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s-ry 

We consider the problem of choosing the number of replicates a d  number of subjects in a compo- 
nents of variance problem which optimizes various criteria. The case study here involves patients suf- 
fering from systemic sclerosis (Sclerodenna), a form of rheumatic disease that is potentially disabling. 
Under the physical constraints imposed on the study, we find that using 2 or 3 replicates with as many 
patients as possible is the optimal strategy for several criteria. 

Key words: Cost; Nested design; Power; Random effects model; Sample size. 

1. Introduction 

In designing a study to evaluate D-penicillamine therapy in the treatment of Scler- 
oderma, a basic response variable is a skin score which is based on the number 
and severity of affected areas of the skin ( C m m  et al., 1993). Since this mea- 
sure may depend on observer, patient and a random component measurement we 
needed to estimate variation due to these sources of error prior to conducting the 
study. A special study in which several participating observers or physicians mea- 
sured the same patients one time provided an estimate of among observer varia- 
tion which could be compared to estimates derived from other studies ( C L ~ E N T S  
et al., 1993). After this was completed, we wanted to perform a study in which 
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the intra-observer error measurements could be estimated, as well as variation due 
to patients. 

There are several practical constraints imposed on this study. The observers are 
Rheumatologists with a special interest in Sclerodenna, who have been trained in 
skin scoring and are located far apart in the US. They are in practice throughout 
the U.S. and so it was not possible to have repeated measurements with multiple 
observers. Because the skin score may change rapidly during the early phase of the 
disease (averages about 1 or 2 units per month), it was important to obtain the 
replicate measurements in a short time, but not so short that the observer’s memory 
of the patient would bias the score. Generally, observation periods of longer than 6 
weeks were discouraged. Past experience with this rare disease suggests that it 
would be difficult for each observer to recruit more than 5 patients as subjects. 
Limitations on observer’s time is also an important consideration in this study. 

The overall goal of this research was to study differences in therapies in a 
multicenter study using the skin score as an endpoint. It is important to quantify 
the components of variation of this score which are due to among-patient varia- 
tion, within-patient variation, and among-observer variation. Since a patient will 
be seen only by one observer, it is necessary to quantify the ahong-observer var- 
iation and to attempt to reduce it as much as possible. A previous study had 
shown that such variation could be quite large, but this was conducted at a com- 
mon site, so observers were not as familiar with k e  physical arrangement as in 
their own offices. The patients in the earlier study were read by all observers. In 
the proposed study, the observers would obtain patients from their local pmctice, 
and no multiple observations from different observers would be possible. The pro- 
blem k a m e  one of estimating the variation using the nesting of observer, patient 
within observer, replication within patient within observer. Hence, the goal was to 
determine how many replicates, and patients would be needed to conduct the vali- 
dation study prior to the study comparing treatments. For example, a key design 
question is, with the 18 observers we have in this study, would having three pa- 
tients measured at three times (closely spaced) be a reasonable allocation of re- 
sources? Or using 5 patients with 2 readings or 2 patients and 5 readings be a 
superior allocation of resources? The ultimate aim was to ensure that (a) the ob- 
servers had the same mean and a small variance and (b) the larger study would 
have only a single reading from each observer. This paper discusses the optimal 
allocation of patients and replicates under these restrictions and provides some 
solutions. 

2. A Statistical Model 

We consider a nested design, with patients nested within observers, and reading 
nested within patients. Patients are clearly random samples; the observers may not 
be if we wish to infer only to this group of observers. If we hope to infer to what 
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would happen for a group of observers, some of whom are not included here, we 
can push toward observers being random as well. We first consider the case when 
observers are random and analyzed the data (yijk) using the statistical model 

Yuk = A + Di + Pj(i) + evk, 

i = 1, 2,. . . )d, j = 1, 2).  . . , p )  k = 1) 2). -. , r -  

Here A is an overall constant, Di is the effect of the ith observer and Pj(i) is the 
effect of thejth patient observed by the ith observer. Both Di and Pj(i) are random 
variables with means zero and variances 4 and respectively. The unobservable 
errors are e'& each with mean 0 and variance d. The choice of this balanced 
nested design model lies in its simplicity and at the same time, can provide us 
estimates of among patient variability, and measurement emr, subject to these 
assumptions: (a) the underlying "true" disease score is constant during the period 
of observation; and (b) the intra-observer variation is constant, although a well trained 
observer might have smaller variation than an inexperienced observer would. All ran- 
dom variables are assumed to be independent and normally distributed. 

The data were analyzed using Analysis of Variance and expected mean squares 
provide us with information on variability among observers (4), variability 
among patients within observer (4) and measurement error (d). The ANOVA 
table is given below with 

and 
. d u r  

Table 1 gives the analysis for a subset of the observers participating in the intra- 
observer variability study by CLEMENTS et al. (1995) based on d = 17 observers, 
p = 3 patients and r = 3 readings per patient. The data from the 18th observer is not 
available. From the table, we obtain point estimates of the variance components to be 

# = 5.50, C$ = (Si - S t ) / r  = (137.18 - 5.50)/3 = 43.90 ) 
and 

= (S: - Si)/rp = (570.96 - 137.18)/9 = 48.20. 
In determining the optimal values of the number of patients and the number of 

replications to produce good estimates of the variance of the estimated variance 
components, it is helpful to define e = ~$/d and o = agg. Here, 8 is the rela- 
tive variance of patients to measurement error and the ratio o is the relative var- 
iance of physicians to measurement error. These ratios of variance components in 
the random effect model have been used in various settings for a long time. For 
instance in animal sciences, these ratios are frequently used to estimate the genetic 



770 W. K. WONG et al.: Choice of Subjects and Replicates in Estimating Variation 

Table 1 
Analysis of Variance for Skin Score 

~ ~ ~ 

source df MS EMS 

observers d -  1 aZ + ru; + r p 4  

d p  

d p r  

patients (observers) nz = d@ - 1) S: = r 

residual (patient) 

C (j$. - 7i..)2/d(p - 1) aZ+r.’p 

a2 
i = l j = 1  

n3 = dp(r - 1) S: = r C C C &k - Yv,)’/dp(r - 1) 
i = l j = l  k = 1  

source partial ss df MS F h b > F  

observers 9135.35 16 570.96 4.16 0.0002 
patients (observers) 4664.22 34 137.18 24.96 O.oo00 
residual (patient) 560.67 102 5.50 

total 14360.24 152 

heritability of a certain trait of livestock breeders ( G R A Y B ~  et al., 1956). Their 
ANOVA estimates are obtained directly from the above estimates: 

0 = 43.90/5.50 = 7.99 and C;, = 48.20/5:50 = 8.77 . 
Minimum variance unbiased estimators are more complicated than ANOVA esti- 

mators and are given by 

respectively (BURDICK and GRAYJXLL, 1992, pp. 115). Four our data, these numer- 
ical values are 7.82 and 8.60 respectively and so they are very close to the ANO- 
VA estimates. 

We can easily find a confidence interval for c? using the X2-distribution (MONT- 
GOMERY, 1991, pp. 85). The next goal is to obtain an estimate for 4. This is done 
by subtracting Sg from Si and dividing by r. However, there is no exact confi- 
dence interval for 4 since the estimate is the (scaled) difference of two x2 vari- 
ables which does not have a simple form. However, a confidence interval for Q 
can be found using the F-distribution (MONTGOMERY, 1991, pp. 86). This is dis- 
cussed more fully in Section 3.3. 

3. Choice of the Number of Patients and Replicates 

The general design problem here is to determine the optimal values of r and p so 
that we have a “good” estimate for the variance component 4. There are d obser- 
vers, with p patients and r readings per patient. In the context of the medical 
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practices involved in this study described in section 1, we have the restriction 
rp 5 12. Three definitions of "good" are suggested here: 
1. minimum length confidence interval for 6 
2. minimum variance of the variance component estimators 
3. maximum power for testing hypotheses of the form Ho: @ 5 @o vs Ha : @ > @o 

for some nonnegative constant eo or HO: 02p = vs Ha: a2p # C(2m for some 
nonnegative constant am. 
These hypotheses relate to finding precise estimates for 4 and are generally of 

interest in later phases of the study. 

3.1 Minimizing length of confidence interval for O$ 

The procedure given in BURDICK and GRAYBILL (1992, pp. 81) may be used to 
construct an approximate 100(1-2a)% confidence interval for the variance com- 
ponent 02. The formula for this interval is 

2 3 4 5 

D 

r = 4  

99'A \ 
90% -...._ * 

.............. - -_  ......... ---.- _ _ _ _  
....................... f -~ 

2 3 4 5 

P 

99% \ r - 3  

2 3 4 5 

P 

99% 

95% 

90% 
\ . . . . . . .  .......... - - - - - - - - 

... ..................... .................... * '-------- .: 
1 

2 3 4 5 

P 

Fig. 1 a: Plots of length of the 90.95 and 99% confidence intervals for .', fixed r and various p .  
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where VL = G$$ + H$$ + G23S;Si7 VU = Hi$ + G:$ + H23S$i 
Gi = 1 - l/Fa,nirOO 

G23 = {(Fa,nZ,q - 1)' - GiF:,n2,n3 - H;}/Faln2,n3 

Hi = l/F1-a,ni,oo - 1 , i = 2, 3 ,  

and 
H23 = {(Fl-a,n*,n3 - 1)2-HzF:-a,n2,n3 - Gi}/F1-a,n2,n3 - 

Here and throughout, Fsn,b denotes the upper a percentage point of the F-distri- 
bution with numerator a degrees of freedom and denominator b degrees of free- 
dom. From the ANOVA table in Section2, we have n2 = 34, n3 = 102, 
Si = 137.18 and S: = 5.50. The 90%, 95% and 99% confidence intervals are com- 
puted using estimates for 4, 6, c? found earlier. The length of the 90%, 95% and 
99% confidence intervals for Werent choices of p, r and a are displayed in Fig- 
ure 1 , where Figure 1 a is for a fixed number of replicates and Figure 1 b is for a 
fixed number of patients. These plots suggest that for each p and each a-level we 
look at, the most dramatic gain per additional measurement occurs when r = 3. 
This is because the slope of the line in the bottom figure is steepest between r = 2 
and r = 3. Thus, the change in the length of the confidence interval has the greatest 
proportional reduction as r changes from 2 to 3. Between r = 4 and r = 5,  there is 
not too much change in the length of the confidence intervals for p = 2,3 ,4  and 5. 

2 3 4 5 

r 

2 3 4 5 

r 

- 2 B 

U C 3 - ....... -- - -_ 
5 -  .... ....... - - - - -_  

' 99% 

90% a,., -. = 

........ . 8 
O a .  

m ~a 

........... .- - 
................ -..... r- m 

01 

2 3 4 5 

r 

2 3 4 5 

r 
Fig. 1 b. Plots of length of the 90.95 and 99% confidence intervals for $ fixed p and various r. 
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3.2 Minimizing variance of the variance component estimators 

Alternatively, one may seek to minimize the variance of the variance component 
associated with the patient factor. Using results from SEARLE (1970) for a two way 
nested design with random effects factors, the variances of 6; and 6* are respec- 
tively given by 

and 
2 d  

dp(r - 1) . var (@) = 

If we assume the total number 
is equivalent to fixing rp since 
ment given in Sc- (1959, 

(3-1) 

of observations is fixed and equal to n =dip, this 
d is fixed in this problem. Consequently, the argu- 
pp. 237) for a one-way random effects model ap- 

plies and the optimal choice of ;-is 2 because the estimated e is 7.99 (2 1). Alter- 
natively if the sample size n is unrestricted as in some studies, one may search 
over the rahge of values of r and p to minimize (3.1.). In this case, it is clear 
using the maximal permissible values of r and p are the obvious choices. How- 
ever, in practice the gain resulting from the increased number of replicates is fie- 
quently minimal (as in this study) and may not be worthwhile, especially when 
taking an additional measurement becomes costly. We are thus led to studying the 
reduction in var (3) per unit increase in r for fixed p and d. To do this, note that 
for fixed positive integers d, p > 1 ,  Q 2 0, the reduction in var ((i',) due to an 
additional replicate is proportional to 

which can be shown to be a decreasing function in r using straightforward but 
tedious algebra with Q set equal to 7.99 and any positive integer p > 1. Thus 
r = 2 replicates with as many patients as possible is a reasonable strategy for 
estimating var (6;) whether n is restricted or not. Table 2 below shows changes in 
the values of the estimated var (6;) when p, r and e are varied using estimates 
from our data. Note that in general, the precision of (i', is more affected by 
changes in p than changes in r, increases as 8 increases and as expected, de- 
creases ifp or r is increased. 

3.3 Power of the Testing Procedures 

Excessive among-patient variation may reduce the effectiveness of treatment com- 
parisons in a study. Indeed, if such variation is sufficiently large, the tests of treat- 
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Table 2 
 tima mated variance of the variance component estimator for .“p. 

P r e = 0.10 e = 1  e = 7.986 e =  10 

2 2 1.63 7.97 242.16 370.54 
3 2 0.88 4.06 121.15 185.34 
4 2 0.61 2.73 80.79 123.58 
5 2 0.47 2.06 60.60 92.70 
2 3 0.72 6.06 232.43 358.56 
3 3 0.38 3.05 116.23 179.30 
4 3 0.26 2.04 77.49 119.54 
5 3 0.20 1.53 58.12 89.65 
2 4 0.45 5.28 227.74 352.74 
3 4 0.23 2.65 113.88 176.38 
4 4 0.16 1.77 75.92 117.59 
5 4 0.12 1.33 56.94 88.19 
2 5 0.32 4.85 224.97 349.29 
3 5 0.16 2.43 112.49 174.65 
4 5 0.11 1.62 74.99 116.43 
5 5 0.08 1.22 56.25 87.33 

ment effect in the study may have so low a power as to make the study not worth 
doing. Thus, in a study such as this, it may be useful to test if the among-patient 
variance is less than a certain multiple of the measurement error. The hypothesis 
may be stated as Ho: e 5 eo vs Ho: e > eo for some nonnegative constant eo. It is 
well known that the power of this a-sized test involves only the central F-distribu- 
tion and is given by 

The table below computes the power of this test for selected values of e = 8 and 
eo = 5 with d = 18 observers. As part of a sensitivity analysis, the power when 
e = 7 and 9 also computed. The corresponding powers for d = 10 are given in 
parentheses. 

From the table, it is clear that the power of the test is more affected by the number 
of patients than by the number of replicates. For a fixed number of patients, the 
difference between having 2 or 5 replicates averages about 17% difference, which 
increases with a larger number of patients. While this difference may appear appreci- 
able, the greatest gain in power is attained moving from 2 to 3 replicates. In addition, 
note that the power always increases when e or d increases. The main reason’ for 
having a larger number of observers will rest on non-statistical considerations such 
as credibility of the study. See also DONNER and E m s m  (1987) for a related power 
calculation for the intraclass correlation coefficient given by 1 - 1 / (1 + e). 

Alternatively, if there is interest in testing the hypothesis Ho: 4 = $m vs Ho: 
6 # $ for some nonnegative constant apo the test statistic for this a-sized test is F* = S,/ 9 { (1 + rQ) S:} where 0 = sm/$. The null hypothesis is rejected in favour 
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Table 3 
Power of tests with various r, p and e values with d = 18 and eo = 5. (Similar results for 
d = 10 are in parentheses). 

e 2 

2 7 0.19 (0.15) 
8 0.29 (0.20) 
9 0.39 (0.27) 

3 7 0.27 (0.19) 
8 0.42 (0.28) 
9 0.56 (0.38) 

3 

0.23 (0.17) 
0.35 (0.25) 
0.47 (0.51) 

0.33 (0.23) 
0.52 (0.36) 
0.67 (0.48) 

4 5 

0.25 (0.28) 0.26 (0.19) 
0.39 (0.27) 0.40 (0.28) 
0.51 (0.36) 0.52 (0.37) 

0.36 (0.26) 0.38 (0.27) 
0.56 (0.39) 0.58 (0.41) 
0.72 (0.52) 0.74 (0.54) 

P 

4 7 0.34 (0.23) 0.42 (0.29) 0.46 (0.32) 0.48 (0.34) 
8 0.53 (0.36) 0.64 (0.45) 0.69 (0.50) 0.72 (0.52) 
9 0.69 (0.48) 0.80 (0.60) 0.84 (0.64) 0.86 (0.67) 

5 7 0.40 (0.27) 0.50 (0.34) 0,55 (0.38) 0.57 (0.40) 
8 0.62 (0.42) 0.74 (0.53) 0.79 (0.58) 0.81 (0.61) 
9 0.79 (0.57) 0.88 (0.69) 0.92 (0.74) 0.93 (0.77) 

of the alternative if F* exceeds ~ , , ~ ( p  - l),d,,(r- It follows that for a fixed num- 
ber of observers (d), the power of this test can be maximized by appropriate 
choice of r and p subject to a fixed number of observations, i.e. n = drp. Thus, 
assuming'@ is known apriori, r* and p* can be found by using the equation 

This is generally straightforward since we usually are interested in small values 
of r or p. If ,Q is unknown (which is a more realistic situation), a prior distribution 
f(@) may be specified on @ over a certain region r. A suitable choice forf(4) may 
be a chi-squared distribution. Proceeding as in PIGNATIELLO (1987), we now seek 
to find r* and p* so that 

This technique is typically complicated since the optimal values of r* and p* 
depend on the prior density F(@, which in itself may be problematic to spec@. 
We will not pursue this approach further in this paper. 
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3.4 Observers as a Fixed Factor 

We now consider the case when the observers are considered to be a fixed factor. 
This may be appropriate when we have a higly motivated and skilled set of physi- 
cians, and we want to make inference on them and the set of possible patients. 
Under this situation, the information matrix M can be written as 

M(fixed, random) = (2 Ipz) 
SEARLE (1970). The submatrices F1 and F2 represent components from the fixed 
effects and random effects respectively and are functions of r and p ,  The objective 
now is to make inferences on the variance components and the fixed effects para- 
meters by minimizing their asymptotic generalized variances. This may be accom- 
plished by finding r to maximize A log IF11 + (1 - A) log IF21 for each given value 
of p. Clearly, A =  0, A = 1 and A = 1/2 are of special interest. The optimal choice 
of r (GIOVAGNOLI and SEBASTIANI, 1989, 1990) for a given turns out to be 

Note that as rZ increases, r decreases as expected. In the extreme when 1 = 1, 
only one replication is needed. This corresponds to the case in which interest 
is in estimating the effects of observers. If A=O, the above formula implies 

r = 2 +  l/e and i f A =  1/2, we have r =  1 + e. ~n either case, 

since @ >, 1 in our study, we conclude r 5 3 or r 5 2. This again supports the 
choice of r = 2 or 3. 

+ e  for 
e(1 +PI 

4. Conclusions 

We have discussed the problem of estimating c$ in a one way nested model (and 
to a lesser extent, estimating 4) where patients are nested within observers and 
replicates within patients. We consider 3 criteria for selecting the number of pa- 
tients and replicates. In all cases for estimating 4, increasing the number of pa- 
tients leads to better estimates than increasing replications. Except for the second 
criterion, where r = 2 seems best, the optimal number of replicates for our study 
here is three. The general strategy is to select small values of replicates for esti- 
mating 6. 

We have omitted cost considerations in the design of this study because they 
are not important for our study. When costs become a major factor in the design 
of the study, such as when measuring radiographic outcomes to monitor progres- 
sion of arthritis, the method described in BLWH (1986) is directly applicable. 
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