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ABSTRACT

This paper presents a method, generalization to
interval, that can encode images into symbolic ex-
pressions. This method generalizes over instances
of spatial patterns, and outputs a constrammi pro-
gram that can be used declaratively as a learned con-
cept about spatial patterns, and procedurally as a
method for reasoning about spatial relations. Thus
our method transforms numeric spatial patterns to
symbolic declarative/procedural representations. e
have implemented generalization to interval with
ACORN,! a system that acquires knowledge about spa-
tial relations by observing 2-D raster images. We have
applied this system to some layout problems to demon-
strate the ability of the system and the flexibility of
constraint programs for knowledge representation.

1. Introduction

Representation of spatial knowledge is an important
task for intelligent agents. This task can arise in many
domains: visual scene understanding, problem solv-
ing, robot navigation and so on. One important as-
pect of spatial knowledge is the use of a set of sym-
bolic predicates that define spatial relations among
objects in a scene. Classic system such as STRrIPS
[Fikes 71] or GPS [Newell 63] use symbolic predi-
cates for representing spatial knowledge. For exam-
ple, in the blocks world domain, such systems usu-
ally use primitive predicates such as: on(blockl, ta-
ble), right-of(block1,block2), and top-of(block3).
These primitives are an abstraction of the actual scene
- they give only approximate information about the lo-
cation of objects — but they are important abstractions
for reasoning about objects in the environment.
However, in order to apply such system to real-
world domains, one would need a perceptual system
to provide the appropriate symbolic primitives for rea-
soning (see Figure la). Winston’s ARCH system
[Winston 75] and Connell’s system [Connell 87] are de-
signed in this fashion: a vision system translated im-
ages into a set of symbolic facts, which were then used
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by a concept learning system. This approach leads
to some difficult questions for the perceptual system:
the number of primitives is not known, nor methods
for mapping continuous image information into sym-
bolic primitives. Ideally, a perceptual system should
be general-purpose, and not restricted to a particular
set of symbolic predicates.

Figure 2 demonstrates one problem with using a pri-
ort primitives for concept learning. Suppose that a vi-
sion system has six primitives to represent the distance
between two objects: very very near, very near,
near, far, very far, very very far. Given two scenes
of two objects A and B, their distances are 11 and 19,
as examples for target concept. The vision system en-
codes these values to predicates: {very-near(A,B),
near(A,B)} and { far(A,B) }. Some learning sys-
tems simply apply a kind of dropping condition rule
to these predicates. This would mean that the system
could not describe both examples with a single concept
(all conditions would be dropped), even if this may be
an appropriate decision.

Image
‘ PERCEPTUAL
M
PERCEPTUAL
Numeric Output
| CONSTRAINT

GENERATOR
Symbolic Output

) — | FrPoCH

Problem Constraint Expressions
Solver
PERFORMANCE
MODULE
(a) (b)

Figure 1: Datastream for classic problem solver (a)
and AcornN (b).
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Figure 2: An inappropriateness of using a priori prim-
itives

In contrast with defining a prior primitives, we as-
sume all symbolic expressions are grounded in the en-
vironment. Primitive expressions should be learned
from spatial patterns. According to this assumption,
we have developed ACORN, a system that addresses
the task of learning such expressions directly from vi-
sual scenes. In particular, our learning task can be
described as follows:

Given: A set of positive training instances,
where instances are 2-dimensional raster
images of a scene of labeled objects.

Find: Constraint expressions among given im-

ages.

There are two important features of this task. First,
it requires a translation from continuous, numeric in-
formation to more approximate symbolic knowledge.?
The learned expressions should be invariant under
translation, and should hold true over a variety of
minor perturbations to the numeric coordinate input.
Second, the learned knowledge should be useful for a
variety of performance tasks. It should be possible to
recognize examples, to generate scenes that satisfy a
set of constraints, to make inferences from a set of re-
lations, or to detect redundancy and inconsistencies
in a set of relations. To this end, ACORN uses con-
straint programming [Sussman 80](Leler 38] to repre-
sent its acquired knowledge.

In this paper, we focus on layout problems to demon-
strate ACORN’s performance. The layout task has
been studied in some fields ([Ilaar 82] [Yamada 90]).
However, they lack the generality of Aconrn's learning
mechanism.

2Note that this is not the first system to learn symbolic
information from numeric data. Aha’s IBL system [Aha 91],
Quinlan’s C4 system [Quinlan 87] and the CART system
[Breiman 84] are classifiers that work with numeric data.
However, these have not been applied to spatial relations,
and their learned knowledge structures have only been used
for classification.
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ACORN is a general-purpose system for learning sym-
bolic relational predicates directly from numeric, im-
age information. The next section describes our system
more completely, focusing on knowledge representation
and a description of the learning method. Section 3
describes the performance system and our experimen-
tation thus far, and we conclude the paper with a dis-
cussion of future work with ACORN.

2. Description of ACORN

ACORN consists of three modules: the perceptual mod-
ile, the constraint generator (or learning module) and
the performance module. Figure 1b shows the data
stream between these modules. The perceptual module
generates initial, numeric scene descriptions directly
from raster information. From these descriptions, the
constraint generator learns a set of constraint expres-
sions that describe the spatial relations between ob-
jects in the scene. Finally, the performance module
can use these constraints to make predictions about a
scene, make inferences with the learned relations, or
generate scenes given a set of objects and relationships
among those objects.

Perceptual Module

Although ACORN uses numeric input, it does not work
with images directly and requires an intermediate rep-
resentation of objects. Currently, we have limited our
domains to two-dimensional images of rectangles.® For
these images, the perceptual module’s task is to scan
a scene of dark rectangles on light paper, identify the
rectangles and output a numeric representation and
an arbitrary label for each rectangle. Although non-
trivial, this is well within the ability of current vision
systems.

In more detail, the numeric representation of each
rectangle includes:

e Coordinates of each vertex of the rectangle on the
global x-y coordinate system.

¢ Coordinates of the center of the rectangle on the
global x-y coordinate system.

e Object-centered coordinate axes (major axis and mi-
nor axis) for the rectangle.

e [leight of rectangle.
e Width of rectangle.

Note that only the first item need be observed from
the raster image; once the four vertices are known, all
other representational data can be computed. There is
nothing special-purpose about this representation; in-
deed, we expect that the system could use other types
of representations for other shapes.

*In Section 4, we discuss the possibility of extending
AcoRN to work with a richer variety of shapes.



Constraint Expression

ACORN represents learned knowledge with constraint
logic program([Jaffar 87]. In general, constraint logic
program consists of the set of extended horn clauses in
the form:

Relation((args)) «— PyAP2A.. AP, ACiAC:2A.. . NCp,

where P; is a term (as in Prolog) and Cj is an algebraic
constraint expression such as an equation or inequality.
One of the most remarkable features of constraint-
based language is that the user does not have to write a
procedure explicitly in order to solve constraints. The
user has only to give declarative relations among vari-
ables. Therefore constraints can be used to make a
variety of inferences. For example, the constraint

convert(C,F) — (F = %C-: +32)
can be used to make predictions either about. F' given
C or C given F, without requiring separate rules. In
general, constraint expressions make use of a power-
ful constraint solver that is used to make inferences or
solve problems. This approach lets declarative knowl-
edge be used procedurally, allowing ACORN to reason
about its learned spatial relations in a variety of tasks.
One of the advantages of using a constraint logic
programming language 1s that semantics can be
formulated more easily than other constraint-based
languages[Sussman 80][Leler 88][Borning 81},
using logic programming semantics (see [Jaffar 87] for
further discussion). Constraint logic programming has
proved valuable in a number of domains, such as option
trading[Lassez 87] and scheduling [Dincbas 838].
ACORN uses EPOCH, a constraint logic programming
system developed in our laboratory.? Eroch’s con-
straint solver uses the simplex algorithm to solve linear
programming problems. EpocH is similar to CLP())
[Lassez 87] in its ability as a constraint solver. How-
ever, EPOCH uses two types of constraints: necessary
constraints that must be satisfied and preferred con-
straints that should be, but do not have to be satisfied.
Preferred constraints are used to choose an optimal so-
lution when there is more than one possible answer (see
[Hiraki, in press] for more details).

Learning Method

As described in the previous section, learned knowl-
edge 1s represented with constraint expressions.
ACORN uses binary constraints — it looks at informa-
tion about a pair of rectangles. Note that these can
be used to model n-ary spatial relations, simply by
learning about all C7 pairs of objects in the scene.
Currently, the learning module of ACORN takes the in-
formation from the perceptual module and generates
constraints based on the following relational attributes:

‘Both EPOCH and ACORN are implemented in Quintus
Prolog.
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o distance (y) between corresponding vertices of the
objects (0 < 7).

e direction (6;;) from vertez; to vertez; (0 < 6;; < ).

Certainly, other relational attributes could be used
(angle between major axes, relative height or width,
etc.), but thus far, these attributes have proved sufli-
cient.

As the system observes positive instances of the rela-
tion, it builds both necessary and preferred constraints.
Necessary constraints represent the necessary condi-
tions that any instance of the relation must satisfy.
They are expressed by a set of ranges defined by al-
gebraic inequalities. For example, the necessary con-
straints for “point a is right-of point b” is expressed
by the fan-shape region illustrated in Figure 3a. Be-
cause EPOCH’s constraint solver only works with linear
problems, we approximate this region with four linear
inequalities.> EPOCH incorporates these inequalities in
a constraint program that represents the fan-shaped
region; Figure 3b shows the program in Prolog form.
The four inequalities (the necessary constraints) corre-
spond to four lines delimiting the region used to define
“right-of” The satisfying region shrinks as the num-
ber of constraints increases (e.g. by adding “point b
is right-of point ¢”). If the region becomes null, the
constraints cannot be satisfied.

(2a)

constraint( a([Xa,Ya]),b([Xb,¥Yb]) ) :-
X = (Xb - Xa), Y = (Yb - Ya),

Y =< 20.0%X - 100.0,
Y >= -0.6*%X, Y =< 0.4*X,
Y >= 20.0%X - 200.0,

pref:(X = 7.5), pref:(Y = 0.0).
(b)

Figure 3: (a) A region defined by some constraints. (b)
A simple constraint program for the region.

On the other hand, preferred constraints represent a
typical member of the learned spatial relation. In Fig-
ure 3b, pref: indicates a preferred constraint. ACORN
uses preferred constraints for finding the optimal lo-
cation of an object given a region that satisfies the
necessary constraints of the learned relation. Preferred
constraints are created by computing averages over the
set of training instances.

*There are constraint solvers that can deal with non-
linear forms, but these are more expensive [Sakai 89].



In order to learn the necessary constraints for a spa-
tial relation, ACORN uses a simple learning rule as it
observes training instances. This rule is an application
to constraint programming of Michalski’s “closing in-
terval generalization” heuristic [Michalski 83]; we will
refer to this as generalization to interval:

For each relational attribute, given numeric
values, z, and z,, from two positive training
instances, assume that all numeric values be-
tween z, and z, are also examples of positive
instances.

This can be used directly with linear attributes such as
distance, but for cyclical attributes, such as direction
defined as an angle, two positive instances produce a
pair of intervals. In this case ACORN adopts the heuris-
tic of generalizing over the smaller interval.

Table 1 presents the incremental algorithm for a sin-
gle linear attribute in more detail. Given the old con-
straint for an attribute, Cj, and the value of the at-
tribute for the new positive instance, v;, this algorithm
returns a new constraint, C}. A constraint, C, is de-
fined by the bounding interval [a, J].

Table 1: ACORN’s learning algorithm for a linear rela-
tional attribute.

generalization-to-interval(Cj, vj)
If v; satisfies the constraint Cj
Then return Cj := C;j
Else If v; < a Then return Cj := [vj, 0]

Else return Cj := [a,v;]

This learning method is only an initial heuristic; il is
asimple method, and has a number of drawbacks. One
problem occurs with negative training instances: it is
unclear how to modify constraints when the negative
instance includes values between a and 4. Addition-
ally, o and f are hard thresholds: after learning, a test
instance with values a — €, or  + ¢ does not satisly
the constraint. Especially in noisy domains, one would
prefer a more flexible approach. Despite its limitations,
we have found that even this simple form of learning
can be very useful for recognizing and reasoning with
spatial relations.

3. Performance of ACORN

As we described earlier, the advantage of using con-
straint expressions is that the knowledge can be used
in a variety of performance tasks without requiring
special purpose representations or rules. If knowledge
about spatial relations is represented as a set of con-
straint expressions, the performance system should be
able to recognize examples of a given relation, gener-
ate scenes that satisfy a set of relations, make inference
from a set relations, or detect redundancy and incon-
sistencies in a set of relations.
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I above( eyebrow1, eyet),
alt))gve eyegrowt nose),

— — above( eyebrow1, mouth),
o m }{ above( eyebrow2, eye2),

| 'l above( eyebrow2, nose),
—— above( eyebrow2, mouth),

I right-of( eyebrow2, eyebrow1),
1 right-of( eyebrow2, eyet),
right-of( eyebrow?2, nos?;,

B right-ol( eye2, eyebrow
|| right-ol( eye2, eyel),
v S right-of( eye2, nose),
(a) (b)

Figure 4: Face domain input for ACORN: (a) Images
(b) Partial hist of training relations.

In this section, we describe ACORN’s ability with
two performance tasks. We begin with the layout task:
generating scenes from a set of relational specifications.
Next, we consider a variation on this task: completing
partial scenes. In this task, the system learns a set of
constraints that represent the spatial relations among
a set of objects in a scene. Then, the system can use
these constraints to predict the location of missing ob-
jects.

The Layout Task

For the layout problem, we use the simple task
of arranging a set of six rectangles into a ‘face’.
Figure 4a shows the training instances given to
AcorN. In order to learn relations, the system
needs the relation names, as well as labeled scenes.
Thus, the rectangles in these figures are labeled
cyel,eye2, eyebrowl, eyebrow?2, nose, mouth and there
are two relations given: above(X,Y) and right-
of(X,Y). I'igure 4b gives a partial list ol the rela-
tions that were associated with each scene. ACORN
uses these as positive training instances for building
the necessary constraints that define the spatial rela-
tion. In particular, it builds a constraint program for
each relation as follows:®

constraint(Relation-name,
[Vertexi, Verte.‘r:.;,, Verteril,, Vertcxé],
[Vertezi, Vertexs, Vertezs, Vertexy]) —
necessary.constry, ---, necessary.constry,
preferred_constry, ---, preferred_.constr,,.

Note that the two arguments to this relation are rep-
resented as lists of vertices.

Alter building constraint programs for the relations
above and right-of, ACORN can construct any ar-
rangement of rectangles given a specification in terms
of the two acquired relations. For example, given the
specification:

{right-of(eye2,eyel),
above(eyebrowl,eyel),

%We use standard Prolog notation here.
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Figure 5: Faces generated from specifications.

above(eyebrow2,eye2),

above(eyel,nose), above(nose,mouth)}
ACORN generates the scene in Figure 5a, while

{right-of(eye2,eyel),

above(eyebrowl,eyel),

above(eyebrow2.eye2),

above(eye2,nose), above(nosc,mouth)} |
creates the scene in Figure 5b. Note that the nose
and mouth are ‘off-center’ in these scenes because the
preferred constraint for above is straight above. If
we add the constraints right-of(eyel,nose), right-
of(nose,eye2) to the specification, we get the ‘cor-
rected’ scene as in Figure 5c.

Completing Partial Scenes

In addition to binary relations, ACORN can learn
more complex n-ary spatial relations. As described
in Section 2, the system simply models n-ary rela-
tions by building constraints for every pair of argu-
ments. Although this means that there is a com-
putational limit to thé number of arguments in a
relation (there are O(n?) constraints needed for an
n-ary relation), we imagine that most useful re-
lations do not have too many arguments. For
example, the faces from the previous section can
be used to learn a six-argument spatial relation:

face(eyel,eye2,eyebrowl,eyebrow2,mouth.nose).

Since there are six components of each face, there are
15 constraints that make up the constraint program
for learning the face relation. Each constraint must
include the component labels, but is otherwise similar
to that presented in the previous section:

constraint(
obj-namel{[Verte.rl‘ Vertexl Verterl, 1-"6!'!81‘1]],
obj-name2([Vertex?, Vertexs, Vertexs, Verteai]))
necessary_constry, ---
preferred_constry, ---

, necessary.consir,,
, preferved_constr,,.

(The relation name can be omitted since the system is
learning only one relation.)

After acquiring a definition for this relation, it can
be used in a number of ways. First, scenes can be
‘recognized’ as satisfying the constraints that define a
face. Alternatively, the constraints can be used to pre-
dict the location of missing objects in a ‘face’ scene.
That is, given a partial face, and knowledge about the
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Figure 6: Two incomplete faces, and their completion
by ACORN.

face relation, ACORN can complete the scene. Figure
6 shows a pair of incomplete ‘faces’, and the resulting
scenes as completed by Acorn. This task is similar to
the layout problem: the system uses the preferred con-
straints to generate the location of the missing object.

In general, Acorn can predict the location of any
number of missing components. As more and more
components are missing, the necessary constraints be-
come looser and looser. If all components are missing,
then the system uses only the preferred constraints,
and this becomes a form of the layout task.

This is a simple demonstration of the generality of
AcoRrN’s acquired knowledge, and the versatility of
constraint expressions. Once the system has learned
a few key spatial relations, it can use this knowledge
in a variety of domains and performance tasks.

4. Discussion and Future Work

As described in the above section, ACORN can per-
form lots of tasks with acquired constraint programs.
[lowever, AcorN includes a number of limitations that
should be addressed in the future. In this section, we
discuss the limitations of ACORN’s learning method
and indicate the directions in which the research is
proceeding.

One task that seems important is to improve the
learning algorithm. The system should be able to learn
from negative instances and build constraints that de-
fine disjunctive spatial relations. For examples, the
spatial relation next-to(X,Y) has to be represented
by disjunctive constraint expressions. Hiraki and An-
zai [Hiraki 90] describe an initial version of ACORN
that was able to learn from negative instances, but only
with user input, and objects that were represented as
points.

A second area for improvement is the range of input
images. ACORN should be able to work with trian-
gles, circles or any concave polygon, rather than only
simple rectangles. One possibility is to use 2-D gener-
alized cylinders; these provide a consistent method for
representing a variety of shapes. The potential diffi-
culty of this approach is that it greatly increases the
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number of relational attributes between cach pair of
objects, and thus the complexity of the constraint pro-
grams. For this problem, we should consider methods
that can find the importance of relational attributes of
a spatial relation and then reduce the number of given
attributes.

Ultimately, knowledge about spatial relations should
be used by higher-level systems such as problem
solvers, natural language system, and navigation sys-
tems. In the future, we hope to connect ACORN
with such a system. For example, Yamada's
SPRINT([Yamada 90] system reconstructs spatial con-
figurations from a given natural language description,
can be a good application for AcorN. SPRINT uses
hard-coded constraint expressions corresponding to
special words that have spatial information. ACORN
may be used to learn the meaning of such words and
any new spatial concepts that may be used. In gen-
eral, our system may be useful as an initial phase for
any of the higher-level uses of spatial knowledge: route
knowledge, spatial maps, and path planning.

We believe that AcorN addresses a critical task for
an intelligent learning system: acquiring symbolic rela-
tional knowledge from numeric image data. Certainly,
our current system includes many limitations, but we
hope that it is a good start toward a general-purpose
learning system for spatial relations.
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