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Abstract

Virtual Reality Simulations for the Advancement of Visual Prosthetics

by

Justin Michael Kasowski

The fields of visual prosthetics and virtual reality (VR) are intersecting in exciting

ways. Designed to restore a rudimentary form of vision to people living with profound

blindness, visual prostheses electrically stimulate surviving cells in the visual pathway to

evoke visual percepts. Like VR headsets, these devices commonly use a head-mounted

camera to capture visual data, updating the view as the user shifts position. Despite the

growing use of VR headsets to simulate what people “see” using visual prostheses, most

previous simulations lack biological realism or do not consider the way a prosthesis user

would use head and eye movements to sample the scene.

To address these challenges, I developed BionicVisionXR, an open-source VR tool-

box for simulated prosthetic vision that uses a neurophysiologically inspired and psy-

chophysically validated computational model to allow sighted participants to ‘see through

the eyes’ of a prosthesis user. First, to demonstrate its utility, I systematically evaluated

the effect of clinically reported perceptual distortions on performance in letter recogni-

tion and immersive obstacle avoidance tasks. Second, I enriched our simulations with

gaze contingency and temporal effects to capture often neglected simulation parameters

that may affect the quality of vision provided by existing devices. Third, to guide the

development of next-generation devices, I propose a way of decomposing the scene into

meaningful parts using edge detection and semantic segmentation. My results demon-

strate the importance of choosing an appropriate level of immersion and phosphene model

complexity. Furthermore, using a combination of computational modeling and behav-
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ioral testing, I was able to identify electrode stimulation strategies that may improve the

quality of vision provided by retinal implants.

This work has the potential to 1) further our understanding of the qualitative

experience associated with different visual prosthetics, 2) provide realistic expectations

of prosthetic performance for patients, doctors, manufacturers, and regulatory bodies,

and 3) accelerate the prototyping of new devices that may one day restore useful vision

to people living with profound blindness.
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Chapter 1

Introduction

1.1 Motivation

The World Health Organization predicts approximately 114.6 million people will be

living with incurable blindness by the year 2050, and 587.6 million people will be

affected by severe visual impairment (Bourne et al., 2017). While some of these cases

can be addressed with medication or surgical interventions, many who experience

profound retinal degeneration or damage to the optic nerve or cortex have no available

effective treatments. For such individuals, an electronic visual prosthesis, often termed

a “bionic eye”, could be the sole solution (Fernandez, 2018). Similar in principle to

cochlear implants, these devices use electrical impulses to activate the remaining

functional cells in the visual pathway, resulting in visual sensations known as

”phosphenes”. Although the phosphenes induced by current prosthetics do enhance

users’ capabilities in discerning high-contrast items and conducting basic navigation

tasks (Ayton et al., 2020), they cannot yet replicate the clarity of natural sight.

Despite the transformative potential of bionic eyes for those with irreversible blindness,

globally, only about 500 retinal prostheses have been installed. To explore functional
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Introduction Chapter 1

restoration and experiment with diverse implant architectures, scientists have been

crafting virtual reality (VR) models anchored on simulated prosthetic vision (SPV).

The conventional approach engages sighted subjects experiencing vision solely through

phosphenes rendered on a head-mounted display (HMD). This offers these participants

a firsthand perspective of a bionic eye user’s visual experience, factoring in their head

or eye movements while navigating a digital realm (Kasowski et al., 2021).

XR platforms have been instrumental in simulating the visual experience offered by

neuroprosthetic devices, providing valuable insights into their functional outcomes.

Presently, several research initiatives leverage XR tools to model, analyze, and enhance

the outcomes of visual neuroprostheses. While the simulations offer critical insights,

they often diverge from the actual experiences of prosthetic recipients. The visual

outputs generated by bionic devices, owing to the intricate neural-implant interface, can

vary significantly from natural vision (Erickson-Davis and Korzybska, 2021).

Additionally, many simulated prosthetic vision (SPV) experiments merely showcase

stimuli on a PC screen or within an HMD, often disregarding essential elements like eye

movements, head motions, or walking (Kasowski et al., 2023). This leads to a low level

of immersion (Kardong-Edgren et al., 2019; Pasch et al., 2009) which refers to technical

manipulations that separate the existence of the physical world from the virtual world

(Miller and Bugnariu, 2016). Interactions with the real world, such as using tangible

controls or hearing ambient sounds, can diminish this immersive experience. Yet, the

significance of immersion in SPV behavioral tasks remained a mystery, as no previous

study had evaluated if behavioral outcomes remain consistent across tasks performed

on a monitor and those on an HMD.

Moreover, the majority of current prosthetic solutions offer a quite restricted field of

view (FOV). For example, the visual field produced by the widely-used Argus II

implant (Luo and da Cruz, 2016b) is constrained to a mere 10× 20 degrees of visual
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Introduction Chapter 1

perspective. This limitation necessitates users to make deliberate head movements to

gather visual information from their surroundings (Erickson-Davis and Korzybska,

2021). The advent of immersive VR in academic research equips scholars with the tools

to authentically emulate this scenario.

After systematically reviewing over 11,000 search results, I found most SPV recent

studies relied on phosphene models with a low level of biological realism or immersion

(Kasowski et al., 2023). Thus, it remained uncertain how the outcomes of previous SPV

experiments would apply to real prosthesis users.

As the field of XR continues to grow, with advancements in hardware and software, the

tools at our disposal become more refined, leading to more accurate and insightful

simulations. However, there remains a critical need to bridge the gap between

simulation and reality – ensuring that our models reflect the lived experiences of actual

prosthetic recipients. This dissertation, seeks to explore the use of XR technologies for

simulating visual neuroprostheses by evaluating previous works and introducing a new

toolbox for studying simulated prosthetic vision in XR.

1.2 Aims and Objectives

The main goal of this thesis is to utilize virtual reality simulations to better

understand, and possibly enhance, prosthetic vision. This work requires an immersive,

spatio-temporally accurate, and biologically real model of bionic vision. Previous

models of prosthetic vision are often simplified or presented as static images on a

computer monitor.

This research encompasses the design of computational models that are informed by

neuroanatomical and neurophysiological evidence about the early visual system, along

with the development of open-source software libraries that provide the means to study

3



Introduction Chapter 1

these models, conduct visual psychophysics studies, and evaluate theories in a realistic

virtual environment. As a result of these efforts, the contributions of this thesis span

multiple disciplines including computational neuroscience, computer science, vision

science, and psychology.

In specific, the contributions of this thesis include:

1. BionicVisionXR, an open-source VR toolbox for simulated prosthetic vision that

allows sighted participants to “see through the eyes” of a prosthesis user.

Importantly, the toolbox uses an established and psychophysically validated

computational model of bionic vision Beyeler et al. (2019b) to generate realistic

SPV predictions.

2. The use of BionicVisionXR to systematically evaluate how different display types

(HMD or monitor) and clinically reported spatial distortions affect performance

across a variety of behavioral tasks. These factors have largely been ignored, with

the majority of studies treating each electrode as if it were a bright circle. This

kind of model is referred to as the ‘scoreboard model’, because like a sports

stadium scoreboard, the combination of these circles can be used to form words or

images. While electrical implants could potentially operate in a similar way,

currently there are no devices able to achieve this in real life. In reality, there are

spatial distortions, along with other often overlooked factors like a head fixed

camera that may not respond to eye movements. Not including these factors may

drastically change performance, but to the best of our knowledge, this is the first

SPV study to address these factors. We use a within-subjects design to allow for

a direct comparison between display types of the same tasks, and have our

subjects perform the task on a broad range of spatial distortion values.

3. The use of BionicVisionXR to systematically evaluate how temporal effects factor
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into behavioral performance. In neuroprostheses, the electrodes are not all

continuously active. Instead, they are activated in smaller groups in a process

known as rasterization. This limits the overall charge being injected, which stalls

neural desensitization and can conserve the device’s battery. However, it is not

clear whether there is an optimal pattern as developers are likely to either use

seemingly random grouping (Second Sight, 2013), or basic top down/left to right

rastering. To our knowledge, the second study in this work is the first of its kind

to study the effect of electrode rasterization in VR.

4. The use of BionicVisionXR to discover advanced stimulation strategies that would

allow a next-generation implant to decompose the visual scene into semantically

meaningful parts. This has been done previously using depth (e.g., McCarthy et

al., 2015), thermal sensors (e.g., Sadeghi et al., 2021), or computer vision (e.g.,

Jiang et al., 2020, Wang et al., 2014). However, this is the first study to use

computer vision/semantic segmentation to break the scene into separate

components and use time as a secondary avenue for separating the components

into recognizable parts.

Taken together, this work has the potential to 1) further our understanding of the

qualitative experience associated with different visual prosthetic technologies, 2)

provide realistic expectations of prosthesis performance for patients, doctors,

manufacturers, and regulatory bodies, and 3) accelerate the prototyping of new devices

that may one day restore useful vision to people living with profound blindness.
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1.3 Organization

The remainder of this thesis is organized as follows.

Chapter 2 provides some technical background on prosthetic vision, introducing

different devices and describing the process by which they work. It discusses the

benefits of simulation studies and facilitates a basic understanding for the field of SPV.

Chapter 3 introduces BionicVisionXR, the open-source toolbox used in Chapters 4–6 to

study often neglected factors in SPV, the effects of different electrode rasterization

patters, and the ability to use computer vision to not just spatially segment an image,

but to temporally segment an information stream. The chapter gives an overview of

BionicVisionXR’s features, highlights architectural and algorithmic challenges overcome

during development, analyzes performance, and discusses related work.

Chapter 4 summarizes a study performed with BionicVisionXR to investigate the

effects of spatial distortions and VR HMDs on simulated task performance. It discusses

the methodologies of two tasks, letter recognition and obstacle avoidance, along with

results indicating that these previously neglected factors in SPV have a significant

impact on subject performance.

Chapter 5 summarizes a study performed with BionicVisionXR to investigate the effects

of different electrode rasterization patterns on task performance. This study introduces

gaze congruent rendering and temporal effects in comparison to the previous study, but

only briefly discusses these methodologies as they are primarily covered in Chapter 3.

The methodologies and results are presented for two tasks, letter recognition and

motion discrimination. The chapter ends by discussing biases imposed by certain

rasterization patterns and that a ”checkerboard” rasterization outperforms all other

patterns of similar complexity in both subject performance and perceived difficulty.

Chapter 6 summarizes a study performed with BionicVisionXR to investigate the
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effects of using computer vision to present different components of the scene at different

times. It discusses the methodologies and results of an obstacle avoidance/wayfinding

task in which subjects were required to identify their target location and avoid people,

objects, and cyclists while navigating to their target. The chapter ends by discussing

the performance benefits identified by the study, along with suggestions for future work

to further utilize computer vision for prostheses users.

Chapter 7 presents the main conclusions defended in this thesis, discusses limitations of

the work, and outlines possible avenues for future studies.

1.4 Permissions and Attributions

Chapters 3 and 4 are ©ACM as the majority of the chapters are derived from

Kasowski et al. (2021) and Kasowski and Beyeler (2022).

All other figures are self-owned or are works with an appropriately cited Creative

Commons license. All text and ideas not considered common knowledge are also cited

appropriately with references provided in the Bibliography section.
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Chapter 2

Background

2.1 Visual Prosthetics

Few disabilities affect human life more than the loss of the ability to see. Although

some affected individuals can be treated with surgery or medication, and recent

advances in gene and stem cell therapies are showing great promise, there are no

effective treatments for many people blinded by severe degeneration or damage to the

retina, the optic nerve, or cortex. In such cases, an electronic visual prosthesis (“bionic

eye”, Figure 2.1) may be the only option (Fernandez, 2018).

Numerous groups worldwide are pursuing a visual prosthesis that stimulates viable

neuronal tissue in the hope of generating functional vision artificially. Two devices have

previously been approved for commercial use, but are no longer supported: Argus II (60

electrodes, Second Sight Medical Products, Inc., Luo and da Cruz, 2016a) and

Alpha-IMS (1500 electrodes, Retina Implant AG, Stingl et al. 2013). In addition,

PRIMA (378 electrodes, Pixium Vision, Lorach et al., 2015) has started clinical trials,

with others to follow shortly (Ayton et al., 2014; Ferlauto et al., 2018). Table 2.1 shows

all retinal and cortical implants that have made it to clinical trials, gotten FDA
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Background Chapter 2

Figure 2.1: Overview of bionic vision: A camera, typically mounted to a pair
of glasses, captures an image and sends it to the system’s video processing unit.
The image is processed and translated into a pattern of electrode activation values.
These values are used to stimulate an implanted electrode array located in the brain,
eye, or along the path from retina to cortex. This results in the user experiencing
‘phosphenes’, the perceptual experience of electrically stimulating visual neurons

approval, or CE mark approval. These devices acquire visual input via an external

camera and perform simple image processing (e.g., contrast enhancement) via an

external video processing unit (VPU), before sending the signal through wireless coils

to a microstimulator implanted in the eye or the brain (see Figure 2.1). The stimulator

receives the information, decodes it, and stimulates the visual system with electrical

current, ideally creating artificial vision.
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Implant Status Implant Electrode Number
Location Count Implanted

Argus II Inactive Epiretinal 60 > 500
IRIS II Inactive Epiretinal 150 10

Polyretina Pre-trial Epiretinal 10,498 0
Alpha-AMS Inactive Subretinal 1600 15+
PRIMA Clinical Trials Subretinal 378 5+

Suprachoroidal 44 Clincal Trials Suprachoroidal 44 4
Cortivis Clinical Trials Cortical 100 12+
ICVP Clinical Trials Cortical 16 5 (estimate)
Link Trial Recruitment Cortical 3072 0
Orion Clinical Trials Cortical 60 6

AV-Done Clinical Trials Optic Nerve 7 1

Table 2.1: For a complete list of devices in development, see
https://bionic-vision.org/devices.

However, a major outstanding challenge in the use of these devices is translating

electrode stimulation into a code that the brain can understand. The prosthetic vision

generated by current retinal implants is still rudimentary and does not differ much

across different device technologies (Erickson-Davis and Korzybska, 2021). Analogous

to the first generation of cochlear implants, these devices have relied on straightforward

signal processing and encoding schemes, assuming that each electrode in the array can

be thought of as a “pixel” in an image (Dagnelie et al., 2007; Chen et al., 2009;

Perez-Yus et al., 2017; Sanchez-Garcia et al., 2019); to generate a complex visual

experience, one then simply needs to turn on the right combination of pixels.

In contrast, current prosthesis users report seeing highly distorted phosphenes, which

vary in shape across subjects as well as electrodes and often fail to assemble into more

complex percepts (Wilke et al., 2011; Beyeler et al., 2019b; Beauchamp et al., 2020;

Erickson-Davis and Korzybska, 2021; Fernández et al., 2021). In the case of epiretinal

implants, these distortions are largely due to inadvertent activation of passing axon

fibers (Rizzo et al., 2003; Beyeler et al., 2019b), but other device technologies based on

10
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Background Chapter 2

electrical stimulation of visual cortex or optogenetics may face related issues. On the

one hand, optogenetic prostheses may cause perceptual distortions due to differences in

temporal dynamics between the optogenetic molecules and normal photopigments (Fine

and Boynton, 2015). On the other hand, although there is a long history of patients

reporting punctate percepts (sometimes described as “a star in the sky”) in response to

single-electrode stimulation of the visual cortex (Dobelle and Mladejovsky, 1974; Evans

et al., 1979; Dobelle, 2000; Bosking et al., 2017), more recent work has highlighted that

the percepts resulting from multi-electrode stimulation cannot be explained by a

summative model based on single-electrode phosphenes (Beauchamp et al., 2020; Barry

et al., 2020; Fernández et al., 2021).

Instead, a growing body of evidence suggests that individual electrodes do not lead to

the perception of isolated, focal spots of light (Fine and Boynton, 2015; Beyeler et al.,

2019b; Erickson-Davis and Korzybska, 2021). Although consistent over time,

phosphenes vary drastically across subjects and electrodes (Luo et al., 2016; Beyeler

et al., 2019b) and often fail to assemble into more complex percepts (Rizzo et al., 2003;

Wilke et al., 2011). Consequently, retinal implant users do not see a perceptually

intelligible world (Erickson-Davis and Korzybska, 2021).

2.2 Simulated Prosthetic Vision

However, a major outstanding challenge in the use of these devices is translating

electrode stimulation into a code that the brain can understand. A common

misconception is that each electrode in the grid can be thought of as a “pixel” in an

image, and most existing devices linearly translate the grayscale value of a pixel in each

video frame to a current amplitude of the corresponding electrode in the array. This is

known as the scoreboard model, which implies that creating a complex visual scene can

11
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be accomplished simply by using the right combination of pixels (analogous to creating

numbers on a sports stadium scoreboard).

On the contrary, recent work suggests that phosphenes vary in shape and size, differing

considerably across subjects and electrodes (Fine and Boynton, 2015; Luo et al., 2016;

Beyeler et al., 2019b).

For instance, the perceived shape of phosphenes generated by an epiretinal implant was

recently demonstrated to be a result of unintended stimulation of nerve fiber bundles

(NFBs) in the retina (Rizzo et al., 2003; Beyeler et al., 2019b). These NFBs follow

polar trajectories (Jansonius et al., 2012) away from the horizontal meridian, forming

arch-like projections into the optic nerve (Fig. 2.2, left). Stimulating a NFB would

result in the activation of nearby retinal ganglion cells (RGCs) that are upstream in the

trajectory, resulting in phosphenes that appear elongated (Fig. 2.2, right).

Beyeler et al. (2019b) demonstrated through simulations that the shape of elicited

Figure 2.2: A simulated map of retinal NFBs (left) can account for visual percepts
(right) elicited by retinal implants (reprinted with permission from Beyeler et al.
(2019a)). Left : Electrical stimulation (red circle) of a NFB (black lines) could activate
retinal ganglion cell bodies peripheral to the point of stimulation, leading to tissue
activation (black shaded region) elongated along the NFB trajectory away from the
optic disc (white circle). Right : The resulting visual percept appears elongated; its
shape can be described by two parameters, λ and ρ.

12
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Figure 2.3: The number ‘3’ with increasing values of rho (ρ) and lambda (λ). Higher
values increase distortion radially (ρ) and along the axonal trajectories (λ).

phosphenes closely followed NFB trajectories. Their computational model assumed that

an axon’s sensitivity to electrical stimulation:

i. decayed exponentially with ρ as a function of distance from the stimulation site,

ii. decayed exponentially with λ as a function of distance from the cell body,

measured as axon path length.

In other words, the values of ρ and λ in this model dictate the size and elongation of

phosphenes, respectively. This may drastically affect visual outcomes, as large values of

λ are thought to distort phosphene shape (see Figure 2.3).

13
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2.3 Virtual Reality

Despite their potential to restore vision to people living with incurable blindness, the

number of bionic eye users in the world is still relatively small (∼ 500 retinal prostheses

implanted to date). To investigate functional recovery and experiment with different

implant designs, researchers have therefore been developing VR prototypes that rely on

SPV.

The classical method relies on sighted subjects wearing a VR headset, who are then

deprived of natural viewing and only perceive phosphenes displayed in a HMD. This

viewing mode has been termed transformative reality Lui et al. (2011) (as opposed to

altered reality typically used to describe low vision simulations Bao and Engel (2019)),

which allows sighted users to “see” through the eyes of the bionic eye recipient, taking

into account their head and/or eye movements as they explore a virtual environment

Kasowski et al. (2021).

A number of previous VR studies have focused on assessing the impact of different

stimulus and model parameters (e.g., phosphene size, phosphene spacing, flicker rate)

on measures of visual acuity. Stimuli for these low-level visual function tests were often

presented on monitors (Vurro et al., 2014; Lu et al., 2012) or in HMDs (Wu et al., 2014;

Cao et al., 2017; Caspi and Zivotofsky, 2015). Some studies also tested the influence of

FOV (Sanchez-Garcia et al., 2020; Thorn et al., 2020) and eye gaze

compensation (Titchener et al., 2018) on acuity. Others focused on slightly more

complex tasks such as letter (Zhao et al., 2011), word (Fornos et al., 2011), face (Denis

et al., 2013; Chang et al., 2012), and object recognition (Zhao et al., 2010; Wang et al.,

2018; Macé et al., 2015). In most setups, participants would view SPV stimuli in a

conventional VR HMD, but some studies also relied on smart glasses to present SPV in

augmented reality (AR).
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However, because most SPV studies rely on the scoreboard model (Dagnelie et al.,

2007; Chen et al., 2009; Lui et al., 2011; Perez-Yus et al., 2017; Sanchez-Garcia et al.,

2019), it is unclear how their findings would translate to real bionic eye recipients. Only

a handful of studies have incorporated a great amount of neurophysiological detail into

their setup (Josh et al., 2013; Vurro et al., 2014; Wang et al., 2018; Thorn et al., 2020;

Kasowski and Beyeler, 2022), only three of which relied on an established and

psychophysically validated model of SPV (Wang et al., 2018; Thorn et al., 2020;

Kasowski and Beyeler, 2022). In addition, being able to move around as one would in

real life has shown to significantly increase the level of immersion a user experiences

(Pasch et al., 2009). However, the level of immersion offered by most SPV studies is

relatively low, as stimuli are often presented on a screen (Ying et al., 2018; Wang et al.,

2018). In contrast, most current prostheses provide a very limited FOV (e.g., Argus II:

10× 20 degrees of visual angle), which requires users to scan the environment with

strategic head movements while trying to piece together the information

(Erickson-Davis and Korzybska, 2021). Furthermore, Argus II does not take into

account the eye movements of the user when updating the visual scene, which can be

disorienting for the user. Ignoring these human-computer interaction (HCI) aspects of

bionic vision can result in unrealistic predictions of prosthetic performance. It is

therefore unclear how the findings of most SPV studies would translate to real

prosthesis users.
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Chapter 3

BionicVisionXR: An Open-Source

Virtual Reality Toolbox for Bionic

Vision

3.1 Introduction

Due to the unique requirements of working with bionic eye recipients (e.g., constant

assistance, increased setup time, travel cost), experimentation with different encoding

methods remains challenging and expensive. Instead, embedding models of SPV in

immersive VR allows sighted subjects to act as virtual patients by “seeing” through the

eyes of the patient, taking into account their head and eye movements as they explore

an immersive virtual environment. This can speed up the development process by

allowing researchers to test theoretical predictions in high-throughput experiments, the

best of which can be validated and improved upon iteratively with the bionic eye

recipient in the loop. However, very few studies attempted to model bionic vision in

real time or use spatial distortions found in real prosthesis users (see Section 2.3).
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Figure 3.1: Simplified overview of the simulated prosthetic vision model:
Anatomical data from a real patient is used to simulate perception. A virtual envi-
ronment is used to present stimulus to the model, which renders simulated prosthetic
vision to the participant. The participant is treated as a ”virtual patient”, and their
performance on common tasks is evaluated.

3.2 BionicVisionXR

To address these challenges, I developed BionicVisionXR, an open-source virtual reality

toolbox for simulated prosthetic vision that uses a neurophysiologically inspired and

psychophysically validated computational model to accurately model the predicted

experience of a prosthesis user (see Figure 3.1). The entire software package is a

combination of C#, HLSL (shader language), and calls to the python package

pulse2percept (Beyeler et al., 2019b). The project is open source and available at

https://github.com/bionicvisionlab/BionicVisionXR.

The general workflow is as follows:

1) Image acquisition: Unity’s virtual camera captures a 60-degree field of view at

90 frames per second.

2) Image processing: The image is typically downscaled, converted to greyscale,

preprocessed, and blurred with a Gaussian kernel. Preprocessing includes things like

depth or edge detection, contrast enhancement, etc.

3) Electrode activation: Electrode activation is derived directly from the closest

pixel to each electrode’s location in the visual field. The previous blurring is in place to

avoid misrepresenting crisp edges, where moving one pixel could result in an entirely

different activation value. Activation values are only collected for electrodes that are
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currently active (see Section 5.1.3).

4) Spatial effects: The electrode activation values are used with a psychophysically

validated phosphene model (Beyeler et al., 2019b) to determine the brightness value for

each pixel in the current frame (see Section 3.2.1).

5) Temporal effects: Previous work has demonstrated phosphene fading (Fornos

et al., 2012) and persistence (Schmidt et al., 1996) for epiretinal devices. Additionally,

previous simulations have eluded to the importance of temporal properties in electrode

stimulation strategies (Avraham et al., 2021; Thorn et al., 2022). To simulate these

effects, we implemented a charge accumulation and decay model with parameters

matching previously reported temporal properties in real devices. Information from

previous frames is used to adjust the brightness of subsequent frames (see Section 3.2.2).

6) Gaze-contingent rendering: Gaze contingency (when what you’re being shown is

congruent with your gaze) significantly improves performance on various tasks using

real devices (Caspi et al., 2018) and simulated prosthetic vision (Titchener et al., 2018;

Bourkiza et al., 2013; Rassia and Pezaris, 2018; Paraskevoudi and Pezaris, 2019). The

package has the option to access device eye-trackers and present the stimulus as either

gaze congruent or incongruent (see Section 3.2.3).

Each of these steps is described in more detail below:

3.2.1 Spatial Distortions

The shape of phosphenes in epiretinal devices is thought to be influenced by the

underlying neuroanatomy of the retina. These devices aim to stimulate retinal ganglion

cells on the epiretinal surface. However, as mentioned in Section 2.2, these cells send

axonal projections to the optic nerve in arch-like trajectories. As the device stimulates
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Figure 3.2: Simplified overview of the simulated prosthetic vision model:
Step 1 - Unity’s camera view of the virtual scene is captured, preprocessed, and
used to simulate neuronal stimulation. Step 2 - The simulated device is centered
over the user’s gaze and neuronal activation is simulated. The neuroanatomy of the
retina is used to predict phosphenes elongated along simulated axonal trajectories.
Raster group 1 (RG1) electrodes are shown in brackets. Step 3 - Perception is
simulated without rastering (top), or with electrode rastering (bottom). Two terms,
ρ (representing phosphene spread) and λ (representing phosphene elongation) are used
to simulate phosphene shape. The highlighted shape represents the predicted percept
of the two active electrodes in the bottom row. In the rastered condition, only 20/100
electrodes are active on any given frame. In this example, only the top two rows
(Raster Group 1) are active. Step 4 -Temporal dynamics are modeled and the final
image is rendered to the headset.

nearby retinal ganglion cells, it inadvertently stimulates the axons of retinal ganglion

cells that traverse the same space (Fig. 2.2), which may result in phosphenes elongated

along the axonal arches (Beyeler et al., 2019b).

To model phosphene shape, we used the psychophysically validated axon map model

(Beyeler et al., 2019b), which assumed that an axon’s sensitivity to electrical

stimulation decays exponentially as a function of (i) distance from the stimulating

electrode (with decay rate ρ), and (ii) distance along the axon from the cell body (with
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decay rate λ). The output of the model was an intensity profile b(r, θ), representing the

perceived brightness of a phosphene at each pixel ((r, θ) describing the corresponding

polar coordinates in the retina, centered over the fovea):

b(r, θ) = maxp∈R(θ)

∑
e∈E

exp

(
−d2e
2ρ2

+
−d2soma

2λ2

)
, (3.1)

where R(θ) was the path of the axon to the point (r, θ), p was an individual point along

the path, de was the Euclidean distance from p to the stimulating electrode, E was the

set of all electrodes, and dsoma was the distance from p to the cell body along the axon,

given by the path integral over the nerve fiber bundle:

dsoma =

∫ θ

p

√
R(θ)2 +

(
dR(θ)

dθ)

)2

dθ. (3.2)

The paths of these nerve fiber bundles (R(θ)) were modeled as spirals originating the

optic disc and terminating at each ganglion cell body (Beyeler et al., 2019b).

3.2.2 Temporal Distortions

In an effort to capture the temporal dynamics, we employed a simpler, linear variant of

equations drawn from an established model (Horsager et al., 2009). The model contains

two leaky integrators representing neuron desensitization, n(t) ∈ [0,∞), and phosphene

brightness, b(t) ∈ [0,∞), respectively, at each pixel location:

dn(t)

dt
= −τnn(t) + bI(t), (3.3)

db(t)

dt
= −τbb(t)− αn(t) + bI(t) (3.4)

The model included brightness input (bI(t), previously calculated as b(r, θ) as described
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in Eq. 3.1), desensitization decay (τn), brightness decay (τb), and a desensitization

scaling factor (α). The temporal model was performed on every pixel of the downscaled

image. The values for τb, τn, and α can be modified to fit patient data based on the

stimulation parameters being used.

Figure 3.3: A demonstration of gaze congruency with a head mounted camera. If the
camera is aligned with the user’s gaze, there is no conflict (top row). If the camera is
pointed at B, but the user is gazing to their left, at the letter A, they will perceive the
letter B as being shifted to the left (middle row). Similarly, if the camera is pointed
to the left at the letter A, but the user is gazing at the letter B, they will perceive
the letter A at the location of the letter B (bottom row). Reused under CC-BY from
Paraskevoudi and Pezaris (2021).

3.2.3 Gaze-Contingent Phosphene Rendering

Spatial updating is a process that relies on information from eye movements to

understand the spatial layout of a visual scene. This process depends on something
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known as gaze congruency (see Fig 3.3), an especially important factor for prosthetic

vision (see Paraskevoudi and Pezaris (2019) for a detailed review). Gaze congruency

has been shown to significantly affect task performance both in physical epiretinal

devices (Sabbah et al. (2014); Barry and Dagnelie (2016); Caspi et al. (2021)), and

simulation studies (Bourkiza et al. (2013); Rassia and Pezaris (2018); Paraskevoudi and

Pezaris (2021))

To implement gaze congruency, the image being processed underwent two shifts (see

Figure 3.4). First, the input image was shifted in the opposite direction of the user’s

gaze (in screen coordinates), effectively moving the user’s fixation point to the center

for processing. This shift was performed to center the image over the simulated

electrode array (centered at x = 0, y = 0), allowing for pre-computed electrode-pixel

interactions to be used and insuring the temporal effects were applied to retinal

locations and not screen coordinates. Electrode activation patterns were extracted from

the shifted pixel intensities and used in the previously described methods. After

modeling the temporal effects, a final gaze shift was performed to reposition the

simulated percepts to the user’s focus point in real time. As a result, the participant

perceived a moving “window” of phosphenes that shifted with their gaze.
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Figure 3.4:
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Chapter 4

Immersive Virtual Reality

Simulations of Visual Prostheses

4.1 Introduction

While many simulation studies have focused on prosthetic vision, few results have been

replicated with real device users. In many cases, simulation studies found performance

on certain tasks far exceeded the performance when the task was performed by

prosthesis users. Conversely, some prosthesis users were able to surpass the theoretical

acuity limits of their device. There are many potential causes for these discrepancies,

but two likely contributions are inaccurate phosphene shapes and the unrealistic

presentation of prosthetic vision on a computer monitor (see Section 2.2).

We therefore systematically evaluated how different display types (HMD or monitor)

affect behavioral performance in a letter recognition and an obstacle avoidance task. To

the best of our knowledge, this is the first SPV study that uses a within-subjects design

to allow for a direct comparison between display types of the same tasks.
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4.2 Methods

4.2.1 Participants

We recruited 17 sighted participants (6 female and 11 male; ages 27.4± 5.7 years) from

the student pool at the University of California: Santa Barbara. Participation was

voluntary and subjects were informed of their right to freely withdraw for any reason.

Recruitment and experimentation followed protocols approved by the university’s

Institutional Review Board, along with limitations and safety protocols approved by

the university’s COVID-19 response committee.

4.2.2 Simulated Prosthetic Vision

BionicVisionXR was used to render phosphenes in real time. The shape of the elicited

phosphenes was based on the retinal location of the simulated implant as well as model

parameters ρ and λ (see Section 3.2.1). As can be seen in Fig. 2.2 (left), electrodes near

the horizontal meridian activated cells close to the end of the NFBs, limiting the

potential of elongation along an axon. This resulted in more circular phosphenes,

whereas other electrodes were predicted to produce elongated percepts that differed in

angle based on whether they fell above or below the horizontal meridian.

We were particularly interested in assessing how different SPV model parameters

affected behavioral performance. Importantly, ρ and λ vary drastically across patients

Beyeler et al. (2019b). Although the reason for this is not fully understood, it is clear

that the choice of these parameter values may drastically affect the quality of the

generated visual experience. To cover a broad range of potential visual outcomes, we

simulated nine different conditions by combining ρ = {100, 300, 500} µm with

λ = {50, 1000, 5000}µm.
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We were also interested in how the number of electrodes in an implant and the

associated change in FOV affected behavioral performance. In addition to simulating

Argus II, we created two hypothetical near-future devices that used the same aspect

ratio and electrode spacing, but featured a much larger number of electrodes. Thus the

three devices tested were:

• Argus II: 6× 10 = 60 equally spaced electrodes situated 575 µm apart in a

rectangular grid. To match the implantation strategy of Argus II, the device was

simulated at −45◦ with respect to the horizontal meridian in the dominant eye.

• Argus III (hypothetical): 10× 16 = 160 electrodes spaced 575 µm apart in a

rectangular grid implanted at 0◦. A recent modeling study suggests that this

implantation angle might minimize phosphene streaks Beyeler et al. (2019a).

• Argus IV (hypothetical): 19× 31 = 589 electrodes spaced 575 µm apart in a

rectangular grid implanted at 0◦.

4.2.3 Tasks

To study the impact of SPV parameters and level of immersion, we replicated two

popular tasks from the bionic vision literature. The first task was a basic letter

recognition experiment (Cruz et al., 2013), tasking participants with identifying the

letter presented to them. The second one was a more immersive orientation & mobility

task, requiring subjects to walk down a virtual hallway while avoiding obstacles (He

et al., 2020).

To allow for a direct comparison across all conditions, we chose a within-subjects,

randomized block design. This systematic side-by-side comparison minimized the risk

of learning effects and other artifacts that may arise from inhomogeneity between

groups, allowing for meaningful statistics with a relatively small number of subjects.
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Figure 4.1: Letter recognition task. Top: The lights in the virtual room are turned off
and the image seen by the user is passed to the preprocessing shader which performs
edge extraction/enhancement before the axon model shader renders SPV. Modeled
after Cruz et al. (2013). Bottom: Output of the axon model shader across the
various devices and ρ / λ combinations.

The procedures and results for each task are presented separately below, followed by a

joint discussion on both experiments in the subsequent sections.

Task 1: Letter Recognition

Original Task The first experiment was modeled after a letter recognition task

performed by Argus II recipients (Cruz et al., 2013). In the original task, following a

short training period, participants were instructed to identify large and bright white

letters presented on a black screen situated 0.3m in front of them. Participants were

given unlimited time to respond. The experiment was carried out in a darkened room.

Both the initial training period and the actual experiment featured all 26 letters of the

alphabet. The letters were grouped by similarity and tested in batches of 8, 8, and 10

letters.
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Experimental Setup and Procedure To emulate the experiment described in

Cruz et al. (2013), we carefully matched our virtual environment to the experimental

setup of the original task. The setup mainly consisted of a virtual laptop on top of a

virtual desk (Fig. 4.1). A virtual monitor was positioned 0.3m in front of the user’s

head position. In agreement with the original task, participants were presented letters

that were 22.5 cm tall (subtending 41.112◦ of visual angle) in True Type Century

Gothic font. For the monitor version of the task, the camera was positioned at the

origin and participants could simulate head movements by using the mouse.

Each combination of 3 devices × 3 ρ values × 3 λ values were implemented as a block,

resulting in a total of 27 blocks. All 27 blocks were completed twice; once for the HMD

version of the task, and once for the monitor version of the task. Rather than presenting

all 26 letters of the alphabet (as in the original experiment), we limited our stimuli to

the original Snellen letters (C, D, E, F, L, O, P, T, Z) for the sake of feasibility.

All nine Snellen letters were presented in each block, resulting in a total of 243 trials.

Participants were limited to 1 minute per trial, after which the virtual monitor would

go dark and the participant had to select a letter before the experiment continued.

To acclimate participants to the task and controls, we had them perform an initial

practice trial using normal vision. After that, the lights in the virtual room were turned

off and BionicVisionXR was used to generate SPV. To mimic the training session of

Cruz et al. (2013), participants completed three practice trials using SPV at the

beginning of each block. Participants were able to repeat each practice trial until they

had selected the correct letter. To prevent participants from memorizing letters seen

during practice trials, we limited practice trials to the letters Q, I, and N.

Participant responses and time per trial were recorded for the entirety of the

experiment.
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Performance Evaluation Perceptual performance was assessed using F1 scores,

which represent the harmonic mean between precision and recall, allowing for a slight

penalty towards false positive choices compared to recall (proportion correct) on its

own. This had the advantage of eliminating bias towards specific letter choices. F1

values were calculated for each block using the scikit-learn ‘f1 score’ function

(Pedregosa et al., 2011). We also measured time per trial with the assumption that

easier trials could be completed faster than trials that were more difficult.

Due to ceiling and floor effects, neither outcome measure (F1 scores and time per trial)

were normally distributed, violating the assumptions of the standard ANOVA. We

therefore performed a subsequent aligned rank transform (ART) with the R package

ARTool for both F1 scores and time per trial. This method of analysis allows for a

factorial ANOVA to be performed on repeated measures, non-uniform data, and lower

subject counts (Wobbrock et al., 2011). Post-hoc analyses were performed on

significant groups by analyzing the rank-transformed contrasts (Elkin et al., 2021). The

Tukey method (Tukey, 1949) was used to adjust p-values to correct for multiple

comparisons. All code used in the analysis, along with the raw data, is provided at

https://github.com/bionicvisionlab/2022-kasowski-immersive.

Task 2: Obstacle Avoidance

Original Task The second task was modeled after an obstacle avoidance experiment

performed by Argus II recipients (He et al., 2020). In this task, participants were

required to walk down a crowded hallway with one to three people located at one of

four fixed distances on either the left or right side of the hallway. Participants were

permitted the use of a cane and were allowed to touch the walls with the cane (but not

the standing persons). Participants were given unlimited time to complete the task and

were closely monitored by the experimenter to avoid dangerous collisions. For each
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Figure 4.2: Obstacle avoidance task. Left: Layout of the virtual hallway environment
modeled after He et al. (2020). Empty circles represent the possible locations for
obstacles. Right/Top: View of the real environment -¿ participant’s view is passed
to the preprocessing shader which performs edge extraction/enhancement before the
axon model shader renders SPV. Bottom: Output of the axon model shader across
the various devices and ρ / λ combinations.

trial, the experimenter instructed the participant to stop when they reached the end of

the hallway.

Experimental Setup and Procedure To emulate the experiment described in He

et al. (2020), we designed a virtual hallway (Fig. 4.2, Left) modeled closely after the

description and pictures of the physical hallway.

Participants were tasked with successfully navigating the virtual hallway while avoiding

collisions with obstacles (simulated people). Each trial consisted of navigating past

either two or three obstacles (three trials per condition, six trials total) located on

either the left or right side of the hallway (Fig. 4.2).

To acclimate participants to the task and controls, we had them perform three initial

practice rounds using normal vision. After that, participants completed three more

practice rounds with a high-resolution scoreboard model (31× 19 electrodes,
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ρ = 100 µm, λ = 50 µm). Participants were instructed to complete the trials as quickly

as possible while avoiding collisions. They were informed that collisions would result in

audio feedback; a sample of each sound was played at the beginning of the experiment.

Each combination of 3 devices × 3 ρ values × 3 λ values were implemented as a block,

resulting in a total of 27 blocks. Block order was randomized and participants

completed six trials per block for a total of 162 trials for each version (HMD/monitor)

of the task. Participants were limited to 1 minute per trial, after which vision was

returned to normal and participants walked to the end of the hallway to begin the next

trial.

To ensure the safety of participants during the HMD-based version of the task, we

positioned rope at the real-life location corresponding to each wall of the hallway

(Fig 4.2, Top, Left). The rope served to guide the participants safely along the path

while keeping them in bounds, but was also a substitution for the cane usage in the

previous research. This substitution was necessary, because our testing facility was

much larger than the hallway in the original experiment; thus the virtual walls did not

coincide with physical walls.

An experimenter was always nearby to ensure the safety of the participants but did not

otherwise interact with them during the experiment. At the end of each trial, the

screen turned red and on-screen text instructed participants to turn around and begin

the next trial in the other direction.

The monitor version of the task was similar, but each new trial would start

automatically without the subject needing to turn around. Participants were seated in

front of a monitor and were able to use the keyboard to move and the mouse to look

around. The size of the hallway and positions of the obstacles were identical between

versions, but participants started 1.5m closer to the first obstacle in the HMD version

due to size restrictions of the room.
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Collisions were detected using Unity’s standard continuous collision detection software,

with each obstacle having a 0.7m× 0.4m hitbox and the participant having a radius of

0.4m. Subject locations and orientations were continuously recorded. Time per trial,

along with individual positions and timings of each collision, were recorded for each

trial.

Evaluating Performance Performance was assessed by counting the number of

collisions per trial and the amount of time to complete a trial, with a lower number of

collisions or lower time per trial expected on easier trials. Analogous to the first task,

these two metrics were averaged across trials in a block for each subject and analyzed

using ART ANOVA. Post-hoc analyses were performed on significant groups using the

Tukey method for multiple comparison adjustments.

4.2.4 Procedure

None of the participants had previous experience with SPV. Participants were split into

two equally sized groups; one starting with the HMD-based version of the first

experiment while the other started with the monitor-based version.

In order to get accommodated with the SPV setup, participants began each task with

the easiest block; that is, the scoreboard model (λ=50µm) with the smallest possible

phosphene size and the highest number of electrodes. The order of all subsequent

blocks was randomized for each participant.
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4.3 Results

4.3.1 Task 1: Letter Recognition

Results from the letter recognition task are summarized in Table 4.1 and distributions

are plotted in Fig. 4.3. Group F-values, along with their significance, are reported in

Table 4.2. Each data point in Fig. 4.3 represents a subject’s F1 score (Fig. 4.3A–C) and

time per trial (Fig. 4.3D–F) across all letters in a block. F1 score ranged from 0 to 1

with higher values representing better performance. Assuming a different letter is

chosen for each selection, a chance-level F1 score would equal the probability for

randomly guessing the correct letter (1
9
= 0.1111).

F1 Score (± Std Dev) Mean Time (s) (± Std Dev)
HMD Monitor HMD Monitor

06x10 Array 0.411 (± 0.341 ) 0.344 (± 0.339 ) 8.312 (± 5.685 ) 7.979 (± 7.367 )
10x16 Array 0.628 (± 0.361 ) 0.546 (± 0.380 ) 5.853 (± 4.808 ) 5.567 (± 3.608 )
19x31 Array 0.699 (± 0.347 ) 0.596 (± 0.373 ) 5.379 (± 4.164 ) 5.661 (± 4.373 )

ρ=100 0.570 (± 0.388 ) 0.467 (± 0.381 ) 7.415 (± 5.874 ) 7.007 (± 6.120 )
ρ=300 0.620 (± 0.366 ) 0.540 (± 0.379 ) 6.173 (± 4.879 ) 5.829 (± 4.686 )
ρ=500 0.548 (± 0.352 ) 0.479 (± 0.377 ) 5.956 (± 4.267 ) 6.371 (± 5.483 )
λ=50 0.824 (± 0.267 ) 0.750 (± 0.329 ) 4.540 (± 3.408 ) 5.034 (± 4.403 )
λ=1000 0.665 (± 0.331 ) 0.543 (± 0.362 ) 5.698 (± 4.338 ) 6.074 (± 5.780 )
λ=5000 0.248 (± 0.229 ) 0.193 (± 0.188 ) 9.307 (± 5.906 ) 8.099 (± 5.700 )

Table 4.1: Letter recognition task: Average performance and time per trial across
conditions. Best performances (highest F1/shortest time) for each grouping are pre-
sented in bold.

As expected, increasing the number of electrodes significantly increased F1 scores in

both HMD (light gray) and monitor (dark gray) versions of the task (Fig. 4.3). It is

worth noting that participants were consistently above chance levels, even with the

simulated Argus II (6× 10 electrodes) device. Increasing the number of electrodes also

decreased the time it took participants to identify the letter (Fig. 4.3D). However,

increasing the number of electrodes from 10× 16 to 19× 31 did not further decrease

recognition time.

33



Immersive Virtual Reality Simulations of Visual Prostheses Chapter 4

Figure 4.3: Letter recognition task. Data points represent each subject’s average
performance in a block with boxplots displaying median and interquartile ranges.
Top: Average F1 score across blocks for each subject within the condition specified
by the x-axis. Bottom : Average time across blocks for each subject within the
condition specified by the x-axis. Statistical significance was determined using ART
ANOVA (*< .05, **< .01, ***< .001).

Contrary to previous findings, F1 scores and recognition time did not systematically

vary as a function of phosphene size (ρ, Fig. 4.3B, E). In both HMD and monitor-based

conditions, median F1 scores were highest for ρ = 300 µm (Table 4.1). However,

participants achieved similar scores with ρ = 100 µm in the HMD version and with

ρ = 500 µm in the monitor-based version of the task.

The most apparent differences in performance were found as a function of phosphene
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elongation (λ, Fig. 4.3C, F). Using λ = 50 µm, participants achieved a perfect median

F1 score of 1.0, but this score dropped to 0.741 for λ = 1000 µm and 0.185 for

λ = 5000 µm (Table 4.1). Increasing λ also significantly increased the time it took

participants to identify the letter.

F1 Score Time
F-Value Signif. F-Value Signif.

device 150.8174 9.17E-57 25.1232 2.51E-11
ρ 9.9004 5.62E-05 8.6049 2.00E-04
λ 535.8116 3.60E-151 80.6779 8.42E-33
display 31.5610 2.62E-08 1.4799 2.24E-01
device : ρ 0.7838 5.36E-01 0.5371 7.09E-01
device : λ 18.2971 1.98E-14 5.6673 1.67E-04
ρ : λ 10.0737 5.72E-08 0.5573 6.94E-01
device : display 0.3742 6.88E-01 1.3682 2.55E-01
ρ : display 0.2668 7.66E-01 0.5586 5.72E-01
λ : display 1.9499 1.43E-01 5.1031 6.27E-03
device : ρ : λ 1.3828 2.00E-01 2.4198 1.38E-02
device : ρ : display 0.3410 8.50E-01 0.3107 8.71E-01
device : λ : display 0.3956 8.12E-01 0.1496 9.63E-01
ρ : λ : display 0.7717 5.44E-01 0.6527 6.25E-01
device : ρ : λ : disp 0.4598 8.84E-01 0.6592 7.28E-01

Table 4.2: Letter recognition task: F-value table for Aligned Rank Transform (ART)
ANOVA. Values were calculated with the ARTool software package. “device” refers
to the three simulated electrode grids, while “display” refers to the use of an HMD or
monitor.

A trend toward a higher F1 score when using the HMD was observed across all

conditions (Fig. 4.3, Top), but the trend failed to reach significance for the device with

the lowest number of electrodes (6× 10 array) or across the larger distortion parameters

(ρ=1000µm and λ=5000µm) (Fig. 4.3, Top). While average time per trial was faster

across all conditions with the HMD, the effect was not significant (Fig. 4.3, Bottom).

4.3.2 Task 2: Obstacle Avoidance

Results are summarized in Table 4.3 and Fig. 4.4. Each data point in Fig. 4.4

represents a subject’s number of collisions (Fig. 4.4, Top) and time to completion
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Figure 4.4: Obstacle avoidance. Data points represent each subject’s average per-
formance in a block with boxplots displaying median and interquartile ranges. Top:
Average number of collisions across blocks for each subject within the condition speci-
fied by the x-axis. Red line represents chance level (1.25 collisions). Bottom : Average
time across blocks for each subject within the condition specified by the x-axis. Sta-
tistical significance was determined using ART ANOVA (*< .05, **< .01, ***< .001).

(Fig. 4.4, Bottom) averaged across repetitions in a block. Group F-values, along with

their significance, are reported in Table 4.4.

Contrary to our expectations, neither the number of electrodes (Fig. 4.4A) nor

phosphene size (Fig. 4.4B) had a significant effect on the number of collisions.

Although the number of collisions decreased slightly with higher electrode counts

(Table 4.3), this did not reach statistical significance. The only statistical differences
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Number of Collisions (± Std Dev) Mean Time (s) (± Std Dev)
HMD Monitor HMD Monitor

06x10 Array 1.279 (± 0.515 ) 1.734 (± 0.621 ) 22.138 (± 10.449 ) 14.045 (± 10.726 )
10x16 Array 1.148 (± 0.602 ) 1.603 (± 0.593 ) 21.483 (± 8.216 ) 11.622 (± 7.274 )
19x31 Array 1.117 (± 0.562 ) 1.663 (± 0.498 ) 21.052 (± 7.388 ) 9.234 (± 4.469 )

ρ=100 1.253 (± 0.536 ) 1.739 (± 0.634 ) 22.000 (± 9.950 ) 13.378 (± 10.025 )
ρ=300 1.083 (± 0.558 ) 1.553 (± 0.546 ) 21.699 (± 8.456 ) 11.594 (± 7.725 )
ρ=500 1.208 (± 0.586 ) 1.709 (± 0.523 ) 20.974 (± 7.797 ) 9.929 (± 5.780 )
λ=50 1.037 (± 0.573 ) 1.627 (± 0.637 ) 22.233 (± 9.523 ) 12.026 (± 8.412 )
λ=1000 1.209 (± 0.610 ) 1.686 (± 0.607 ) 21.711 (± 9.004 ) 11.495 (± 8.183 )
λ=5000 1.297 (± 0.473 ) 1.687 (± 0.466 ) 20.728 (± 7.677 ) 11.379 (± 7.850 )

Table 4.3: Obstacle avoidance task: Average performance and time per trial across
conditions. Best performances (lowest number of collisions/lowest time) for each
grouping are presented in bold.

could be found between the scoreboard model (λ=50µm) and axon map models

(λ={100, 300}µm) for the HMD-based version of the task. However, participants

performed around chance levels in all tested conditions.

The time analysis revealed a downward trend in time (better performance) with higher

electrode counts, but only among the groupings in the monitor version. This trend in

time reached significance for all comparisons within the monitor version (Fig. 4.4D).

Similarly to comparisons across groupings of ρ values, there was a slight downward

trend across the median time taken as phosphene distortion increased (Fig. 4.4, F ).

A comparison between the two different versions of the task showed a clear difference in

performance, with performance for the HMD version being drastically higher than the

monitor version of the task. This trend reached significance across any grouping of

device, ρ, or λ (Fig. 4.4, Top). There was also a difference in time taken between the

versions of the task, with the HMD version taking longer for all groupings (Fig. 4.4,

Bottom).
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4.4 Discussion

4.4.1 Using an HMD May Benefit Behavioral Performance

The present study provides the first side-by-side comparison between HMD and

monitor versions of different behavioral tasks using SPV. Importantly, we used a

psychophysically validated SPV model to explore the expected behavioral performance

of bionic eye users, for current as well as potential near-future devices, and found that

participants performed significantly better in the HMD version than the monitor

version for both tasks.

In the letter recognition task, participants achieved a higher mean F1 score across all

conditions (Table 4.1). However, this trend was only significant for the hypothetical

future devices and smaller phosphene sizes and elongations (Fig. 4.3, Top). While

average time per trial was faster across all conditions with the HMD, the effect was not

Num Collisions Time
F Signif. F Signif.

device 4.7538 8.85E-03 7.2265 2.51E-11
ρ 9.2904 1.02E-04 25.1790 2.00E-04
λ 4.8301 8.21E-03 19.8199 8.42E-33
display 207.3125 3.27E-42 335.6442 2.24E-01
device : ρ 1.2885 2.73E-01 3.6222 7.09E-01
device : λ 1.2039 3.08E-01 3.5733 1.67E-04
ρ : λ 0.2015 9.38E-01 1.1654 6.94E-01
device : display 1.3595 2.57E-01 6.5119 2.55E-01
ρ : display 0.3381 7.13E-01 0.9380 5.72E-01
λ : display 3.8149 2.24E-02 9.0722 6.27E-03
device : ρ : λ 1.0423 4.02E-01 3.1542 1.38E-02
device : ρ : display 0.9071 4.59E-01 1.9217 8.71E-01
device : λ : display 0.6814 6.05E-01 1.2380 9.63E-01
ρ : λ : display 1.5045 1.99E-01 2.0618 6.25E-01
device : ρ : λ : disp 0.9815 4.49E-01 2.2511 7.28E-01

Table 4.4: Obstacle avoidance task: F-value table for Aligned Rank Transform (ART)
ANOVA. Values were calculated with the ARTool software package. “device” refers
to the three simulated electrode grids, while “display”refers to the use of an HMD or
monitor.
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significant (Fig. 4.1, Bottom).

The difference in performance was even more evident in the obstacle avoidance task,

where performance (as measured by number of collisions) for the HMD version was

significantly higher than the monitor version across all conditions (Fig. 4.4, Top). It is

also worth pointing out that participants were able to complete the task faster with

higher electrode counts in the monitor-based version of the task. Since the walking

speed was fixed across all conditions, this likely indicates that the task was easier with

higher electrode counts.

Overall these results suggest that participants were able to benefit from vestibular and

proprioceptive cues provided by head movements and locomotion during the HMD

version of the task, which is something that is available to real bionic eye users but

cannot be replicated by a mouse and keyboard.

4.4.2 Increased Phosphene Elongation May Impede

Performance

Whereas previous studies treated phosphenes as small, discrete light sources, here we

systematically evaluated perceptual performance across a wide range of common

phosphene sizes (ρ) and elongations (λ). As expected, participants performed best

when phosphenes were circular (scoreboard model: λ = 50 µm; Tables 4.1 and 4.3), and

increasing phosphene elongation (λ) negatively affected performance.

In the letter recognition task, participants using the scoreboard model (λ=50µm)

achieved a perfect median F1 score of 1.0 (Fig. 4.3C), which is much better than the

behavioral metrics reported with real Argus II patients Cruz et al. (2013). Conversely,

performance approached chance levels when increasing λ to 5000 µm.

In the obstacle avoidance task, the only significant findings within one version of the

39



Immersive Virtual Reality Simulations of Visual Prostheses Chapter 4

experiment were between the scoreboard model (λ = 50 µm) and either of the larger λ

values. This suggests that elongated phosphenes make obstacle avoidance more

challenging than the scoreboard model. However, participants performed around chance

levels in all tested conditions, which was also true for real Argus II patients He et al.

(2020).

Contrary to our expectations, phosphene size (ρ) did not systematically affect

performance (Fig. 4.3B, Fig. 4.4B). The best performance was typically achieved with

ρ = 300 µm. This is in contrast to previous literature suggesting smaller phosphene size

is directly correlated with higher visual acuity Chen et al. (2009); Han et al. (2021)

Overall these findings suggest that behavioral performance may vary drastically

depending on the choices of ρ and λ. This is important for predicting visual outcomes,

because ρ and λ have been shown to vary drastically across bionic eye users Beyeler

et al. (2019b), suggesting future work should seek to use psychophysically validated

SPV models when making theoretical predictions about device performance.

4.4.3 Increasing the Number of Electrodes Does Not

Necessarily Improve Performance

As expected, letter recognition performance improved as the size of the electrode grid

(and therefore the FOV) was increased from 6× 10 to 10× 16 and 19× 31 (Fig. 4.3A).

This performance benefit was also observed in the time it took participants to recognize

the letter (Fig. 4.3D), and is consistent with previous literature on object recognition

Thorn et al. (2020).

However, electrode count did not affect behavioral performance in the obstacle

avoidance task. Whereas there was a slight increase in performance scores for devices

with more electrodes (Fig. 4.4A), this effect did not reach significance.
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Overall these results are consistent with previous literature suggesting that, for most

tasks, the number of electrodes may not be the limiting factor in retinal implants

Beyeler et al. (2017); Behrend et al. (2011).

4.4.4 Limitations and Future Work

Although the present study addressed previously unanswered questions about SPV,

there are a number of limitations that should be addressed in future work as outlined

below.

First, in an effort to focus on the impact of phosphene size and elongation on

perceptual performance, we limited ourselves to modeling spatial distortions. However,

retinal implants are known for causing temporal distortions as well, such as flicker and

fading, which may further limit the perceptual performance of participants Beyeler

et al. (2017).

Second, the displayed stimuli were not contingent on the user’s eye movements. Even

though current retinal implants ignore eye movements as well, there is a not-so-subtle

difference between a real retinal implant and a simulated one. Since the real device is

implanted on the retinal surface, it will always stimulate the same neurons, and thus

produce vision in the same location in the visual field—no matter the eye position.

This can be very disorienting for a real patient as shifting your gaze to the left would

not shift the vision generated by the implant. In contrast, a participant in a VR study

is free to explore the presented visual stimuli with their gaze, thus artificially increasing

the FOV from that offered by the simulated device. Consequently, the here presented

performance predictions may still be too optimistic. In the future, simulations should

make use of eye tracking technologies to update the scene in a gaze-contingent way.

Third, we did not explicitly measure the level of immersion across the two display types
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(HMD and monitor). Instead, we assumed that viewing a scene that updates with the

user’s head movement through an HMD would lead to a higher level of immersion.

Although this may be true for realistic virtual environments Miller and Bugnariu

(2016), this has yet to be demonstrated for SPV studies. Future SPV work should

therefore explicitly measure the level of immersion and/or a user’s sense of presence.

Fourth, the obstacle avoidance task did not have a meaningful time metric. Although

participants performed the task significantly faster in the monitor-based version, this is

likely an artifact due to the walking speed of participants not being consistent between

versions of the task. Participants moved much slower with the HMD as they were not

able to see the real world around them. Future studies should take this into

consideration and correct for each participant’s walking speed within desktop versions

of tasks.

Fifth, the study was performed on sighted graduate students readily available at the

University of California, Santa Barbara. Their age, navigational affordances, and

experience with low vision may therefore be drastically different from real bionic eye

users, who tend to not only be older and prolific cane users but also receive extensive

vision rehabilitation training.

Interestingly, we found vast individual differences across the two tasks (individual data

points in Figs. 4.3 and 4.4) which were not unlike those reported in the literature Cruz

et al. (2013); He et al. (2020). Subjects who did well in one experiment tended to do

well across all versions of both experiments (data not shown), suggesting that some

people were inherently better at adapting to prosthetic vision than others. Future work

should therefore zero in on the possible causes of these individual differences and

compare them to real bionic eye users. Studying these differences could identify

training protocols to enhance the ability of all device users.
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Chapter 5

Optimizing Prosthetic Vision: The

Impact of Raster Patterns on Visual

Task Performance and User

Experience

While high-resolution visual prostheses are in development with hundreds or even

thousands of stimulating electrodes, charge density limits prevent simultaneous

activation of large numbers of electrodes. Additionally, continuous stimulation

desensitizes the underlying tissue to subsequent stimulation (Fornos et al., 2012). The

current solution to address these occurrences is electrode rasterization, the process of

only activating subsets of electrodes in rapid succession (see Figure 3.2).

Many studies have focused on modeling phosphene shape, but only a few have

attempted to model temporal distortions. Two notable examples are Avraham et al.

(2021) and Thorn et al. (2020), who introduced a temporal model to capture the

clinically reported phenomena of phosphene fading (where continued stimulation of the
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same electrode would lead to the elicited phosphene to fade out over the timecourse of

500ms to 2 s) and phosphene persistence (where patients would continue to see a

phosphene even seconds after stimulus offset).

However, no simulation study has so far considered the perceptual consequences of

electrode rasterization. The patterns used in electrode rasterization are often seemingly

random, or simply straight lines (Second Sight (2013)). While the rasterization rate is

often set higher than what is theoretically perceivable by human, patients often

describe what they’re seeing as fireworks or sparkles. It is conceivable that activating

only a subgroup of electrodes would reduce the quality of prosthetic vision, by

temporally segmenting the visual stimulus into separated, incoherent parts. It is also

conceivable that directional rasterization of electrodes (e.g. columns going left to right

or rows moving top to bottom) would introduce apparent motion, which could interfere

with a patient’s ability to correctly judge the direction of motion of an object.

To assess the impact of electrode rasterization on perceptual performance, we designed

an SPV experiment for two multi-alternative forced choice (MAFC) tasks that are

commonly employed to evaluate visual prostheses: letter and motion discrimination.

By systematically evaluating raster patterns, we expected to find certain biases and

strategies that were dependent on the electrode rasterization pattern. We aimed to

identify patterns associated with high performance under different raster settings, along

with raster settings that may perform better for certain tasks. The outcomes of our

research may not only inform the design and optimization of retinal prostheses but also

contribute to a more comprehensive understanding of the factors influencing the

effectiveness of these systems.
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5.1 Methodology

5.1.1 Participants

We recruited 48 participants with normal or corrected-to-normal vision from the

Department of Psychological & Brain Sciences research participant pool at the

University of California, Santa Barbara (UCSB). Participants served as ‘virtual

patients’, with ages ranging from 18 to 29 years (M = 19.71, SD = 2.72 years), and 20

participants identifying as male (28 female). Among these participants, 10 had never

used VR before, 33 had used VR 1–5 times, 3 had used it 5–10 times, 1 had used it

10–20 times, and 1 had used it 20+ times. Potential participants were excluded if they

reported being prone to cybersickness or sensitive to flashing lights. The study was

approved by UCSB’s Institutional Review Board.

5.1.2 Simulated Prosthetic Vision

As in the previous chapters, we used BionicVisionXR to generate realistic estimates of

prosthetic vision. BionicVisionXR was processed in real time by a desktop PC (Intel

i9-9900k, 16GB DDR4 memory with an Nvidia RTX2070Su) and wirelessly sent to a

head-mounted display (HMD) (HTC VIVE Pro Eye with wireless adapter, HTC

Corporation). For this study, we simulated a retinal implant composed of a 10× 10

electrode array centered over the fovea. The electrodes were simulated as points with

an electrode-to-electrode spacing of 400 µm. The spatial distortion parameters (ρ and λ

varied throughout the experiment (see Section 5.1.5), but all trials used gaze congruent

rendering (see Section 3.4).
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Our temporal model had three open parameters (see Eqs. 3.3–
3.4): brightness decay (τb), desensitization decay (τn), and a
scaling factor (α). Values for these parameters were chosen
by fitting Fig. 4, subject 5 of Fornos et al. (2012). The red
curve represents the subject average, with red dots showing the
range across trials. The black curve represents the temporal
fading model implemented across pixels.

Figure 5.1: Temporal Brightness Curve

To model temporal dynamics, we used BionicVisionXR’s built in temporal processing

(see Section 3.2.2). We used patient data from Fornos et al. (2012) to determine the

three open parameters from equations 3.3 and 3.4: τb = 5s, τn = 0.2s, α = 0.2

5.1.3 Raster Strategies

In actual prosthetic implementations, a process known as ”rasterization” is employed,

whereby electrodes are stimulated in disparate timing groups. This method ensures

that only a subset of electrodes is stimulated concurrently, and the device swiftly cycles

through different groups. The advantages of this approach include mitigating tissue

damage risks, prolonging battery life, and minimizing neural desensitization. Horsager

et al. (2010) highlighted the importance of understanding these spatiotemporal effects.

Even after controlling for electric field interactions, they found that subjects could

discern phase differences across electrodes as small as 3ms.

In order to maintain user comfort, a delicate equilibrium typically exists between the

quantity of timing groups and the frequency of stimulation (Second Sight (2013). In

this study, we confined our efforts to five raster groups, each receiving stimulation at

4.545Hz (220ms per pulse train, see Fig 5.2). This frequency closely approximates the
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Figure 5.2: Raster Patterns: Left - The image is converted into an electrode
activation pattern and used to simulate prosthetic vision. Red dots represent the
locations of simulated electrodes. Right - To avoid high levels of current, only 20%
of the electrodes are active concurrently. The four different raster patterns shown were
assessed in the behavioral tasks. Vertical lines moving left to right, horizontal lines
moving top to bottom, equally spaced electrodes in a checker pattern, and random
groups are re-randomized every five frames. The groups were rendered as close to 5Hz
as possible with the headset’s 11ms frame timing.

5Hz timing used in the temporal model, given the headset’s rendering is fixed at

90Hz/11ms.

The selection of five groups facilitates equal group sizes while maintaining an

inter-pulse delay between timing groups of 44ms (as detailed in Fig 5.2). This delay

duration aligns with previously published inter-pulse delays of 25-83ms (Yücel et al.,

2022) and 50ms (Christie et al., 2022).
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We conducted an analysis of four unique raster strategies, all readily adaptable to

current device architectures (see Fig. 5.2):

• Horizontal: Each group contains 2 adjacent rows of 10, starting with the top

two rows and moving down to the next 2 rows on each subsequent frame.

• Vertical: Each group contains 2 adjacent columns of 10, starting with the left

two columns and moving right to the next 2 columns on each subsequent frame.

• Checkerboard: Maximizes the spacing between electrodes for each frame

creating a “checkerboard” pattern. Subsequent frames maintain the checker

pattern but are shifted to create the maximum distance between active electrodes

on two adjacent frames (See B.1)

• Random: Creates randomized groups for every sequence of five frames, insuring

all electrodes are active one time during the sequence.

Timelapse video files showcasing the various conditions and raster patterns are also

available on the paper’s GitHub page:

5.1.4 Tasks

To investigate the effects of rasterization patterns, we simulated two tasks, both

involving eight-alternative forced choice tests. In both tasks, a 5 s video stimulus played

on a simulated computer monitor within a darkened virtual room. The goal of both

tasks was to identify the stimulus being shown. After the video was played, participants

used a joystick to point in one of eight available directions (up, down, left, right,

up/left, up/right, down/left, and down/right). Moving the joystick would show the

selected response and the trigger button was used to finalize the selection. While

participants had unlimited time to respond, they were instructed not to spend more
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than 5–10 seconds making each decision. Throughout the entire experiment,

participants received feedback for every trial, indicating whether they were correct and,

if not, what the correct response was.

• Letter identification: Participants were presented with one of eight Snellen

optotypes (C, D, E, F, L, O, P, and T). This study replicated a previous

experiment conducted with participants using visual prostheses (Cruz et al., 2013)

and later with simulated prosthetic vision (Kasowski and Beyeler, 2022). In this

task, a letter was displayed on the virtual monitor for five seconds. Participants

were asked to identify the letter shown, and each joystick direction corresponded

with selecting a specific letter. For example, pushing the joystick forward and left

would show the letter “C”, which could then be selected by pushing the joystick

trigger button.

• Motion discrimination: Participants were presented with stimulus videos

created using pulse2percept (Beyeler et al., 2019b). These videos were five

seconds long and featured a grating of bars moving perpendicular to the bars’

orientation. Participants were asked to identify the direction of motion, and each

joystick direction corresponded with each direction. For example, pushing the

joystick forward and left would show an arrow pointing up/left, which could then

be selected by pushing the joystick trigger button.

5.1.5 Procedure

Before arriving, participants completed surveys to determine eligibility and collect

demographic information. Sessions began with participants reading instructions that

included tips for using bionic vision (see supplemental material on GitHub).

Subsequently, they put on the headset and completed HTC’s Eye Calibration procedure
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(included with ‘VIVE Console’). To ensure the eye-tracker’s accuracy, a subset of

participants (n = 30) also completed an additional “follow the dot” task (see

Appendix A).

Participants started with one of the two tasks (counterbalanced). To promote learning,

we employed increasing spatial distortion values as participants progressed through

training. Training started with two normal-vision (non-SPV) trials, followed by three

sets of five trials with incrementally increasing difficulty levels (λ = 50, 50, 1000;

ρ = 150, 300, 300). The first set used low distortion values (λ = 50, ρ = 150) and 400

(20x20) electrodes spaced 300µm apart. This gave participants a pixel-like

representation of the image with a large field of view. The second set used slightly

higher radial distortion (ρ = 300) and 100 (10× 10) electrodes spaced 400 µm. This

introduced some blurring of the pixels and restricted the field of view to ∼ 14.6ox14.6o.

This forced participants to scan the screen with head/eye movements during the letter

task and created a limited viewing window for the motion discrimination task. The

third difficulty level falls within the realistic range of distortion values and electrode

configurations for current epiretinal devices (Beyeler et al., 2019b). Extensive piloting

demonstrated a 70-90% post-training accuracy range for the baseline condition

(temporal effects but no electrode rasterization). The final difficulty level reached

during training was applied to all trials in the experimental phase.

During learning, there were no temporal effects (including electrode rasterization), but

the display was gaze-contingent (see Sec 3.4). After the initial training phase, every

participant began with the ‘No Raster’ baseline condition. This introduced temporal

effects (see Sec 3.2.2), but all electrodes were active on every frame. Participants then

completed the four raster conditions in different, counterbalanced orders. Each

condition (including ‘No Raster’) had 48 trials divided into 6 blocks of all 8 stimuli.

The stimulus order was randomized after each set of 8, but participants were not told
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they were completing blocks and likely assumed randomization. Upon completion of

each condition, participants were asked to rate the difficulty of the condition on a

5-point Likert scale.

5.1.6 Data Collection and Analysis

For each trial, the participant’s choice and the correct choice were recorded, along with

their eye and head positions during the trial. A linear mixed-effect model (mixedlm

from the Python package statsmodel) was used to account for using a within-subjects

repeated measures design (as suggested by Magezi (2015)). To use a ‘design-driven,

maximal model’ (Barr et al., 2013), our variables of interest (‘Block’, ‘RasterStrategy’,

and ‘Task’) were modeled as fixed effects with full interactions. Data was grouped by

subject, with ‘Task’ treated as a nested random effect. The variance/covariance

structure was set with ‘Block’ and ‘RasterStrategy’, allowing the random variance of

each to have varying slopes/intercepts across the different ‘Task/Subject’ combinations.

The final equation was:

Accuracy ∼ Block ∗ C(RasterStrategy) ∗ C(Task)

vc formula = {1 +Block, 1 + C(RasterStrategy)} (5.1)

re formula = 1 + C(Task)

groups = C(Subject)

To study pairwise comparisons for task accuracy and difficulty ratings, subsets of the

dataset were created for each ‘Task’/‘Block’ combination. Reported p-values were

corrected for multiple comparisons using the Benjamini-Hochberg procedure. For the
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Figure 5.3: Linear Mixed Effects Model- Linear mixed effects models for letter
recognition (top) and motion discrimination (bottom) over 6 blocks. The mixed effects
model was a maximal model grouped by subject with a random effects covariance
structure of (‘Block’, ‘Raster Setting’) across tasks. The full interactions of ‘Block’,
‘Raster Setting’, and ‘Task’ were modeled as fixed effects. Colored lines represent the
fit for each individual subject, with the blue dashed line representing chance level.

accuracy analysis, a one-tailed t-test was performed to verify higher performance in the

checkerboard condition. Conversely, in the difficulty rating analysis, a one-tailed t-test

was used to verify lower difficulty ratings in the checkerboard condition.

To investigate whether better performers employed specific strategies, the head position

and eye tracking information were used to visualize the locations participants focused

on the most. Moreover, head and eye movement velocities were examined for

correlations with performance. This analysis aimed to provide insights into the

strategies that led to better task performance under different rasterization conditions,

potentially informing future prosthetic vision designs and training methods for users.
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5.2 Results

5.2.1 Linear Mixed Effect Model Results

The linear mixed effects model (see Fig. 5.3) had a much better fit (AIC= −832.82,

BIC= −683.68) than null models independently examining the effects of block

(AIC= 1425.53, BIC= 1443.42), raster setting (AIC= 566.64, BIC= 602.43), or task

(AIC= 943.61, BIC= 961.51). The main effects of ‘Task’, ‘RasterStrategy’, and ‘Block’

were significant, allowing for subsequent post hoc pairwise comparisons. In the baseline

model (block= 0, checkerboard rasterization, and the letter recognition task),

participants performed at an average accuracy of 0.546 (95% CI = [0.479, 0.614]).

Participants improved their accuracy scores at an average rate of 0.023 per block

(p < .001, 95% CI = [0.010, 0.036]) and had higher accuracy scores on the motion task

(p < .001, 95% CI = [0.083, 0.242]). There was a likely negligible difference in the letter

recognition task for the ’no raster’ condition (p = 0.935, 95% CI = [−0.072, 0.078]) and

participants had accuracy scores that were significantly lower when the rasterization

pattern was vertical lines (p < 0.01, 95% CI = [−0.197,−0.046]), horizontal lines

(p < 0.01, 95% CI = [−0.195,−0.045]), or random (p < .001, 95%

CI = [−0.328,−0.177]).

Furthermore, the interaction between raster strategy and task was significant for all

raster settings except random, indicating that the effect of these raster settings is

influenced by the task. Specifically, the differences with the checkerboard setting were

more pronounced, with the ‘No Raster’ condition yielding higher scores (p < .001, 95%

CI= [0.155, 0.350]), and lower scores observed for vertical lines (p = .001, 95%

CI= [−0.265,−0.071]) and horizontal lines (p = .040, 95% CI= [−0.199, 0.004]).
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Figure 5.4: Rasterization Results - Final block (Block 6) accuracy results for
both the letter recognition and motion discrimination tasks. Significant performance
improvements are evident in the ”Checkerboard” condition compared to the other
three raster patterns. Blue dashed line represents chance level (1/8). Significance
determined with one-tailed pairwise t-tests (Benjamini/Hochberg FDR correction for
multiple comparisons, ∗ ∗ ∗ = p < .001)

5.2.2 Checkerboard Rasterization Outperforms Similar

Complexity Patterns

In both tasks, performance with the ‘Checkerboard’ raster setting was significantly

higher than all other raster settings across all blocks. By block number six, participants

were able to consistently score above chance levels with the checkerboard raster pattern

while some participants still performed below chance levels for the other conditions.

Figure 5.4 shows the accuracy across both tasks (letter recognition=LR, motion

discrimination=MD) for no rasterization (LR=0.703±0.269, MD=0.969±0.079),

checkerboard (LR=0.695±0.260, MD=0.786±0.213), vertical lines (LR=0.484±0.278,

MD=0.450±0.305), horizontal lines (LR=0.471±0.248, MD=0.563±0.265), and random

(LR=0.393±0.246, MD=0.591±0.305).

It is important to note the possibility of an artifact where the ‘Checkerboard’

performance matches the ‘No Raster’ condition in the letter recognition task. While
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‘Checkerboard’ performance is significantly higher than the other conditions, it is likely

still not as high as the performance in the ‘No Raster’ condition. However, every

subject started with the ‘No Raster’ baseline condition and would have likely performed

better had they encountered the condition later in the experiment. This organization

was intentional, as many subjects could not perform the other conditions without first

being trained without rasterization.

5.2.3 Performance Improvement Evident Across Raster

Conditions

The maximal mixed effect model revealed no random variance could be attributed to

the ‘Block’ interactions, while the fixed effect of ‘Block’ was significant. This implies

‘Block’ significantly affects performance across all ‘Task’ and ‘RasterStrategy’, but the

variance in the effect is not significant across different ‘RasterStrategy’ and ‘Task’

pairings. As a result, removing ‘Block’ interactions created a slightly better fitting

model (AIC= −907.25, BIC= −811.80) with a fixed slope regardless of ‘RasterStrategy’

or ‘Task’ (m = 0.014).

Although not statistically significant, the effect of ‘Block’ in the maximal model (and

its interactions) may better represent the reality of subject learning throughout the

different conditions (see Fig. 5.3). For instance, the model without ‘Block’ interactions

would suggest subjects could perform above 100% accuracy by Block #6 in the ‘No

Raster’ motion task.

5.2.4 Self-Reported Difficulty Ratings

Figure 5.5 displays the participant self-reported difficulty ratings for both tasks. The

‘Checkerboard’ condition was rated significantly lower in difficulty compared to the
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other three conditions across both tasks. The difficulty ratings have an inverse

relationship with performance measurements for each condition (i.e. participants scored

higher in tasks rated lower in difficulty). In the letter recognition task, the ‘No Raster’

and ‘Checkerboard’ conditions had similar, lower difficulty scores compared to the other

three conditions. For the motion task, the ‘No Raster’ condition was rated considerably

lower in difficulty than the ‘Checkerboard’ condition. However, the ‘Checkerboard’

condition was still rated as significantly less difficult than the other three raster

conditions.

5.2.5 Systematic Stimulus Dependent Biases in Participant

Responses

For both tasks, participants’ selections were anticipated to be biased for certain stimuli

or raster conditions. In the letter recognition task, we expected participants to select

letters that closely resembled the presented stimulus, particularly confusing letters

Figure 5.5: Difficulty Ratings. Distribution of difficulty ratings completed at
the end of each condition for Letter Recognition (Left-side bars) and Motion Dis-
crimination (Right-side bars). Significance bars determined with one-tailed pairwise
t-tests (Benjamini/Hochberg FDR correction for multiple comparisons, ∗ = p < .05,
∗∗ = p < .01, ∗ ∗ ∗ = p < .001)
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within groups [C, D, O] and [E, F, P]. In the motion discrimination task, it was

expected that the raster setting would influence participants’ choices, with selections

likely biased toward the apparent motion in the vertical line (left to right) and

horizontal line (top to bottom) conditions. Participant responses to each stimulus can

be seen in Figure 5.6.

In the letter recognition tasks, there was some bias towards similar-looking letters, but

the strongest biases existed towards the letters ‘D’ and ‘P’. This is possibly due to

those being the options when the joystick was pressed forward or pulled backwards.

Subjects may have felt those joystick movements were the most natural and

subconsciously favored them when randomly guessing. There was no apparent

Figure 5.6: Stimulus Response Matrix - The figure illustrates the relationship
between the selected response (x-axis) and the specific stimulus presented (y-axis).
In the letter recognition task (Top), there were no appreciable effects observed when
altering raster modes. Participants did show slightly elevated biases towards letters
with similar properties ([C,D, and O] and [E, F, and P]). Meanwhile, in the motion
discrimination task (Bottom), responses tended to favor the direction of apparent
motion for both vertical and horizontal lines. Yellow rectangles represent the expected
biases.
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differences in bias between the different raster patterns, with the majority of incorrect

responses being in the expected groupings or ’D’/’P’ across conditions.

The results for the motion discrimination task matched our hypothesis, with

performance being lowest for the vertical and horizontal line conditions. Biases in these

conditions matched the apparent direction of motion for the moving bars and are

highlighted with a yellow rectangle in Figure 5.6. Notably, these systematic biases do

not exist in the checkerboard or random conditions.

5.3 Discussion

5.3.1 Implications of the Results

This investigation suggests the ’Checkerboard’ rasterization pattern outperforms other

patterns in both letter recognition and motion discrimination tasks. These results echo

prior studies indicating complexities arise from merging nearby phosphenes Rizzo et al.

(2014); Horsager et al. (2010); Wilke et al. (2011); Bosking et al. (2017), especially

when deciphering intricate shapes like letters (Christie et al., 2022). Sequential patterns

have improved performance with cortical prostheses (Beauchamp et al., 2020; Oswalt

et al., 2021), but sequential stimulation alone has failed to improve performance for

recognizing complex shapes with retinal stimulation (Christie et al., 2022). The current

work suggests careful selection of timing groups is critical in facilitating functional

vision with these devices. The current work has also shown that rasterization is a

plausible way to introduce motion effects. While this could be used advantageously if

the direction of apparent motion matches motion in real life (e.g. lines moving to the

right as an object moves to t he right), the checkerboard rasterization performed higher

even when this was the case. Additionally, decreased task difficulty ratings were

58



Optimizing Raster Patterns for Simulated Prosthetic Vision Chapter 5

correlated with higher performance, reiterating the need for a user-centered approach in

designing visual accessibility devices (as previously reviewed in Kasowski et al., 2023).

User insights can assist in identifying raster patterns that not only enhance

performance but also streamline tasks and reduce perceived difficulty. Although

performance metrics hold crucial importance, alleviating task difficulty can prevent

mental fatigue and foster higher rates of device adoption.

5.3.2 Gaze Strategies and Performance

The analysis of gaze strategies revealed high performers adopted specific strategies

depending on the raster setting. In the letter recognition task, all three performance

groups focused on the center of the letter and made small movements in all directions

when presented with the ’No Raster’ and ’Checkerboard’ conditions. Interestingly, high

performers in our study applied different strategies for the other raster settings,

focusing on the bottom and top-right parts of the letter. These specific letter areas

contain the most information and can be used to discriminate between similar letters.

These gaze patterns were not observed in the mid or low performing groups and may

partially explain the discrepancy The fact that top performers were able to adjust their

gaze strategies depending on the raster setting highlights the importance of training

and user adaptation in prosthetic vision devices.

5.3.3 Insights for Prosthetic Vision Development

Our results provide valuable insights for the development of prosthetic vision systems.

The improved performance observed with the checkerboard raster setting suggests

incorporating this pattern into prosthetic vision devices may enhance the user

experience and facilitate the processing of visual information. Furthermore, the
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differences in gaze strategies among high, middle, and low performers indicate that

training and user adaptation play a crucial role in optimizing the performance of

prosthetic vision systems. Future research should investigate the long-term effects of

gaze training on the performance of prosthetic vision devices. Studies exploring the

neural mechanisms underlying the processing of different raster patterns, as well as the

development of adaptive rasterization algorithms that adjust to the user’s gaze strategy,

may also contribute to the advancement of prosthetic vision technology.

5.3.4 Limitations and Future Directions

While our study provides valuable insights into the effects of raster patterns on task

performance and difficulty ratings, some limitations should be considered. First, the

sample size of the study was relatively small, which may limit the generalizability of the

findings. Additionally, we focused on healthy participants with normal vision and

assumed all electrodes elicited percepts (which is not always the case in real devices).

While this approach allowed for controlled comparisons of rasterization patterns, it is

possible that individuals with visual impairments would perform differently or adopt

different strategies when using prosthetic vision devices. Future research should involve

a larger and more diverse participant pool to confirm the robustness of the results and

ideally compare performance to real prosthesis users.

Second, our study focused on two specific tasks: letter recognition and motion

discrimination. Additional research examining the effects of raster patterns on a wider

range of tasks, including object recognition, facial recognition, and navigation, would

provide a more comprehensive understanding of the role raster patterns play in

prosthetic vision systems.

Third, our study did not explore the impact of different electrode densities on task
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performance and difficulty ratings. Investigating the interaction between raster patterns

and electrode densities in prosthetic vision devices may further inform the design and

optimization of these systems. Similarly, our simulation’s temporal effects are based on

the perceptual experience of prosthesis users. Our model simplifies electrode charge

injection as a Gaussian decay away from the electrodes. In reality, the electrical

properties of neural prostheses are complicated and not fully understood. The

interaction between electrodes is not always predictable, especially in epiretinal

devices (Christie et al., 2022). As with all simulation findings, results should be

compared to the behavioral performance of real prosthesis users.

Lastly, our study (and previous simulation studies, see Dagnelie et al. (2007); Kasowski

and Beyeler (2022)) revealed a large degree of individual difference in task performance.

The current work examined gaze patterns of high performers, but there are likely other

factors contributing to the large degree of difference in performance. In real prostheses,

individual differences are often attributed to the placement of the device or differences

in neuroanatomy. However, in simulation tasks all subjects are experiencing the same

degree of distortion, but some participants consistently perform much higher than

others. Identifying factors influencing performance outside of physical constraints may

provide insights into training paradigms that result in more usability from current

devices.

In conclusion, our findings demonstrate the potential benefits of incorporating

checkerboard raster patterns into the design of retinal prosthetic devices. The superior

performance and lower difficulty ratings associated with the checkerboard raster setting

across both tasks suggest this pattern may be better suited for optimizing prosthetic

vision in users. Furthermore, the identification of specific gaze and head movement

strategies that enhance performance under different rasterization conditions could

inform the development of targeted training programs for individuals using retinal
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prostheses. Ultimately, these insights could lead to improved functional outcomes for

people with visual impairments, enabling them to better navigate and engage with their

environments through the use of advanced prosthetic vision technology.
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Chapter 6

Enhancing Visual Prosthetics with

AI: Investigating Smart

Rasterization and Edge Detection

for Improved Wayfinding

Performance

Visual prosthetics offer an opportunity to tap into the existing neural circuitry of

people who are blind and augment their visual senses like Google Glass or Microsoft

HoloLens. With the low resolution and high distortion levels of current devices, it is

necessary to simplify the visual scene before it is displayed. Most visual prostheses are

equipped with an external VPU that can apply simple image processing techniques to

the video feed in real time. Edge detection and contrast maximization are already

routinely used in current devices. In the near future, these techniques may include

computer vision-based algorithms aimed at improving a patient’s scene understanding
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Beyeler and Sanchez-Garcia (2022).

SPV studies suggest that one benefit of computer vision may be to provide an

importance mapping that can aid scene understanding; that is, to enhance certain

image features or regions of interest, at the expense of discarding less important or

distracting information. This limited compensation may be significant to visual

prosthesis patients carrying out visual tasks in daily life.

Based on this premise, researchers have developed various image optimization

strategies, and assessed their performance by having sighted observers (i.e., virtual

patients) conduct daily visual tasks under SPV (Boyle et al., 2008; Dagnelie et al.,

2007; Al-Atabany et al., 2010; Li et al., 2018; McCarthy et al., 2015; Vergnieux et al.,

2017). One of the most commonly explored strategies is to highlight visually salient

information in the scene, which was able to improve eye-hand coordination (Li et al.,

2017), obstacle avoidance (Stacey et al., 2011), object detection (Weiland et al., 2012;

Han et al., 2021), and object recognition (Li et al., 2018; Wang et al., 2016). Another

strategy is to use semantic segmentation highlight important objects Horne et al.

(2016); Sanchez-Garcia et al. (2019); Han et al. (2021). These simulations allow a wide

range of computer vision systems to be developed and tested without requiring

implanted devices.

Along with most studies using inaccurate models of bionic vision, none of the

simulations included temporal effects or raster patterns, which may further affect

behavioral performance, as demonstrated in the previous chapter. It is therefore

unclear how their findings would translate to real retinal prosthesis patients, whose

phosphenes are large, elongated, and often fail to assemble into more complex percepts

Rizzo et al. (2003); Wilke et al. (2011); Beyeler et al. (2019b); Erickson-Davis and

Korzybska (2021).

To address these challenges, we sought to find way to use rasterization to not only limit
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charge density and prevent desensitization, but also to aid the user in scene

understanding. We hypothesized that by using temporal segmentation to present

different objects at distinct times (‘smart rasterization’), participants would more

effectively recognize objects within each segment, leading to improved performance in a

wayfinding task. Another ‘smart’ technique, ’smart edge detection’, was used to show

important structural edges, people, and moving targets while filtering out far away

buildings or edges that would not contribute to scene understanding. This chapter will

describe the methodologies and the two different ‘smart’ techniques that were found to

improve performance in a simulated wayfinding task.

6.1 Methodology

6.1.1 Participants

Twenty four subjects with normal or corrected-to-normal vision were recruited and

screened for sensitivity to flashing lights or motion sickness. Participants ranged from

18 to 40 years (25.04±5.72), with 10 participants identifying as male and 14 identifying

as female. Among these participants, 5 had never previously used VR, 12 has used VR

1-5 times, 3 used VR 5-10 times, 2 used VR 10-20 times, and 2 previously used VR over

20 times. The study was approved by UCSB’s Institutional Review Board.

6.1.2 Simulated Prosthetic Vision

BionicVisionXR was processed in real time by a desktop PC (Intel i9-11900k, 64GB

DDR4 memory with an Nvidia RTX3090) and wirelessly sent to a head-mounted

display (HMD) (HTC VIVE Pro Eye with wireless adapter, HTC Corporation). Spatial

distortions were kept constant through the experiment, with ρ = 200 and λ = 400 (see
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Our temporal model had three open parameters (see Eqs. 3.3–
3.4): brightness decay (τb), desensitization decay (τn), and a
scaling factor (α). Values for these parameters were chosen
by fitting Fig. 3, subject 5 of Fornos et al. (2012). The red
curve represents the subject average, with red dots showing the
range across trials. The black curve represents the temporal
fading model implemented across pixels.

Figure 6.1: Temporal Brightness Curve

Section 3.2.1). The temporal distortions were changed slightly from the last experiment

and were matched to the same patient, but for a 20Hz stimulation (Fornos et al., 2012).

We chose to match our temporal model to the 20Hz data since we had 5 raster groups

and a 90Hz framerate. This effectively results in each electrode being stimulated at

18Hz. To match our temporal model to the data, we filled the open temporal

parameters with τnd = 0.2, τb = 1.5, and α = .25, resulting in phosphenes that would

persist if the stimulus was removed prior to desensitization (see Section 3.2.2, Fig 6.1 ).

As in the previous experiment, a gaze-congruent display was rendered by performing a

double shift when processing the data (see Section 3.4)

Preprocessing Methods

Three different preprocessing protocols were investigated (see Figure 6.2):

1. ‘Näıve Edge Detection’ used a standard Sobel kernel, a common edge detection

filter used in current devices that highlights region where there are rapid intensity

changes, effectively emphasizing edges and transitions within an image.

2. ‘Smart Edge Detection’ effectively highlighted the outlines of people, bikes, and
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Figure 6.2: The experiment included three different pre-processing methods: ‘Naive
Edge Detection’ (top left), ‘Smart Edge Detection’ (top right), and ‘Smart Rastering’
(bottom). The raw image underwent one of these three preprocessing methods before
being rendered as prosthetic vision. For ‘Naive Edge Detection’, a standard 3 × 3
Sobel kernel was used. For ‘Smart Edge Detection’, the textures were removed from
the objects and a 7 × 7 ‘enhancing kernel’ was performed. This effectively removed
background noise, leaving just people, bikes, and structural edges. For ‘Smart Ras-
tering’, the image was segmented and presented in piece-by-piece in time, temporarily
showing only bikes, only people, and only structural edges. The rastering occured in
a way that bikes were shown most often, people second, and structural edges were
shown the least. This was accomplished by presenting the groups as ‘Bikes, People,
Bikes, Structures, Bikes, People, Bikes’ and repeating the pattern. This effectively
showed people twice as often as structures, and bikes twice as often as people.
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structural edges (e.g., of nearby buildings). While this may have seemed

implausible years ago, technology and computer vision has advanced to a point

where most modern smartphones are powerful enough to perform such algorithms.

3. ‘Smart Rastering’ separated the three semantic categories identified by ‘Smart

Edge Detection’ in time, by displaying bikes, people, and structures in separate

raster groups. Each group would display ‘bikes only’, ‘people only’, or ‘structural

edges’ only. These groups would be displayed for all the frames within a 200ms

block (while continuing to also perform checkerboard rasterization). This timing

was chosen after piloting and attempted to balance seeing the different groups

often enough to be meaningful, while also showing enough of one block to be able

to gather information about obstacle locations and speeds. Due to bikes being the

more critical group, they were shown twice as often as people, and four times as

often as structural edges. This was accomplished by displaying ‘bikes, people,

bikes, structural edges, bikes, people, bikes’ and then repeating the pattern.

All three approaches used a checkerboard raster pattern, set at 90Hz (to coincide with

the framerate of the HMD). The ‘Smart Rasterization’ pattern was chosen based on our

hypothesis, that adding information through temporal segmentation would aid in scene

understanding and navigational ability. Part of this method included highlighting bikes,

people, and structures in order to segment them. To insure any performance gains were

from the temporal segmentation, the ”Smart Edge Detection” acted as a control. It was

simply ”Smart Rasterization” without the temporal segmenting. However, this is not

what is currently standard in visual prostheses which typically use simple edge

detection algorithms and downscaling (‘Näıve Edge Detection’).
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Figure 6.3: The entrance to the subway station. The participant always started in the
same location, in front of the fountain (highlighted square). They were instructed to
go to the left or right side of the station while avoiding collisions with people, objects,
and bikes. A trial was deemed successful when the participant was inside the subway
station and on the correct side. A trial ended upon success, when the participant
collided with a biker, or when they ran out of time (45 seconds).
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6.1.3 Task

The task performed was a wayfinding task with obstacle avoidance. This task was

chosen because it requires participants to perform multiple simpler tasks in order to be

successful. Participants needed to be able to identify the structures around them,

perform motion discrimination, plan a path, and avoid the objects/people they were

tasked with recognizing. Participants started on one side of a small town square and

were instructed to go to the left or right side of the subway station. The subjects were

given 45 seconds to complete the trial, and at 10 seconds a timer appeared on the screen

counting down with the time remaining. The trial ended when the participant made it

to the correct side of the subway station and past the arches (see Figure 6.3), ran out of

time, or got hit by a bicycle. The participants were instructed to prioritize avoiding

bicycles, and the trial would end while a crashing sound played. They were told that

their second objective was making it to the subway station, and their third was to avoid

as many other collisions as possible. The experiment was a within-subjects block

design, with each preprocessing method being a complete ‘block’. The block order was

cross-balanced, and all blocks had the same set of fifteen trials (in a randomized order).

Participants began by completing 5 rounds in a dark virtual space containing people,

objects, and bike riders similar to those seen in the real task, but without the task

environment. During training, they performed 4 rounds with normal vision, and one

round with temporal effects and a 3x3 sobel kernel (to accustom the participant to a

highly distorted environment). They were given the objective of going from the starting

area to a target location across the room. For these training rounds, they were given

specific instructions to “run into the person on your right”, “run into the trashcan”,

and “get hit by a biker”. The purpose of this was for the subjects to learn the collision

system of the experiment. Colliding with a person would result in the person making a
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noise, and an on-screen text reading “Collision, back up!”. An arrow was displayed,

pointing backwards in the z-direction (see Figure 6.4). The on-screen text would also

tell the participant what they ran into, displaying “Person - Walking” or “Fountain”. A

subsequent collision was only counted if the participant backed up far enough to remove

the notification (0.25m), and then collided with the same object.

Figure 6.4: To avoid participants walking through virtual objects, they were forced to
’back up’ when a collision was detected. To back up, they had to move 0.25 meters
in the negative z-direction. To accomplish this, a UI element would appear informing
the participant of the collision. There was text stating “Collision, backup!” along with
the name of the object collided with (for example ‘Person, walking’ if they collided
with a moving person). Additionally, there was an arrow telling them which direction
to back up in. In this figure, the participant (represented by the three colored arrows
with blue being forward) has approached the fountain from two separate directions.
In the left figure, they approached from the southwest, and were told they needed
to go back and to the right to complete their “Back-up”. In the right figure, the
participant approached from the east and was told they needed to go directly left to
complete their “Back-up”. In both cases, the participant is simply being told to go
south (black arrow), back towards the starting location.

After the practice rounds, and at the beginning of each new block, the participant was

treated as if they were a prosthesis user and the experimenter was teaching them the

environment. They were instructed to look at the arches of the subway station, the

fountain by their feet, and the bench to their right with a person on it. When the

71



Enhancing Visual Prosthetics with AI Chapter 6

participant was ready, they were led to the edge of the bike lane and told this is where

they needed to stop before crossing. This was performed with each new block, as each

block had a new preprocessing pattern.

At the end of each block, the participant was asked to rate the difficulty of the block on

a 1-10 scale.

6.1.4 Data Analysis

Our outcome metrics were trial outcome (successful trial, bike collision, or out of time),

time to completion, and number/type of collisions. For each trial, every collision was

recorded. This included collisions with moving bikes or the finishing area. We

conducted linear mixed-effects analyses using the ‘pymer4’ package in Python. Our

dependent variables were “Success”, “Bike Collision” which were modeled as a binomial

outcome, and “Total Collisions” modeled as a Poisson outcome as it is

non-continuos/count data. We were also interested if the preprocessing method had any

effect on the type of collision (e.g. walking people vs stationary objects), and ran

additional models with “Stationary Object Collisions”, “Walking Person Collisions”,

and “Stationary People Collisions” modeled as poisson outcomes. We also wanted to

know if the perceived difficulty was affected, and modeled “Difficulty” as a gaussian

outcome.

To insure a design-driven model Barr et al. (2013), the predictors in the model were

“Block Number” (the order they performed the blocks, with the assumption of

learning) and “Preprocessing Method”. To account for the repeated measures structure

of the data, we included a random intercept for SubjectID. Thus the model with

“Outcome” being “Successful Finish”, “Bike Collision”, “Total Collisions”, “Stationary

Object Collisions”, “Walking Person Collisions”, “Stationary People Collisions”, or
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“Difficulty” was:

Outcome ∼ C(Block Number) + C(Preprocessing Method) + (1|SubjectID)

The code, along with all data, is available at

https://github.com/bionicvisionlab/kasowski 2023 smartRaster

6.2 Results

6.2.1 ‘Smart’ Options Result in Less Collisions, but Primarily

with Stationary Objects

Both ‘smart’ options resulted in less total collisions than the naive approach (See

Figure 6.5). The mixed linear effects model identified significant differences in

“Preprocessing Method” but not “Block Number” for total collisions. When comparing

“Naive Edge Detection” with “Smart Edge Detection”, participants were estimated to

have 0.2 less collisions (95% CI: -0.334, -0.066, p = 0.003). When comparing the naive

method to “Smart Rasterization”, there was an even bigger difference with an average

reduction of -0.239 (95% CI: -0.374, -0.104, p = 0.001).

We were also curious if the different preprocessing method could have a varying effect

depending on the type of obstacle. We separated collisions into “Collisions with

Stationary People”, “Collisions with Walking People”, and “Collisions with Stationary

Objects”. The linear mixed effects model did not identify any effect of Block Number

or Smart Edge Detection, but found that Smart Rasterization led to an estimated 0.878

less collisions (95% CI: -1.755, -0.002, p = 0.049) when looking at collisions with

walking people.
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Figure 6.5: Subject averages for ‘Success Rate’ (Left) and ‘Total Collisions’ (Right).
Significant improvements were identified for the success rate when comparing naive
and smart edge detection. Both ‘smart’ conditions resulted in significantly lower total
number of collisions.

Block Number was also not a significant effect in the Stationary Objects model, but

both ’smart’ methods of preprocessing were found to improve the number of collisions.

With ‘Smart Edge Detection’, participants managed to reduce their collision count by

an average of -0.257 (95% CI: -0.458, =0.056, p = 0.012), and with ‘Smart

Rasterization’, participants collided an average of 0.308 less collisions (95% CI: -0.512,

-0.103, p = 0.003).

6.2.2 ’Smart’ Methods Results in Lower Perceived Difficulty

and Higher Success Rate

The mixed linear effects model for “Successful Finish” converged (AIC=919.011), and

found significant effects in “Block Number” and “Preprocessing Method”. When

compared to the first block, the success rate increased by 0.596 (95% CI: 0.198, 0.995,

p < .001) for the second block, and 0.792 (95% CI: 0.393, 1.192, p = 0.003) for the third
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Figure 6.6: Self reported difficulty ratings: At the end of each block, participants were
asked to rate the difficulty of the preprocessing method they had just completed. The
difficulty scale went from 1 (very easy) to 10 (very hard).

block. This implies a large learning effect with participants performing better on the

later blocks. The model found “Smart Edge Detection” to increase the success rate by

0.435 (95% CI: 0.041, 0.829, p = 0.031). Surprisingly, while participants did seem to

perform better with “Smart Rasterization” (see Fig. 6.2), this difference failed to reach

significance.

The mixed linear effects model for “Difficulty” converged (AIC=2092.259), and found

significant effects in “Block Number” and “Preprocessing Method” (see Figure 6.6).

When comparing the second block to the first block completed, participants tended to

change their difficulty rating by -0.673 (95% CI: -0.845, -0.501, p < 0.001). When

comparing the first and third block, the difference was even greater with a change of

-0.964 (95% CI: -1.137, -0.792, p < 0.001). Both ‘smart’ preprocessing methods were

also rated significantly less difficult than the naive approach. When using “Smart Edge
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Figure 6.7: Trial completion outcome percentages for the different processing meth-
ods. In all three scenarios, participants were able to complete the objective in the
majority of trials. A trial was considered a success if the participant was able to nav-
igate inside the subway station and to the designated side (left/right). Trials could
also end when the user ran out of time or collided with a moving cyclist.

Detection”, participants changed their difficulty ratings by an average of -1.083 (95%

CI: -1.255, -0.911, p < 0.001), and by an average of -0.411 (95% CI: -0.583, -0.239,

p < 0.001) when they were using “Smart Rasterization”.

6.2.3 Neither ‘Smart’ Condition Improved Bike Path Safety

Our original objective was finding a way to utilize the temporal dynamics of electrode

rasterization to elicit more information and increase user safety. While participants

were able to reach their destination more often, perceived less difficulty, and had overall

less collisions, there was no significant effect on the number of bike collisions (see

Figure 6.7).
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6.3 Discussion

This study has demonstrated smart preprocessing has the capacity to improve collision

rate, help the user successfully reach their target, and has a lower perceived difficulty to

the user. This has immediate implications for current device users, but our main

hypothesis was ‘Smart Rasterization’ would not only help avoid collisions, but would

help the user reach the target location more often and more safely. Our results failed to

demonstrate any significant difference in the number of bike collisions between the

different preprocessing methods, and this could be for a number of reasons. After each

subject was finished, they were asked if they implemented any strategies or had any

thoughts about the simulation. While responses were varied from ”that was a lot of

fun” to ”that was extremely frustrating”, one response that came up repeatedly was

that participants would stop at the edge of the bike path and wait until they didn’t

hear any bikes nearby. The experiment utilized spatial audio, and bike sounds were

attached to the physical location of the bikes. In retrospect, this is not surprising as

this is most likely the same strategy someone with ultra low vision would implement.

Additionally, while a large variety of timings were piloted, only one smart rasterization

pattern was fully examined in this experiment. It is possible that different timings,

different segmentation groups, or a different order within the groups may result in

better performance. Another future avenue of exploration would be allowing the

participant to switch between the various groupings through a controller. This would

likely take a large degree of training to be successful, but it does provide the user with

more control over their perception of the environment. In summary, smart

preprocessing techniques have been demonstrated to improve performance on certain

metrics, but more work is needed to definitively conclude that temporal segmentation

provides additional benefits to static segmentation.
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Chapter 7

Summary and Conclusions

Visual prostheses have great potential, but current devices have been unable to meet

consumer expectations and have failed to be successful commercially. A major

challenge is fully understanding what patients see with the various devices. Figuring

this out requires collaborative work from multiple fields, including neuroscientists,

vision researchers, computer scientists, and researchers properly trained in

psychophysics research. In Chapter 3, I introduced software that enabled the practical

feasibility of simulating prosthetic vision under realistic conditions; BionicVisionXR

incorporates a neurophysiologically inspired model and is built on clinical reports of

spatiotemporal distortions in device users. It continues to go well beyond any other

current models of prosthetic vision by accounting for gaze congruency, and by

considering practical/engineering limitations on the number of electrodes you can

stimulate simultaneously.

In Chapter 4, I provided evidence that these things do matter, and that by ignoring

spatial distortions or immersion in previous work, simulation studies likely

misrepresented the experience of prosthesis users. I was able to show that immersion is

extremely important for a task requiring proprioception, but may not be as important if

78



Summary and Conclusions Chapter 7

the researcher is performing simple two dimensional recognition tasks. It is also worth

noting that performance on these tasks still had significant room for improvement,

indicating there is still a lot to learn about stimulus optimization and device designs.

In Chapter 5, I discussed the first study of its kind, investigating electrode rasterization

with an XR model of prosthetic vision. I tested common rasterization strategies for

suspected biases and found that apparent motion from certain rasterization patterns

does bias motion discrimination in the expected direction. I also identified an easily

implementable rasterization strategy that should serve as a ‘general purpose’

rasterization pattern, potentially improving performance across a variety of tasks.

In Chapter 6, I introduced smart raster patterns which could be implemented with

computer vision on a near-future device. This was the first study to attempt to

introduce additional information by using temporal segmentation of visually segmented

groups. While the certain smart rastering strategy used did not significantly improve

performance, simplifying the scene through ‘Smart Edge Detection’ was able to improve

success rate. Additionally, both smart techniques did significantly lower the overall

number of collisions, highlighting the value of computer vision and potentially other

forms of artificial intelligence for improving prosthetic vision.

Overall, the contributions of this thesis span multiple disciplines including

computational neuroscience, computer science/engineering, and psychology. The

present work introduces simple mathematical models for the temporal dynamics of

neuron desensitization, and demonstrates how neurophysical models can be used not

only in general research, but in practical applications like prosthetics. The work leaves

behind open source material that could be of interest to neuroscientists building novel

models, computer scientists working in XR, and those in the psychological and brain

sciences interested in visual sciences or navigation. Like any other researcher who

respects their field, I sincerely hope my work has contributed to our societal knowledge
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and has laid the foundation for future discoveries to build upon.
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Appendix A

Eye tracking accuracy of the HTC

Vive Pro

To measure the precision of the VIVE’s built-in eye tracker, we had participants move

their eyes to track a moving, on-screen dot. This was performed using a custom script

that moved the dot (sized at ∼ 2.4o visual angle) randomly between the 4 corners

located halfway between the center and edges of the screen. The dot moved ten times,

traversing the distance between points in 2.5 ± 0.5seconds and staying at each location

for 1.5 seconds. The angular distance between the center of the dot and the user’s gaze

location was measured every 0.1 s. Measurements were taken during fixation (when the

dot was stationary) and during pursuit. The angular error was (1.904 ± 2.048)o during

fixations and (1.838 ± 1.660)o during pursuit. The two distributions were not

significantly different (t-test for non-equal variances, p > 0.27). Overall, 94.1% of

measurements had an angular error less than 5o, and 80 % had angular errors less than

3o (see Figure A.1).
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Figure A.1: The histogram (Left) contains all data points below four standard devia-
tions from the mean. The distribution plots (right) show gaze error (outliers removed)
when the dot is stationary (fixated) or moving (pursuit).
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Appendix B

Checkerboard Rasterization

The checkerboard rasterization pattern was designed to be expandable to any square

shaped array. However, to avoid apparent motion the groups must be presented in a

non linear sequence (see Figure B.1 ). It creates the groups by ‘knowing’ how many

electrodes should be in each row, and doing row-wise processing. For each row, it loops

through the electrodes and determines which should be in the current group. For

example, if there were 10 electrodes and 2 should be active in the first row. In group

‘0’, it would decide electrode 0 and 5 should be active. For odd rows, it shifts these

values by half the size of the raster group, effectively maximizing the space between any

adjacent electrodes.
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Figure B.1:
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