kidney transplantation and (b) that they have Medicare as their
primary payer on day 91 of dialysis. To obtain stable region-specific estimation and inference, HSAs are
merged first to guarantee that they contain at least 5 facilities and for a second time to guarantee that the
total number of months with zero mortality rate does not exceed one-third of the two year follow-up. Both
merging algorithms have four steps: Step 1) start with HSAs as regions; Step 2) among regions with the
lowest number of facilities (or with greater than eight months of zero mortality), randomly select one region
(call it R); Step 3) among neighbors of the selected region R, randomly select a neighbor, among those with
the lowest number of facilities (or among those with the largest number of months with zero mortality rate),
to merge with region R; Step 4) repeat Steps 2 and 3 until the lowest number of facilities within a region is
5 (or the largest number of months with zero mortality rate during the two-year follow up within a region is
eight).

Online Appendix B. Simulation Set-up for Multivariate Response in Three Di-
mensions
In the simulation setting with three-dimensional multivariate response, the trivariate response is simulated
using

Y
(j)
i (tk) = XT

i β
(j)(tk) +

L∑

`=1

ρi`ψ
(j)
` (tk) + ε

(j)
i (tk), for j = 1, 2, 3,

where tk, k = 1, . . . , 24, denote the equidistant grid of time points between 0 and 1, mimicking the 24 month
follow-up in our data application. The covariates Xi = {1, Xi1, Xi2}T for i = 1, . . . , n include a y-intercept
term, and Xi1, Xi2 generated from a bivariate normal with mean (0, 0)T, variance 1 and covariance 2−0.5.
The time-varying coefficient function, β(j)(tk) = {β(j)

1 (tk), β
(j)
2 (tk), β

(j)
3 (tk)}, j = 1, 2, 3, is set as follows:

β
(1)
0 (t) = 0.1exp(2t− 1), β

(1)
1 (t) = 0.25t(1− t), β

(1)
2 (t) = 0.06(1− t)2,

β
(2)
0 (t) = 0.15

√
2t+ 0.05, β

(2)
1 (t) = 0.25(t− 0.5)2, β

(2)
2 (t) = 0.06t2,

β
(3)
0 (t) = 0.15t+ 0.05, β

(3)
1 (t) = 0.06t2, β

(3)
2 (t) = 0.05

√
0.5t.

The multivariate eigenfunctions ψ`(tk) = {ψ(1)
` (tk), ψ

(2)
` (tk), ψ

(3)
` (tk)}T, ` = 1, 2, 3 (for L = 3), are generated

using 13 Fourier basis functions on the interval T = [0, 3]. While ψ(1)
` (t) is taken to be the 12th, 6th and

7th basis functions evaluated on [0, 1] (i.e., L = 3), ψ(2)
` (t) equals the 7th, 6th and 12th basis functions

1



evaluated on [1, 2], shifted to the left by one and multiplied by a random sign, and ψ(3)
` (t) equals the 6th,

12th and 7th basis functions evaluated on [2, 3], shifted to the left by two and multiplied by a random
sign. Similar to the simulation with the two-dimensional multivariate response, the multivariate PC scores,
ρ` = (ρ1`, ρ2`, . . . , ρn`)

> are generated from a multivariate normal distribution with mean 0 and covariance
matrix α`(D − νW )−1, where W is the adjacency matrix and D is the diagonal matrix utilizing the map of
n = 49 states in the contiguous U.S. (including the District of Columbia). The variance parameters α`’s are
taken to be α1 = 2.4, α2 = 1.2, α3 = 0.6, while the spatial correlation parameter is set to ν = 0.97. Finally,
the measurement errors, εi(tk) = {ε(1)i (tk), ε

(2)
i (tk), ε

(3)
i (tk)}T ∼ N

(
(0, 0, 0)T, diag(σ2

1 , σ
2
2 , σ

2
3)
)
, where σ2

1 =
σ2
2 = σ2

3 = σ2 equal 0.2 and 2 corresponding to low and high noise simulation cases, respectively.

Online Appendix C. Priors Used in the Data Analysis and Simulation
In Step 3 of the proposed MV-VCSTM estimation algorithm, the between-score covariance matrix Σb is
targeted through the modeling framework:

ξ̂ = ξ + e

e ∼ N(0, τ2I), ξ ∼ N
(
0, AAT ⊗ (D − νW )−1

)
,

a`` ∼ Lognormal(µa`` , σ
2
a``

), a``′ ∼ N(µa``′ , σ
2
a``′

), ν ∼ Unif(aν , bν), τ2 ∼ IG(aτ2 , bτ2),

where elements of ξ̂ are the scores estimated from univariate FPCA. Elementwise priors are imposed on A
where a`` ∼ lognormal(µa`` , σ

2
a``

), and a``′ ∼ N(µa``′ , σ
2
a``′

) for 1 ≤ `′ < `, with µa``′ = −3, σ2
a``′

= 1,
µa``′ = 0, and σ2

a``′
= 5. We apply an Inverse Gamma (IG)(aτ2 , bτ2) prior for τ2 (aτ2 = bτ2 = 1 in our

application), and a Uniform prior for the spatial parameter ν with parameters constrained to lie between
bounds given by the inverse of the minimum and maximum eigenvalues (denoted by aν , bν , respectively) of
the matrix D−1/2WD−1/2.

In Step 5 of the MV-VCSTM estimation algorithm, we target the varying coefficient functions (VCFs)
β(j)(t), multivariate PC scores (ρi`), spatial parameters (α` and ν), and measurement error variance (σ2)
of MV-VCSTM via expanding the VCFs on thin-plate splines and the stochastic deviations Ui(t) on the
estimated multivariate eigenfunctions ψ̂`(t) as follows:

Y
(j)
i (tk) =

P∑

p=1

Xip

(
u
(j)
p0 + u

(j)
p1 t+

Q∑

q=1

ṽ(j)pq zkq

)
+

M+∑

`=1

ρi`ψ̂
(j)
` (tk) + ε

(j)
i (tk) for j = 1, . . . , J,

ε
(j)
i (tk) ∼ N(0, σ2

j ), ρ` ∼ N(0, α`(D − νW )−1), α` ∼ IG(aα`
, bα`

), ν ∼ Unif(aν , bν),

u
(j)
p0 ∼ N(0, σ2

up0j
), u

(j)
p1 ∼ N(0, σ2

up1j
), ṽ(j)pq ∼ N(0, σ2

ṽpj
),

σ2
ṽpj
∼ IG(aσ2

ṽpj

, bσ2
ṽpj

), σ2
j ∼ IG(aσ2

j
, bσ2

j
),

where ρ` = (ρ1`, . . . , ρn`)
T denotes the n× 1 score vector for `th eigencomponent. Noninformative or weak

informative priors are used for u(j)p0 , u
(j)
p1 , ṽ

(j)
pq , ε

(j)
i (t) and α`, where σ2

up0j
= σ2

up1j
= 106, aσ2

ṽpj

= bσ2
ṽpj

= 10−6,
and aσ2

j
= bσ2

j
= aα`

= bα`
= 1. Finally, the prior imposed on ν is the same as in Step 3.
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Table S1: The mean MSDE of VCFs, eigenfunctions, region-specific deviations and multivariate response
trajectories, and MSE for variance components and spatial correlation parameters from four simulation
settings with two sets of time points (aligned and misaligned) and two sets of measurement error variance
σ2. Results are based on two-dimensional multivariate response, n = 49 regions and 200 Monte Carlo runs.

Time points Aligned Misaligned
Noise level, σ2 0.2 2 0.2 2

MSDE
β̂
(1)
0 (t) 0.0033 0.0178 0.0130 0.0590
β̂
(2)
0 (t) 0.0031 0.0236 0.0107 0.0551
β̂
(1)
1 (t) 0.0017 0.0096 0.0038 0.0095
β̂
(2)
1 (t) 0.0013 0.0093 0.0036 0.0096
β̂
(1)
2 (t) 0.0011 0.0126 0.0038 0.0089
β̂
(2)
2 (t) 0.0009 0.0093 0.0034 0.0079
ψ̂
(1)
1 (t) 0.0795 0.0872 0.0373 0.0513

ψ̂
(2)
1 (t) 0.0821 0.0846 0.0330 0.0507

ψ̂
(1)
2 (t) 0.0960 0.1222 0.0292 0.1013

ψ̂
(2)
2 (t) 0.1060 0.1208 0.0272 0.1099

ψ̂
(1)
3 (t) 0.0349 0.1697 0.0245 0.3649

ψ̂
(2)
3 (t) 0.0333 0.1769 0.0283 0.3602

Û
(1)
i (t) 0.0465 0.3447 0.2234 0.3773

Û
(2)
i (t) 0.0470 0.3516 0.2207 0.3623

Ŷ
(1)
i (t) 0.0251 0.3499 0.0398 0.2693
Ŷ

(2)
i (t) 0.0205 0.2152 0.0278 0.2241

MSE
α̂1 0.0985 0.1067 0.0511 0.0993
α̂2 0.0260 0.0347 0.0168 0.0602
α̂3 0.0188 0.0696 0.0078 0.1126
ν̂ 0.0067 0.0070 0.0163 0.0836
σ̂2(1) 0.0022 0.0023 0.0032 0.0034
σ̂2(2) 0.0023 0.0024 0.0019 0.0021



Table S2: The mean MSDE of VCFs, eigenfunctions, region-specific deviations and multivariate response
trajectories, and MSE for variance components and spatial correlation parameters from three-dimensional
multivariate response with aligned time points, n = 49 regions and varying measurement error variance σ2.
Results are based on 200 Monte Carlo runs.

Number of regions, n 49 regions
Noise level, σ2 0.2 2

MSDE
β̂
(1)
0 (t) 0.0047 0.0576
β̂
(2)
0 (t) 0.0059 0.0651
β̂
(3)
0 (t) 0.0097 0.0582
β̂
(1)
1 (t) 0.0012 0.0097
β̂
(2)
1 (t) 0.0011 0.0090
β̂
(3)
1 (t) 0.0011 0.0114
β̂
(1)
2 (t) 0.0009 0.0092
β̂
(2)
2 (t) 0.0008 0.0093
β̂
(3)
2 (t) 0.0010 0.0098
ψ̂
(1)
1 (t) 0.0600 0.0752

ψ̂
(2)
1 (t) 0.0612 0.0689

ψ̂
(3)
1 (t) 0.0616 0.0948

ψ̂
(1)
2 (t) 0.0969 0.1401

ψ̂
(2)
2 (t) 0.0929 0.1335

ψ̂
(3)
2 (t) 0.1006 0.2084

ψ̂
(1)
3 (t) 0.0649 0.2304

ψ̂
(2)
3 (t) 0.0599 0.2700

ψ̂
(3)
3 (t) 0.0559 0.1585

Û
(1)
i (t) 0.0309 0.2417

Û
(2)
i (t) 0.0294 0.2581

Û
(3)
i (t) 0.0327 0.2605

Ŷ
(1)
i (t) 0.0292 0.2232
Ŷ

(2)
i (t) 0.0247 0.1923
Ŷ

(3)
i (t) 0.0349 0.2146

MSE
α̂1 0.1061 0.1080
α̂2 0.0741 0.0811
α̂3 0.0060 0.0801
ν̂ 0.0054 0.0054
σ̂2(1) 0.0021 0.0024
σ̂2(2) 0.0023 0.0025
σ̂2(3) 0.0028 0.0028
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Table S4: The mean MSDE of VCFs, deviations Û (j)
i (t) and predictions Ŷ (j)

i (t), along with coverage probabil-
ities (CPs, %) of the 95% credible bands and the corresponding length when n = 49 regions from MV-VCM,
MV-VCTM, and MV-VCSTM, respectively. Results are based on three-dimensional multivariate response
with aligned time points and 200 Monte Carlo runs.

Number of regions, n 49 regions
Noise level, σ2 0.2 2

Model MV-VCM MV-VCTM MV-VCSTM MV-VCM MV-VCTM MV-VCSTM

MSDE
β̂
(1)
0 (t) 0.4664 0.0155 0.0047 0.6806 0.1079 0.0576
β̂
(2)
0 (t) 0.5008 0.0304 0.0059 0.6808 0.1423 0.0651
β̂
(3)
0 (t) 0.4566 0.0189 0.0097 0.6676 0.1582 0.0582
β̂
(1)
1 (t) 0.0142 0.0021 0.0012 0.0175 0.0125 0.0097
β̂
(2)
1 (t) 0.0200 0.0021 0.0011 0.0202 0.0114 0.0090
β̂
(3)
1 (t) 0.0139 0.0020 0.0011 0.0392 0.0187 0.0114
β̂
(1)
2 (t) 0.0048 0.0014 0.0009 0.0142 0.0128 0.0092
β̂
(2)
2 (t) 0.0089 0.0015 0.0008 0.0157 0.0144 0.0093
β̂
(3)
2 (t) 0.0119 0.0017 0.0010 0.0145 0.0131 0.0098
Û

(1)
i (t) / 0.0661 0.0309 / 0.3901 0.2417

Û
(2)
i (t) / 0.0651 0.0294 / 0.3899 0.2581

Û
(3)
i (t) / 0.0711 0.0327 / 0.4155 0.2605

Ŷ
(1)
i (t) 0.2691 0.0386 0.0292 0.3365 0.2854 0.2232
Ŷ

(2)
i (t) 0.2788 0.0256 0.0247 0.3101 0.2328 0.1923
Ŷ

(3)
i (t) 0.2792 0.0456 0.0349 0.3431 0.2471 0.2146

CP (%)
β̂
(1)
0 (t) 16.73 99.50 99.50 33.83 100 100
β̂
(2)
0 (t) 11.98 99.50 99.50 26.10 100 100
β̂
(3)
0 (t) 27.00 99.50 100 33.42 100 100
β̂
(1)
1 (t) 98.31 100 100 99.94 100 100
β̂
(2)
1 (t) 96.50 100 100 99.98 100 100
β̂
(3)
1 (t) 93.48 100 100 99.46 100 100
β̂
(1)
2 (t) 99.83 100 100 99.98 100 100
β̂
(2)
2 (t) 99.83 100 100 99.98 100 100
β̂
(3)
2 (t) 98.48 100 100 99.98 100 100

Length
β̂
(1)
0 (t) 0.526 1.062 0.668 1.028 2.974 1.971
β̂
(2)
0 (t) 0.482 1.094 0.636 0.845 2.913 1.996
β̂
(3)
0 (t) 0.509 0.976 0.739 0.884 2.459 1.893
β̂
(1)
1 (t) 0.416 0.492 0.320 0.890 1.205 0.894
β̂
(2)
1 (t) 0.490 0.499 0.315 0.934 1.118 0.892
β̂
(3)
1 (t) 0.409 0.438 0.318 0.920 1.310 0.890
β̂
(1)
2 (t) 0.342 0.382 0.282 0.839 1.188 0.908
β̂
(2)
2 (t) 0.449 0.399 0.297 0.888 1.220 0.915
β̂
(3)
2 (t) 0.341 0.420 0.301 0.848 1.173 0.919
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Figure S1: Predicted hospitalization (a) and mortality (b) trajectories for two hypothetical regions, one of
large metropolitan with 95% percentile ADI (blue) and the other one of non-metropolitan with 5% percentile
ADI (red) while other covariates are kept at mean or reference levels, along with 95% simultaneous credible
bands (shaded).
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Figure S2: MCMC trace plots for VCFs from Step 5 of the estimation algorithm, where 15000 iterations
(5000 burn-in) are used and one out of every 10 samples is returned. The true values of VCFs are represented
by the gray horizontal lines. The results are based on two-dimensional multivariate response with aligned
time points, n = 49 regions and measurement error variance σ2 = 0.2.



200 400 600 800 1000

2
3

4
5

(a) α1

200 400 600 800 1000

1.
0

2.
0

3.
0

(b) α2

200 400 600 800 1000

0.
3

0.
5

0.
7

0.
9

(c) α3

200 400 600 800 1000
0.

41
0.

43
0.

45
0.

47

(d) σ2(1)

200 400 600 800 1000

0.
41

0.
44

0.
47

(e) σ2(2)

200 400 600 800 1000

0.
75

0.
90

1.
05

(f) ν

200 400 600 800 1000

1.
3

1.
5

1.
7

1.
9

(g) ρ11

200 400 600 800 1000

0.
2

0.
4

0.
6

(h) ρ12

200 400 600 800 1000

0.
5

0.
7

0.
9

1.
1

(i) ρ13

Figure S3: MCMC trace plots for model parameters from Step 5 of the estimation algorithm, where 15000
iterations (5000 burn-in) are used and one out of every 10 samples is returned. The true values of model pa-
rameters are represented by the gray horizontal lines. The results are based on two-dimensional multivariate
response with aligned time points, n = 49 regions and measurement error variance σ2 = 0.2.
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Figure S4: Estimated VCFs from runs with the 5th, 50th and 95th percentile MSDEs using MV-VCSTM,
from the simulation set-up with two-dimensional multivariate response with aligned time points, n = 49
regions and measurement error variances σ2 = 0.2 (a) and σ2 = 2 (b). The true VCFs are given in solid
blue.
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Figure S5: Estimated VCFs from runs with the 5th, 50th and 95th percentile MSDEs using MV-VCSTM,
from the simulation set-up with two-dimensional multivariate response with aligned time points, n = 367
regions, and measurement error variances σ2

j = 0.2 (a) and σ2
j = 2 (b). The true VCFs are given in solid

blue.
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Figure S6: Estimated multivariate eigenfunctions from runs with the 5th, 50th and 95th percentile MSDEs
using MV-VCSTM, from the set-up with two-dimensional multivariate response with aligned time points,
n = 49 regions, and σ2

j = 0.2 (a) and σ2
j = 2 (b). The true multivariate eigenfunctions are given in solid

blue.
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Figure S7: Estimated multivariate eigenfunctions from runs with the 5th, 50th and 95th percentile MSDEs
using MV-VCSTM, from the set-up with two-dimensional multivariate response with aligned time points,
n = 367 regions, and σ2

j = 0.2 (a) and σ2
j = 0.2 (b). The true multivariate eigenfunctions are given in solid

blue.




