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Abstract

A method is developed for obtaining the spectra of
trees of NMR aﬁd chemical interests. The characteristic
polynomials of branched trees can be obtained in terms of
the characteristic polynomials of unbranched trees and
branches by pruning the tree at the joints. The unbranched

‘

trees can also be broken down further till we obtain a tree
containing just two vertices. This effectively reduces the
order of the secular determinant of the tree we started
ﬁith to determinants'of orders at most equal to the number
of vertices in the branch containing the largest number

of vertices. An illustrative example of a NMR graph is
given for which the 22 x 22 secular determinant is reduced
to determinants of Arderszn:most 4 x 4 in just the second

step of the algorithm. The tree pruning algorithm can be

applied even to trees with no symmetry elements and such a

" factoring can be achieved. Methods developed here can be

elegantly used to find if two trees are cospectral and to

construct cospectral trees.



I.. Introduction

In recent years graph theory has been found to be extremely useful in
‘chemical applications. These applications concern representation ofvdynamical
processes in molecules, inter-molecular interactions,‘enumerations of struc-
tures, topological correlation of chemical properties that depend on the
structure of mdlecules, etc. For example, thetmodynamic properties of molecules
can be correlated to their topolpgies [l]. Ever since the middle of this
century chemists have recognized the intimate relation between the topology
of molecules and their energy, etc. An evidence of this recognition is the
valence bond method and the associated combinatorial and graph theoretical
techniques [2-7]. It is well-known that molecular topology can be character-
ized by the associated graphs but for automorphisms. However, these auto-
morphisms can be recognized as shownvby Randié [8].

The relation between the topological matrices used in Hiickel theory and
the adjacency matrices of the associated molecular graphSis-well—known [9-30].
Many quantum mechanical results can be derived or rederived using the spectral
properties of the associated graphs.

vThe characteristic polynomials and spectra of cnemical graphs have signi-
ficant epplications in other areas of chemical physicsvsuch as chemical
kinetics [31,32] dynamics of oscillating chemical reactions [33], solutions of
Navier-Stokes equations [34] and related applications in statistical mechanics.

The spectra-of graphs are important in obtaining topological indices such
as Hdsoya index [18-19] which are potentially useful inizzrrelation of topology
to thermodynamic properties of molecules.

One of the'achievements of graph theory is the recognition of isospectral
graphs. Isospectral graphs are graphs which can be topologically non-equivalent
and yet have identical spectra. Thus isospectral molecules will have similar

thermodynamic properties.



The present author [35] recently introduced the concept of NMR graphs
which are diagrammatic representations of nuclear spin-spin coupling inter-
actions. Consequently, the study of the spectra of graphs will have special
significance in obtaining the spectra of NMR spin Hamiltonians within the
spirit of equal coupling limit. The methods developed here can also be
extended to non-equal coupling limits which makes these methods esp;cially
important in magnetic resonance. This aspect will be considered in a future
publication.

The methods of simplifying spectra of graphs such as Sach's theorem [30]
becomes quite cﬁmbersome for graphs containing large number of vertices.
Evenvfor a graph containing 12 vertices Sach's theorem becomes quite diffi-
cult. It is possible to factorvthe.chéracteristic polynomials of graphs
exploiting the symmétry,eleﬁents present in the graphs. Such symmetry
factorings of the characteristic pol&npmialé of graphs have been considered
by King [26], D'Amata [25], and Davidson [27]. These methods naturally depend
on the symmetry elements and are ;herefore not applicable for graphs with no
symmetry elements. In this paper we develop techniques to factor the charac-
teristic polynomials of trees even if they have no symmetry element.

The objective of this investigation is to develop elegant graph-theoretical
factoring techniques for evaluating the characteristic polynomial of trees by
a tree-pruning technique outlined in this paper. Tree-pruning techniques have
" been used by Balaban [36] and the present author [37-38] in other applications.
The motivation for the method developed in this paper takes its origin in the
papers of Godsil and McKay [39], Schwenk [40] and the present author [37]. The
methods developed here can considerably simplify the evaluation of spectra of
chemical trees and do not depend on symmetry of the trees. For example, a

22 x 22 secular determinant of NMR interest is shown to be reducible to



determinants of orders at most equal to 4 x 4. The method developed here also
leads to ;he construction of cospectral trees. In Sec.II we outline these
methods and in Sec.IIIwe give examples to show the use of the methods
developed in this paper for charaéterizing cospectral trees. In the Appendix

an algorithm is- formulated based on the techniques developed here.

II. Spectra of Root-to-root Products

A, Preliminéries
The adjacency matrix of a graph is defined as follows;
1 if the vertices i and j are cdnnected
Aij = . _ (2.1)

0 otherwise
The secular_determinant of the adjacency matrix of a graph is known as the
characteristic polynomial of the graph. The eigenvalues of the adjacency
matrix constitute the spectrum of the graph. Two graphs are said to be iso-
spéctral or cospectral if their spectra are identical. Two graphs can have
identical spectra even if their adjacency matrices are not transformable into
one another by any permutation of the vertices of these two graphs. If the
characteristic polynomials of two graphs are identical then their spectra
must be identical. Consequently, if the characteristic polynomials of two
graphs are identical then they are cospectral.

Tree is a connected graph with no cycles. The vertices of a tree with
degree (valence) more than 17@2 defined as the roots of the tree. Then a tree
can be expressed asfbroduct of a quotient tree Q formed by these roots alomne
and the branch resulting from pruning the tree at these roots. For example,

the tree T in Fig. 1 can be obtained by joining the black dots (roots) of Q

and a black dot of a copy of the type T. Let Yi be the set of all vertices in



Q that have the same degree and are attached to a root of the copy of the same

type Ti' Then the root-to-root product of Q with Tl’TZ"""Tt denoted as

Q'(Tl’TZ""”Tt)’ is defined as the tree resulting by attaching a root in the
set'Yi and tﬁe root of.a copy of the type Ti' This product was introduced by
the author in the context of isomer enumeration.37] In Fig. 2 we have another
example of a root-to-root product. The rooted product defined by Godsil and

McKay[%?%s similar to root-to-root product. For example, the tree in Fig. 1

can be considered as the rooted product of Q with T(l) and T(z) where T(l)

(2)

and T are the copies of the same type T shown in Fig. 1. 1In general,
(n)

(1),T(2),...and T ,
(1) ()

rooted product of a graph Q with a sequence of graphs T

is obtained by identifying the roots of Q with the roots of T

and T(n).

9o

B. Spectra of Trees b§ Pruning the Trees

Any tree can be pruned at the branches successively till we obtain an
unbranched tree; The characteristic polynomial of the tree we étarted'with
can be obtained in terms of the characteristic polynomials of branches and
the unbranched tree as we show here.

We start with the methéd proposed by Gods$il and McKay for the charac-
teristic polynomials of rooted product of two graphs. Let Hi(x) be the
characteristic pblynomial of the type Ti' Let Hi(x) denote the characteristic
polynomial obtained by deleting Fhe root of Ti' Let qij'be an element - of
the adjaéency matrix of the quotient tree Q. Let Yi be the set of vertices
in Q that are mapped to the same type Ti' Equivalently, roots of Yi are -
joined to the root of a copy of the type Ti in obtaining the root-to-root

product. Then define a new adjacency matrix A given as follows.



Hk(x) if i=j and ieYk
Ajy = ' s . ' (2.2)
_'qink(X) if i#j and ie¥,
This definition of the matrix A is not identical to the definition of God$il
and McKay. However, this can be.reduéed tb their definition.. We have the
following theorem.
»Thedrem 1 [Godsil and McKay]:
The characteristic polynomial of the root-to-root product
Q'(Tl’TZ""') is the determinapt of the matrix A defined abové.
This theorem was proved by Godsil and McKay using a lemma of SChwgnk stated
belbw as Lemma 1.
Lemma 1 [Schwenk]: Let G be a graph with a root r and let H be a graph
with a root‘s. Let_G(x) and H(x) be the characteristic polynomials of G and H,
respgctively. ~Let G'(x) and H'(x) be the characteristic polynomials of the
Vgraphs obtained by deleting the roots r.and s of G and H, respectively. Let
G.H be the graph obtained by identifying the roots r and s. Then‘the charac-

teristic polynomial of G.H, denoted by G.H(x) is given as follows.
G.H(x) = G(x)H'(x) + G'"(x)H(x) - xG'"(x)H"(X) : (2.3)

The proof of this lemma was given by Schwenk [40].
~ Let hi be the characteristic polynomial of a type containint i vertices
. . {9
including the root. Then hi can be seen to be equal to x- - (i-1) 7%, Let
hi be the characteristic polynomial of the tree obtained after deleting this
i-1
root. hi can be seen to be x .
Let us now illustrate theorem 1 with the tree shown in Fig. 1. In this

case there is one type and one Y set. The adjacency matrices of Q and T are

identical for this example and are shown below.



(@)H=(m)) = : (2.4)
1 0

Thus H(x) = h2 and H'(x) = h;. The matrix A is shown below.

A= O (2.5)

"By theorem 1 the characteristic polynomial of the graph Q.T is just the

determinant of A which is

hg - héz = (xz—l)z—x2 = x4—3x2+1 (2.6)

Incidentally, this is the characteristic polynomial of the topological matrix
of butadiene. The secular determinant of butadiéne which is of the order
4 x 4 was reduced to a secular determinant of order 2 x 2, This reduction
has nothing to do with the symmetry of the molecule. It is purely graph
theoretical. Thus, such a reduction is possible for molecules Qith no
symmetry.

"As a second illustrative example, consider the graph T in Fig. 2.
= {3}, and

I' is the root-to-root product Q'(Tl’TZ’T3) with Y, = {1,2}, Y,

1
an '
Y3 = {4}, The secular determinant of order 9 x 9 by/application of this
theorem can be reduced considerably. The adjacency matrix of Q is shown

below.

[0 0 0 1]

_ 0 0 0 1
) = : ' (2.7)

0 0 0 1

111 0]




Thé matrix A is shown below.

~ '-‘
h 0 0 —h2
0O h, O <h, : '
. | (@A) = 2 2 (2.8)
o 0 0 h, -h |
N . -h. -h! -h! h

I 1 | 1 1J

Insefting the appropriate values of hi,hl, etc., in A and evaluating the

secular determinant of A we obtain the characteristic polynomial of T as

[(reon) == - 8 + 17 - 108> (2.9)

In this case we reduced the 9 x 9 determinant to determinants of orders
at most 4 x 4. In many cases further reduction is possible if the quotient

graph has more than one root as we show in the next section.
C. Iterative Algorithm for Evaluating the Characteristic Polynomials of Trees

The algorithm we outlined in Sec.lIB can be iterated ﬁarticularly for
bigger trees till the secular determinant becomes sufficiently small.
Actually, the algorithm can be repeated till we obtain a tree that contains

‘atnmst one root. This algorithm reduces the secular determinant of the
matrix of the tree we started with to determinants of order at most equal to
the maximum number of vertices in any type generated in all iterations.
Even then, the secﬁlar determinant of any type can be factored further if
there is any symmetry element in the type. This simplification will be

w. considered in a future paper &hich will incorporate the symmetry groups of

graphs in this algorithm. The algorithm is outlined below.

The tree we start with is pruned at joints. Pruning is continued till

we obtain a tree with no branches. This tree can also be broken down



further by a rooted product. Let Qj be the quotient tree generated at the

jth iteration. Let Tij be a type generated in the jth iteration. Let

té;J) be the elements of the adjacency matrix of the type Tij' Let Yij be

the set of vertices in Qi that are mapped to the same type Tij' We define -

a matrix D(lJ) as follows

A if 2=m and 2eY. . . 210!
s | I 3t (1)
m 1 (13) .,
Hk,j—lth if 2#m and QeYk,j—l
(k,3-1)

where Hk -1 is the secular determinant of D
. :

vj-l)

Hi . is the secular
,J-l

determinant of the matrix D'(k

(k?j_l)

which is obtained by deleting the row

k,j-l' Hkl is the

characteristic polynomial of the type Tkl which is hi (defined in Sec. IIB)

if this type contains i vertices. Then we have the following theorem.

and column of D that corresponds to the root in T

Theorem 2: The characteristic polynomial of the tree we started with
is the secular determinant of the matrix defined below.

Hk if 2=m and 2eY
n

k,n .
A = . (2.11)
2m v (n) |
a2dom if 2#m and QeYk’n
where qég) is a typical element of the adjacency matrix of the quotient

.o _th . .
graph Qn generated in the n iteration. Theorem 2 can be proved easily by
repeated applications of theorem 1 at every iteration of the algorithm.
As an example to illustrate this procedure consider the tree shown in ~

[35]

Fig., 3. This tree was used by the author in NMR application. / This tree ;
[ ¥4
can be pruned iteratively to a quotient tree containing just 2 vertices in

2 successive iterations. The quotient tree and the types generated in the

first and second iterations are shown in Figures 4 and 5, respectively.



The matrices D(lj) and Hij's are shown below.

(] ] [} L

Hj,=hy Hy=hy Hyy=h,  Hy=h
1
Hy; =hy  Hy = 1.
P~ '-
h, 0 0 -h
1
a2 0 b, 0 -
) 1}
0 0 h, -
-1 -1 -1 h
I 1
h, 0 0
' (12)
' =
D hy 0
0 0
_ .2 _ ' l_ 2.
Hjy = hgh,hy = 2hshsh, ~ hih,
: 2
Hyj, = h3h,
H -H!
RS %2 12
“Hyp  Hyy

Det (A(z)) = Hiz - Hié, which on simplification yields,

4

Xlo- (X§—10X4+30x2—28)2 - x8(x6—7x +10x-2—12)

(2.12)

Thus we reduced the 22 x 22 determinant problem in to problems involving

at most 4 x 4 determinants. Further, symmetry in trees T

simplify the problem.
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ITI. Cospectral Trees
It is possible to determine elegantly if two trees are cospectral with
the methods developed in Sec. 2. To illustrate conéider the trees shown in
the paper of Randié et al. [15].. One of them is shown in Fig. 2 while the
other is shown in Fig. 6., We now show that thése two trees are cospectral
i.e., they have identiéal spectra. The characteristic polynomial of the
tree in Fig. 2 was already obtained as an illustrative example (c.f., Eq. 2.9).
The quotient‘tree Q and the types T

T2, and T, of P_in Fig. 6 expressed as

1’ 3

root—to-root product are also shown in this figure.

r— ' -3
h2 —h2 0 07
' 1
~h h, -h 0
2 2 2
[Q.(T,,T,,T)1(x) = (3.1)
1772773 0 =-h. h, -h,
1 1 1
1
0 0 —h2 h2
Substituting the expressions for hl, hi, etc., in 3.1 we obtain
[0.(T,,T,,T)1 () = x° - 8% + 17x° - 10x°. (3.2)

Expressions 3.2 and 2.9 are identical and thus'thevcéspectrality of the trees
in Figs 2 and 6 is established.

The pruning technique outlined in Sec. 2 paves the way for constructing.
cospectral t;ees. From the pruned tree one can construct several trees by
attaching to the same vertex isospectral fragments. The resulting trees will
be cospectral. These applications will be considered in future publications.
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APPENDIX

The algorithm for characteristic polynomials of trees. For the
explanation of notations see the text of the paper. Let n be the last

iteration and let Sj be the set of terminal vertices (vertices of degree 1).

A.1 (Initialize) h, < X - (i-1) xi72

h]!_ - x1—1

Hkl < hi if there are i vertices

in the type Tkl'

! '
Hep < By
—r= For j = 2,n do

A.2 Find Sj

A3 Q. «Q, ., -8,
QJ QJ-l h|

(i3) . .
A.4 Dlm * Hk,j—l if 2=m and 2€Y

k,j-1
(19) g LGB
Dom € “Hy,g-1 typ  if Ufmoand Lev
A5 By = det @13y
>
A.6 Alm « Hkn if 2=m and leYk’n
(n)

' .
Alm + —Hkn 9o if 2#m and lek’n

A.6 Char <« det (A).
Final exit.

Char is the characteristic polynomial of the tree we started with.
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Figure Captions

Figure 1. A quotient tree Q and a type T and their root-to-—

root product.

Figure 2. A branched tree on 9 vertices expressed as a root-to-
root product. The roots of Q with the same symbol
are attached to the root of a type which carries

that symbol.
Figure 3. A NMR tree containing 22 vertices.

Figure 4. The tree Ql and the types T 1° TZl’ and T.,., which

1 31

result on the application of the pruning algorithm

to the tree in Fig. 3.

Figure 5. The tree Q2 and the type T , are generated by pruning

1
the tree in Fig. 4.

Figure 6. A tree which is iso-spectral with the tree in Fig. 2.
Iso~-specricity of these two trees is established

by pruning process outlined in this paper.
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