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Abstract

Developing AI Systems for EPB TBM Utilizing Sensing Data and Machine Learning

by

Dayu Apoji

Doctor of Philosophy in Civil and Environmental Engineering

and the Designated Emphasis in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Kenichi Soga, Chair

This dissertation presents a development of an integrated framework of artificial intelligence
(AI) systems for earth pressure balance (EPB) tunnel boring machine (TBM) tunneling. The
framework is constructed based on the feedback loop control system. The AI systems are
developed using machine learning algorithms and structured to follow the human cognitive
model, i.e., sensing, perceiving, and decision-making. The development of the systems is
conducted in three parts.

The first part discusses the characteristics of TBM data and the effects of data preparation
on data-driven models. This is achieved by (i) proposing a knowledge-based EPB TBM
feature taxonomy and (ii) investigating the effects of data aggregation and feature selec-
tion on prediction models. The investigation shows that models developed using different
data aggregation levels produce comparable prediction trends and similar feature impor-
tance rank in the conditions of sufficient observations and predictors. However, models with
a coarser aggregation level may appreciate higher prediction performance due to the lower
variance. The investigation also shows that the knowledge-guided TBM feature selection of-
fers benefits over embedded machine learning-based feature selections. The developed model
can produce relatively consistent feature importance in different tunneling cases, indicating
better generalizability of the model.

The second part proposes AI systems that perceive tunneling environments in real-time based
on the streams of sensor data during tunneling operation. This is achieved by developing (i)
a supervised AI system to interpret the encountered geologic conditions, (ii) an unsupervised
AI system to detect the encountered geologic anomalies, and (iii) a supervised AI system
that connects TBM data to the ground monitoring data and estimates tunneling-induced



2

ground movements. The proposed geologic interpretation system uses either Random Forests
(RF) classification or regression algorithms to infer the geologic transitions along the tunnel
alignment. The proposed geologic anomaly detection system combines Principal Component
Analysis (PCA) to project the data into a lower dimension space and Local Outlier Factor
(LOF) to measure the degree of the anomaly of the projected data points. The proposed
tunneling-induced ground movement estimation system uses RF regression to approximate
any shape of ground movements solely based on TBM operation data and tunnel spatial
geometries without prior assumptions on the ground movement shape, geologic material
parameters, and the expected ground loss.

The third part proposes AI systems that model tunneling and its decision-making processes.
This is achieved by introducing (i) a combination of probabilistic graph modeling and struc-
ture learning algorithms as a tool to systematically explore the causal effect interactions
contained in TBM operation data and (ii) a multi-output supervised AI system to determine
multiple steering control parameters simultaneously and steer the TBM along the tunnel
alignment. The study shows that Bayesian Network Structure Learning (BNSL) can poten-
tially be used to model the interactions of human operator decisions, TBM behaviors, and
ground conditions in an integrated representation. The study also shows that the multi-
variate Random Forest (MRF) algorithm can concurrently make multiple decisions on TBM
steering control parameters during driving.

This dissertation has demonstrated that TBM data contain valuable information that can
be extracted to benefit tunneling operations. Due to the complex relationships within the
data, the nonlinear and nonparametric machine learning models offer advantages over the
conventional linear and parametric models. This development is envisioned to be a building
block that advances the development of autonomous TBM technology.
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Chapter 1

Introduction

1.1 Background

The global population is projected to increase and will be about 10 billion in 2050 (United
Nations, 2022). Due to urbanization, most of the increase will take place in urban areas.
As shown in Figure 1.1, more than 50% people have been living in urban areas since 2008.
This number is projected to reach 70% by 2050 (United Nations, 2019). The increase in
the global population and the trend of urbanization can bring challenges to society, such
as scarcity of space, infrastructure inadequacy, transportation congestion, and other envi-
ronmental issues. Underground space, including tunnels, has been seen as one of the key
solutions to tackle these challenges (Broere, 2016; Kaliampakos, 2016). It is envisioned that
more tunnels are required in urban areas to meet the increasing demands of urban space,
alleviate transportation congestion, and save the on-ground space for green environments.

Tunneling technology has been advancing in the past several decades to meet the de-
mand. The development of face pressurized tunnel boring machines (TBM), such as earth
pressure balance (EPB) and slurry pressure balance (SPB) TBM, has spurred the growth
of urban tunneling, which is more challenging since it is commonly done in soft ground
conditions under densely populated regions. Nevertheless, this growth is often impeded by
tunneling costs. The cost of underground structures has always been significantly higher
than on-ground and elevated structures (Kaliampakos et al., 2016). According to Godard
and Hugonnard (1989), underground structures could cost two to three times higher than
on-ground structures. In unfavorable sites, this cost could soar to six to ten times. Similarly,
Fox (2000) reported that underground urban rapid transit systems could cost four to six
times higher than on-ground systems.

Not only that, estimating the cost of tunnels is challenging. N. Efron and Read (2012)
conducted a tunnel database analysis and a survey on the cost of tunneling to various stake-
holders (i.e., clients, consultants, contractors, and cost estimators). They found that the
actual tunneling cost is almost always inflated from the estimated cost. This happened glob-
ally in most of the continents. The results also show that the cost of excavation is the most
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Figure 1.1: Increasing world urban populations, 1950-2050 (United Nations, 2019).

significant component in tunneling, which can be more than 50% of the total cost (Figure
1.2). Most stakeholders identified that the geologic condition is the first major cost con-
tributor. Most stakeholders also believe that reducing the geologic uncertainty through site
investigation can be the most potential cost reduction opportunity (Figure 1.3). Confirm-
ing the survey, Paraskevopoulou and Boutsis (2020) provided some cases where inadequate
geologic information could overrun tunneling costs by up to 77%. Membah and Asa (2015)
used statistical methods to identify 40 tunneling cost factors based on carefully selected 39
articles published from 1988 to 2013. They concluded that the complexity of tunneling pro-
cesses and the uncertainty of geologic conditions are the top contributing factors that inflate
tunnel construction costs. These studies have corroborated the main problem of tunneling,
i.e., unpredictable tunneling operations due to variability and uncertainty of the geologic
conditions.

Tunneling operations are always complicated and uncertain. During tunneling, TBM
operators must be aware of changing ground conditions. At the same time, they have to
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(a) (b)

Figure 1.2: Cost components of (a) road tunnels and (b) railway tunnels (N. Efron & Read,
2012).

make real-time decisions on TBM control parameters. Furthermore, unlike driving a car,
there is no window in the cabin (Figure 1.4). All the decisions can only be made based
on interpreting the tunneling operation data. This data is generated every few seconds by
numerous sensors installed on the TBM. For humans, continuously making real-time inter-
pretations, judgments, and decisions in various control tasks based on numerous streaming
data are laborious and may lead to inconsistency, bias, and errors.

Furthermore, the advancement of sensor and data acquisition technologies has boosted
the amount of tunneling operation data. This increases the amount of information acquired
during tunneling and thus may reduce tunneling uncertainty. However, due to the massive
volume and data acquisition velocity, the data cannot be handled by the operators and
engineers intuitively in real-time during tunneling. Moreover, the data is difficult to be
interpreted due to its inherent complexity. They are products of causal effect interactions
of the ground conditions, TBM behaviors, and human control decisions. Therefore, at the
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(a) (b)

Figure 1.3: Factors affecting tunneling cost: (a) final cost contributors and (b) cost reduction
opportunities (N. Efron & Read, 2012).

moment, the data cannot be fully utilized. A more systematic approach is required to process
the data.

The emergence of artificial intelligence (AI) techniques and the increase in computing
performance in the past few years have opened extensive opportunities for managing and
interpreting “big data” (Jordan &Mitchell, 2015). AI systems can be seen as computer-based
systems that exhibit intelligent behavior, such as perceiving and inferring information from
data. Machine learning is a subset of AI that defines the ability of an algorithmic system
to “learn” tasks without being explicitly programmed. Instead of following a set of fixed
rules, machine learning algorithms can independently detect hidden structures in the data,
map the patterns, and identify complex systems (Brunton et al., 2016). This advancement
also promotes the expansion of data-driven modeling and the development of autonomous
systems. This technology can potentially optimize the utilization of massive tunneling data.

Some studies have implemented machine learning algorithms to transform TBM operation
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Figure 1.4: Control panel in TBM navigation cabin, from Dornfeld (2014).

data into tunneling information, such as geologic conditions. Q. Zhang et al. (2019) used
three machine learning algorithms, i.e., Support Vector Machine (SVM), Random Forests
(RF), and k-Nearest Neighbors (kNN), to rock mass classification systems. For the same
purpose, Zhao et al. (2019) evaluated the performance of eight machine learning algorithms,
i.e., kNN, Bayesian Linear Regression (BLR), SVM, Decision Tree (DT), RF, CatBoost,
Extreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN). Recently,
Erharter et al. (2020) continued the development by proposing a real-time rock classification
system during tunneling using ensemble Long Short-Term Memory (LSTM).

Machine learning has also been used to estimate tunneling-induced ground responses. The
early development was dominated by the implementation of ANN to estimate the maximum
ground settlement, such as by Shi et al. (1998), Suwansawat and Einstein (2006), and Boubou
et al. (2010). Later, more variations of machine learning algorithms were used for this task,
such as the Adaptive Neuro-Fuzzy-based Inference System algorithm (ANFIS) (Bouayad &
Emeriault, 2017) and Multivariate Adaptive Regression Splines (MARS) (Goh et al., 2018).
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Recently, P. Zhang, Wu, Chen, Dai, et al. (2020) used RF and LSTM to investigate the
interactions between a shield TBM and the ground in both cross and longitudinal sections.

Besides modeling the tunneling environments (ground conditions and responses), ma-
chine learning has also been used to develop intelligent TBM control systems. Most studies
proposed predictive models to estimate chamber pressures for the EPB regulation system,
such as using the Least Squares-SVM (LS-SVM) (X. Liu et al., 2011; X. Liu & Zhang, 2019),
a neural network-based algorithm with a Gated Recurrent Unit (GRU) (Gao et al., 2020),
and Backpropagation Neural Networks (BPPN) in Dual Heuristic Programming (DHP) (X.
Liu et al., 2020). Other studies proposed predictive models to estimate the optimal point
of the resultant force produced by thrust jacks for the directional control guidance system,
such as using the gradient boosting machine (Wada et al., 2021).

These studies show that the implementation of AI and machine learning is becoming more
prevalent in tunneling. The use of machine learning allows flexible data-driven modeling
without any predefined assumption. This can be beneficial for tunneling since the process
is governed by complex causal effect interactions of ground conditions, machine behaviors,
and human decisions. Machine learning can also exploit latent information in massive data,
enabling better utilization of tunneling operation data.

1.2 Problem Statements

Despite the emergence of AI and machine learning implementation in tunneling and its
encouraging results, some potential issues have been identified.

Limited studies discuss the characteristics of TBM data and evaluate the ef-
fects of data preparation methods on data-driven models.

• Understanding the effects of data aggregation. Many studies have been done
to develop prediction models based on TBM operation data. However, less effort has
been given to understanding the characteristics of TBM data and the effects of data
preparation on the models. There is no agreement on how the observation data points
should be prepared (or aggregated). The previous prediction models were developed
using different data aggregation levels. The effects of TBM data aggregation on the
prediction models have not been identified.

• Understanding the effects of feature selection. Similarly, there is no standard
approach to selecting TBM features as inputs in a data-driven model. The previous
models were developed using different inputs selected by feature selection algorithms
or pre-selected by the model developers. The effects of TBM feature selections on
prediction models have not been identified.

Developing data-driven models for inferring the environments during tunneling
remains an open question.
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• Perceiving ground conditions. Some studies have employed machine learning to
develop geologic classification models based on TBM operation data. However, most
studies focused on rock mass classification in discrete categories. This may not be
realistic since the actual ground materials, especially soils, do not have a clear boundary
between the categories. Furthermore, the discrete classification system cannot identify
the gradual transitions of geologic deposits. In addition, most previous studies used
only a limited number of TBM features as predictors. This might lead to under-
fitted models, where the predictors are not adequate to capture the complexity of the
tunneling process.

• Perceiving ground responses. Some studies have used machine learning to con-
nect TBM operations to tunneling-induced ground movements. However, most models
were merely developed to estimate the maximum ground movements. Less attention
has been given to investigating the effects of TBM operations on longitudinal ground
movements. The progressions of longitudinal ground movements should result from
the interaction between different TBM control parameters and the ground at different
TBM passing phases (i.e., before, during, and after TBM passing).

The tunneling sequence must be considered when developing a deployable data-
driven model.

• Modeling considerations. Some studies did not provide an exhaustive discussion
about their modeling and deployment considerations. For example, a static model with
a randomized data splitting scheme will not be deployable due to the sequential process
in tunneling. The dynamic sequential process in tunneling should be an important
consideration in developing a data-driven model for tunneling.

• Model computability. The dynamic sequential process means the machine learn-
ing model needs to be continuously retrained at every TBM advance. A computation
bottleneck may arise if the time required for training is longer than the TBM advanc-
ing time. However, less attention has been given to this computability issue. Many
previous studies favored employing more computationally expensive machine learning
algorithms.

The goal of developing data-driven decision-making systems in tunneling
should not be centered merely on prediction accuracy.

• Model predictability. Most studies focused on increasing the model’s prediction
performance by selecting and arranging machine learning algorithms. All the stud-
ies argued that their proposed model and the selected machine learning algorithms
produced excellent prediction performance. The comparative studies also resulted in
different conclusions. This indicates that, with adequate preparation and training,
any machine learning algorithms may produce reasonable estimations. This also im-
plies that the selection of machine learning algorithms may not be the critical issue in
developing a data-driven model in tunneling.
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• Model interpretability. Machine learning models have been notoriously seen as
“black box” models. However, more attention has been given to developing less inter-
pretable models, such as using neural network-based algorithms. Less effort has been
devoted to opening the ”black box”. Furthermore, less effort has also been given to
leveraging machine learning to elucidate complex interactions in tunneling processes
and generate new scientific discoveries.

• Model integration. Most studies focused on modeling a part of the tunneling process,
e.g., steering, advancing, and earth pressure balancing processes. Less attention has
been given to building an integrated model for tunneling processes.

1.3 Objectives

This study aims to develop an integrated framework of AI systems for EPB TBM tun-
neling. The framework is constructed based on a feedback loop control system, which is
the foundation of autonomous systems. The AI systems are developed using data-driven
models and structured to follow the human cognitive model, i.e., sensing, perceiving, and
decision-making. Machine learning algorithms are used to build the data-driven models and
to leverage information from massive sensing data produced during tunneling operations.

The specific objectives of this study are listed below.

1. To better understand the characteristic of tunneling operation data and the effects of
data preparation (i.e., data aggregation and feature selections) on data-driven mod-
els. This is expected to be a foundation to facilitate a unified method of TBM data
preparation.

2. To develop AI systems that can perceive tunneling environments in real-time based
on the streaming sensing data during tunneling. This includes systems to (i) infer the
encountered geologic conditions and (ii) estimate tunneling-induced ground responses.
This is expected to provide systematic and objective tools to perceive tunneling envi-
ronments based on data.

3. To develop AI systems that can model the complexity and decision-making in the
tunneling process based on data in integrated and interpretable representation. This
representation is essential to exploit causal effect interactions of the ground conditions,
machine behaviors, and human decisions during tunneling. This is expected to expand
the current tunneling knowledge and can be extended to develop autonomous decision-
making systems for TBM control parameters.

The result of this study is expected to answer two main challenges in tunneling, i.e., (i)
reducing the uncertainty by exploiting latent information in massive tunneling data that
are not fully utilized in current practices and (ii) facilitating more quantitative and system-
atic TBM control systems to minimize laborious, subjective, and biased decision-making.
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This development is envisioned to be a building block that improves tunneling performance,
reduces risk and cost, and advances the fundamental development of autonomous TBM
technology.

1.4 Dissertation Outline

This dissertation consists of 12 chapters (including this introduction) and can be divided
into four main parts, i.e., fundamentals and reviews, sensing data, perceiving systems, and
decision-making systems. Figure 1.5 maps the position of each part and chapter in the
tunneling AI framework. More descriptions of each part and chapter are discussed below.

• Part I – Fundamentals and Reviews. This part provides the fundamentals and
reviews of different domain knowledge required for this study. Chapter 2 describes tun-
neling and EPB TBM system components. Chapter 3 describes dynamical systems and
control and discusses the proposed AI framework. Chapter 4 describes machine learn-
ing and discusses the current implementation of machine learning in TBM tunneling
operations.

• Part II – Sensing Data. This part investigates the characteristics of tunneling oper-
ation data and the effects of different data preparation methods on data-driven models.
Chapter 5 investigates the effects of data aggregation on its statistical characteristics
and the behaviors of the prediction models. Chapter 6 presents a proposed taxonomy
of EPB TBM features, demonstrates the multicollinearity among the features, and in-
vestigates the effects of different feature selections on the behaviors of the prediction
models.

• Part III – Perceiving Systems. This part proposes AI systems to perceive tunneling
environments in real-time based on the streaming sensing data during tunneling. Chap-
ter 7 and Chapter 8 present the proposed supervised geologic interpretation and un-
supervised geologic anomaly detection systems for EPB TBM tunneling, respectively.
Chapter 9 presents the proposed data-driven model for estimating tunneling-induced
ground movements in real-time during tunneling.

• Part IV – Decision-Making Systems. This part proposes AI systems to model
the complexity and decision-making in the tunneling process. Chapter 10 presents the
implementation of probabilistic graph modeling and structure learning to explore inter-
actions of EPB TBM features during tunneling and model the causal effect decision-
making process in integrated and interpretable representation. Chapter 11 presents
the proposed data-driven model for autonomous TBM steering control parameters.

• Part V – Conclusion. Chapter 12 provides the summary and conclusion of this
study. This chapter also provides some discussions on future research directions.
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Chapter 2

EPB TBM Tunneling

2.1 Introduction

This chapter provides the fundamentals of mechanized tunneling methods and operation,
particularly the earth pressure balance (EPB) tunnel boring machine (TBM) tunneling.
This chapter briefly discusses the historical development of mechanized tunneling and the
overview of TBM. Then, this chapter provides more detailed descriptions of EPB TBM, i.e.,
the components and operation process. This understanding is essential to build intelligent
tunneling systems.

2.2 Historical Development

Developments of EPB TBMs can be traced back to about a century ago. The process started
with the invention of shield tunneling, which then progressed to mechanized excavation and
pressurized face tunneling. More discussions on the development of TBM tunneling can be
found in Guglielmetti (2008), Koyama (2003), Kurosawa (1981), Maidl et al. (2013), and
Stack (1982). These developments are briefly summarized below.

• Shield tunneling. The shield tunneling method was invented in the early 19th cen-
tury by M. I. Brunel. The shield was rectangular and was divided into compartments,
with a worker working independently in each of the compartments. After an excava-
tion section was completed, the shield was driven forward using hydraulic cylinders.
This concept was developed into a screw shield excavation process with immediate
lining and was implemented in the Thames tunnel project in London (1825 – 1843).
Despite the completion, this construction project suffered several water inflows. The
circular shield and the use of circular cast iron segments as the tunneling lining were
introduced in 1869 by J. H. Greathead. This method was successfully implemented
without substantial problems with the ground and groundwater conditions.
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• Mechanized excavation. The shield method enabled the integration of mechanized
excavation in tunneling. The first patent of a shield machine was granted in 1876 to
J. D. Brunton and G. Brunton. The shield had a hemispherical rotating cutting head
built up of single plates. A better design was proposed and patented in 1896 by J.
Price. This was the first that use a rotating cutting head inside a shield.

• Compressed air pressure balance. The method of compressed air was proposed
in 1830 by T. Cochrane. This method excavated the tunnel in a working space under
increased pressure. This method could solve the problem of controlling water on soft
ground in underwater tunnel construction and was implemented in tunnel construction
in Antwerp (1879) and New York (1880). The compressed air method was combined
with the shield method to construct the London Underground (1886). However, the
compressed air method was associated with several problems, e.g., the health of the
workers (as they had to work back and forth under different pressure conditions), the
non-uniform earth pressure in large-diameter tunnel construction, and the issue in soils
with higher permeability.

• Fluid pressure balance. The fluid-supported shield method was proposed by J. H.
Greathead to deal with the compressed air problem. The method used fluid to excavate
and transport the soils hydraulically as slurry. Following this development, the design
of a slurry-supported face was proposed by E. Gardner and successfully implemented in
a sewage tunnel in 1959. The slurry shield machine with a cutting wheel and hydraulic
muck (remolded excavated soils) removal was first used in Japan in 1967. The use of
bentonite suspension for active face support was introduced in 1960 by Schneidereit.
The first shield machine with a bentonite-supported face was developed and used in
Germany in 1974.

• Earth pressure balance. The development of earth pressure balance shield machines
started after the slurry shield machine. The development was motivated by stringent
environmental regulations in many large cities in Japan, such as groundwater and
air pollution, and to avoid unfavorable working environments under compressed air
conditions. The first design was developed in 1963 by a Japanese company and intended
to excavate soft and flowing soil beneath the groundwater table. The development
of earth pressure balance shields started in the early 1970s in Japan, and the first
tunneling was carried out in 1974 in Tokyo.

This brief discussion shows continuously changing technological advancement in tunneling
practices. This development does not stop at this point, as it will continue following the
changing needs and challenges faced by society.
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2.3 TBM Overview

The challenges in tunneling and the development of tunneling technologies have triggered
various tunneling methods and types of machines. There are several different ways to cate-
gorize tunneling machines, such as by the International Tunneling Association (ITA, 2000),
the German Association for Underground Construction (TVM) (Maidl et al., 2013), and the
Japanese Society of Civil Engineers (JSCE, 2016). These categorization systems depend on
factors such as tunneling methods, ground supports, and components of the machines. How-
ever, many of the tunneling machines can essentially be categorized as TBMs. In principle,
a TBM can be defined as a machine that excavates the ground using a combination of cutter
rotation and thrust advance. Depending on the geologic conditions of the tunnel alignment,
the excavation process may or may not require ground support. Figure 2.1 presents general
categories of TBMs based on the provided ground supports.

Gripper TBM

Shield TBM

Open Face TBM

TBM

Slurry Pressure Balance (SPB) TBM

Earth Pressure Balance (EPB) TBM

Variable Density (VD) TBM

No support

Peripheral support

Peripheral and 

face support

Figure 2.1: TBM classification based on the ground supports.

In hard rock tunneling, the excavation can be carried out without face and peripheral
supports. In this case, the TBM thrust force is applied by radial grippers acting on the sides
of the tunnel. Peripheral ground supports (i.e., TBM shields) can be required to minimize
risk in unpredictable geologic conditions such as weathered rocks and soils. Open-face shield
TBM can be used in hard cohesive soils, where the face can stand up without face support.
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In soft ground tunneling, shield TBM with face support is required. The support can be
provided mainly by slurry or earth pressure balancing (Figure 2.2).
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Figure 2.2: Selection of TBM shield face support method in different soil particle distribution
(British Tunneling Society, 2005).

The slurry pressure balance (SPB) method provides support on the excavation face using
a pressurized fluid, e.g., bentonite suspensions. The density and viscosity of the fluid should
be able to be varied according to the ground conditions. The earth pressure balance (EPB)
method provides support on the excavation face using remolded excavated soils (muck).
Additives can be applied on the excavation face and the chamber to condition the muck into
favorable properties. The selection of the face pressure support is governed by soil types
along the tunneling alignment. SPB is more appropriate for high-permeability soils such as
sand and gravel. EPB is optimal for cohesive soils that are dominated by clay and silts.
Recently, variable density (VD) TBM has been developed to deal with a broader range of
soil types.
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2.4 EPB TBM Components

In principle, EPB TBMs support the excavated face by pressuring the slurry formed by the
remolded excavated material in the cutter chamber. Typically, this system is suitable for
tunneling in soils with fine contents higher than 30% and optimal for soft clay-to-silt and
silt-to-sand soils (Maidl et al., 2013). Ground conditioning may be required to improve the
flowing properties of the excavated soil (Figure 2.3). The main components of an EPB TBM
consist of (i) cutter head, (ii) thrust, (iii) articulation, (iv) excavation chamber, (v) ground
conditioning, (vi) muck discharge, (vii) backfill grouting, and (viii) segment erection systems
(Figure 2.4). These components, except the segment erection system, which is out of the
scope of this study, are briefly discussed in the following.
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Figure 2.3: Soil conditioning of EPB TBM tunneling in different ground types (Boundaries
are only indicative) (EFNARC, 2005)

2.4.1 Cutter Head

The cutter head system is an essential excavation component in any TBMs. It can be
designed in various types (e.g., rotary, non-circular), shapes (e.g., flat, semi-dome, and dome),
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Cutter Head

Thrust Jacks

Excavation Chamber

Screw Conveyor Belt Conveyor

Segmental Lining

Segment Erector

Front Shield Rear Shield

Shield tail gap

Main bearing

Figure 2.4: Overview of EPB TBM components, modified from WSDOT (2013)

materials, and bits layouts. The design should consider the ground conditions and the
expected stability at the cutting face. It should adequately deliver two main cutter head
capabilities, i.e., the cutter torque and rotation speed.

• Cutter torque. The required torque is mainly determined as a function of the TBM
outer diameter and the ground conditions. The torque should be adequate to overcome
all resistance forces during the rotation, such as the soil resistance, main bearing,
cutter drive unit seal, and other mechanical losses. An appropriate allowance should
also be provided due to the inherent uncertainty in tunneling processes. Typically, the
allowance is estimated empirically based on the TBM type, shield diameter, and soil
conditions (JSCE, 2016). Also, as a general rule, the maximum cutter rotation speed
should be achieved by only delivering less than half of the maximum torque capacity
(Maidl et al., 2013).

• Cutter rotation speed. The required cutter rotation speed (in rpm) is determined
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from the cutter circumferential speed (in m/min) and the diameter of the cutter head.
Typical cutter circumferential speed can be 15 to 25 mm/min (JSCE, 2016). However,
it depends on the target advance rate and the ground conditions. Note that increasing
the cutter rotation speed may expedite the cutter tools wearing. Therefore, the oper-
ational cutter rotation speed for a target advance rate is commonly designed to be as
slow as possible (Maidl et al., 2013).

• Overcutting. Overcutting devices include the over-cutter and the copy-cutter tools.
The over-cutter increases the excavation diameter outward from the cutter head. This
is useful for reducing the thrust forces. The copy-cutter increases a selected side of the
excavation diameter outward, which allows easier shield maneuvering. The over-cutter
blades can be activated by hydraulic jacks. The degree, range, and stroke length are
adjusted by the operator.

2.4.2 Thrust

The thrust system is an essential component to advance and maneuver the TBM. The thrust
system consists of thrust force, thrust jack arrangement, thrust stroke length, and thrust
jack speed.

• Thrust force. The thrust force capacity is mainly determined as the sum of all the
resisting forces. The resistance forces against driving a shield TBM consist of friction
between the shield and the ground, the pressure acting on the cutting face, direction
changes such as when curving, friction in the tail, and trailing gears (JSCE, 2016).
Similar to the cutter torque capacity, an appropriate allowance should also be provided
due to the inherent uncertainty in the ground conditions and tunneling processes, which
is typically an empirical factor (Maidl et al., 2013). The design of thrust force per jack
and the required number of thrust jacks depends on various considerations, but mainly
the outer diameter of the TBM, the required total thrust force, the segment structure,
and the tunnel alignment. Typical thrust force per jack can be 500 to 1500 kN for
small and medium-diameter shields and 2000 to 5000 kN for large-diameter shields
(JSCE, 2016). Constant control of the thrust force is vital to avoid overloading.

• Thrust jack arrangement and speed. The thrust jacks are positioned parallel to
the longitudinal axis of the shield and typically arranged in equal spaces to ensure
uniform force over the circumference of the segment ring. The stroke length should
fit the segment width with an additional allowance for margin. The operating speed
should be based on the target advance rate. The typical operating speed in a straight
trajectory (all jacks are in operation) is about 40 to 60 mm/min. However, the actual
advance rate can be 20 to 45 mm/min at a straight trajectory, 15 to 35 mm/min at a
curving trajectory, and 60 to 100 mm/min for high-speed tunneling (JSCE, 2016).
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2.4.3 Articulation

The articulation system is required to control the TBM position and maneuver in curved
tunnel alignment. In general, there are two types of articulation systems, as described in the
following.

(i) Passive articulation system. In a passive articulation system, the shield is mainly
steered by regulating the thrust jack to achieve a required jack stroke difference (JSD).
The thrust jack can be regulated by (i) selecting the patterns of active thrust jacks
(i.e., jack activation-controlled TBMs) or (ii) adjusting different pressures on the active
thrust jacks (i.e., pressure-controlled TBMs).

(ii) Active articulation system. In an active articulation system, besides the JSD, the
maneuvers can also be controlled by specifying the angle of the articulation unit. This
unit is essentially a number of articulation jacks that connect the front and rear TBM
shields and allows the TBM to maneuver in a smaller curve radius.

2.4.4 Excavation Chamber

The excavation chamber is a critical component in EPB TBM. The chamber pressure should
be maintained to balance the earth pressure to ensure excavation stability and prevent exces-
sive ground movements. Too low pressures may cause excessive ground settlements, water
inflow, and even instabilities at the excavation face (i.e., failures). In contrast, too high
pressures may increase the cutter torque and thrust force, reduce the advance rate, and
result in ground heaving. The chamber pressure can be regulated by adjusting the thrust
jack speed (that controls the contraction and expansion of the chamber) and screw conveyor
rotation speed (that controls the muck volumes discharged from the chamber). Some essen-
tial elements of the excavation chamber are (i) the bulkhead, which should have adequate
strength and water tightness, (ii) the mixing blades, which are installed behind the cutter
head to mix the excavated soils and the additives into the muck with favorable properties,
and (iii) pressure sensors, which are critical as measurement tools in balancing the target
earth pressures.

2.4.5 Ground Conditioning

The ground conditioning system is a critical component in EPB TBM tunneling to (i) re-
duce the permeability and shear strength of the excavated soil, (ii) enhance the plastic flow
condition of muck in the excavation chamber, and (iii) reduce adhesion of the excavated soil
to the shield (JSCE, 2016). Favorable muck properties may reduce cutter bits abrasion, cut-
ter head torque, and screw conveyor torque. The key components of a ground conditioning
system consist of additive, foam production, and injection systems.

• Additives. The common types of additives to be used as ground conditioners are:
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– Clay and bentonite minerals, to reduce the permeability and increase the fluidity
of the excavated soils.

– Foam, to reduce the adhesion and increase the fluidity and water tightness of the
excavated soils.

– Polymer, to absorb water or to increase the viscosity of the excavated soils.

• Foam production. Foam is the primary ground conditioner in EPB TBM tunneling.
Foam solutions typically consist of a combination of water with surfactant (foaming
agent) and stabilizer (polymer). The mixture is specified based on several ground
conditioning parameters, such as

– the concentration of foam agent in water (Cf),

– the concentration of polymer agent in water (Cp),

– the foam expansion ratio (FER), and

– the foam injection ratio (FIR).

Foam is produced in a foam generator by mixing the foam solution with compressed
air. Figure 2.5 shows the principle of foam production in EPB TBMs. Foam bubbles
fill the soil particles, reducing the soil’s bulk density and shear strength. This condition
produces favorable muck properties, i.e., lower stiffness and better fluidity. This enables
better face pressure control and muck flow during discharging.

• Injection system. The ground conditioning injection system consists of pumps and
nozzles. The nozzles are typically installed on both the cutter head (to condition the
excavated soils) and the excavation chamber (to condition the muck). This system
should allow control over ranges of injection pressures and rates as different ground
conditions may require different additive recipes and ground conditioning treatments.
The operators can specify the ground conditioner injection volumes by adjusting the
injection pump, while the injection rate is typically adjusted according to the advance
rate automatically.

2.4.6 Muck Discharge

The muck discharge system transports the excavated materials from the excavation chamber
to the muck dumping system. It consists of two main components, i.e., the screw and the
belt conveyors.

• Screw conveyor. The screw conveyor is the primary discharge system in an EPB
TBM. The screw not only transfers the muck from the excavation chamber to the
belt conveyor but also functions to regulate chamber pressures. This can be done by
adjusting the rotation speed to increase or decrease the amount of discharged muck



CHAPTER 2. EPB TBM TUNNELING 20

Liquid

Air

Foam 

Generator

900-950 liters

Polymer 

Agent

Foam Agent

Water Foam

50-100 liters

49-99 liters

300-600 g

0.75-1.5 liters

Foam addition 

30-60% of the muck volume

Figure 2.5: Schematic diagram of foam production system and the typical composition,
adopted from Maidl et al. (2013)

from the chamber. Additional screw conveyors (i.e., secondary screw conveyors) can
be installed if required, e.g., in tunneling under high water pressure or excavating soils
with excessive gravel content.

• Belt conveyor. The belt conveyor transports discharged muck from the screw con-
veyor gate to the muck dumping system. This is where the operators and engineers
can observe and evaluate the muck conditions. However, since the excavated soils
spend some time in the excavation chamber, it should be noted that muck conditions
on the belt conveyor cannot fully represent the encountered ground conditions at the
excavation face.

2.4.7 Backfill Grouting

The backfill grouting system is required to fill the shield tail void. The grout material should
have adequate fluidity to fill the gaps and promptly achieve the intended strength with only
a little volume loss. The grout should be injected into the tail void and uniformly applied
on the segment ring. The grouting should be carried out simultaneously with the shield
advance to ensure the stability of the segment ring and to limit ground movements. The
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injection can be controlled by pressure or volume. Typically, the grout injection pressure is
specified as the current face pressure with an additional 200 kN/m2 (JSCE, 2016). Due to
grout penetration, overcut, and other factors, the injected grout volume can be 130 to 170%
of the theoretical tail void volume (JSCE, 2016).

2.5 EPB TBM Tunneling Process

TBM tunneling generally involves two main phases, i.e., the excavation (or advancing) phase,
and the segment lining erection phase. The advancing phase is a continuous examination
process that requires (i) specifying various target performances, (ii) adjusting control param-
eters, (iii) monitoring tunneling conditions, and (iv) readjusting control parameters according
to the monitored tunneling conditions. This process is briefly discussed below.

2.5.1 Performance Indicators

The target performance of a tunneling process is specified as tunneling key performance
indicators (KPIs). In EPB TBM tunneling, the KPIs may include several targets, such as
chamber pressure, advance rate, and ground conditioning injection. The KPIs are commonly
prepared by the tunnel engineers and handed to the operators via tunneling instruction
sheets. Typical KPIs in the instruction sheet are listed in Table 2.1. The KPIs have to
be determined for every tunneling cycle based on various bases, such as the tunnel design
(e.g., target tunnel alignment), theoretical analysis (e.g., target earth pressures), or empirical
performance from the previous cycles (e.g., ranges of ground conditioning injections). De-
termining the KPIs also involves judgments from the engineers since it is difficult to capture
all complexities of ground-machine interactions. Therefore, it can be subjective and biased
(Hammerer, 2015).

Some studies have been done to explore more systematic approaches to model the tun-
neling process and determine the performance indicators. Numerical modeling tools such
as the Finite Element Method (FEM) enable computational simulation to investigate the
tunneling process at some level (Kasper & Meschke, 2004, 2006a, 2006b; Komiya et al.,
1999; Meschke, 2018). Nevertheless, building FEM models continuously during tunneling
may not be practical due to the laborious modeling process and expensive computation cost.
Recent advancements utilize data-driven approaches to model the tunneling process. This
approach becomes more popular considering the availability of massive data produced during
the tunneling (Meschke et al., 2019).

2.5.2 Tunneling Process Control

Determining and adjusting TBM control parameters to achieve the specified KPIs involve
substantial judgments from the operators since there is no exact procedure to drive a TBM.
Furthermore, the selected control parameters may or may not achieve the specified target
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Table 2.1: Typical KPIs in a tunneling operation instruction sheet.

Process KPI

Excavation Maximum cutter torque

Excavation volume

Advancing Maximum thrust force

Target advance rate

Steering Target shield pitching

Target jack stroke difference

Ground conditioning Foam mix ratio & injection volume

Polymer mix ratio & injection volume

Earth pressure balancing Operating pressure range

Backfill grouting Tail grout volume and pressure

performance due to unknown ground conditions and complex ground-machine interactions.
Therefore, the operators have to monitor the TBM behaviors based on tunneling operation
data and readjust the control parameters whenever necessary to meet the target performance.
The readjustments must be performed continuously during tunneling. Figure 2.6 presents an
example of excavation process control (management) in EPB TBM tunneling (JSCE, 2016).
The figure shows that the excavation process consists of several connected partial process
control. The key process control may include tasks related to (i) advancing and steering,
(ii) excavation, which includes ground conditioning, (iii) earth pressure balancing, and (iv)
ground movement controls. These control tasks are briefly discussed in the following.

2.5.2.1 Advancing and Steering Controls

The navigation system of a TBM includes information about the TBM spatial position and
attitudes (i.e., pitch and yaw). Both are defined in both global and local coordinate systems.
The local coordinate system represents the TBM position relative to the longitudinal axis of
the designed tunnel alignment. Any deviation of the current TBM position to the designed
tunnel alignment can be tracked and continuously presented on the control panel for steering.
Operators must steer the TBM as near as possible along the given alignment.

Typically, deviation tolerance to the designed centerline is less than 50 mm. In thrust
control TBM, the operators can steer the direction by selecting appropriate thrust jacks
(in circular arrangement) to be activated. In pressure control TBM, the operator can set
different pressure levels in each thrust jack or group of thrust jacks.
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Figure 2.6: Excavation process control (or management) of cutting face conditions in EPB
TBM tunneling (JSCE, 2016)
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2.5.2.2 Excavation Control

Theoretically, a tunneling excavation process can be controlled based on the quantity of
the excavated materials (muck). In this case, the discharged muck volume should balance
the theoretical excavation volume. The weight and volume of the discharged muck can be
measured on the belt conveyor by sensors such as belt scales and laser scanning. However,
the properties of the discharged muck can be different from the unexcavated soils due to
the injected ground conditioners and the change of the soil states (from solid to viscous
fluid). Therefore, the excavation process cannot be controlled only by the excavated material
quantities.

Plastic flow is another measure to control the excavation process. A favorable plastic flow
condition of the excavated materials is critical in EPB TBM tunneling to ensure efficient
excavation and pressure control. The process starts with setting additive materials and
their quantities that are suitable for the current ground conditions. This task involves
empirical estimation based on pre-tunneling soil laboratory testing and performance records
from the previous tunneling cycles. The plastic flow conditions can be evaluated using several
indicators, i.e., (i) muck properties by slump tests, (ii) muck efficiency by comparison between
the estimated excavated muck from the advance rate and the screw rotation speed, and (iii)
shield load by estimating the time-dependent change of the cutter torques and the screw
conveyor. EPB TBM operators need to adjust the specified setting to ensure favorable muck
plastic flow conditions. This process involves judgments from the operators and is often
achieved by a trial-and-error process.

2.5.2.3 Earth Pressure Balance Control

Excavation chamber pressures should be maintained to balance the earth pressures. The
upper and lower pressure limits are typically determined based on the pressure gradient.
The earth pressure coefficient is estimated according to the ground movement. Injecting
appropriate ground conditioners is also important to obtain favorable muck properties (such
as adequate fluidity and low permeability) to facilitate a suitable pressure. The chamber
pressure is mainly regulated by adjusting the thrust jack speed and the screw rotation speed.

The chamber pressure can be increased by raising the thrust jack speed or reducing
the screw conveyor rotation speed. In contrast, the chamber pressure can be decreased by
reducing the thrust jack speed or raising the screw conveyor rotation speed. Figure 2.7
shows a simplified scheme to maintain the chamber pressure at a specified target pressure.
This scheme enables automated EPB control in typical tunneling conditions. However, the
tunneling excavation process involves uncertainties and often cannot be represented in a
theoretical model. Therefore, the experience and judgment of the operators are critical in
performing this task (Maidl et al., 2013).
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n = n-

v = v+

STOP

n = n+

v = v-

Manual

v+ < vmax v- < vmin

v+/vmax v-/vmin

nmin/n- n+/nmax

n- < nmin n+ > nmax

OK

PR/P0

PR < P0-0.2 bar PR > P0+0.2 bar

Too low Too high

P0: target earth pressure

PR: measured chamber pressure

n: screw conveyor rotation speed (rpm)

n+: n + 3 rpm

n-: n - 3 rpm

nmin: n minimum threshold

nmax: n maximum threshold

v: advance speed (cm/min)

v+: v + 1 cm/min

v-: v - 1 cm/min

vmin: v minimum threshold

vmax: v maximum threshold

Figure 2.7: Example of EPB regulation flow diagram, adopted from Maidl et al. (2013).

2.5.2.4 Ground Movement Control

Tunneling-induced ground movements are governed by various factors such as tunnel spa-
tial geometries (e.g., depth, diameter), the geologic conditions, and the tunneling process
(i.e., the TBM behaviors). Adopting JSCE (2016), in the longitudinal direction, tunneling-
induced ground movements can be categorized into (i) pre-tunneling, (ii) excavation face,
(iii) shield passes, (iv) shield tail, and (v) post-tunneling phases. These phases are briefly
discussed in the following.

• Pre-Tunneling. Pre-tunneling ground movements occur before the TBM passes. In
cohesionless grounds, the movements can be caused by the decrease in the groundwater
table. In soft cohesive grounds, the movements can be caused by ground flows at the
excavation face (instability).

• Excavation Face. Ground movements in the proximity of the excavation face may
occur due to the unbalanced pressure between the earth pressure and the pressure in
the excavation chamber. Typically, ground settlements can occur if the earth pressure
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exceeds the chamber pressure. In contrast, ground heaving can occur when the earth
pressure is smaller than the chamber pressure.

• Shield Passes. Ground movements occur during the TBM passes due to interactions
between the shield and the ground. Careless TBM driving may disturb the soils and
aggravate the induced ground movements. Furthermore, over-excavation for alignment
control can also loosen the soils and produce additional ground movements.

• Shield Tail. Ground movements occur immediately after the TBM has passed.
Ground settlements can occur due to stress reliefs in the tail void. In contrast, ground
heaving can occur due to excessive grouting pressures when filling the tail void.

• Post-Tunneling. Long-term ground movements may also occur in the post-tunneling
phase. The settlements can be due to deformed tunnel lining or soil consolidation (in
cohesive soils).

2.5.3 Data Management

The tunneling process produces massive data. Generally, the data include (i) geological or
geotechnical data, (ii) geodetical data, (iii) TBM operation data, and (iv) ground monitoring
data. These data sets are briefly discussed in the following.

• Geotechnical data. Geotechnical data include data from the pre-tunneling stage,
i.e., boreholes and all other geotechnical investigations carried out in the design stage.
The data may also include data produced during tunneling, e.g., muck properties
obtained from soil testing. These data sets provide essential information on the geologic
conditions along the tunnel alignment. However, the data is typically discrete, sparse,
and limited.

• Geodetic data. Similar to the geotechnical data, geodetic data include data from
the pre-tunneling stage, i.e., tunnel design alignment coordinates, and data produced
during tunneling, i.e., actual TBM position and coordinates. In current tunneling
practices, geodetic measurements are typically done automatically in digital formats.

• TBM operation data. Modern TBMs are typically equipped with various sensors
that generate massive operation data during tunneling. Depending on the design, it
can produce hundreds of variables (in small to medium-diameter TBMs) to thousands
of variables (in large-diameter TBMs). Depending on the system, the data can be
produced every second. Depending on the tunneling length and construction time, the
amount of the data can easily reach Terabytes.

• Ground monitoring data. Tunneling also involves extensive instrumentation instal-
lation for ground movement monitoring. The type and quantity of the instruments
depend mainly on the risk involved in the tunneling project. More instruments should
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be deployed in critical tunneling projects, such as soft ground in densely populated
regions. Typical ground instruments include building and ground surface level mea-
surements, extensometers, inclinometers, and piezometers (Ning et al., 2019; Wan et
al., 2017a, 2017b, 2019).

The above discussion highlights massive data produced in tunneling. This reveals the
importance of computer-based data management systems in tunneling process control. Man-
ual process control management may not be applicable since humans cannot make real-time
decisions based on streaming data produced by numerous sensors. Implementing AI systems
to support humans in making decisions based on this massive data remains an open research
question (Garcia et al., 2021).
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Chapter 3

Control System for EPB TBM
Tunneling

3.1 Introduction

Tunnel boring machine (TBM) tunneling can be seen as a dynamical system with a controller
that adjusts the input. This controller plays a vital role to regulates the TBM behaviors
to achieve the expected tunneling performance. In manual control, this task is performed
by humans (i.e., TBM operators). In an autonomous (or intelligent) control, this task is
performed by artificial intelligence (AI) systems. This chapter briefly introduces the funda-
mentals of dynamical systems and control. Subsequently, this chapter provides a review of
past studies related to the implementation of intelligent control systems for TBM tunneling.
Finally, this chapter discusses the proposed AI-based framework for earth pressure balance
(EPB) TBM tunneling. This framework is the basis of the AI systems used in the following
chapters of this dissertation.

3.2 Dynamical System

The dynamical system is an input and output process with changing behavior over time
(Figure 3.1), where the change can be due to external stimulation or disturbance (Åström &
Murray, 2008). In this definition, tunneling can be seen as a dynamical system. In tunneling,
the input is the control parameter, while the output is the TBM behaviors and tunneling
performance. The input-output processes change depending on the ground conditions as the
external stimulation (Figure 3.2). In other words, the same control parameters can result in
different TBM behaviors and performance when performed in different ground conditions.
Therefore, adjusting the control parameters according to the ground conditions is critical to
achieving the desired tunneling performance.
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Figure 3.1: Fundamental scheme of a dynamical system.
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Figure 3.2: Tunneling as a dynamical system.

3.3 Feedback Control System

In a dynamical system, controlling the system input is essential to driving the system to
achieve a required state. This task can be done by implementing a control system. Fun-
damentally, there are two types of control system loops: (i) open loop and (ii) closed (or
feedback) loop control system (Figure 3.3). In an open loop system, the control action is
independent of the output. In contrast, in a closed loop system, the control action depends
on feedback from the system process. In this condition, a closed loop system ensures the con-
troller adjusts the input to achieve a predetermined reference point based on the difference
between the reference point and the actual measured outputs.

Tunneling is essentially a feedback control system (Figure 3.4). EPB TBM tunneling
has several key performance indicators to be specified as reference points, e.g., the tunneling
trajectory, excavation advance rate, and chamber pressure to balance the earth pressure.
The TBM operators decide the control parameters and adjust the actuators, e.g., the jack
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Figure 3.3: Control systems: (a) open loop, and (b) closed (feedback) loop.

selection, thrust jack speed, cutter rotation speed, ground conditioning injection, and screw
rotation speed. The decisions govern the TBM behaviors and the actual tunneling perfor-
mance, which are measured by numerous sensors during the tunneling. This operation data
is presented back to the operators to make decisions for the next tunneling steps.

3.4 Controller

A feedback control system requires a controller to make control decisions. Manually, this
role is covered by human decisions. In an autonomous (or intelligent) control system, this
task is performed by an intelligent controller (e.g., computer-based models or algorithms).
Many controller types have been developed in the domain of control theory. Generally, it
can be categorized into linear control and model-based control.
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Figure 3.4: EPB TBM tunneling in a feedback control system framework.

3.4.1 Linear Control

The Proportional-Integral-Derivative (PID) controller is a linear control system that is widely
used in many real-world control problems. In principle, a PID controller continuously cal-
culates errors as the difference between measured outputs and the reference point. Subse-
quently, the controller applies a correction based on proportional, integral, and derivative
terms. These three terms can cover the treatment of both transient and steady-state re-
sponses and therefore provide straightforward and efficient solutions (Ang et al., 2005).

Despite its efficiency, the PID controllers have limitations. To achieve optimal perfor-
mance, a PID controller needs to adjust its parameters when the dynamical process is altered.
This can be challenging if there are time delays or changes in the system process (Efheij et
al., 2019). This is where model-based controllers have an advantage, as they can anticipate
future steps. Note that tunneling involves many processes with inherent complexity due to
the changing ground conditions and the causal-effect relationships of ground, machine, and
human control decisions.

3.4.2 Model-Based Control

A more advanced control system is required to build controllers in complex dynamical sys-
tems, such as the tunneling process. Model-based predictive control (MPC) uses models
(i.e., governing equations or algorithms) that consider various process constraints and dis-
turbances to predict the next step and adjust the control parameters (Schwenzer et al.,
2021) (Figure 3.5). The effectiveness of this controller strongly depends on the predictive
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model. There are two options for building a model-based controller: (i) theory-based and
(ii) machine learning-based models.

Optimization

ProcessInput Output
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Disturbance

Model

Error

Model Predictive 

Controller

Figure 3.5: Model-based predictive control.

3.4.2.1 Theory-Based Model

Theory-based predictive models are built by implementing physical laws as the governing
equations. The model is initially constructed based on detailed physical descriptions of the
system. Subsequently, the model is updated according to the measured data. Inference can
be made based on the changes.

The physical law-based model is relatively interpretable and generalizable. However, the
model may have some limitations:

• The model is typically constructed with an idealization (i.e., simplification) due to
modeling complexity and computational cost. Therefore, it cannot represent all details
in the real object and may lose much information.

• The model may not be able to represent the system accurately due to uncertainty and
unknown process.

This can be a significant issue in modeling a complex process such as TBM tunneling.
Not all processes in tunneling can be modeled deterministically using a governing equation.
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3.4.2.2 Data-Driven Model

Data-driven models are built purely using data reconstruction and fitting techniques. Unlike
theory-based models, data-driven models require limited or even no predefined assumptions.
Machine learning algorithms are commonly used for this approach. The model is constructed
using available data and continuously developed as the data streams are generated. Inference
can be made by identifying patterns in the data.

The model should be able to represent complex reality as it is built by measurements of
the real object. No idealization, simplification, or assumptions are required. However, the
model may also have some limitations:

• The model strongly depends on the data acquisition design, i.e., the availability and
quality of the data.

• The model is less interpretable as many machine learning models are seen as “black
box” models.

• In the supervised learning approach, the model will be biased toward the training
labels.

Machine learning models have become more popular to be used as intelligent controllers
for complex dynamical systems, especially where the existing theoretical model cannot accu-
rately describe the actual process. This is further boosted by the explosion of data availabil-
ity, the increase in computing power, and the advancement of machine learning algorithms
in the past decade.

3.5 Intelligent Control System for TBM Tunneling

The development of feedback system framework and intelligent predictive control systems
have triggered the advancement of autonomous technology in various applications, such as
Unmanned Aerial Vehicles (UAV) (Goerzen et al., 2009) and self-driving cars (Badue et al.,
2021; Paden et al., 2016). However, these advancements cannot be directly implemented
in autonomous tunneling systems. TBM tunneling has features and complexity that differ
from other autonomous objects. Adopting Hu et al. (2022), some challenges in developing
autonomous TBM are listed below.

1. TBMs maneuver within an unconstrained trajectory in three-dimensional (3D) space.
The shield TBM movement should also be treated as a 3D segment rather than a single-
point coordinate. This is because the head, articulation point, and tail movements of
a shield system are interrelated.

2. The encountered ground conditions strongly govern the behaviors of TBMs. However,
there is no accurate geologic information available during the tunneling process. The
excavated ground condition cannot be seen and constantly changing.
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3. TBM tunneling has several performance indicators to be achieved simultaneously. For
example, the operators must maintain the trajectory within a tolerable deviation along
the tunnel design alignment. At the same time, they must regulate the chamber
pressure to be equivalent to an estimated earth pressure to achieve excavation stability
and limit ground movements. They also require completing the tunneling process
within a specified schedule.

4. TBMs have many components and control parameters. Each component has indepen-
dent actuators that must be controlled simultaneously with the others. For example,
the operators must select the thrust jack configuration and pressures to maneuver the
shield along the tunnel design alignment. At the same time, they need to adjust the
thrust jack speed and screw rotation speed to regulate the chamber pressure. They
must also decide on the ground conditioning injection, cutter rotation speed, and thrust
jack speed to achieve the target advance rate. Decisions on each control parameter may
interact and affect the others.

Despite these challenges, some efforts have been made to develop autonomous TBM
systems in the past three decades. The early development focused on providing intelligent
control for a single tunneling task, such as a direction control system and a chamber pressure
regulation system. The latest development attempted to build an integrated control system
and implement it in real tunneling projects.

3.5.1 Direction Control

Uematsu et al. (1996) reported an early development of automated steering control systems
using automatic control direction flow. In principle, the rule-based system was performed
by setting a target line (i.e., the tunnel design alignment) and a tolerable deviation limit.
Steering operations were executed by specifying the thrust jack stroke difference if the front
shield of the TBM exceeded the deviation limit. The applied thrust jack stroke difference
was determined based on its statistical relationship to the deviations from past data. This
guidance system was implemented for hard rock tunneling in the Tsukui headrace tunnel
project in Japan by a Joint venture of Kumagai, Goyo, and Dainippon.

In the decades of the 2000s and 2010s, the development of TBM direction control systems
was dominated by numerical and experimental simulations of feedback control systems with
various controllers and settings, such as PID controller (Huayong et al., 2009), two closed-
loop control structures (Yue et al., 2012), cascade strategy with fixed-value feedforward and
variable PID controllers (Xie et al., 2012), multi-cylinder control system (L. Wang et al.,
2018), and fuzzy PID controller (Wu et al., 2022). Besides, some studies performed numerical
simulations to investigate the interaction between TBM movements and ground conditions.
These studies were commonly done using the Finite Element Method (FEM) (Kasper &
Meschke, 2004; Komiya et al., 1999). The latest development includes detailed steering
process modeling (Alsahly et al., 2019; Alsahly et al., 2016).
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The development of autonomous TBM direction control systems emerged recently in
the 2020s. Many of the research and developments were carried out by the industry. This
allows the implementation of the developed system in real tunneling cases. Hoshino et al.
(2020) developed a directional control learning system for shield TBMs. The system worked
for force control shield operation and has been implemented by Obayashi Corp. at multiple
sites in Japan. It appears that no machine learning model was implemented in the system, as
they mentioned that some improvements could be made by linking the system with machine
learning.

Wada et al. (2021) developed a directional control guidance system for shield TBMs
using a machine learning algorithm as the predictive model. The developed system used the
gradient boosting algorithm, a supervised learning algorithm based on sequentially ensembled
decision trees. The model used 14 input features, which consisted of operation data related
to the machine coordinates, attitudes, deviations, and advancing features (i.e., thrust force,
cutter torque, advance rate). The models predicted the optimal point of the resultant force
produced by thrust jacks, which control the maneuver of a shield TBM. The system was
implemented in a real tunneling project by Shimizu Corp.

Despite the promising results, the study noted that the performance of the guidance
system deteriorated when the tunnel alignment rate changed. Furthermore, the model has
generalization problems. As every tunneling project has different geologic conditions and
TBMs, the model developed in a tunneling project cannot be implemented in other projects.

3.5.2 Earth Pressure Balance Control

Earth pressures in an excavation chamber depend on the geologic conditions and operational
factors, such as ground conditioning and mixing method, advance rate, and screw rotation
speed (Anagnostou & Kovári, 1996). H. Yang et al. (2009) proposed a theoretical model
for EPB control based on the dynamic equilibrium of intake volume and discharge volume.
The mathematical model was developed on the assumption of plasticized soil in a closed soil
chamber with two key parameters to achieve earth pressure balance. The thrust jack speed
represents the intake volume, and the screw conveyor speed governs the discharge volume.
An EPB control system was developed based on this theoretical model. The proposed control
system was tested in an experiment with controlled soil conditions.

X. Liu et al. (2011) proposed a model predictive control strategy for EPB. The pro-
posed predictive control system consisted of predictive and optimization models. The Least
Squares-Support Vector Machine algorithm (LS-SVM) was used as the predictive model,
and the Particle Swarm Optimization algorithm (PSO) was used as the optimization model.
The predictive model was used to estimate earth pressures in the excavation chamber based
on the screw conveyor rotation speed, advance rate, cutter rotation speed, and thrust force.
The optimization model was used to determine the optimal EPB control parameter (i.e., the
advance rate and screw conveyor rotation speed) to achieve the required earth pressure.

Many studies work on this problem using the same strategy but with different predictive
and optimization models. K. Li and Shao (2015) used the Adaptive Neuro-Fuzzy-based
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Inference System algorithm (ANFIS) as the predictive model and the Ant Colony System
algorithm (ACS) as the optimization model. X. Liu and Zhang (2019) used LS-SVM as
the predictive model and ACS as the optimization model. Gao et al. (2020) used a neural
network-based algorithm with a Gated Recurrent Unit (GRU) as the predictive model and
the genetic algorithm as the optimization model. X. Liu et al. (2020) used Backpropagation
Neural Networks (BPPN) in Dual Heuristic Programming (DHP) as the prediction and
optimization model.

The discussed studies show that data-driven model predictive control, consisting of pre-
dictive and optimization models, has been a popular option for developing an intelligent EPB
control system. The data-driven model enables flexible modeling based on data as the pro-
cess in the excavation chamber is complex, involves uncertainties, and cannot be accurately
represented by a theoretical model.

3.5.3 Integrated Control with Minimal Human Intervention

Xiong et al. (2020) developed autonomous control algorithms to steer and operate shield
TBMs. The predictive system inside the controller was not clearly described, but it appears
to be some rule-based algorithms embedded in a closed-loop control system. The input of
this system is not clearly listed as well, but it contained features such as the shield position
and deviations. The feedback system was used to determine the optimal thrust jack pressure
assignments to direct the machine toward the design tunnel alignment. The jack pressure
assignments were adjusted automatically and continuously in real-time as the data was fed
into the system every 3 seconds. They also used the system to regulate the contact force
and penetration rate to protect the cutting tools.

The autonomous system was deployed by MMC-Gamuda KVRMT(T) Sdn., Bhd. in
the Klang Valley MRT Line 2 tunnel in Kuala Lumpur, Malaysia. The tunneling project
employed variable density shield TBM with multi-mode operation capability, i.e., slurry and
earth pressure balance modes. The variable density shield TBM was used due to the variation
of the geologic conditions along the tunnel alignment, including Karstic Limestone, Kenny
Hill, and granite formations. The tunneling was performed with minimal human intervention
in a tunneling section of about 5 km. The tunneling results were reported to seamlessly
adapt to the changing ground conditions and improve the operation’s consistency, safety,
and accuracy.

3.5.4 Integrated Control with No Human Intervention

Hu et al. (2022) developed an autonomous EPB TBM control system based on the human
performance model (Rasmussen, 1983). Rasmussen categorized human behavior into three
levels based on task difficulties.

1. The skill-based level, when humans perform simple actions solely based on feedback
signals without requiring substantial attention.
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2. The rule-based level, when humans perform actions based on their experience.

3. The knowledge-based level, when humans perform actions on a task that has never
been performed before and therefore requires a complex decision-making process.

Similarly, Hu et al. (2022) decomposed tasks in shield tunneling into three levels, namely,
(i) the execution level, (ii) the planning level, and (iii) the strategic level. The execution level
corresponds to the skill-based level in humans. This task includes adjusting control parame-
ters (e.g., screw rotation speed, grouting system injection) given a target performance (e.g.,
target chamber pressure, target grouting volume) and can be solved using a basic controller
such as PID and fuzzy-based controller. The planning level corresponds to the rule-based
level. This task includes setting multiple target performances simultaneously and can be
solved using Neural Network-based algorithms (Hu et al., 2022). In typical operations, these
targets are determined by tunnel engineers and operators based on engineering knowledge
and judgment from the previous tunneling performance. The strategic level corresponds to
the knowledge-based level. This task includes setting multiple target performances simulta-
neously in changing environments, i.e., geologic conditions, and was proposed to be solved
using methods such as knowledge graphs (Paulheim, 2017).

The system was implemented in the intercity railway tunnels between Hangzhou and
Shaoxing, China, by Shanghai Tunnel Engineering Co., Ltd. (STEC). The tunneling was
performed using an articulated EPB TBM called “Zhiyu”. The EPB TBM was equipped
with intelligent modules to access and control various set points, i.e., cutter rotation, thrust
jack speed, jack selection, earth pressure, screw rotation, gate opening, as well as tail grease
and grouting quantity. Unfortunately, the details of the intelligent control modules were not
clearly described. The tunneling was completed without human intervention in some tunnel
sections. The tunneling results were reported to meet the engineering requirements (i.e.,
trajectory deviations and ground movements) and offer better performance than the manual
control results.

Despite the promising results, Hu et al. (2022) admitted that the system needs to be
readjusted and retrained in different ground conditions. This means the system was not
fully intelligent for learning and adapting to changing ground conditions, which is the main
challenge in tunneling. Furthermore, although the system appears to be comprehensive, the
hierarchy levels may constrain it to be flexible and adaptable. Note that a TBM can be
driven in various ways depending on the driving style and requirements (Hammerer, 2015).

3.6 Proposed Framework for EPB TBM

3.6.1 Cognitive Model

An intelligent controller should behave similarly to the human cognitive system and decision-
making process. Biologically, the human brain works on the framework of sensing, perceiving,
and acting (O’Shea, 2005). Sensory information such as sight, touch, audition, taste, and
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smell flows into the brain. The brain transforms this sensory information into perceptions.
The perceptions will be the bases for decisions on future actions (Figure 3.6).

Perceiving
Decision-

Making
Sensing Acting

Figure 3.6: Human cognitive model.

This simple framework can be used to build an intelligent system for EPB TBM tunnel-
ing (Figure 3.7). The sensing system consists of tunneling data. The key component is the
numerous operation data that is generated by numerous sensors every few seconds during
tunneling. The other data can be pre-tunneling data (e.g., geotechnical data) and ground
monitoring data (e.g., ground instrumentations and remote sensing data). The perceiving
system consists of intelligent systems such as machine learning models that can convert the
data into useful information for tunneling processes, such as the encountered ground condi-
tion interpretation and the induced ground movements. The decision-making system consists
of intelligent systems that can model the complexity of interrelated tunneling processes and
make optimal decisions for adjusting the control parameters.
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Figure 3.7: Implementation of the cognitive model for intelligent EPB TBM systems

3.6.2 AI-Based System

The proposed framework of AI-based control systems for EPB TBM is developed based on
the feedback control system (Figure 3.8). The AI systems play a central role in the con-
troller module and are developed according to the previously discussed cognitive model. The
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systems leverage both streams of sensor measurement data are generated at the particular
tunneling phase (or time step) and recorded data from the prior phases to (i) perceive the
tunneling environments, i.e., the ground conditions and responses, and (ii) model the tun-
neling process and make decisions on the control parameters. These data-driven systems are
built using machine learning algorithms, which enable the task to be completed in real-time
during tunneling. More discussion on the feasibility of empowering feedback loop control
systems with AI systems can be found in a study by Schöning et al. (2022).
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Figure 3.8: Intelligent control system for EPB TBM
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Chapter 4

Machine Learning for EPB TBM
Tunneling

4.1 Introduction

The availability of massive data, the development of machine learning, and the expansion of
computing performance have been the main reasons for the rise of artificial intelligence (AI)
in the past decade. Machine learning has emerged rapidly in the past few years and has been
successfully implemented to exploit big data in various domain applications. Many studies
have also attempted to implement machine learning in tunneling. This can be important
since a tunneling operation produces enormous amounts of data that cannot be fully utilized
using traditional data processing techniques. This chapter briefly introduces the fundamen-
tals of machine learning, including the general understanding of machine learning concepts
and some mathematical basis of the algorithms that are used throughout this dissertation.
Subsequently, this chapter also briefly reviews some machine learning implementations in
tunneling applications.

4.2 Machine Learning

4.2.1 Overview

Machine learning can be defined as algorithmic systems that are capable of “learning” (or
improving their performance) through experience (Jordan & Mitchell, 2015). Fundamentally,
machine learning is a set of algorithms that use statistical and computational principles to
find patterns in a data set. Different from traditional rule-based methods, machine learning
does not need to be explicitly programmed to achieve a specified task. The learning process
is done by feeding the algorithm with more data. Machine learning has emerged intensely
over the past two decades. It has been implemented in various applications, for example,
developing AI systems (e.g., computer vision, natural language processing, robotics), solving
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problems in data-intensive industries (e.g., processing internet and commercial data), and
providing a novel way for exploring massive experimental data in scientific research.

The two main branches of machine learning are supervised and unsupervised learning,
with additional emerging branches such as semi-supervised and reinforcement learning (Fig-
ure 4.1). Supervised learning can be seen as a new form of predictive modeling. In this
learning approach, a set of answers in the form of training data is provided to a supervised
learning algorithm. The algorithm fits the training data to build a prediction model. This
approach can be used either for classification or regression tasks. The least squares method
(more widely known as linear regression) can be seen as a basic form of supervised learning.
More sophisticated supervised learning algorithms do not require any predefined assumptions
such as linearity, normality, or even predefined predictor variables.

Machine 

Learning

Unsupervised 

Learning

Semi-

Supervised 

Learning

Supervised 

Learning

Reinforcement 

Learning

Clustering

Dimensionality 

Reduction

Classification

Regression

Figure 4.1: General taxonomy of machine learning.

Unsupervised learning can be seen as a new form of descriptive modeling. Unlike super-
vised learning, unsupervised learning algorithms do not require training data to find patterns
and structures in the given data. This learning approach can be used to reduce the dimen-
sionality of the data and cluster the data points. Dimensionality reduction algorithms can
find patterns in the data by projecting it into lower dimensional space. This can be useful
to extract data with thousands of variables into only two or three variables so that they
can be plotted on two or three dimension coordinates without sacrificing too much infor-
mation within the original data set. Clustering algorithms can identify data points with
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similar characteristics and group them together. Both supervised and unsupervised learning
approaches were used to develop AI systems for EPB TBM in this study.

4.2.2 Algorithms and Selection

Many machine learning algorithms are available to perform the tasks mentioned above. Some
algorithms can be used exclusively for a specific task; for example,

• dimensionality reduction: Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE),

• clustering: k-means, Agglomerative Hierarchical Clustering, and Density-based Spatial
Clustering of Applications with Noise (DBSCAN),

• regression: Ordinary Least Squares (OLS), and

• classification: Logistic Regression.

Some supervised learning algorithms can also be used for both classification and regression
tasks; for example, k-Nearest Neighbor (kNN), tree-based algorithms (such as Random Forest
and Gradient Boosting), and Support Vector Machines (SVM). Lastly, neural network-based
algorithms can be used for both supervised and unsupervised tasks. These algorithms are
popularly known as deep learning.

Since many options are available, selecting a machine learning algorithm that works best
for a particular problem is important. Typically, the trade-off between model flexibility
and interpretability is one of the primary considerations in the selection. Some algorithms
are inflexible, which means that these algorithms are only capable of fitting the data in
a presumed pattern. For example, Linear and Logistic Regressions rigidly fit the data in
linear relationships. Some other algorithms are more flexible and can fit different patterns
in the data. For example, non-parametric algorithms such as Random Forest and SVM
can fit nonlinear patterns in the data without any predefined assumptions. Nevertheless,
flexible algorithms may also have disadvantages. Machine learning models built using these
algorithms are prone to overfitting and more difficult to be interpreted. Figure 4.2 illustrates
the trade-off between the flexibility and interpretability of machine learning methods.

Model accuracy is another primary consideration in the selection. To date, model accu-
racy has been the main focus of machine learning research. The aim is to build a machine
learning model with the highest prediction accuracy. This can be one of the main reasons for
the popularity of deep learning-based algorithms, such as Multi-Layer Perceptron (MLP),
Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN). Deep learn-
ing models are exceptionally flexible and thus can produce superior accuracy in various tasks
and data types, such as image segmentation, text recognition, and natural language process-
ing. Deep learning has become a standard practice in working with unstructured types of
data sets.
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Figure 4.2: Model flexibility vs. interpretability, modified from James et al. (2013).

Despite its superior performance in unstructured data, deep learning has been argued
not to be the best option for working with structured (or tabular) data sets. Gorishniy
et al. (2021) compared many existing deep learning architectures for tabular data sets on
diverse tasks under the same training and tuning protocols. Subsequently, the best deep
learning performer was compared to Gradient Boosting. They concluded that there is no
superior solution that can be accepted universally. Shwartz-Ziv and Armon (2022) com-
pared the performance of recently proposed deep learning models for tabular data sets to
Extreme Gradient Boosting (XGBoost). They concluded that XGBoost outperformed the
deep learning models across the data sets and was more practical since it required less tuning.

Grinsztajn et al. (2022) compared various deep learning architectures and tree-based mod-
els (i.e., XGBoost and Random Forest) across different tabular data sets and hyperparameter
combinations. Their results show that, for medium-sized data ( 10K samples), tree-based
models produced better prediction performance with less computational costs. Their further
investigation reveals that deep learning models are biased toward overly smooth solutions
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and can be more affected by uninformative features. The above recent studies indicate that
deep learning may not be the best model when working with structured data. In this type of
data, the ensemble decision tree-based algorithms, such as Gradient Boosting and Random
Forest, can deliver better prediction performance with more practical hyperparameter tuning
and less computational cost.

4.2.3 Mathematical Basis

This dissertation consists of various tasks that involve different types of machine learning
models. The summary of the tasks and the employed machine learning algorithms is pre-
sented in Table 4.1. The fundamental bases of algorithms that are used in multiple chapters
are discussed in the following sections. The fundamental bases of some other algorithms, such
as PCA and Bayesian network structure learning (BNSL), are discussed in the corresponding
chapters.

Table 4.1: Summary of machine learning tasks and algorithms in this dissertation

Chapter Modeling objective Task Algorithm

Chapter 5 Evaluating the effects of
data aggregation

Regression OLS, Random Forest

Chapter 6 Evaluating the effects of
feature selection

Regression OLS, Ridge regression,
Lasso, Random Forest

Chapter 7 Interpreting geologic
conditions

Classification and
regression

OLS, Random Forest

Chapter 8 Detecting geologic
anomalies

Dimensionality
reduction
(embedding)

PCA

Chapter 9 Estimating ground
responses

Regression OLS, Random Forest

Chapter 10 Modeling excavation
process

Probabilistic
modeling

BNSL

Chapter 11 Modeling steering decisions Multioutput
regression

Multivariate Output,
Random Forest

4.2.3.1 Ordinary Least Squares

The OLS was selected to represent linear and parametric prediction models. In principle, the
linear model defines a vector of a response variable, yi , as a linear function of the predictor
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variables, x1, x2, . . . , xp,

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi, (4.1)

where β is the regression coefficients and ε is the residual error. In OLS, the coefficients can
be estimated by minimizing the residual sum of squares, RSS,

RSS =
∑
i

ε2i =
n∑

i=1

(yi − ŷi)
2

=
n∑

i=1

(
yi − (β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂pxip)

)2
(4.2)

=
n∑

i=1

yi − β̂0 −
p∑

j=1

β̂jxij

2

This minimization can be solved efficiently in matrix algebra as

β̂OLS = minRSS = (XTX)−1XTy, (4.3)

where X is the matrix of predictors and y is the vector of the response variable (James et al.,
2013).

4.2.3.2 Ridge Regression

The Ridge regression is a type of regularized linear prediction model. The regularization
can reduce the variance making it more robust to overfitting, thus leading to better gener-
alization. Besides, Ridge regression can deal with data sets with multicollinearity problems.
Ridge regression has the same RSS as the OLS. But the coefficient β̂R is estimated by
minimizing RSS with a constraint

RSS + λ
p∑

j=1

β2
j =

n∑
i=1

yi − β̂0 −
p∑

j=1

β̂jxij

2

+ λ
p∑

j=1

β2
j , (4.4)

Where λ ≥ 0 is a tuning parameter. The tuning parameter controls the relative impact of
the shrinkage penalty (i.e., the λ

∑p
j=1 β

2
j term) on the regression coefficient estimates. The

shrinkage penalty term will not affect the RSS term when the tuning parameter is equal to
zero, giving the regression to be equivalent to OLS. In contrast, the shrinkage penalty will
reduce the regression coefficient estimates to approach zero when the tuning parameter is
high. Selecting an appropriate value of the tuning parameter is critical and can be done by
performing cross-validation.
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4.2.3.3 The Least Absolute Shrinkage and Selection Operator (Lasso)

The Least Absolute Shrinkage and Selection Operator (Lasso) is another type of regularized
linear prediction model. In the Lasso, the coefficient β̂L is estimated by minimizing RSS
with an absolute constraint

RSS + λ
p∑

j=1

|βj| =
n∑

i=1

yi − β̂0 −
p∑

j=1

β̂jxij

2

+ λ
p∑

j=1

|βj|. (4.5)

Unlike Ridge regression which keeps all predictors in the prediction results, the Lasso may
shrink some of the predictors to zero. This shrinkage capability leads to better interpretabil-
ity of the prediction results and makes the Lasso an embedded feature selection method.

4.2.3.4 Random Forests

The Random Forest (Breiman, 2001) was selected to represent nonlinear and non-parametric
machine learning models. As discussed, compared to more advanced models (e.g., deep
learning), the ensemble decision tree-based models (e.g., Gradient Boosting and Random
Forest) have been shown to result in better prediction performance with less computational
costs in structured data sets (Gorishniy et al., 2021; Grinsztajn et al., 2022; Shwartz-Ziv
& Armon, 2022). Random Forest was preferred over Gradient Boosting as it requires more
straightforward hyperparameter tuning and is more robust to overfitting problems.

Random Forest is an ensemble supervised learning algorithm that aggregates a large
number of decision trees as the base learners to produce the predictions (Breiman, 2001).
Briefly, the algorithm is performed by the following steps (Hastie et al., 2009; James et al.,
2013):

1. Generate B bootstrapped training data sets by drawing samples from the original
training data set with replacement.

2. Construct decision trees, f̂ ∗b(x), using each of the bth bootstrapped training data sets.
A single decision tree is constructed using binary recursive partitioning into distinct
subsets so that one parent node leaves two child nodes (Therneau & Atkinson, 1997).

a) Randomly select m predictors from the p predictors.

b) Choose the best-split point among the m.

c) Split the node into two child nodes.

In greedy recursive partitioning, the objective is to find regions, R1 and R2, which
minimizes the RSS.

R1(j, s) = {X|Xj < s}, R2(j, s) = {X|Xj ≥ s}, (4.6)
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where j is the selected predictor to split, and s is the cutpoint. The value of j and s
can be computed by minimizing the RSS, defined as

RSS =
∑

i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2 (4.7)

The recursive partitioning is done until the specified minimum node size is reached.

3. Obtain the final result by aggregating (averaging) all the constructed decision tree
results,

a) For regression:

f̂RF (x) =
1

B

B∑
b=1

f̂ ∗b(x). (4.8)

b) For classification:
ĈB

RF (x) = majority vote{Ĉb(x)}B1 (4.9)

Where ĈB
RF (x) is the class prediction.

As a non-parametric model, Random Forest does not require the data to meet certain
assumptions or parameters (Malley et al., 2012). Thus, it is suitable for data in which the
distribution cannot be predetermined. Random Forest has become popular in classification
and regression problems due to its strong predictive performance in high-dimensional data,
versatility in various feature types and scales, robustness to missing data, outliers, and noises,
as well as its ability to measure the importance of the features (Biau & Scornet, 2016; Qi,
2012).

4.2.3.5 Multivariate Output Random Forests

The Multivariate Splitting-rule Random Forest (Ishwaran et al., 2021) was selected to per-
form predictions with multivariate outputs. In principle, Random Forest regression can be
extended to multivariate output cases by applying the RSS split statistic to each coordinate
separately. Let the responses Yi = (Yi,1, . . . , Yi,q)

T , where q denotes the multivariate outputs
an i = 1, . . . , n. The multivariate regression split rule can be written as

RSS =
q∑

k=1

{ ∑
i∈R1(j,s)

(
Yi,k − ŶR1k

)2
+

∑
i∈R2(j,s)

(
Yi,k − ŶR2k

)2 }
. (4.10)

The best split can be achieved by minimizing the RSS.
Equation 4.10 is a composite mean-squared error rule and does not consider any correla-

tions among the multivariate outputs. Ishwaran et al. (2021) used the Mahalanobis distance
to include the correlations. The Mahalanobis distance of a random element Z is defined as

DM(Z) = (Z − µZ)
T

−1∑
Z

(Z − µZ), (4.11)
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Where µZ is the mean ofZ.
Note that the covariance matrix can be singular when constructing a three where the

number of observations decreases rapidly. Thus Ishwaran et al. (2021) proposed to solve this
problem by employing the Moore-Penrose generalized inverse matrix, where for any matrix
Ax×p, the generalized inverse is the unique matrix A+

p×n. In non-singular A, then A+ = A−1.
The generalized inverse matrix can be solved using singular value decomposition (SVD).

The SVD of An×p is A = UDV T , where Un×p is an orthonormal matrix, Vp×p is an orthogonal
matrix, and Dp×p is the diagonal matrix. Then, the generalized inverse for A, given n ≥ p,
can be written as

A+
p×n = V D+UT . (4.12)

Using the generalized inverse matrix, an efficient multivariate splitting rule based on
Mahalanobis distance can be defined as

DM,j(R1, R2) =
n1

n

∑
i∈R1

(Yi−ŶR1)
T (Q∗

j)
++(Yi−ŶR1)

T +
n2

n

∑
i∈R2

(Yi−ŶR2)
T (Q∗

j)
++(Yi−ŶR2)

T .

(4.13)
The best split j can be obtained by minimizing DM,j(R1, R2).

4.2.4 Modeling Consideration

The goal of predictive modeling, whether for classification or regression problems, is to build
a model with the best possible prediction and generalization performance. This model can
produce accurate predictions not only for the training data but also for new data. A general-
izable model can be achieved by preventing the model from being underfitting or overfitting.
Figure 4.3 illustrates the concept of model underfitting and overfitting. Underfitting is when
a model fails to fit the training data points sufficiently, producing low prediction performance
even for the training data. The training error reflects the bias of the model. High training
error means the model is highly biased. In contrast, overfitting is when a model can perfectly
fit the training data points but fails to capture the general pattern of the data, causing low
prediction performance in new data (i.e., testing data). The test error reflects the variance
of the model. Poor testing performance indicates a high variance in the model.

The concept of bias-variance trade-off is critical in developing a machine learning model.
The best model is typically achieved by finding an optimal point between the two extreme
conditions. This can be done by developing a model using a proper machine learning workflow
(Figure 4.4), which includes a k-fold cross-validation (CV) (Figure 4.5). Furthermore, the
risk of overfitting can also be reduced by selecting a machine learning algorithm that is
flexible but less prone to overfitting, such as the ensemble models.



CHAPTER 4. MACHINE LEARNING FOR EPB TBM TUNNELING 49

Underfitting

High bias, low variance

Overfitting

Low bias, high variance

Figure 4.3: Concept of model underfitting and overfitting.

Sample

Training set

Test set

Hyper-

parameters 

Feature 

Engineering

Model 

Selection

Fitted 

Models

Cross-Validation
Selected 

Model
Test Error

Bootstrap 

Confidence 

Interval

Figure 4.4: Example of robust machine learning workflow.
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Figure 4.5: Data splitting with cross-validation.

4.3 Machine Learning for EPB TBM Tunneling

Applications

Many studies have been conducted to leverage machine learning for tunneling applications.
Most of the studies used machine learning to build data-driven predictive models for inform-
ing tunneling operations. This includes interpreting the geologic conditions, estimating the
induced ground movements, and modeling the tunneling excavation process. These imple-
mentations are briefly discussed as follows. More discussions on these past developments can
be found in the corresponding chapters of this dissertation.

4.3.1 Geologic Interpretation

The implementation of machine learning for developing geologic interpretation systems in
TBM tunneling has emerged in the past few years. Various machine learning algorithms
have been used as prediction models and many comparative studies have been conducted.
Q. Zhang et al. (2019) proposed a method to transform TBM operation data to rock mass
types using three machine learning algorithms, i.e., SVM, Random Forest, and kNN. Zhao et
al. (2019) evaluated the performance of eight machine learning algorithms to classify geologic
types, i.e., kNN, Bayesian Linear Regression (BLR), SVM, Decision Tree, Random Forest,
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CatBoost, XGBoost, and artificial neural network (ANN). Recently, the development has
been extended to aim for a real-time geologic interpretation system. Erharter et al. (2020)
proposed a real-time (or online) rock classification system during tunneling using an ensemble
Long Short-TermMemory (LSTM) model. H. Yu (2021) investigated methods to characterize
the encountered ground condition based on EPB TBM data during tunneling by employing
two machine learning frameworks, i.e., (i) supervised learning using multinomial logistic
regression and (ii) semi-supervised learning using a similarity matrix and label propagation
method.

These studies have shown the possibility of systematically and quantitatively interpreting
the geologic conditions based on TBM data in real-time during tunneling. Machine learning
algorithms have been shown to be capable of finding patterns in the input features (i.e., the
TBM operation data) that contain the geologic information.

4.3.2 Ground Movement Estimation

Shi et al. (1998) conducted the early implementation of machine learning to estimate
tunneling-induced ground movements. They implemented ANN to estimate the tunneling-
induced ground movements of the Brasilia Tunnel project in Brazil. Subsequently, Suwan-
sawat and Einstein (2006) examined the performance of various ANN architectures in es-
timating the maximum surface settlements of the Bangkok MRTA project in Thailand.
Boubou et al. (2010) proposed a method to estimate the cross-section profile of tunneling-
induced ground movements of the subway line B tunnel project in Toulouse, France.

Different machine learning algorithms have been used as prediction models in the past
decade. For example, Bouayad and Emeriault (2017) implemented the adaptive neuro-fuzzy-
based inference system algorithm (ANFIS), and Goh et al. (2018) implemented multivariate
adaptive regression splines (MARS). Some studies have been conducted to compare and
evaluate the performance of different machine learning algorithms in estimating tunneling-
induced ground movements. These studies include Mahmoodzadeh et al. (2020), Ocak and
Seker (2013), Tang and Na (2021), and W. G. Zhang et al. (2021). These studies involved
various machine learning algorithms, from regression-based and decision trees-based algo-
rithms to neural network-based algorithms.

The previously discussed studies focused mainly on connecting the maximum surface
settlements and the TBM behaviors. F. Wang et al. (2013) reported an early develop-
ment of the study that connected TBM operation parameters to the longitudinal ground
movements. They used a wavelet smooth relevance vector machine algorithm to model lon-
gitudinal ground movement progression during EPB TBM tunneling. P. Zhang, Wu, Chen,
Dai, et al. (2020) investigated interactions between a shield TBM and the ground in cross-
sections and longitudinal sections. They used two machine learning algorithms to develop
the prediction models, i.e., Random Forest and LSTM. The performance of the two models
was compared using a data set from the Changsha metro project.

This review demonstrates the opportunity of utilizing data-driven methods for estimating
tunneling-induced ground movements in both the cross and longitudinal sections. Machine
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learning algorithms have been shown to be capable of finding complex interactions between
the input features (e.g., the TBM operation) and the response (i.e., the estimated ground
movement) without predefined assumptions. This is important in estimating tunneling-
induced ground movements since they are affected by numerous factors and may not always
follow the typical Gaussian shape assumption.

4.3.3 Tunneling Process Modeling

In most previous studies, tunneling processes were modeled separately as an individual pro-
cess, for example, to model the earth pressure balancing process. In this case, machine
learning was used as a prediction model embedded in an intelligent control system. Machine
learning algorithms such as the Least Squares-SVM (LS-SVM) have been used to develop a
model predictive control strategy for EPB TBM (X. Liu et al., 2011; X. Liu & Zhang, 2019).
The predictive model was used to estimate earth pressures in the excavation chamber based
on the screw conveyor rotation speed, advance rate, cutter rotation speed, and thrust force.
Some studies used neural network-based algorithms to develop the EPB control system. Gao
et al. (2020) used a neural network-based algorithm with a Gated Recurrent Unit (GRU) as
the predictive model. X. Liu et al. (2020) used Backpropagation Neural Networks (BPPN)
in dual heuristic programming (DHP) as the prediction and optimization model.

These studies show that implementing machine learning algorithms to build a predictive
model for tunneling processes has become more prevalent. Machine learning enables flexible
modeling without any predefined assumption. This can be beneficial for tunneling where
the processes are governed by complex causal effects interactions of ground, machine, and
human decisions.



53

Chapter 5

Effects of Data Aggregation on
Prediction Models

5.1 Introduction

5.1.1 Background

Tunnel boring machine (TBM) operation data have been utilized to build various data-driven
models, such as for classifying the geologic conditions (Cao et al., 2021; Erharter et al., 2020;
Sousa & Einstein, 2012; Q. Zhang et al., 2019; Zhao et al., 2019), estimating the tunneling-
induced ground movements (R.-P. Chen et al., 2019; R. Chen et al., 2019; Kim et al., 2022;
Suwansawat & Einstein, 2006; W. G. Zhang et al., 2021), and predicting the tunneling
performance (e.g., advance rate) (Mokhtari & Mooney, 2020). The models have also been
developed using various machine learning algorithms, for example, linear regression-based
methods (Mokhtari et al., 2020), support vector regression methods (Mokhtari & Mooney,
2020; Zhou et al., 2021), ensemble decision tree-based methods (Kong et al., 2022; P. Zhang
et al., 2019), and the artificial neural network-based methods (Boubou et al., 2010; Erharter
et al., 2020; Suwansawat & Einstein, 2006).

Despite this development, less effort has been given to understanding the characteristics
of TBM data and the effects of data preparation on the models. There is still no agreement on
how TBM data should be prepared (Marcher et al., 2020; Sheil, Suryasentana, Mooney, et al.,
2020). Every proposed model was built using different data aggregation levels. For example,
to develop geologic prediction models, Sousa and Einstein (2012) used ring aggregate data
points, Q. Zhang et al. (2019) compressed the observation data points using the BIRCH
algorithm (T. Zhang et al., 1996), Erharter and Marcher (2020) segmented the observation
data points according to the linear trends using sliding windows, Cao et al. (2021) aggregated
the observation data points to a period of 3-min intervals and then applied a median filter to
smooth the time series. Another example, to develop TBM parameters prediction models,
Mokhtari and Mooney (2019) aggregated the 5-sec observation data points resolution in one
cutter head rotation, and Xu et al. (2021) smoothed 1-sec observation data points using a
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denoising algorithm.
The above examples demonstrate that TBM data-driven models have been developed

using different data aggregation levels. Figure 5.1 shows an example of a TBM variable
feature, i.e., the cutter torque, over a segment of chainages from a tunneling data set. The
original observation data points were produced every 5 seconds during the tunneling. In this
figure, the data points were plotted in various data aggregation levels, following different
data preparation methods from several previous studies, i.e., one cutter rotation, 20 mm,
3 min, and ring length aggregates. The figure shows that each aggregation level produces
different longitudinal patterns. This may lead to some questions, how this difference alters
the statistical characteristics of the data? Would this affect the prediction performance and
behaviors of the developed data-driven models?
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Figure 5.1: Example of a feature of TBM operation data plotted in different data aggregation
levels, following different data preparation methods from several previous studies.
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5.1.2 Related Works

Data aggregation has been studied over the decades in various problem domains using various
data sets. Early studies emerged in the domain of statistics under the terminology of ecolog-
ical correlations and regressions. This term describes the correlation or regression between
variables as a group of individual data. Using the US census data, Robinson (1950) demon-
strated that the correlation for the same two variables could be different at the individual
and the group levels. Using the LA household data, Clark and Avery (1976) studied that
the correlation between the independent and dependent variables changed with increasing
aggregation levels and can be related to the changes in the regression coefficients. Amrhein
(1995) performed controlled numerical simulations to explore the effects of aggregation in
areal unit problems and concluded that means and variances were resistant to aggregation
effects. However, dramatic effects were exhibited on the correlations and regression coef-
ficients. Freedman (1999) highlighted that näıve inference from aggregated data may lead
to ecological fallacies, which believe that relationships observed in groups are the same as
in the individuals. These studies suggest that the effects of data aggregation are real, and
inferences from aggregated data may produce valuable information but should be done cau-
tiously due to the presence of aggregation bias and confounding problems (Freedman, 1999;
Subramanian et al., 2009).

Studies on data aggregation have also emerged in engineering, especially in the application
of wireless sensor networks (WSN). In this domain, data aggregation is critical to reducing the
data size due to limited bandwidth and energy (Heidemann et al., 2001). It is also essential
to increase the reliability of data due to erroneous individual sensor readings (Shrivastava
et al., 2004). In the early development, Madden et al. (2002) implemented database-style
aggregates (e.g., count, min, max, sum, average) to sensor readings flowing through sensor
networks. Shrivastava et al. (2004) then extended the aggregation class queries into the
quantiles (e.g., median). The queries were more challenging to be implemented in a streaming
data flow, but they offered better approximation quality.

Various methods have been proposed to minimize the information loss due to aggregation
in WSN data: e.g., Z. Ye et al. (2009) proposed optimal stochastic policies for distributed
data aggregation in WSN. The optimal aggregation method became critical due to the pres-
ence of aggregation delay. Jiang et al. (2010) proposed a parameter-based data aggregation
method using the expectation-minimization (EM) algorithm to extract statistical informa-
tion from the data. Khedo et al. (2010) proposed an aggregation method by eliminating data
redundancy, whereas S. Li et al. (2013) implemented the compressed sensing (CS) method
to compress and reconstruct the data. While data aggregation can be useful, these studies
suggest that some information contained in the original data may be eliminated due to the
aggregation.

More recently, data aggregation studies have been growing in machine learning. The
challenge is to train machine learning models using aggregated data instead of individual
data (S. Chen et al., 2009; Musicant et al., 2007). This is motivated by, for example,
limitations of class labels, communication, storage, and privacy preservation (Bhowmik,
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2018; B.-C. Chen et al., 2006). S. Chen et al. (2009) proposed a K-means-based framework
for classification problems with aggregate outputs as the training labels. In contrast, Y.
Zhang et al. (2020) extended the multiple instances learning to multiple classifications and
regression problems and presented a probabilistic framework that accommodates variation
in aggregate observations. Recently, Kammerer et al. (2020) showed that reducing training
data by aggregating through k-means and random sampling might produce a minimal loss
in test accuracy. These studies indicate that the effects of data aggregation on machine
learning prediction models are not clearly understood and are still an active research area.
More studies on this problem domain are expected to be carried out due to the growing
number of data sets, machine learning algorithms, and computing power.

5.1.3 Objectives

TBM data may have different characteristics from other data in the previous studies (in
the other domains). The data are continuously generated during tunneling. The statistical
characteristics of the data are also expected to change continuously, depending on complex
causal effect interactions of the operator control decisions, the TBM behaviors, and the
ground conditions. To date, no study has exclusively discussed the effects of data aggregation
on TBM data sets. Therefore, the effects of TBM data aggregation on the prediction models
have not been identified.

This study aims to investigate the effects of data aggregation on (i) the statistical char-
acteristics of TBM operation data and (ii) the behaviors of the prediction models. The
statistical characteristics of the data were represented in terms of central tendency, variation
(or dispersion), and distribution. The effects of data aggregation on the models were inves-
tigated in the framework of the models’ predictability, computability, and stability (B. Yu
& Kumbier, 2020).

The advancement of data-driven modeling is key to developing more systematic and
automated tunneling systems. Understanding the characteristics of the data is critical to
understanding the results of machine learning predictions (Anik & Bunt, 2021; Westermann
et al., 2021). This study is expected to provide a better understanding of the characteristic
of tunneling operation data and the effects of data preparation (i.e., data aggregation) on
TBM data-driven models, which can be a foundation to facilitate a unified method of TBM
data preparation.

5.2 Data

5.2.1 Tunneling Cases

This study was performed using three earth pressure balance (EPB) TBM data sets from
two tunneling cases: (i) the State Route 99 (SR99) highway tunnel in Seattle, Washington,
USA, and (ii) the North-South Line Phase-1 (NSLP1) Mass Rapid Transit (MRT) railway
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twin tunnels in Jakarta, Indonesia. These data sets were selected to allow investigation on
the model generalization since these two tunneling cases were excavated using different TBM
sizes, controlled by different TBM operators and engineers, and carried out in significantly
different geologic conditions. The SR99 is a highway tunnel with a length of 2830 m (1.756
mi) and a maximum depth of 65.5 m (215 ft) below the ground surface. The geologic condi-
tions along the tunnel alignment are dominated by over-consolidated glacial and non-glacial
pre-Vashon geologic units (WSDOT, 2010a, 2010b, 2010c). The tunnel was constructed
using a 17.5 m (57.5 ft) diameter EPB TBM.

The NSLP1 is a double-track MRT railway system consisting of the Northbound (NB) and
Southbound (SB) lines. This study uses the data from the underground sections Contract
Package (CP) 104-105, where each line consists of four tunnels that connect four under-
ground stations. The total length of each of the lines is 2612 m, and the maximum depth
of the tunnels is 15.6 m below the ground surface. The geologic conditions along the tunnel
alignments are dominated by alluvial deposits of bedded fine and sandy tuff, and Pleistocene
marine and non-marine deposits to a significant depth (SOWJ-JV, 2013a, 2013b; Turkandi
et al., 1992). The tunnels were constructed using two EPB TBMs with a diameter of 6.8 m.

5.2.2 Data Description and Preparation

The original EPB TBM data is a massive data set that consist of hundreds or even thousands
variable features. The features are the tunneling operation measurement records generated
by numerous sensors installed on the TBM. The SR99 original data set consists of more
than 5000 features, while each NSLP1 original data set consists of more than 400 features.
The investigation was performed on seven selected EPB TBM features, i.e., the advance
rate, thrust force, cutter torque, foam volume, chamber pressure, screw rotation speed, and
grout volume. These features were in various physical measurement units and chosen to
represent key features for each EPB TBM process, based on JSCE (2016) (JSCE, 2016).
More descriptions of the selected features are presented in Table 5.1.

This selection is essential to limit the complexity and enable more interpretability of the
models. Note that the selection might exclude some other important features, such as the
cutter rotation speed, screw pressure, and other types of ground conditioners (e.g., polymer,
bentonite). It might also restrict the contained information in the prediction models. How-
ever, it can be considered adequate since the focus of this study is to investigate the effects
of data aggregation, not to develop the most accurate model.

The TBM data is typically generated every few seconds. However, the observation data
points in this study were represented in spatial series. This means an observation data point
represents all measured values within one spatial unit. Observation data points for gauge
metrics (e.g., features related to pressures, forces, torques, and speeds) were the average
measured values within a spatial unit. Observation data points for cumulative increment
metrics (e.g., features related to volume) were the final measured value within a spatial unit.
The effects of data aggregation were investigated by preparing each data set in two levels of
spatial aggregation as the observation data points, i.e.,
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(i) fine aggregate data, represented by 20 mm chainage-length data points, and

(ii) coarse aggregate data, represented by ring-length data points.

The fine aggregate data was used as the reference, while the coarse aggregate data was
used to evaluate the aggregation effects. Note that the average ring length of the SR99
and the NSLP1 tunnels are approximately 2000 mm and 1500 mm, respectively. Figure 5.4
presents the longitudinal plot of the SR99 (a), NSLP1-SB (b), and NSLP1-NB (c). These
figures demonstrate substantial differences between the two aggregation levels.

Following the preparation, the three data sets were cleaned according to the following
steps.

(i) Removal of non-excavation phase. The investigation was performed on observation
data points during the excavation phase. Thus, observation data points during the non-
excavation phase, such as during segment erection, were not considered. This was done
by removing observation data points with an advance rate of 0 mm/min and cutter
torque of 0 MNm.

(ii) Volume normalization. Features of cumulative measurements, such as volumes,
were normalized since there is some variation in ring length (i.e., thrust stroke).

(iii) Removal of erroneous records. The data were cleaned by removing erroneous
records, such as duplicated chainages and observations with missing values. This re-
duces the amount of observation data points but avoids further complexities from
imputing missing data with assumptions.

(iv) Removal of outliers. The data were also cleaned by removing the outliers. The
outliers were defined as any values higher than five times the standard deviation of a
feature. According to Chebyshev inequality, this ensures to remain at least 96% of the
data (Seo, 2006).

The number of observation data points returned from these data preparation are sum-
marized in Table 5.2. The longitudinal plot of the data are shown in Figure 5.2 to 5.4.

5.3 Methods

This study aims to investigate the effects of data aggregation on the statistical characteristics
of EPB TBM data and the prediction models. This was achieved by conducting three main
tasks, as listed below.

1. Evaluating the dynamic behaviors of TBM data. This task was performed to
understand how the statistical parameters of TBM data evolve during tunneling. This
was achieved by investigating the change of statistical parameters of the reference data
sets (i.e., fine aggregate observation data points) along the chainages.
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Figure 5.2: Longitudinal plot of the SR99 data sets in both fine and coarse data aggregation
levels.
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Figure 5.3: Longitudinal plot of the NSLP1-SB data sets in both fine and coarse data aggre-
gation levels.
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Table 5.1: List of EPB TBM features selected for the data aggregation analysis.

No. Feature Unit Group Remark

1 Advance rate mm/min Advancing Average speed of cylindrical
thrusts

2 Thrust force MN Advancing Total force of cylindrical thrusts

3 Cutter torque MNm Excavation Torque of cutter head

4 Foam volume m3/m Ground
conditioning

Total volume of injected foam
normalized by the injection
distance (i.e., thrust stroke)

5 Chamber
pressure

MPa Earth pressure
balancing

Average pressure in the chamber

6 Screw rotation
speed

rpm Muck
discharging

Average rotation speed of screw
conveyor

7 Grout volume m3/m Backfill grouting Total volume of injected grout
normalized by the injection
distance (i.e., thrust stroke)

Table 5.2: Summary of the observation data points.

Aggregation Level SR99 NSLP1-SB BSLP1-NB

20 mm-length 140377 130499 132039

Ring-length* 1415 1737 744

*) slightly varies with approx. 1.5 m

2. Investigating the effects of data aggregation on the statistical parameters.
This task was performed to understand how data aggregation changes the statistical
parameters of TBM data. This was achieved by investigating the ratio of statistical
parameters in different data aggregation levels along the tunnel chainages.

3. Investigating the effects of data aggregation on the prediction models. This
task was performed to understand what aspects of prediction models are distorted
by data aggregation. This was achieved by developing models using two different
data aggregation levels (i.e., fine and coarse aggregates) and investigating the models’
predictability, computability, and stability.

More descriptions of the methods can be found in the following sections.
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5.3.1 Statistical Parameters

The statistical characteristics of the data were investigated in terms of (i) the mean, which
represents data central tendency, (ii) the standard deviation, which represents the data vari-
ation (or dispersion), and (iii) Kolmogorov-Smirnov (KS) D-statistic, which represents the
difference of the data distribution to a benchmark distribution, i.e., the normal distribution.

The arithmetic mean, µ, is defined as

µ =
1

n

(
n∑

i=1

xi

)
, (5.1)

where xi is the value of x variable feature at an observation data point i, and n is the total
number of the observation data points.

The standard deviation, σ, is defined as

σ =

√
1

n
(xi − µ)2. (5.2)

The KS test is a nonparametric method to quantify the difference between two data
distributions. The test measures differences between two cumulative frequency distributions
and take the maximum absolute difference, D, defined as

D = max|Fo(x)− Fref (x)|, (5.3)

where Fo(x) is the observed cumulative frequency distribution of a variable and Fref (x) is
the reference cumulative frequency distribution. In the KS test, a larger D indicates a larger
difference between the two data distributions.

These statistical parameters were computed over the spatial sequence to investigate the
change in the data characteristics during tunneling. This means each parameter was com-
puted at every observation data point (chainage points), using all the previous observation
data points from the beginning of the tunneling. This was applied to all the selected features
and all the tunneling cases.

5.3.2 Aggregation Ratio

The effects of aggregation on the statistical parameters were represented by an aggregation
ratio, R, defined as

R =
ϕagg

ϕref

(5.4)

where ϕagg and ϕref are statistical parameters from the aggregated data (i.e., the coarse
aggregate) and referenced data (i.e., the fine aggregate), respectively. An aggregation ratio
of 1.0 indicates that the aggregation does not change the statistical parameter of the data, i.e.,
both aggregation levels exhibit an equivalent parameter. In contrast, high or low aggregation
ratios indicate strong aggregation effects on the parameter. The aggregation ratio was also
computed over the spatial sequence to investigate the change of the aggregation effects along
the tunnel chainages.
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5.3.3 Model Setup

The effects of data aggregation on prediction models were investigated by developing models
using two different data aggregation levels, i.e., the fine aggregation (20 mm chainage-length
data points) and coarse aggregation (ring-length data points). The schematic diagram of
the prediction model is presented in Figure 5.5. This model considers a TBM feature as
a response variable and the other six as predictor variables. To limit the complexity, this
model does not consider correlations between observation data points. This means a response
variable at an observation data point of i is predicted using predictor variables at the same
observation data point of i, without considering other predictor variables from the previous
observation data points (Zeger & Liang, 1992).
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Figure 5.5: Schematic diagram of the prediction model.

The models were developed in the dynamic sequential learning scheme to represent the
real tunneling sequence and data acquisition process. The schematic diagram of the dynamic
sequential learning scheme is presented in Figure 5.6. In this scheme, the predictions are
performed in sequential order at every observation data point (as testing data) based on
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past observations (as training data). In other words, to predict a response variable at
an observation data point, the prediction model is trained using all previous observations
before that point. The prediction model is continuously retrained to predict the following
observation data point. This means the model learns incrementally during the tunneling
process.

4321

5 421 3

21 … n… n-1

Training data

….. 

Observation data points along the tunnel chainages, n

5 421 3 6 

Testing data

Figure 5.6: Schematic diagram of dynamic sequential data splitting for model training and
testing.

5.3.4 Prediction Methods

To investigate the effects of data aggregation, the models were also developed using different
prediction methods, i.e., the Ordinary Least Squares (OLS) and Random Forests (RF).

• OLS is a widely used linear regression method that uses regression coefficients to define
a response variable, yi, as a linear function of the predictor variables, x1, x2, . . . , xp.
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The regression coefficients can be estimated by minimizing the residual sum of squares
(RSS). This method was selected to represent parametric linear prediction methods.

• RF is an ensemble-supervised learning algorithm that aggregates a large number of
decision trees to produce predictions (Breiman, 2001). RF was selected to represent
nonparametric nonlinear machine learning methods. This study used the RF fast
implementation in C++ and R (Wright & Ziegler, 2017).

RF was selected since this method has straightforward hyperparameter tuning and per-
forms excellently in tabular data (Grinsztajn et al., 2022). The method is also robust to
noises and less prone to overfit (Y. Liu et al., 2012). Furthermore, as a nonparametric
method, RF does not require the data to meet certain assumptions or parameters (Malley
et al., 2012). More discussion of these prediction methods and their mathematical bases can
be found in Chapter 4.

5.3.5 Model Hyperparameters

RF regression models can be tuned by specifying the hyperparameters, such as, the number
of trees (ntrees), the possible number of features that are randomly selected to split at each
node (mtry), the minimum node size, and the splitting rule. However, various studies have
shown that, as long as the number of trees is adequate, variation of the other hyperparameters
will not significantly affect the RF model performance (Apoji et al., 2022b; Bernard et al.,
2009; Probst et al., 2019). In this study, the RF hyperparameters were selected based on
recommendations from previous studies (Apoji et al., 2022b; Probst et al., 2019), i.e., ntrees
= 500, mtry = p/3, min node size = 5.

5.3.6 Model Evaluation and Feature Importance

This study used the normalized mean absolute error (NMAE) as the performance metric.
This metric was selected to accommodate comparisons of errors across features with different
units. The mean absolute error (MAE) is defined as

MAE =
Σn

i (yi − ŷi)
2

n
. (5.5)

Then, the NMAE can be obtained, which is defined as

NMAE(y, ŷ) =
MAE(y, ŷ)

1
n
Σn

i |yi|
(5.6)

The stability of the prediction models was represented as the sensitivity of the feature
importance ranks under various conditions. This means a model can be considered stable (or
not sensitive to data aggregation) if it has comparable feature importance ranks in various
model settings and input, i.e., different prediction methods, data aggregation levels, and
tunneling cases.
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• The feature importance rank of OLS models was obtained from the absolute value
of OLS coefficients. The higher the OLS coefficients, the stronger that feature as a
predictor. Note that the predictor variables were in different scales. Therefore, these
predictor variables were standardized to allow comparisons of OLS coefficients.

• The feature importance rank of RF models was obtained from the permutation im-
portance scores. The permutation-based feature importance analysis measures the
difference between the prediction accuracy of the model developed using the original
predictors and the prediction accuracy of the model developed using a predictor being
permuted (Gregorutti et al., 2017; Nicodemus et al., 2010). Higher permutation impor-
tance scores of a feature mean higher prediction errors when it is permuted, indicating
the importance of the feature as a predictor in the model.

5.4 Results and Discussion

5.4.1 Statistical Parameter Changes Over Dynamic Sequence

Figure 5.7 presents statistical parameters of all the considered EPB TBM features from the
fine aggregate data sets. Since the features are in different units, these parameters were
normalized to their end values for the presentation purpose, e.g., µi

µn
, where µi is the mean

of a feature until a particular chainage location i, and µn is the mean of the feature until the
end of the tunneling. The figure shows that every tunneling case produced different patterns,
even for the NSLP1 twin tunnels that were carried out in the same geologic conditions. This
demonstrates the complexity and uniqueness of every TBM data.

The figure shows that the mean and the standard deviation of all the features and from
all the tunneling cases were unstable during the early part of the tunnel chainages when
the observation data points were limited. These parameters became more stable in larger
numbers of observation data points since a single new observation had a smaller impact on
shifting the parameters. This is also related to the Law of Large Numbers (LLN), which pos-
tulates that the distribution of an independent and identically distributed random variable
will converge to the mean of the population as the sample size increases.

The KS D parameter in this figure represents the similarity between the distribution of
a variable feature and the Gaussian (normal) distribution. The lower the D parameter, the
closer the data distribution of that feature is to the normal distribution. Similar to the other
parameters, the D parameter fluctuated during the early part of the tunnel chainages and
then stabilized in larger numbers of observation data points. Overall, the values were above
0 but below 0.3. This means no features had precisely the same distribution as the Gaussian
distribution. Nevertheless, approximating the distributions with the Gaussian distribution
may still be reasonable, especially for features with a D parameter close to 0.
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Figure 5.7: Statistical parameters of the considered EPB TBM features from all the tunneling
cases.
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5.4.2 Effects on Statistical Parameters

Figure 5.8 presents aggregation ratios of the considered EPB TBM features from all the
tunneling cases. The figure shows that data aggregation levels did not affect the central
tendency of most variable features. The aggregation ratio of the means jittered at the early
chainages but converged and stabilized at approximately 1.0, as expected mathematically.
In contrast, the data aggregation levels affected the data variation. The aggregation ratio of
the standard deviations also jittered at the early chainages.

However, many features converged and stabilized at values lower than 1.0. This means the
coarse aggregate data have a lower variance than the fine aggregate data. This demonstrates
that TBM data aggregation is essentially the same as data smoothing (or denoising), which
attempts to reduce the data variance while preserving the central tendency.

The aggregation ratio of the KS D parameter shows different behaviors. The aggrega-
tion ratio continuously fluctuated from the beginning until the end of the tunnel chainages.
Furthermore, the effects were more substantial. In many features, the ratios were in the
range of 0.5 to more than 2.0. This suggests that the effects of aggregation on TBM data
distribution can be more sensitive and less predictable than the other statistical parameters.
This can be an important consideration when developing a TBM data-driven model using a
prediction method that works under certain data distribution assumptions.

5.4.3 Effects on Model Predictability

Figure 5.9 presents the prediction performance comparison between models trained using the
coarse and fine aggregate data. The figure also shows the performance comparison between
the OLS and the RF prediction methods. Three features were selected as the response
features, i.e., the cutter torque (left panels), foam volume (center panels), and advance rate
(right panels). The figure shows that both data aggregation levels and prediction methods
produced high errors and intense jitters during the early part of the chainages. This low
prediction performance was likely due to limited training data since the errors dropped and
stabilized in the later chainages when more training data were available. This indicates
that there may be a threshold level where the training data can be considered sufficient to
produce stable and reliable predictions.

The figure also shows that the RF models consistently outperform the OLS models at
the same data aggregation level. This indicates the presence of complex and nonlinear rela-
tionships in TBM features, which are the product of interactions among the operator control
decisions, TBM behaviors, and geologic conditions. The OLS rigidly fitted the feature rela-
tionships to be linear. In contrast, the RF method flexibly facilitated nonlinear relationships
among the features, resulting in better prediction performance. This demonstrates the value
of using nonlinear nonparametric machine learning methods to develop TBM prediction
models.

Furthermore, the figure shows that RF models with coarse aggregate data produced
better prediction performance than those with fine aggregate data. This is due to the lower
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Figure 5.8: Aggregation ratios of the considered EPB TBM features from all the tunneling
cases.
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Figure 5.9: Comparison of prediction performance between prediction models trained using
fine and coarse data aggregation levels.
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variance of the coarse aggregate data (in both training and testing data). However, despite
the difference, both data aggregation levels produced similar prediction behaviors (error
patterns) along the chainage. This indicates that data aggregation does not substantially
affect the behaviors of prediction models. However, it affects the prediction performance,
where models with a coarser data aggregation level will gain higher prediction performance
due to the lower variance. This suggests that different preparation methods (data aggregation
or smoothing methods) may be used to obtain the general behaviors of prediction models,
but the prediction performance comparison is only valid at the same data aggregation level.

Similarly, OLS models with coarse aggregate data produced better prediction perfor-
mance than those with fine aggregate data. However, an exception should be made for cutter
torque predictions of the NSLP1-NB data set. In this case, the OLS model with coarse data
aggregation produced extremely high errors. This is likely caused by response outliers or
high leverages in the prediction results, which are statistical phenomena of extremely high
residual errors due to the presence of multicollinearity among the predictor variables (James
et al., 2013). These problems can potentially occur in OLS-based regression methods. This
shows that RF models produced better performance and more stable predictions than the
OLS models, which suggests another advantage of using machine learning to develop EPB
TBM prediction models.

5.4.4 Data Reduction and Information Loss

In this investigation, the prediction models were trained using five data reduction scenarios,
i.e., the coarse aggregate data (approx. 1% of the fine aggregate data) and random sampling
of the fine aggregate data with the percentage of 1%, 5%, 10%, and 30%. The prediction
model was also trained using 100% of the fine aggregate data to provide a benchmark per-
formance. Note that different from the previous investigation, all the trained models here
were tested using the fine aggregate data to measure the effect of data reduction.

Figure 5.10 presents the effects of data reduction on the performance of the SR99 cutter
torque prediction models. The left and right panels show the OLS and RF prediction results,
respectively. Both figures show that prediction models trained using the coarse aggregate
data produced the lowest prediction performance (the highest errors), even compared to
models trained using the 1% random sample of the fine aggregate data, which has a similar
number of observation data points. This demonstrates the limitation of prediction models
trained using coarse aggregate data. As discussed previously, data aggregation reduces the
variance of the features. Thus, the model could not capture the variance of fine aggregate
data in the testing set. This suggests that a prediction model should be trained using a data
set with the same aggregation level as the future (testing or prediction) data. The model
may suffer substantial reductions in prediction performance if trained using the aggregated
(or smoothed) data set.

Furthermore, Figure 5.10 also presents the effects of information loss on prediction perfor-
mance. The figure shows that the performance of the RF models increases with the increase
in sampling percentage. The RF model trained using only 30% of the fine aggregate data
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Figure 5.10: Effects of data reduction on the prediction performance of the models.

shows only a slight performance reduction (about 0.01 difference) compared to the complete
data set (100%). This shows a trade-off between the prediction performance and the com-
putation cost in RF prediction models. In contrast, the effects of information loss due to
data reduction cannot be observed in the OLS models. The OLS models produced almost
identical prediction performance in all randomized sampling data reduction scenarios. As a
linear parametric method, OLS fits the predictors’ relationships to be always linear. There-
fore, in unbiased conditions, the same linear relationship will be constructed no matter how
many data points are used to train the model (to fit the prediction line). This suggests
that a small percentage of randomized sampling can be adequate to build an OLS prediction
model. Nevertheless, this also means that more available data will not provide additional
values for the OLS model.

5.4.5 Effects on Model Computability

Tunneling operations involve incremental learning along the chainages. In this case, the de-
veloped data-driven models should be able to learn continuously and incrementally along the
tunnel chainages. This can be done by dynamically re-training the model using previously
generated data. However, it should be noted that the amount of operation data gener-
ated during tunneling continuously increases and can be massive (e.g., can easily achieve
TBs), depending on the tunnel length and the construction period. Therefore, computation
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scalability should be an important consideration in developing the model.
Figure 5.11 presents the computation profile of RF model training in different data sizes.

In this investigation, all the computations were conducted using a single thread. The left
panel shows the required computation time along the chainages. It can be observed that
the required computation time continuously increases as the amount of training data in-
creases. This highlights the importance of computation scalability for data-driven modeling
in tunneling. The right panel shows the computation speed-up, which compares the com-
putation performance of a model relative to the reference model (i.e., 100% training data).
The figure shows that reducing the training data to 30% could speed up the computation to
about 4-5 times without sacrificing the prediction performance significantly (Figure 5.10).
Training with only 5% and 1% data could increase the speed-up to about 40 and 300 times,
respectively, with more trade-offs in the prediction performance.
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Figure 5.11: Effects of data size on the computation time (left panel) and speed-up (right
panel) of the RF models.

Figure 5.11 also shows that the model trained using the coarse aggregate data had similar
computation performance to the model trained using 1% of the fine aggregate data, as both
had a similar number of observation data points. However, the coarse aggregate data model
produced substantially lower prediction performance (see Figure 5.10). This suggests that
randomized sampling should be the preferred option for reducing training data size, which
confirms the study by Kammerer et al. (2020).
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5.4.6 Effects on Model Stability

In this study, the stability of prediction models is represented as the sensitivity of the feature
importance ranks in different data aggregation levels and tunneling cases. This can be
visualized and measured by plotting feature importance ranks produced by prediction models
trained using the 20 mm aggregate data on the x-axis and the ring aggregate data on the
y-axis. Visualization of this plot is shown in Figure 5.12. The plot will align perfectly in
a diagonal line if both data sets produce the same ranks. In contrast, the plots will be
scattered if the ranks are different.
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Figure 5.12: Visualization of feature importance comparison plot and the indication to stable
and unstable ranks.

Stable Feature Importance Ranks. Figure 5.13 presents prediction models with
relatively stable feature importance ranks, where diagonal patterns can be observed. The
top and the middle panels present the feature importance rank of the thrust force and cutter
torque models, respectively. These panels show that both data aggregation levels produced
models with comparable feature importance ranks. This applies to both prediction methods
(OLS and RF) and all tunneling cases. The ranks were also consistent. The result shows that
cutter torques, thrust forces, chamber pressures, and foam volumes were strongly associated.

This is sensible since cutter torques should be associated with the geologic characteristics
(Maher, 2015; Sousa, 2010; Sousa & Einstein, 2012) and proportional to the thrust forces at
the same geologic characteristics (Ates et al., 2014; Jakobsen et al., 2013). Furthermore, the
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Figure 5.13: Examples of prediction models with relatively stable feature importance ranks.
Diagonal patterns of the data points can be observed.
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chamber pressures and foam conditioners should also be associated with geologic character-
istics. Chamber pressures are continuously regulated during tunneling to balance the earth
pressure, which is a function of the confining pressure at a particular depth (Guglielmetti,
2008; JSCE, 2016; Maidl et al., 2013). The deeper the tunneling, the larger the confining
pressure, and the more likely the geology has higher strength characteristics. Foam con-
ditioners are typically injected into the excavation face during tunneling to condition the
excavated geologic materials (e.g., lower strength, higher plasticity, and better flow behav-
ior) (Peila, 2014; Peila et al., 2019; Thewes & Budach, 2010) and therefore should be related
to the geologic characteristics.

The bottom panels present the feature importance rank of the foam volume models. The
RF models show that chamber pressures, cutter torques, thrust forces, and advance rates are
important predictors of foam volumes. This is sensible since, as discussed previously, foam
volume should be associated with the geologic characteristics, and the geologic characteristics
should also be associated with the chamber pressure, cutter torque, and thrust force. Several
past studies have indicated that TBM advance rates are associated with foam conditioners
(Apoji et al., 2022a; Maher, 2015; Roby & Willis, 2014; X. Ye et al., 2017). However, the
OLS models produced more rank disagreement. Some results are also less convincing. For
example, in the SR99 case, the OLS model trained using the coarse aggregate data considered
grout volumes as a high-rank feature and chamber pressures as a low-rank feature. This is
different from all other models. This indicates that OLS coefficients can be more sensitive
(less stable) to data aggregation effects.

Unstable Feature Importance Ranks. Figure 5.14 presents two prediction models
with unstable feature importance ranks. It can be observed that the plots show scattered
data points without any apparent patterns. This means models trained with the two differ-
ent data aggregation levels produced substantially different feature importance ranks. The
feature importance ranks were also inconsistent, even for the NSLP1 twin tunnels, which
were excavated in the same geologic conditions. The feature importance rank disagreement
might be due to none of the considered predictors dominating the response feature or the
presence of missing predictors (i.e., other variables outside the considered predictors that
strongly governed the response feature).

The advance rate models can be evidence (Figure 5.14, top panels). TBM advance
rates are typically regulated by adjusting the other control parameters, such as the thrust
force and cutter rotation speed. The target advance rate is determined based on various
decision factors, such as the required chamber pressure, geologic conditions, target tunneling
performance, TBM behaviors, and even personal driving preference (Sutcliffe 1996). These
factors might not be captured in the considered predictors. The grout volume models can be
another example of evidence ( Figure 5.14, bottom panels). Backfill grouting is a task to close
the gap between the newly installed tunnel ring segments and the excavation opening. The
grout is typically injected from the shield tail until a certain injection pressure or volume,
depending on factors such as the estimated overburden pressure or excavated materials.
Thus, grout volumes may not be associated with other features considered in this study.

Measuring Model Stability. The results show that prediction models trained using
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Figure 5.14: Examples of prediction models with unstable feature importance ranks. The
data points were scattered without any identifiable patterns

different data aggregation levels may or may not produce similar feature importance ranks.
Comparable feature importance ranks could be achieved by models with adequate predictor
features, such as the thrust force and cutter torque models. In contrast, substantial dis-
agreements in the ranks were produced by models with insufficient predictor features, such
as the advance rate and grout volume models. This indicates that a prediction model with
any data aggregation levels may produce a valid feature importance rank in the condition
of sufficient predictor features. This also suggests that the stability of feature importance
ranks can be used to indicate and measure the sensitivity of a prediction model in different
data aggregation levels.

Quantitative measurement of the models’ stability was done by computing the coefficient
of determination, R2, of the feature importance comparison plots. If the models produce
exactly the same feature importance ranks, the plot will align perfectly in a diagonal line
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with an R2 of 1.0. Therefore, a high R2 (i.e., closer to 1.0) indicates a stable model. In
contrast, a low R2 (i.e., closer to 0) represents disagreements in the ranks, which indicates
an unstable model. Figure 5.15 presents the R2 of every prediction model for all considered
features. The figure shows that most of the considered features produce fairly good stability
(i.e., R2 > 0.5), except the advance rate and grout volume models, which have been discussed
previously. The figure also shows that, overall, RF models produced better stability than
the OLS models. This result is interesting since nonlinear nonparametric machine learning
models have been widely seen to be less stable than linear parametric methods such as
OLS. This implies that machine learning is a valuable tool when working with complex and
nonlinear data sets such as TBM data.
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plots of all prediction models.
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5.5 Conclusions

This study has investigated the effects of data aggregation on the statistical characteristics
and prediction models of TBM data. The investigation was conducted using three EPB TBM
data sets from two tunneling cases, i.e., the SR99 highway tunnel in Seattle, Washington,
USA, and the NSLP1 MRT railway twin tunnels in Jakarta, Indonesia. The observation data
points for each data set were prepared in two data aggregation levels, i.e., fine aggregate data
(20 mm chainage length) and coarse aggregate data (ring-length data points). The effects of
data aggregation were analyzed in the framework of the models’ predictability, computability,
and stability . The main findings of this study are summarized in the following.

• Effects on statistical parameters. Data aggregation does not substantially affect
the central tendency of TBM data. However, it changes the data variance and distri-
bution. Data with a coarser aggregation level tend to have lower variance. The effects
on data distribution can be more sensitive and less predictable.

• Effects on model predictability. In the conditions of sufficient observations and
predictors, prediction models developed using different data aggregation levels may pro-
duce comparable trends of prediction performance. However, models with a coarser
aggregation level enjoy higher prediction performance due to the lower variance. This
applies to both parametric linear regression (OLS) and nonlinear nonparametric ma-
chine learning (RF) models. Therefore, different preparation methods (data aggrega-
tion or smoothing methods) may be used to obtain the general behaviors of prediction
models, but the prediction performance comparison is only valid at the same data
aggregation level.

• Data reduction and computability. The training data set of a prediction model
should be at the same aggregation level as the testing data set (or future prediction
data). Training the model using data using coarser aggregation may cause it fails
to capture the variance in the predictions. In reducing training data size, random
sampling should be preferred to aggregation. With the same quantity as aggregated
data, random sampling may produce a higher prediction performance.

• Effects on model stability. The result suggests that prediction models with any
data aggregation levels may produce a valid feature importance rank in the condition
of sufficient predictor features. Thus, the stability of the rank can be used to indicate
and measure the sensitivity of the models in different data aggregation levels. Stable
feature importance ranks can be achieved if the predictor features are sufficient to
represent the response feature. In contrast, unstable feature importance ranks may
imply insufficient (or missing) predictors.

In addition, this study has demonstrated the importance of utilizing nonlinear nonpara-
metric machine learning methods in working with complex data sets such as TBM data,
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which is the product of causal-effect interactions of operator control decisions, TBM behav-
iors, and geologic conditions. This study has shown that RF models consistently outper-
formed OLS models in both predictions and stability.

These findings have also provided some bases for more research questions, as the following.

• Finding the optimal aggregation. Further study can be performed using more
data aggregation levels and varying the types of observation data points (i.e., spatial
vs. temporal). This may lead to an optimal data aggregation level, which will be an
important milestone in developing a unified data preparation method for TBM data.

• Finding the threshold of sufficient data. This study shows that the statistical
parameters and prediction behaviors jittered in the early chainages but converged and
stabilized later. This indicates that there may be a threshold level where the training
data can be considered sufficient to produce stable and reliable predictions. Finding
this threshold will provide important information on developing data-driven models in
tunneling.

• Evaluating the reliability of feature importance ranks. This study demon-
strates that feature importance analysis is the foundation of measuring the stability
of prediction models. However, there are various methods to measure the importance
score, and each method can result in different importance scores and ranks (Genuer
et al., 2010). Thus, selecting the best method for determining the feature importance
rank is still debatable. The permutation-based feature importance was argued to be
less susceptible to bias than the standard impurity-based importance (Altmann et al.,
2010; Strobl et al., 2007). Nevertheless, this method may not be free from problems,
as it may can be misleading, particularly in the presence of strong dependency among
the predictor features (Hooker et al., 2021). Further investigation should be performed
using different feature importance analysis methods to obtain more robust conclusions.
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Chapter 6

Effects of Feature Selection on
Prediction Models

6.1 Introduction

6.1.1 Background

Tunnel boring machines (TBM) continuously generate numerous operation data every few
seconds during tunneling. Depending on the TBM design, the produced operation data can
reach hundreds or even thousands of variable features. This massive data contains valuable
information about the tunneling process, which is essential for TBM control decision-making.
Various data-driven models have been proposed to utilize the data to support tunneling
operations. Most proposed models used machine learning algorithms to predict a response
feature based on the high-dimensional predictor features. Many studies have demonstrated
encouraging results, suggesting the possibility of further potential to utilize TBM data.

Despite this potential, the data also has an inherent problem. Many of the features are
highly correlated. In data-driven models, strongly correlated features cause redundancy,
increase the computation cost, and further complicate the model’s interpretability. Further-
more, they may produce multicollinearity-related problems in linear prediction models such
as the ordinary least squares (OLS). This problem leads to some questions: What are the
most appropriate features to be included when developing a tunneling data-driven model?
How should the feature selection be performed? What are the effects of the selection? Se-
lecting features from TBM data can be problematic due to the massive size and the level
of complexity. Note that the data is a product of causal effect interactions of the ground
conditions, TBM behaviors, and human operator decisions. To date, less effort has been
given to understanding these features and their effects on the models.
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6.1.2 Related Works

In early development, TBM data-driven models were developed using only a few pre-selected
TBM features. These features were typically selected based on experience and simple empir-
ical relationships. For example, Suwansawat and Einstein (2006) selected five earth pressure
balance (EPB) TBM features to develop artificial neural network (ANN) models for esti-
mating tunneling-induced ground movements, i.e., face pressure, penetration rate, pitching
angle, tail grouting pressure, and percent of tail grout filling.

In contrast, Boubou et al. (2010) selected 10 EPB TBM features to develop similar mod-
els, i.e., advance rate, cutter torque, thrust force, chamber pressure, tail grouting pressure
and volume, horizontal and vertical guidance parameters, the time required for excavation
and installation one tunneling lining, and total work for one ring excavation. These examples
show that the selected TBM features could vary, even for similar models (ANN) and with
the same prediction response (tunneling-induced ground movements).

In the next development, the selection was conducted more systematically using fea-
ture selection algorithms (FSA). This allowed more TBM features to be evaluated. Maher
(2015) conducted a comprehensive analysis using various FSAs, such as filter, wrapper, and
ensemble-based methods, to identify strong predictors for EPB TBM advance rate from hun-
dreds of sensor measurements. These algorithms could identify strongly and weakly related
features. However, they often returned inconsistent results, where different algorithms pro-
duced different ranks. Furthermore, these algorithms could not capture the mixed causal
effect relationships of the features. For example, increased belt conveyor speed should be the
effect of the increased advance rate. Therefore, belt conveyor speed should not be a strong
predictor of advance rate. These problems show that the standard FSAs are insufficient for
the EPB TBM data sets.

To deal with these problems, Maher developed a novel ensemble FSA called the ensemble
network normalization algorithm (JENNA). This algorithm could produce better feature se-
lection result stability than a conventional ensemble FSA (Saeys et al., 2008). Furthermore,
some selected features from the northbound and southbound tunnel data sets were simi-
lar, which indicates the algorithm’s capability to generalize from different tunnel data sets.
Nevertheless, many of the selected features consisted of individual sensor records. This can
mislead the interpretation. For example, foam is typically injected into the excavation face
to condition the ground through multiple pipes. If the algorithm returns only a few numbers
out of all the foam injection pipe sensors as the selected features, this should not be inter-
preted that only those particular selected foam injection sensors are the strong predictors.
This implies the generalizability problem in FSA-based EPB TBM feature selection.

Recently, more variations of methods have been proposed for TBM feature selection.
Many of them were developed using machine learning. Meschke et al. (2019) used embed-
ding and clustering algorithms to select input features for penetration rate and settlement
prediction models. They used the t-SNE algorithm (Maaten & Hinton, 2008) to project the
original features into an embedding space. Then, the clustered the embedded feature points
using the HDBSCAN algorithm (Campello et al., 2013). Feature points with clusters were
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validated using the Spearman correlation. Only one feature point was selected to represent
every cluster with a relative correlation value less than a specified threshold. Feature points
with no cluster were considered unique features. Mokhtari and Mooney (2020) used a feature
filtering technique called RReliefF (Robnik-Šikonja & Kononenko, 2003) to select input fea-
tures for an advance rate prediction model. They used a pair-wise correlation of high-ranking
features to identify feature redundancies. The redundant features were removed, remaining
a single representative feature.

6.1.3 Objectives

The discussed studies highlight the variation of features used in TBM data-driven models.
Until now, a unified approach to selecting TBM features has not been available (Marcher
et al., 2020; Sheil, Suryasentana, Mooney, et al., 2020). This limits the interpretability and
generalizability of the models. Recent studies have indicated that feature selection guided by
domain knowledge may improve the stability of the results, such as in transport economics
(Groves & Gini, 2015), healthcare (Radovanovic et al., 2015), and biological data (Raghu
et al., 2017). However, no study has investigated the implementation of knowledge-based
feature selection for TBM data. The effects of the feature selection on the prediction models
have not also been identified.

This study aims to (i) propose a generalized knowledge-based taxonomy of EPB TBM
features and (ii) investigate the effects of the knowledge-based feature selection on prediction
models. The knowledge-based taxonomy was developed by synthesizing various tunneling
information such as published literature and guidelines, standard codes, as well as the ex-
perience of engineers and operators. The effects of the feature selection on the models were
investigated in the framework of the models’ predictability, computability, and stability
(generalizability) (B. Yu & Kumbier, 2020).

Machine learning models have been widely seen as ”black box” models. The models can
yield high prediction accuracy but are difficult to be interpreted. Understanding the input
features should be a necessary attempt to open the models. The proposed taxonomy is
expected to serve as a guide for EPB TBM feature selection and facilitate a unified method
of TBM data preparation.

6.2 Data

6.2.1 Tunneling Cases

This study was performed using the same EPB TBM data sets used in Chapter 5, i.e., (i)
the State Route 99 (SR99) highway tunnel in Seattle, Washington, USA, and (ii) the North-
South Line Phase-1 (NSLP1) Mass Rapid Transit (MRT) railway twin tunnels in Jakarta,
Indonesia. More discussion of these tunneling cases can be found in Chapter 5.
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6.2.2 Data Description and Preparation

As discussed in Chapter 5, the three data sets consisted of enormous tunneling operation mea-
surement records generated by numerous sensors installed on the TBM. To limit the scope,
this study only considered numerical features from continuous measurements. All categorical
features (e.g., features of status levels and switch on/off) were removed. Furthermore, this
study focused on the primary EPB TBM processes during the tunneling excavation phase,
i.e., excavating, advancing, steering, ground conditioning, earth pressure balancing, muck
discharging, and tail grouting processes. Features related to the non-excavation phase, such
as segment lining erection, and features related to mechanical and electrical components,
such as gear and oil conditions, were not considered.

The original observation data points of the three data sets are in 5 seconds. However, to
minimize the data noise and computation cost, this study used ring-length aggregate spatial
series as the observation data points. This means an observation data point is the average
measured values within a ring length for gauge metrics (e.g., features of pressures, forces,
torques, and speeds) or the final measured value of a ring for cumulative increment metrics
(e.g., features of volumes). Note that the data aggregation should not affect the validity
of the results. As concluded in Chapter 5, in the condition of sufficient observation data
points and predictor features, this aggregation should not substantially affect the model’s
prediction behaviors (error trends) and generalizations (feature importance rank).

Subsequent to the initial preparation, the data sets were cleaned according to the follow-
ing steps, (i) volume normalization, (ii) removal of non-excavation observation data points,
(iii) removal of erroneous records, and (iv) removal of constant features. More discussion of
these steps can be found in Chapter 5. The number of features and observation data points
returned from all of these data preparation are summarized in Table 6.1.

Figure 6.1 presents the correlation networks of the three prepared data sets. Each node
in the networks represents an EPB TBM feature. The clustered nodes indicate strongly
correlated features. The blue and red lines represent positive and negative correlations,
respectively. The stronger the color, the higher the correlation value. The plots were built
using a correlation threshold of 0.5, meaning only correlations higher than this value are
shown. This figure visualizes high multicollinearity among the EPB TBM features.

6.3 Methods

This study aims to propose a generalized knowledge-based taxonomy of EPB TBM features
and investigate the effects of feature selection on prediction models. This was achieved by
conducting three main tasks, as listed below.

1. Developing a taxonomy for selecting features. This task was performed to
develop a generalized taxonomy of EPB TBMs. This was achieved by combining
knowledge-based feature hierarchy and correlation-based filtering.
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(a)

(b)

(c)

Figure 6.1: Correlation networks of EPB TBM data: (a) SR99, (b) NSLP1-SB, (c) NSLP1-
NB
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Table 6.1: Dimension of the data sets before and after data preparation.

Data Dimension Data Preparation SR99 NSLP1- NSLP1-

SB NB

Features Original 5975 467 467

After removing non-continuous
variable features

2306 247 247

After removing features not
directly related to main EPB
TBM functions

601 79 79

Observation Original 1416 1771 1777

After removing non-excavation
phases, missing data, and
erroneous records

1253 1684 1695

2. Evaluating multicollinearity. This task was performed to demonstrate the presence
of multicollinearity in EPB TBM data and evaluate the effects on the prediction models.
This was achieved by measuring the variance inflation factor (VIF) of the data and
developing least squares-based regression models.

3. Investigating the effects of feature selection on the prediction models. This
task was performed to the effects of the selected feature set on prediction models. This
was achieved by developing models using two different feature sets (i.e., with and with-
out the feature selection) and investigating the models’ predictability, computability,
and generalizability.

More descriptions of the methods can be found in the following sections.

6.3.1 Hierarchical Feature Selection

The EPB TBM feature taxonomy was developed by combining knowledge-based feature
hierarchy and correlation-based filtering. The knowledge-based feature hierarchy was con-
structed by synthesizing various tunneling information such as published literature and guide-
lines, standard codes, as well as the experience of engineers and operators. This resulted in
four levels of EPB TBM feature hierarchy, i.e., (i) the process level, (ii) the component level,
(iii) the unit measurement level, and (iv) the individual sensor level.

1. Process level. At the process level, all the EPB TBM features were categorized into
seven partial processes of EPB tunneling, i.e., excavation, advancing, steering, ground
conditioning, earth pressure balancing, muck discharging, and tail grouting processes.



CHAPTER 6. EFFECTS OF FEATURE SELECTION ON PREDICTION MODELS 88

This category was determined based on the main EPB TBM processes (Chapter 2).
Note that all processes unrelated to the tunneling excavation phase, such as segment
lining erection, were not included.

2. Component (and sub-component) level. At the component level, features in each
process group were categorized into several groups of related TBM system components.
For example, the excavation process is associated with features related to the cutter
head and copy cutter systems. The advancing process is associated with features
related to TBM advance rate and thrust systems. Groups of sub-components were
included in some components with more complexities.

3. Unit measurement level. Features in each group of components (or sub-
components) that measure the same unit were grouped at the unit measurement level.
For example, the thrust system was divided into thrust speed (mm/min), force (kN),
pressure (bar or kPa), and stroke (mm).

4. Individual sensor level. The individual sensor level consisted of features produced
by the same sensor. For example, a TBM may have several pressure sensors installed
on different thrust jack groups, foam injection pipes, and locations in the excavation
chamber.

The feature taxonomy was developed by aggregating every feature at the individual sensor
level into a feature at the unit measurement level. Subsequently, features at every process
level were selected by considering (i) Spearman correlation, (ii) feature redundancy, and (iii)
applicability on different EPB TBM data sets.

6.3.2 Multicollinearity Analysis

Multicollinearity is a condition when the predictors of a regression model are correlated.
The presence of multicollinearity in the model can be measured using the variance inflation
factor (VIF). Consider y as a response feature with x1, x2, . . . , xp as the predictors. The VIF
of the predictors can be evaluated by first regressing every predictor i as a response to the
other predictors, i.e.,

x1 = α0 + α1x2 + α2x3 + · · ·+ αp−1xp + e

x2 = α0 + α1x1 + α2x3 + · · ·+ αp−1xp + e (6.1)

· · ·
xp = α0 + α1x1 + α2x2 + · · ·+ αp−1xp−1 + e

where α is the regression coefficients, and e is the residual errors. Then, the VIF of every
predictor i can be calculated as

V IFi =
1

1−R2
i

(6.2)
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where R2
i is the coefficient of determination of every estimated predictor i. The multi-

collinearity analysis was performed by measuring the VIF of data with and without the
feature selection. The effects of multicollinearity on prediction models were also investigated
by developing regression models using the two feature sets.

6.3.3 Model Setup

The effects of feature selection on prediction models were investigated by developing models
using two different feature sets, i.e., with and without the hierarchical feature selection.
Two TBM features were selected as the response feature, i.e., cutter torque and thrust force.
Each response feature was predicted using the other features as predictors. The schematic
diagram of the prediction model is presented in Figure 6.2. Similar to the prediction model
in Chapter 5, this model does not consider correlations between observation data points
(Zeger & Liang, 1992).
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Figure 6.2: Schematic diagram of the prediction model.
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The data was split in a static random scheme with a training and testing ratio of 70:30
(Figure 6.3). Note that this static random scheme does not represent the actual tunneling
process, which should be dynamic and sequential. However, this scheme is considered ad-
equate since this investigation aims to compare the effects of different feature sets, not to
simulate the tunneling process.

31 … n

Training data

Observation data points along the tunnel chainages, n

Testing data, randomly selected

2 4

Figure 6.3: Schematic diagram of static random data splitting for model training and testing.

6.3.4 Prediction Methods

Four prediction methods were used in this study, i.e., Ordinary Least Squares (OLS), Ridge
regression, the Least Absolute Shrinkage and Selection Operator (the Lasso), and Random
Forests (RF).

• OLS, as discussed in Chapter 5, is a widely used linear regression method that uses
regression coefficients to define a response variable, yi, as a linear function of the
predictor variables, x1, x2, . . . , xp. This method was selected to represent parametric
linear prediction methods.

• Ridge regression is a type of regularized linear prediction method. This method
has the same RSS as OLS, but the regression coefficients are estimated by minimizing
the RSS with a constraint. This can reduce the variance and make the prediction
results more robust to overfitting, thus leading to better generalization. This method
is commonly used to deal with data sets with multicollinearity problems. In this study,
ridge regression was performed using the algorithm implementation by Friedman et al.
(2010).
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• The Lasso is another type of regularized linear prediction method. This method
estimates the regression coefficients by minimizing the RSS with an absolute constraint.
Unlike Ridge regression which keeps all predictors in the prediction results, the Lasso
may shrink some of the predictors to zero. This shrinkage capability leads to better
interpretability of the prediction results. The Lasso was selected as a linear embedded
feature selection method. In this study, the Lasso was performed using the algorithm
implementation by Friedman et al. (2010).

• RF is an ensemble-supervised learning algorithm that aggregates a large number of
decision trees to produce predictions (Breiman, 2001). RF was selected to represent
nonparametric nonlinear machine learning and embedded feature selection methods.
This study used the RF fast implementation in C++ and R (Wright & Ziegler, 2017).

More discussion of these prediction methods and their mathematical bases can be found in
Chapter 4.

6.3.5 Model Hyperparameters

Hyperparameter analysis was performed on all the models to select the best hyperparameter
configuration. The analysis was done by conducting repeated cross-validation (i.e., five times
repeat, 10-fold CV) in various ranges of RF hyperparameters, i.e.,

(i) the number of trees (ntrees).

(ii) the possible number of features that are randomly selected to split at each node (mtry),

(iii) the minimum node size, and

The ntrees define how the forest is to be generated (i.e., the number of constructed
independent decision trees). Both mtry and the minimum node size define the complexities
of the constructed trees. The estimated response variance was used as the split rule in this
regression problem (Wright & Ziegler, 2017). This defines how a single decision tree is to be
constructed. The model performance was evaluated using the out-of-bag samples (OOB).

The hyperparameter analysis results are presented in Figure 6.4 and Figure 6.5. These
figures show that decent model performance could be obtained in adequate number of ntrees
(e.g., more than 100), mtry of about a third of the predictors, p, and small number of
minimum node size. This applies to the three different tunneling cases. Therefore, this
study used ntrees of 500, mtry of p/3, and minimum node size of 5. This configuration
agrees with the recommendation from previous studies such as Probst et al. (2019).

6.3.6 Model Evaluation and Feature Importance

The prediction models were evaluated using three performance metrics, i.e., the coefficient
of determination (R2), mean absolute error (MAE), and normalized mean absolute error
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Figure 6.4: Effects of ntrees and mtry hyperparameters on models with different feature sets
and tunnelling cases.

(NMAE). The R2 was used as the goodness of fit and is defined as

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
. (6.3)

The MAE and NMAE was used to accommodate comparisons of MAE across the features
with different units, as discussed in Chapter 5.

The generalizability of the prediction models was evaluated with the same method as
Chapter 5. Briefly, a model can be considered generalizable if it has stable feature importance
ranks in various model settings and input, i.e., different prediction methods, data aggregation
levels, and tunneling cases. The feature importance rank of OLS models was obtained from
the absolute value of the regression coefficients. The feature importance rank of RF models
was obtained from the permutation importance scores. More discussion on the permutation
feature importance can be found in Chapter 5.
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Figure 6.5: Effects of mtry and minimum node size hyperparameters on models with different
feature sets and tunnelling cases.

6.4 Results and Discussion

6.4.1 Generalized Feature Taxonomy

As described in Section 6.3.1, the taxonomy was developed based on four levels of hierarchy,
i.e., (i) the process level, (ii) the component level, (iii) the unit measurement level, and (iv)
the individual sensor level. Figure 6.6 presents the proposed taxonomy of EPB TBM features.
It can be seen that the process level consists of seven groups of EPB tunneling processes,
i.e., excavating, advancing, steering, ground conditioning, earth pressure balancing, muck
discharging, and tail grouting. Each group branches into several related EPB TBM system
components. For example, the excavation process consists of features related to the cutter
head and copy cutter systems. The ground conditioning process consists of features related
to foam, polymer, slurry, and additives. Note that some components with more complexities
may have sub-component levels to allow a better representation of the system. For example,
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foam can be subdivided into features related to foam, air, foaming liquid, water, foaming
agent, and polymer agent.
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Figure 6.6: Generalized taxonomy of EPB TBM features. The generalized features are high-
lighted in yellow.

Each component (or sub-component) branches further into features with the same mea-
surement units. For example, the cutter head system consists of torque (kNm) and rota-
tion speed measurements (rpm). The foam conditioning system consists of volume (m3),
flow (m3/min), and injection pressure (kPa) measurements. The unit measurement level
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is formed by combining every associated individual sensor. The individual sensors are not
shown in the figure due to the excessive number. This aggregation is important since the
combined value of measurements contains more generalizable information than the individ-
ual sensor measurement. For example, an EPB TBM can have several foam pipes, with a
flow sensor installed in each pipe. The total foam flow should provide more information on
the overall tunneling process than foam flow in individual pipes. (Note that the information
at the individual sensor level can also be useful in some detail tunneling operation tasks.)

The generalized EPB TBM features are highlighted in yellow. These features were se-
lected by considering (i) Spearman correlation filtering in every group of processes, with a
threshold value of 0.8, (ii) feature redundancy, where only one feature was selected from
comparable measurements, e.g., flow and volume, and (iii) applicability on the three tun-
neling data sets, which enables feature generalization. Figure 6.7 presents the correlation
networks of the selected features. It can be observed that the networks are more decipher-
able (less crowded) than networks without feature selection (Figure 6.1). The nodes are
more spread, and the links have lighter colors. This indicates lower correlations among the
retained features.

6.4.2 Multicollinearity Problems

The presence of multicollinearity in the EPB TBM data sets was measured using the VIF.
Figure 6.8 presents the VIF of several EPB TBM features with and without the hierarchical
feature selection (HFS). Note that the x-axis is presented in a log scale due to the extreme
values. Typically, a VIF of 5 can be considered high multicollinearity (Sheather, 2009).
This figure shows that without the feature selection, most features have extreme VIFs.
Some features even reach hundreds of VIF or above, which indicates serious multicollinearity
issues. This high VIF appears in all three data sets. The VIF drops after applying the feature
selection with no VIF higher than 10. This result quantitatively validates the presence of
severe multicollinearity in EPB TBM features.

Multicollinearity may cause problems when developing linear regression-based prediction
models such as OLS. Figure 6.9 presents the prediction results of (a) cutter torque and (b)
thrust force using all other features as predictors. The models were developed using the SR99
data set without the hierarchical feature selection. The black and red colors represent the
actual values and the results of OLS predictions, respectively. Some extreme discrepancies
(prediction errors) can be observed, i.e., between chainages 6250 and 6300 in the cutter
torque model and between chainages 7200 and 7600 in the thrust force model. Note that
the y-axis is presented in a log scale due to the extreme errors. These errors are in different
locations, indicating that they are not caused by outliers in the predictors. Furthermore, the
outliers of the data sets have been removed, as described in section 6.2.2.

These extreme errors are most likely caused by statistical problems known as response
outliers and high leverage (James et al., 2013). These problems can occur when the predictors
of an OLS model are multicollinear. This can happen even if the predictors are within
normal ranges without any outliers. The multicollinearity problems can be eradicated by
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(a)
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Figure 6.7: Correlation networks of EPB TBM data with the hierarchical feature selection:
(a) SR99, (b) NSLP1-SB, (c) NSLP1-NB.
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CHAPTER 6. EFFECTS OF FEATURE SELECTION ON PREDICTION MODELS 98

Error Problem

Error Problem

Error Problem

Error Problem
Error Problem

C
ut

te
r 

To
rq

ue
 (

M
N

m
)

T
hr

us
t F

or
ce

 (
M

N
)

6200 6400 6600 6800 7000 7200 7400 7600 7800 8000 8200 8400 8600 8800

6200 6400 6600 6800 7000 7200 7400 7600 7800 8000 8200 8400 8600 8800

102

104

106

102

103

104

Chainage (m)

Actual

OLS (NoFS)

Ridge (NoFS)

Figure 6.9: Extreme errors of OLS predictions due to severe multicollinearity in the data.

regularization, such as using Ridge regression. The blue color represents the ridge regression
results. It can be observed that the ridge regression model did not produce extreme errors,
even though this model was developed using the same predictor as the OLS model. This
result provides evidence of multicollinearity problems in TBM prediction models.

The prediction performance of cutter torque and thrust force models in two feature
sets, i.e., with and without the hierarchical selection, was investigated using four different
prediction methods, i.e., OLS, Ridge, the Lasso, and RF. Table 6.2 presents the overall
performance, which is quantitatively represented as MAE, NMAE, and R2. The result shows
that OLS models without the feature selection produced unreasonable overall prediction
performance. The extremely inflated errors were due to the presence of multicollinearity.
This can be confirmed since these errors did not occur in OLS models with the selected
feature set. Furthermore, the problems also did not occur in regularized methods (i.e., the
Ridge and Lasso) and nonlinear nonparametric machine learning method (i.e., RF)

This table also shows that the hierarchical feature selection did not substantially affect
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Table 6.2: Overall prediction performance of different models and feature sets.

Response Predictor Set Prediction MAE NMAE (%) R2

Feature Method

Cutter torque Before HFS OLS 454952.78 980.85 0.04

Ridge 3696.72 7.97 0.82

Lasso 4007.50 8.64 0.80

RF 3019.19 6.51 0.89

After HFS OLS 4366.99 9.41 0.76

RF 3013.62 6.50 0.89

Thrust force Before HFS OLS 1016535.74 711.34 0.03

Ridge 1981.47 1.39 0.98

Lasso 880.56 0.62 0.97

RF 3414.66 2.39 0.96

After HFS OLS 5153.47 3.61 0.91

RF 4249.89 2.97 0.94

*HFS: Hierarchical Feature Selection

the RF prediction performance. The cutter torque prediction models with the two different
feature sets produced the same relative error of 6.5% and R2 of 0.89. The thrust force model
with the selected feature set produced a relative error of 2.97% and R2 of 0.94, which is
only slightly lower than the counterpart model with a relative error of 2.39% and R2 of 0.96.
This result indicates that prediction models developed using the selected feature set can
be more robust to severe errors, especially due to multicollinearity problems, highlighting
the importance of feature selection for TBM data sets. This result also suggests that the
proposed features do not substantially affect the prediction performance, especially if the
model is developed using a nonparametric nonlinear machine learning prediction method
such as RF.

6.4.3 Effects on Model Predictability

Figure 6.10 compares the distribution of cutter torque (top panels) and thrust force (bottom
panels) prediction values produced by models developed using different feature sets. The
left, middle, and right panels present the results from the SR99, NSLP1-S, and NSLP1-N
data sets. The black lines represent the measured cutter torque and thrust force values. The
red and blue lines represent the OLS and RF predictions, respectively. The solid and dashed
lines represent the model developed with and without the hierarchical feature selection,



CHAPTER 6. EFFECTS OF FEATURE SELECTION ON PREDICTION MODELS 100

respectively. The figure shows that both of the feature sets produced comparable prediction
distributions. This applies to both OLS and RF models. The RF models produced almost
identical distributions. In comparison, the OLS models produced slight discrepancies in some
parts of the distributions. Interestingly, the OLS model developed using the selected feature
set produced closer distribution to the measured values. This suggests that the hierarchical
feature selection may not substantially affect the distribution of prediction values from RF
models. However, the selection can be beneficial for OLS prediction models.
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Figure 6.10: Comparison of prediction value distributions produced by models with different
prediction methods, feature sets, and tunneling cases.

In more detail, Figure 6.11 compares every prediction point produced by both feature
sets. The panel arrangement is the same as Figure 6.10. The x-axes represent predictions
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from models developed using without the feature selection. The y-axes represent predictions
from models with the selected feature set. The red and blue points represent the OLS
and RF predictions, respectively. The figure shows that prediction points in every panel
formed a diagonal pattern. This indicates that both of the feature sets produced comparable
prediction points. The RF models consistently outperformed the OLS models, which can be
observed by narrower prediction bands of the diagonal pattern.
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Figure 6.11: Comparison of prediction values produced by models with different prediction
methods, feature sets, and tunneling cases.

The RF models reliably produced a high R2 of at least 0.98. This applies to both response
features and in all the considered tunneling cases. The OLS models produced slightly lower
R2 of at least 0.73 and 0.93 for the SR99 and NSLP1 data sets, respectively. It should



CHAPTER 6. EFFECTS OF FEATURE SELECTION ON PREDICTION MODELS 102

be noted that OLS models developed without the feature selection produced some extreme
errors due to the multicollinearity problems, as discussed in Section 6.4.2. Thus, the R2
was computed by excluding those prediction points. This comparison further suggests that
the hierarchical feature selection may not substantially affect the prediction values. This
also highlights the advantage of machine learning when developing data-driven models using
complex and nonlinear data sets such as TBM operation data.

6.4.4 Effects on Model Computability

During tunneling, prediction models should be continuously retrained to adapt to new TBM
data generated every few seconds. Thus, computation performance is a critical consideration
when developing the models. Figure 6.12 presents the computation time of RF models with
different numbers of features. All models were trained using the same computing parameters
to allow a comparison of the computation performance, i.e., a single process with 500 trees.
Expectedly, the figure shows that higher numbers of features produced more unpredictable
computation performance. Reducing the features from 500 to 100 can cut the computation
time by more than half. A further reduction to 25 features can cut the computation time by
another half. This demonstrates the benefit of using fewer features in a prediction model.
This also suggests the advantage of using the hierarchical feature selection for TBM data-
driven models, where comparable prediction performance can be obtained with significantly
less computation cost.

6.4.5 Effects on Model Stability

Figure 6.13 presents the top five predictor features of cutter torque obtained from models
with different prediction methods, feature sets, and tunneling cases. The first row of the
figure presents feature ranks produced by RF models developed using the selected feature
set. Interestingly, the figure shows similar features in all the tunneling cases. Thrust force,
chamber pressure, and shield attitudes (i.e., pitch and yaw angles) were consistently identified
as strong predictors of cutter torque. This result is sensible. Cutter torque should be
proportional to the thrust force at the same geologic material strength (Ates et al., 2014;
Jakobsen et al., 2013). Cutter torque can be associated with the chamber pressure since
both should correlate to the strength of the excavated geologic materials (Sramoon et al.,
2002; Sugimoto & Sramoon, 2002). Deeper tunneling depth will likely convey higher earth
pressure and stiffer geologic materials. Shield attitudes may also be related to cutter torque
since it may affect the contact pressure between the cutter face and the excavation face and
between the shield friction and the ground (Sramoon et al., 2002; Sugimoto & Sramoon,
2002; Sugimoto et al., 2007).

The figure also shows fairly consistent ranks in all the tunneling cases. Both NSLP1 mod-
els produced identical feature ranks, even though these tunnels were excavated using different
EPB TBMs and by different operators. Nevertheless, some discrepancies can be observed.
The SR99 model identified cutter rotation speed as the top predictor. This is different from
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Figure 6.12: Computation performance of an RF model with different numbers of predictor
features

the NSLP1 models, where cutter rotation speed was not considered an important predictor.
However, it should be noted that the cutter rotation speed was maintained at about 0.9
rpm in both the NSLP1 tunneling cases. In this condition, this feature could not provide
any indication of cutter torque and, therefore, cannot be the predictor. In addition, both
NSLP1 models identified foam injection pressure as an important predictor. This is sensible
since foam is typically injected into the ground to condition the strength characteristics of
the excavated geologic materials, which will eventually affect the cutter torque.

The second row of the figure presents the feature ranks of OLS models developed using the
selected feature set. These models consistently identified thrust force and chamber pressure
as the two strongest predictor features of cutter torque. The models also identified features
related to shield attitudes and ground conditioners as strong predictors. However, more
inconsistency can be observed in the ranks. For example, the NSLP1-SB model identified
the shield attitudes as yaw angle and thrust stroke difference (top-bottom). In contrast, the
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Figure 6.13: Comparison of top predictors identified in cutter torque models with different
prediction methods, feature sets, and tunneling cases.
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NSLP1-NB model identified the attitudes as the thrust stroke differences (top-bottom and
left-right). Furthermore, the SR99 model identified the attitudes as pitch angle only. In
addition to the consistency issue, a less sensible feature can also be observed in the result.
The SR99 model identified grout pressure as a strong predictor feature of cutter torque.
Grouting pressure is applied to the shield’s tail and may not directly correlate to the cutter
torque at the excavation face.

The consistency in the RF feature ranks indicates the generalizability of the models. This
suggests the capability of nonparametric nonlinear machine learning models to obtain some
generalization in data sets with complex relationships, such as TBM operation data. This
result oppose a widely accepted premise that OLS is more interpretable and generalizable
than machine learning (e.g., B. Efron (2020)). Less consistency of the OLS results indicates
problems encountered by the parametric linear models to fit complex and nonlinear relation-
ships within the TBM data. This suggests the limitation of parametric linear models for
generalizing the complex data sets.

The third and fourth rows of the figure present the feature ranks obtained from the RF
(the third row) and the Lasso (the fourth row) models. The models were developed using
the feature set without the selection to investigate the performance of embedded machine
learning-based feature selection. The Lasso and RF were selected to represent linear and
nonlinear embedded feature selection methods, respectively. These figures show that the
produced feature importance ranks are highly inconsistent. No patterns can be observed
between the two prediction methods and the three tunneling cases.

In many cases, most of the ranks are filled by individual sensor measurements. For
example, in the SR99 data set, the Lasso model identified two foam liquid pressure sensors
as cutter torque predictors. The RF model also identified two foam liquid flow sensors as
predictors. Similarly, both the NSLP1 models identified many individual sensors of foam
liquid volume and chamber pressure in the ranks. These are the same problem encountered
by Maher (2015). This indicates that the prediction models were strongly biased toward those
individual sensor measurements. In this condition, no matter how good a model produces
prediction performance, no generalization and no new understanding can be drawn. This
suggests the importance of guided feature selection in developing data-driven models using
TBM data.

Figure 6.14 presents feature ranks from thrust force prediction models. Overall, the pro-
duced ranks lead to similar conclusions to the cutter torque models (Figure 6.13). The figure
shows that RF models with the selected feature set identified almost identical predictors in
all the tunneling cases, i.e., cutter torque, chamber pressure, shield attitudes (i.e., pitch and
yaw angles), and ground conditioner. The difference is only in the type of ground condi-
tioner, i.e., the SR99 model identified polymer pressure, while the NSLP1 models identified
foam pressure. This might be due to the different geologic conditions of the tunneling cases.
The NSLP1 site in Jakarta is dominated by clay and silt. In comparison, the SR99 site in
Seattle is dominated by glacial deposits, which vary from clay and silty soils to sandy and
gravelly soils. More polymer is required to condition sandy soils (A. Merritt et al., 2023).
This might be the reason why the polymer is a strong predictor in the SR99 model.



CHAPTER 6. EFFECTS OF FEATURE SELECTION ON PREDICTION MODELS 106

LASSO (NoFS)

Seattle SR99 Jakarta NSLP1−SB Jakarta NSLP1−NB

RF (NoFS)

Seattle SR99 Jakarta NSLP1−SB Jakarta NSLP1−NB

OLS (FS)

Seattle SR99 Jakarta NSLP1−SB Jakarta NSLP1−NB

RF (FS)

Seattle SR99 Jakarta NSLP1−SB Jakarta NSLP1−NB

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Yaw

FoamPres

Pitch

ChamberPres

CutterTorque

Pitch

AdvanceRate

AdditiveVol

ChamberPres

CutterTorque

ChamberPres3

Pitch

FoamPres2

ChamberPres

CutterTorque

ChamberPres4

DevTailH

ChamberPres1

DevArtH

CutterTorque

Yaw

FoamPres

ChamberPres

Pitch

CutterTorque

FoamPres

PolymerPres

ScrewRotSpeed

ChamberPres

CutterTorque

ChamberPres4

Pitch

FoamPres2

ChamberPres1

CutterTorque

ChamberPres5

ChamberPres1

Pitch

ChamberPres4

CutterTorque

CutterTorque

Yaw

Pitch

PolymerPres

ChamberPres

PolymerPres

FoamPres

AdvanceRate

CutterTorque

ChamberPres

ScrewCasingPres13

ChamberPres2

ChamberPres

ScrewCasingPres12

ArticThrustForce

FoamPres19

ScrewCasingPres25

FoamPres26

CutterTorque

CutterForce

Feature Importance

Figure 6.14: Comparison of top predictors identified in thrust force models with different
prediction methods, feature sets, and tunneling cases.
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The OLS model with the selected feature set also produced similar features, but with
more inconsistencies. For example, all cases consistently identified cutter torque, chamber
pressure, and features related to ground conditioners as important predictors to thrust force.
However, there are variations in the presence of advance rate (in the SR99 and NSLP1-
NB), screw rotation speed (in the NSLP1-SB only), and shield pitch angle (in the NSLP1-
NB only). Similar to the cutter torque, thrust force models without the feature selection
identified predictors that are biased toward individual sensor measurements. The ranks
are highly inconsistent and difficult to generalize. This result provides more evidence of
the importance of knowledge-guided feature selection in developing stable and generalizable
prediction models.

6.5 Conclusions

This study has quantitatively validated the presence of multicollinearity in TBM data. This
presence may result in multicollinearity-related problems, such as response outliers and high
leverage. This highlights the importance of TBM feature selection when developing data-
driven models. This study has also proposed a general taxonomy of EPB TBM features.
The taxonomy was developed based on four levels of hierarchy, i.e., (i) the process level, (ii)
the component level, (iii) the unit measurement level, and (iv) the individual sensor level.
The hierarchy allows the domain knowledge guides the feature selection process. Effects of
the proposed hierarchical feature selection on prediction models have been investigated in
the framework of the model’s predictability, computability, and stability (generalizability).
The main findings of this investigation are summarized in the following.

• Effects on model predictability and computability. Prediction models devel-
oped using the selected feature set should be more robust to severe multicollinearity
problems. Furthermore, the models can produce comparable prediction performance to
models developed using the original features with substantially less computation cost.
Computation performance is critical when developing data-driven tunneling models
since the models should be continuously retrained to adapt to newly generated TBM
data.

• Effects on model generalizability. These results suggest that prediction mod-
els developed using the proposed hierarchical feature selection can produce consistent
features and importance ranks in different tunneling cases, indicating better model
generalizability. Furthermore, machine learning appears to offer better model gen-
eralization than parametric linear methods when using data sets with complex and
nonlinear relationships such as TBM data. Developing generalizable models is essen-
tial for scientific discovery in tunneling, where most data come from observations, not
controlled experiments.

Further studies may include expanding the TBM variable features and improving the
reliability of the feature importance analysis. The original TBM data sets include numerous
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discrete variable features that indicate more operator control decisions. However, the scope
of this study was limited to numerical features from continuous measurements only. More
studies can be performed to combine the categorical and numerical features and investigate
their effects on the prediction models.

This study has demonstrated encouraging results on the potential of using feature im-
portance analysis to assess model generalizability. This reveals that different tunneling cases
with significantly different geologic conditions, EPB TBMs, and operators can produce con-
sistent features and ranks, which indicate the generalizability of the models. However, as
discussed in Chapter 5, selecting the best method for determining the feature importance
rank is still debatable (Altmann et al., 2010; Hooker et al., 2021; Strobl et al., 2007). Fur-
ther investigation using different feature importance analysis methods should be performed
to obtain more solid conclusions.
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Chapter 7

Interpreting Geologic Conditions
during Tunneling

Some contents of this chapter have been published in Apoji, D., Fujita, Y., and Soga, K.
(2022). Soil Classification and Feature Importance of EPBM Data Using Random Forests.
Geo-Congress. American Society of Civil Engineers. 520–528.
https://doi.org/10.1061/9780784484029.052. (With permission from ASCE)

7.1 Introduction

7.1.1 Background

The geologic conditions along a tunnel alignment significantly govern the tunneling perfor-
mance and risk profile. From the dynamical systems perspective, the ground condition is
the primary external stimulation (disturbance) of a tunneling process. Changing ground
conditions will change the system’s dynamics and eventually alter the tunneling outputs,
i.e., tunnel boring machine (TBM) behaviors and performance. In this condition, the op-
erators must adjust the control parameters to maintain the target tunneling performance.
Therefore, TBM operators need to be continuously aware of the changing ground conditions
during tunneling.

Detecting the changing ground conditions during tunneling has always been one of the
most challenging tasks in tunneling operations. The tunnel geologic maps can provide a
guide. This map is prepared based on available geotechnical data obtained in the design
stage. However, it should be noted that the map is interpreted from a limited number
of boreholes at discrete locations. The sampled area (i.e., boreholes) may only cover less
than one percent of the total tunneling area. Furthermore, geologic conditions always have
inherent variability and uncertainty, especially since tunnel alignments can span several
kilometers. Therefore, the map cannot accurately capture the variability of ground conditions
at a detailed level.
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Also, this variability cannot be observed directly during TBM driving. Unlike driving a
car, TBM operators cannot see outside. Thus, they cannot see the ground conditions at the
excavation face. They can see the muck (excavated soil materials) discharged to the belt
conveyor. However, the muck cannot fully represent the ground conditions at the excavation
face. The muck has spent some time in the excavation chamber. Thus, there is a delay time
between when the soil is excavated and discharged to the conveyor belt. Furthermore, the
properties of the excavated soils have been altered by injections of ground conditioners and
the mixing process.

Practically, TBM operators can only infer the ground conditions based on the operation
data (Garcia et al., 2021). TBM operation data contains various information on the tunneling
operation, such as the status and performance of the cutter, thrust, excavation chamber,
ground conditioning system, tail grouting system, and muck discharged system. This data
is typically generated every few seconds by numerous sensors in the TBM. Interpreting
numerous amounts of data in streams can be challenging for humans. Furthermore, manual
interpretation can be unsystematic and subjective and may lead to human bias and errors.
Different operators may have different ways of interpreting the ground conditions. This
problem leads to the development of tunneling geologic information prediction systems, which
are intended to provide systematic and accurate ground interpretation during tunneling.

7.1.2 Related Works

Statistical methods. In early development, Yamamoto et al. (2003) proposed a geostatisti-
cal method to infer the ahead geologic conditions during tunneling. They used geostatistical
techniques to transform bore logs and TBM operation data into geologic information with
three-dimensional (3D) temporal and spatial distributions. In principle, the method used
correlation coefficients to convert the drill energy coefficient into excavating energy and rock
mass strength. The spatial distribution of these parameters was modeled using the mean and
covariance functions. Finally, the distribution of these parameters ahead of the TBM face
was estimated using the Kriging method. This is an early implementation of data-driven
methods to develop tunneling geologic information prediction systems.

Sousa and Einstein (2012) proposed a probabilistic method to develop a geologic pre-
diction system during tunneling. The proposed model used Bayesian Networks (BN), a
probabilistic graph model, to transform TBM operation data into the ahead geologic con-
ditions. They examined 31 different BN models by considering various configurations with
various earth pressure balance (EPB) TBM features as the variables, i.e., the penetration
rate, cutter torque, cutter force, thrust force, and muck weight (on the conveyor belt). The
training data set consisted of 720 rings chosen randomly from a section in the Porto Metro
tunnel. The data observation data points were in ring aggregation. Each ring is labeled by
its geologic category, i.e., soil, rock, or mixed ground conditions. Sensitivity analyses were
performed to determine the most suitable model. They found that the best model was built
using the penetration rate, cutter torque, and cutter force.
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Machine learning methods. The use of AI and machine learning techniques to tackle
this problem has emerged in the past few years. Q. Zhang et al. (2019) proposed a method to
transform TBM operation data to rock mass types using machine learning. They examined
three machine learning algorithms, i.e., Support Vector Machine (SVM), Random Forests
(RF), and k-Nearest Neighbors (kNN). The model was developed using four TBM features
as the input, i.e., the advance rate, cutter torque, cutter rotation speed, and thrust force.
The data was obtained from a tunnel project in Jilin, China. The original data contained
12 million observation data points and was compressed to 5014 leaf node entries using the
balanced iterative reducing and clustering using hierarchies algorithm (BIRCH). Each ob-
servation data point was labeled with the rock mass type, which was categorized into five
types of potential rock mass using K-means++, an unsupervised learning algorithm. The
data were sequentially split into training and testing data sets with the proportion of (i)
20:80, (ii) 50:50, and (iii) 80:20, respectively. Cross-validation was performed in 10-folds to
tune the hyperparameters of every machine learning model and evaluate the performance.
They concluded that the prediction models could produce reasonably good results even with
limited training data. The best prediction performance was produced by the SVM model.

Zhao et al. (2019) evaluated the performance of various machine learning algorithms to
classify geologic types. They developed geologic prediction models using eight machine learn-
ing algorithms, i.e., kNN, Bayesian Linear Regression (BLR), SVM, Decision Tree (DT), RF,
CatBoost, Extreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN).
The original TBM operation data consisted of 72 TBM features, such as cutter torque, thrust
force, advance rate, and fuel tank temperature. Unlike the previous studies, Zhao et al. did
not directly use TBM features as the input. Instead, they augmented the features using
Principal Component Analysis (PCA) and retained 95% of the variance information. The
original data contained 4.6 million observation data points. However, only 88 rings (from
1364 rings) had the geologic information. The data were labeled with six geologic units,
which were categorized according to the similarity of their properties. The data were split
into training and testing data sets with a proportion of 70:30, respectively. Unfortunately,
no information if the data were split randomly or sequentially.

They concluded that, in most cases, dimension reduction could improve the performance
of the models. However, it should be noted that dimension reduction (i.e., using PCA) may
reduce the model interpretability as the original features are transformed from variables that
represent physical measurements to scores that mix the original features. Furthermore, they
also concluded that the ANN model with a specific architecture could outperform the other
models. However, this result should be cautiously taken. It appears that the other machine
learning models were not tuned, as no information was provided on hyperparameter tuning
and cross-validation in the modeling process. It should be noted that the performance of
most machine learning models can be improved by using properly tuned hyperparameters
(Du et al., 2021; Schratz et al., 2019; L. Yang & Shami, 2020).

Erharter et al. (2019) compared the performance of neural network-based models in
transforming TBM data to rock mass types. They examined two types of ANN algorithms,
i.e., Multilayer Perceptron (MLP) and Long-Short-Term Memory (LSTM). The models were
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developed using TBM features as the input, i.e., advance rate, penetration rate, cutter
rotation speed, cutter torque, thrust pressure, thrust force, crown-support-cylinder pressures
(left and right), and path of crown-roof-support-cylinder. Some calculated variables were
also added to the feature set, i.e., the rotary share of the specific energy and the torque ratio.
The data was obtained from The Brenner Base Tunnel, a railway tunnel between Austria
and Italy. The observation data point interval of the original data was 10 seconds. These
observation data points were aggregated into 4 cm spatial points using linear interpolation.
The data was labeled with four geologic classes representing the rock mass behaviors. The
data was split into sections to obtain the training and testing data sets. The tuning of the
ANN architectures and hyperparameters was done by trial and error. They found that both
models showed satisfying accuracies, with the LSTM model outperforming the MLP more
consistently.

Real-time interpretation. Erharter et al. (2020) extended the development into a
real-time (or online) rock classification system during tunneling. They used an ensemble
LSTM model to classify TBM data into rock behavior types. The data set was the same
as the previous study (Erharter et al., 2019). The ensemble method was used to increase
the prediction stability due to the inherent stochastic behavior of ANNs. The model was
trained and tested in a continuous loop to develop the real-time rock classification system.
The training batch was performed every 400 m TBM advance when new data streams were
available. The concluded that the ensemble method effectively improved the overall accuracy
and prediction stability. It was also mentioned that changing the learning rate may have
substantial effects on the overall accuracy of the model.

H. Yu (2021) investigated methods to characterize the encountered ground condition
based on EPB TBM data during tunneling by employing two machine learning frameworks,
i.e., (i) supervised learning using multinomial logistic regression and (ii) semi-supervised
learning using a similarity matrix and label propagation method. The models were devel-
oped using eight EPB TBM features as the input, i.e., advance rate, cutter rotation speed,
cutter torque, chamber pressure, chamber’s vertical gradient, screw conveyor rotation speed,
screw conveyor torque, and belt conveyor muck weight. The data was obtained from the
Northgate Link Extension tunneling project in Seattle, Washington. The observation data
points were aggregated in ring size. For each ring, only the stable state of the excavation
advancement phase was considered. The data was labeled with the fractional representa-
tion of four encountered soil types according to 83 available boreholes. The models were
trained sequentially by adding more boreholes to simulate the tunneling process. They con-
cluded that both models performed similarly, given sufficient training data. However, the
semi-supervised learning model performed substantially better in limited training data.

7.1.3 Objectives

The review demonstrates the possibility of systematically and quantitatively interpreting the
geologic conditions based on TBM data. Nevertheless, it also reveals some gaps, as listed
below.
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• Most of the models performed categorical classification. This may not be ideal as
the actual ground conditions may not have a clear boundary between geologic types.
Furthermore, the categorical classification system does not allow for identifying the
gradual transition changing of soils which is prevalent in nature. In addition, most
of the previous studies were done for rock classification. Limited studies have been
performed to develop soil interpretation models.

• Most of the studies used limited TBM features. While it is true that increasing num-
bers of (unrelated) features may increase the risk of overfitting, selecting only limited
features, especially in a complex dynamical system such as tunneling, may not be able
to capture all of the actual processes (i.e., underfit the process). For example, most of
the studies included no features related to the ground conditioning system. It is evi-
dent that the injected ground conditioners affect other variables such as advance rate,
cutter torque, and screw conveyor torque. Omitting these features means neglecting
these critical interactions.

• Most of the previous studies focused on prediction performance. Fewer efforts have
been made to the model interpretability of the model and to generalize the important
features that contain the relevant geologic information. This is important to provide
a better generalization to the conclusion, especially since every previous study used
different tunneling data sets due to the unavailability of openly accessible tunneling
data.

This study aims to (i) propose a supervised artificial intelligence (AI) system that is
capable of interpreting the encountered geologic transition based on TBM operation data
in real-time during tunneling, and (ii) investigate TBM features that contain most of the
geologic information. The geologic interpretation model was developed a supervised learning
algorithm and used 36 TBM features from different tunneling partial processes as the input
predictors. The importance of each predictor in the model was investigated using three
feature importance analysis methods.

7.2 Data

7.2.1 Tunneling Case

This study used a data set of the State Route 99 (SR99) highway tunnel in Seattle, Washing-
ton, USA. More discussion of this tunneling case can be found in Chapter 5. This data set
was considered suitable for the geologic interpretation system simulation since the tunneling
was conducted in various geologic deposits with substantial ground transitions.
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7.2.2 Geologic Conditions

Geologic conditions along the SR99 tunnel were obtained from the geotechnical baseline
project reports (WSDOT, 2010a, 2010b, 2010c). Based on the reports, the geology of the
site consisted of younger Holocene deposits and older Vashon and Pre-Vashon (Pleistocene)
deposits. These geologic deposits may come from different geologic origins and processes
(e.g., glacial and non-glacial units). However, for the tunneling purpose, the deposits were
classified into engineering soil units (ESU) based on their physical characteristics. At the
ground surface and shallow depth, the geologic conditions were dominated by fill and younger
soil deposits, i.e.,

• Engineered and Non-engineered fill (ENF),

• Recent Granular Deposits (RGD), and

• Recent Clay and Silt (RCS).

The tunnel was primarily constructed below the fill deposits, where the geologic condi-
tions were dominated by overconsolidated glacial and non-glacial pre-Vashon geologic units,
i.e.,

• Till Deposits (TD),

• Cohesionless Sand and Gravel (CSG),

• Cohesionless Silt and Fine Sand (CSF),

• Cohesive Clay and Silt (CCS), and

• Till-Like Diamict (TLD).

In terms of their engineering behaviors, CCS is cohesive, while CSG and CSF are co-
hesionless. TD may have a more complex behavior since it is a cohesive mixture of gravel,
sand, silt, and clay. TLD is generally cohesionless but may have layers and lenses of tills
(2010c). The interpretation of the geologic conditions along the tunnel can be seen on the
geologic map as presented in Figure 7.1.

Supervised learning algorithms require labels as the ground truth. This study considered
boreholes to be the ground truth and the specified ESUs of each borehole within the tunnel
diameter as the labels. The boreholes were envisaged to represent geologic conditions for a 50-
ft (about 15.2 meters) radius from the drilled location. Multiple ESU might be encountered
at the tunneling face. The labeling was done depending on the analysis approaches, i.e.,
classification or regression analysis.

• Classification. In the classification approach, the labels were represented as five
borehole categories, characterizing the mixtures of ESU at each borehole location.
Five labels were created based on the borehole categories (Table 7.1).
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Figure 7.1: Geologic map of the SR99 tunnel (WSDOT, 2010b, 2010c).

• Regression. In the regression approach, the labels were represented by the percent-
age of every ESU within the tunnel diameter (Table 7.2). This means each borehole
contained the percentage of multiple ESUs. The percentage of each ESU varied from
0 (the ESU did not exist in the borehole) to 100% (the only ESU within the tunnel
diameter of the borehole).

7.2.3 Data Description and Preparation

Similar to Chapter 5, this study used ring-length aggregate spatial series as the observation
data points. Also, the study was focused on the continuous data of the primary EPB TBM
system, i.e., main features in the tunneling processes. To avoid bias toward spatial locations,
features related to TBM steering and attitudes were not included (i.e., pitch and yaw angles
of the shields, earth pressures in the chamber). To further condense the number of features
and enable more interpretability of the analysis results, records from same sensor types were
summed together. This produced a total of 36 features to be used in the analysis (Table
7.3).

The data was prepared according to the following steps, (i) removal of non-excavation
observation data points, (ii) aggregating features from the same sensor types and volume
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Table 7.1: Borehole labels for the classification model.

BH Chainage Borehole Label

TB326 20150 CCS TLTD

EB18B 20250 CCS TLTD

TB325 20425 CSGCSF CCS

TW21 20525 CSGCSF CCS

CB108 20575 CSGCSF CCS

TB324 20775 CSGCSF CCS

TB323 20925 CSGCSF CCS

TB322 21175 CCS CSG

TB320 21275 CCS CSG

TB319 21625 CCS CSG

TB318 22025 CCS CSG

TB317 22275 CCS CSG

TB316 22625 CCS

TB315 22900 CCS

TB108 23275 CCS CSG

TB223 23675 CSGCSF CCS

TB109 24125 CSGCSF CCS

TB224 24275 TLTD CSGCSF CCS

TB225 24500 CSGCSF CCS

TB226 24725 TLTD CSGCSF CCS

TB110 24900 TLTD CSGCSF CCS

TB227 25100 CSGCSF TLTD

TB111 25500 CSGCSF TLTD

TB312 26310 TLTD CSGCSF CCS

TB311 26650 TLTD CSGCSF CCS

TB310 26925 TLTD CSGCSF CCS

TB309 27300 TLTD CSGCSF CCS

TB308 27550 TLTD CSGCSF CCS

TB307 27750 CSGCSF TLTD

TB305 28350 CSGCSF TLTD

TB304 28790 CSGCSF TLTD
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Table 7.2: Soil labels for the regression model.

BH Chainage TD CSG CSF CCS TLD

TB325 20425 7.7 47.9 26.7 17.7 0

TW21 20525 0 89.4 0 10.6 0

CB108 20575 0 63.7 15.4 20.9 0

TB324 20775 4.6 61.3 16 12.8 5.3

TB323 20925 15.6 68.8 4.6 11 0

TB322 21175 15 22.3 0 55.9 6.8

TB320 21275 -8.9 23.3 5.1 40.2 40.2

TB319 21625 7.1 6.9 0 85.9 0

TB318 22025 0 4.2 0 95.8 0

TB317 22275 0 0 0 96 4

TB316 22625 0 0 0 100 0

TB315 22900 0 0 0 100 0

TB108 23275 0 20 0 80 0

TB223 23675 6.4 54.7 0 27.9 11

TB109 24125 0 78.1 10.6 11.3 0

TB224 24275 0 38.1 0 35.9 25.9

TB225 24500 0 69.7 8.8 15.9 5.5

TB226 24725 44 50.6 0 5.4 0

TB110 24900 36.7 16.7 26.6 20 0

TB227 25100 24.8 51.4 23.8 0 0

TB314 25310 0 64.1 10.4 0 25.6

TB111 25500 10 48.5 6.2 0 35.4

TB313 26050 0 66.2 8.8 0 25

TB312 26310 0 47.3 19.4 14.6 18.6

TB311 26650 0 44.2 12.1 12.7 31

TB310 26925 13.8 43.8 13.6 14.8 13.8

TB309 27300 14.4 57.3 3.6 5.4 19.3

TB308 27550 0 61.3 8.7 11 19

TB307 27750 3.6 53 0 0 43.3

TB306 28125 0 7.7 2.5 31.2 58.6

TB305 28350 2.5 61.4 0 0 36.1

TB304 28790 16.3 18.9 0 0 64.8
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Table 7.3: List of EPB TBM features used in the supervised geologic interpretation model.

No. Feature Unit Sub-Component Group

1 Cutter torque kNm Excavation

2 Cutter head force kN

3 Cutter rotation speed rpm

4 Thrust force kN Advancing

5 Thrust stroke mm

6 Advance rate mm/min

7-8 Shield roll deg Front, rear Attitudes

9 Foam agent volume m3/m Ground conditioning

10 Foam agent flow m3/min

11 Foam liquid volume m3/m

12 Foam liquid flow m3/min

13 Foam liquid pressure kPa

14 Foam volume m3/m

15 Foam flow m3/min

16 Foam pressure kPa

17 Polymer agent volume m3/m

18 Polymer agent flow m3/min

19 Polymer volume m3/m

20 Polymer flow m3/min

21 Polymer pressure kPa

22 Chamber bulk density kPa Earth pressure
balancing

23-24 Screw rotation speed rpm #1, #2 Muck discharging

25-28 Screw pressure kPa #1A, #1B,
#2A, #2B

29 Screw torque kNm

30 Screw muck volume m3/m

31-32 Belt muck volume m3/m Front, rear

33-34 Belt muck weight Ton Front, rear

35 Grout volume m3/m Backfill grouting

36 Grout pressure kPa
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normalization, (iii) removal of features that might contain biased information toward TBM
spatial location, (iv) removal of erroneous records, and (v) labeling observation data points
located adjacent to available boreholes. More discussion of some of these steps can be found
in Chapter 5. Some examples of the data with the soil labels (classification) are shown in
Figure 7.2.

0

50000

100000

150000

200000

20000 20500 21000 21500 22000 22500 23000 23500 24000 24500 25000 25500 26000 26500 27000 27500 28000 28500
Chainage (ft)

F
or

ce
 (

kN
),

 T
or

qu
e 

(k
N

m
)

Soil Labels

CCS
CCS_CSG
CSGCSF_CCS
CSGCSF_TLTD
TLTD_CSGCSF_CCS

Features

ThrustForce
CutterTorque
CutterHeadForce

(a)

0

20

40

20000 20500 21000 21500 22000 22500 23000 23500 24000 24500 25000 25500 26000 26500 27000 27500 28000 28500
Chainage (ft)

A
dv

an
ce

 S
pe

ed
 (

m
m

/m
in

),
R

ot
at

io
n 

S
pe

ed
 (

rp
m

)

Features

CutterRotSpeed
ScrewRotSpeed1
ScrewRotSpeed2
AdvanceSpeed

(b)

0

200

400

600

20000 20500 21000 21500 22000 22500 23000 23500 24000 24500 25000 25500 26000 26500 27000 27500 28000 28500
Chainage (ft)

V
ol

um
e 

(m
3/

m
)

Features

FoamVol
FoamLiquidVol
FoamAgentVol
PolymerVol
PolymerAgentVol
ScrewMuckVol
BeltMuckVolFront
BeltMuckVolRear
GroutVol

(c)

Figure 7.2: Examples of EPB TBM operation data along the tunnel alignment: features
related to (a) forces, (b) speeds, (c) volumes. Background colors represent the soil (classifi-
cation) labels.

7.3 Methods

The proposed geologic interpretation system was developed under the hypothesis that TBM
operation data contain information related to the encountered ground conditions. TBM
can be analogous to cone penetration tests (CPT), a geotechnical investigation method that
has been widely used to characterize soil stratification at a site. Both TBM and CPT
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penetrate the ground and produce a set of continuous data. However, CPT only returns
a few variable features, such as the tip and friction resistances. Furthermore, the data
is produced in a controlled procedure, e.g., a fairly uniform penetration mechanism and
rate. Therefore, the data can be interpreted using a simplified method. This is not the
case in TBM, where the data are high-dimensional, massive, and produced from complex
interactions of ground conditions, TBM behaviors, and operator decisions. Machine learning
was expected to be capable of exploiting patterns within the data and transforming them
into geologic information.

7.3.1 Model Setup

The geologic interpretation system was developed using two prediction approaches, i.e., clas-
sification and regression. In the classification-based prediction approach, the model was used
to transform TBM operation data into the probabilities of the borehole categories (Figure
7.3). In contrast, in the regression-based prediction approach, the model was used to trans-
form TBM operation data into the percentage of every specified ESUs. The multiple outputs
were obtained by developing multiple prediction models simultaneously, i.e., a single model
for each ESU. Subsequently, all of the single model’s prediction results were proportioned
linearly so that the total percentage of all ESUs is 100% (Figure 7.4).

TBM Operation Data

Probability of Borehole Category #1

Probability of Borehole Category #2

Probability of Borehole Category #3

Probability of Borehole Category #4

Probability of Borehole Category #5

Classification 

Model

Feature #2

Feature #3

Feature #1

Feature #36

…

Figure 7.3: Schematic diagram of the classification-based prediction approach.

Three models were developed from these approaches depending on the training-testing
scheme and the model output.

(i) Static Random Classification Model. The static random classification model was
developed as a benchmark model. In this model, the labeled data was randomly split
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Figure 7.4: Schematic diagram of the regression-based prediction approach.

into training and testing data sets with a ratio of 80:20. This scheme was developed
to follow standard practice in machine learning analysis. The randomly selected data
ensures minimum bias in the training and testing data to produce the best classification
results. However, this scheme would not be applicable in real tunneling cases as the
TBM data is generated sequentially. The training data was up-sampled due to the
imbalance class distribution (Sun et al., 2009). Besides the labeled data, the model
was also used to classify the unlabeled data. A schematic diagram of this model is
shown in Figure 7.5.

(ii) Dynamic Sequential Classification Model. The dynamic sequential classification
model was developed to follow the actual tunneling process. In this model, the clas-
sifications were performed sequentially at each observation data point (testing data)
based on past observations (training data). In other words, the model was retrained
using observations from previous chainages to classify the encountered soils at the cur-
rent chainage. The training data was also up-sampled at every retraining phase. This
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scheme might contain more bias in the training and testing data but can be imple-
mented in real tunneling cases. A schematic diagram of this model is shown in Figure
7.6.

(iii) Dynamic Sequential Regression Model. The dynamic sequential regression model
was developed as another scheme that can be implemented in real tunneling cases. The
training and prediction (testing) schemes are the same as the dynamic sequential clas-
sification model, i.e., continuous retraining using the previous observations to predict
the encountered soils at the current chainage. Different from the classification models,
no up-sampling was performed on the regression model.

Unlabeled Data (No Borehole)Labeled Data

Training Data (80%)

Data-Driven Model

Boreholes

(BH) BH BH BH BH BH BH BH BH

Testing Data (20%)

Random

Predict Predict

TBM operation data along the tunnel chainages

Figure 7.5: Schematic diagram of the static random model.

7.3.2 Prediction Methods

The classification and regression models were developed using Random Forests (RF), an
ensemble-supervised learning algorithm that produces the predictions by aggregating a large
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Figure 7.6: Schematic diagram of the dynamic sequential model.

number of decision trees (Breiman, 2001). More discussion and mathematical background
of this algorithm can be found in Chapter 4. This study used the RF fast implementation
in C++ and R (Wright & Ziegler, 2017).

7.3.3 Model Hyperparameter

Hyperparameter analysis was performed on the static random classification model to inves-
tigate the effects of the hyperparameters on the model performance. The analysis was also
performed to select the best hyperparameter configuration. Similar to Chapter 6, five times
repeated 10-fold cross validation (CV) was conducted in various ranges of RF hyperparam-
eters, i.e., (i) ntrees, (ii) mtry, (iii) minimum node size, and (iv) split rule. More discussion
on the ntrees, mtry, and minimum node size can be found in Chapter 6.

The split rule defines how a single decision tree is to be constructed. In this study, two
split rule methods were evaluated, i.e., the Gini (Breiman et al., 1984), and the extremely
randomized trees (Extratrees) (Geurts et al., 2006) split rules. The Gini split rule determines
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the best partitioning features based on the best cut point of each randomly selected feature
(mtry). Typically, the cut point can be defined by the Gini index. In contrast, the Extratrees
split rule determines the best partitioning features based on a random cut point of each
randomly selected feature (mtry). Due to this randomization, the Extratrees algorithm
requires less computation cost. Note that none of the split rules has been proven to be better
in classification performance. The performance depends on the dataset and its properties
(Probst et al., 2019). The model performance was evaluated using the out-of-bag samples
(OOB).

7.3.4 Feature Importance

Feature importance analysis was performed on the static random classification model to
explore the role of each feature in the classification. There are various methods to measure the
importance score. Each method can result in different importance scores and ranks (Genuer
et al., 2010; Strobl et al., 2007). Therefore, this study employed three measurement methods,
i.e., impurity, permutation, and conditional permutation feature importance methods.

• Impurity. The impurity-based importance is the basic RF feature importance mea-
surement method. This method measures the mean decrease in impurity (the Gini
index) of all splits in all constructed decision trees (Breiman, 2001).

• Permutation. The permutation-based importance measures the difference between
the accuracy of the original data and the accuracy of the data with that particular
feature being permuted (Gregorutti et al., 2017; Nicodemus et al., 2010).

• Conditional permutation. The conditional permutation-based importance mea-
sures the importance similar to the permutation-based importance but performs the
permutation within a conditioning grid provided by the fitted model (Strobl et al.,
2008).

By employing several measurement methods, it was expected that the general tendency of
the feature importance rank could be captured, and a stronger conclusion could be drawn
from the results.

7.4 Results and Discussion

7.4.1 Effects of Hyperparameters

Figure 7.7 presents the effects of the RF hyperparameters on the static random classification
model. Figure 7.7(a) and Figure 7.7(b) show the effects of different ntrees and mtry on the
model performance (i.e., OOB classification accuracy). These figures show the importance of
ntrees on the model’s classification accuracy. Both figures show the increase of model perfor-
mance on the increase of ntrees (i.e., increasing classification accuracy to about 0.98). The
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performance tends to be stable after ntrees reach a threshold value. This result demonstrates
that specifying adequate ntrees is vital for better classification performance. However, in-
creasing it after the threshold value may only increase the computation cost without any
additional benefit to the model performance. In this study, ntrees of 500 were selected for
the geologic interpretation models. This value was selected to ensure both decent prediction
performance and reasonable computation cost.

The models in Figure 7.7(a) and Figure 7.7(b) were constructed using the Gini split rule
(Breiman, 2001) and the Extratrees split rule (Geurts et al., 2006), respectively. Figure
7.7(a) shows that the Gini split rule produced the lowest accuracy when mtry was equal to
the number of features (mtry = p = 36). The accuracy increased at lower numbers of mtry.
In contrast, Figure 7.7(b) shows that Extratrees split rule produced the lowest accuracy
at mtry of 1. It appears that Extratrees split rule produced more stable accuracy in the
variation of mtry, except the single one. Therefore, Extratrees split rule was selected for the
models.

Figure 7.7(c) and Figure 7.7(d) present the effects of different mtry and minimum node
size on the model performance. Figure 7.7(c) shows that Gini split rule achieved the peak
accuracy at about mtry of 6, which is equal to

√
p. This result is in agreement with previous

studies (Bernard et al., 2009; Probst et al., 2019). The accuracy dropped at larger numbers
of mtry. In contrast, Figure 7.7(d) shows that Extratrees split rule produced relatively more
stable accuracy at mtry of

√
p to p. Both split rules produced their lowest accuracy at

the minimum node size of 20. Besides this value, the variation in the accuracy was less
significant. Therefore, mtry of

√
p and a minimum node size of 10 was selected for the

models.

7.4.2 Classification-Based Interpretation

Figure 7.8 presents the results of the static random classification model, juxtaposed with
the geologic map and the borehole classes. The boreholes were colored based on the dom-
inant ESU of each label. The grey color denotes the unlabeled data, where no boreholes
were available. The classification results were determined based on the highest probability
produced at each data point, as shown in the bottom panel of the figure. The black bar
denotes classification errors. The static random classification model produced decent classi-
fication accuracy of 0.933 (93.3%). Note that this accuracy applies to the labeled data only.
The classification results of the unlabeled data could only be qualitatively compared to the
geologic map (which is also an interpretation by geologists).

The figure shows that the classification probability may reveal the geologic transition
along the tunnel horizon. For example, both the geologic map and the classification proba-
bility show the transition from predominantly CCS to predominantly CSG between boreholes
TB108 and TB223. In further detail, the model could also capture localized geologic condi-
tions. For example, the model captured an increasing probability of mixed soils just before
borehole TB312, where the geologic map indicates the beginning of the CCS layer on top of
the tunnel horizon, creating mixed geologic conditions.
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Figure 7.7: Effects of ntrees and mtry hyperparameter (top panels) and effects of mtry and
minimum node size hyperparameters (bottom panels) on models constructed with different
split rules, i.e., the Gini (left panels) and Extratrees (right panels).
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Figure 7.8: Geologic interpretation along the tunnel chainages produced by the static random
classification model. Black bars denote classification errors.
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Figure 7.9 presents the results of the RF dynamic sequential classification model. It
can be observed that more errors were produced by the dynamic model, with the accuracy
decreased to 0.913 (91.3%). This lower accuracy was expected since the training data for the
dynamic model was not randomized, hence containing more bias. Furthermore, the model
was only trained with very limited data and labels in the early parts of the tunnel alignment.
This caused weak performance in classification analysis. However, the performance seems to
have improved (i.e., similar to the static model) after the model received adequate training
data and labels.
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Figure 7.9: Geologic interpretation along the tunnel chainages produced by the dynamic
sequential classification model. Black bars denote classification errors.
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7.4.3 Regression-Based Interpretation

Figure 7.10 presents the results of the dynamic sequential regression model. Note that the
regression model produced the estimated percentage of every ESU in each borehole. The
estimated ESUs produced by the model were colored in accordance with the ESU colors in
the geologic map. This allows a direct comparison between the model and the geologic map.
The figure shows that the model produced comparable stratification patterns to the geologic
map. For example, the model could capture the increase and decrease of CCS at the first half
of the tunnel alignment, and the domination of CSG at the end half of the tunnel alignment.
The figure also shows that the model could indicate a transition between CCS and CSG in
the early tunneling phase, i.e., between chainage 21000 and 22000, where the training data
was still very limited.

Figure 7.10: Geologic interpretation along the tunnel chainages produced by the dynamic
sequential regression model.

The strong capability of the regression model can be observed in more detail in Figure
7.11. This figure compares several geologic features between chainage 22500 to 25500 ft.
The figure shows that the regression model can detect the transition of predominantly CCS
to predominantly CSG at about chainage 23500 ft (a). Note that this transition (i.e., the
changing percentages of the ESUs) was produced merely based on patterns within the TBM
operation data. No borehole was available at about this chainage. The model could also
detect a small pocket of TLD about chainage 24200 (b) , large pockets of TD and CSF at
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about chainage 24800 ft (c) and 25000 ft (d), repectively. These results are comparable to
the geologic map.

Nevertheless, it is interesting to see a slight difference between the map and the model.
The model indicated an increase of CCS at chainage 24000 ft (e). This geologic feature is
not indicated in the geologic map. Unfortunately, there is no way to confirm the correct
interpretation. However, note that the geologic map was interpreted by the geologists based
on available boreholes. Since there is no borehole available at this location, the interpretation
might be made merely by interpolating the adjacent boreholes with some consideration from
the judgment of the geology processes. In contrast, the regression model produced the
interpretation based on continuous TBM data. Therefore this interpretation may have more
quantifiable justification.

These results demonstrate that the proposed supervised AI system can be employed to
infer the encountered geologic conditions along tunnel alignments quantitatively and system-
atically based on continuous TBM operation data. The geologic transitions can be detected
using either the classification or regression approaches. However, the regression approach
can estimate the percentage of every soil type in a borehole, enabling a direct geologic inter-
pretation and comparison to the geologic map. Furthermore, the regression approach allows
transition detection even from early tunneling phases, where the classification approach per-
forms poorly due to limited available training data.

7.4.4 Feature Importance

Figure 7.12 presents the feature importance analysis results, where features with higher ranks
imply larger “weights” in the static random classification model. The relative importance
was standardized to a maximum score of 1.0. Note that the relative comparison of the
feature ranks is more important than the importance scores. The features are shown in color
according to the EPB TBM feature groups, i.e., features related to (i) cutter, (ii) thrust, (iii)
foam conditioner, (iv) polymer conditioner, (v) shield attitude, (vi) chamber, (vii) screws,
(viii) belt conveyor, and (ix) tail grouting.

Less important features. It is intuitive to assume that the measured muck charac-
teristics in the screws and the belt conveyors can be strong indicators for the encountered
ground conditions. However, all the employed feature importance analysis methods show
that features related to the screws and the belt conveyors are consistently at moderate to
lower importance ranks. The reason might be the time delay experienced by the encoun-
tered soils at the TBM face to reach sensors at the screw and belt conveyors. The excavated
soils reach the screws after spending some time in the bulkhead chamber and arrive at the
belt conveyor after spending more time in the screws. Thus, these sensors measure muck
characteristics from the encountered soils at a few rings behind.

Furthermore, the measured muck characteristics (i.e., weights and volumes) might not
accurately represent the encountered soil characteristics. Due to the injection of ground con-
ditioners, the physical properties of the muck can be significantly different from the physical
properties of the undisturbed grounds. Subsequently, the muck is mixed and pressurized
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(a) Transition 

CCS to CSG

(b) TLD pocket

(c) TD

(d) CSF

(e) Increasing CCS?

Figure 7.11: Comparison of geologic conditions interpreted by human (the geologic map) and
by the AI system.
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Figure 7.12: Feature importance ranks produced by (a) impurity, (b) permutation, and (c)
conditional permutation methods.

inside the chamber, which can further alter its characteristics. The flow and volume of the
muck inside the screws and the belt conveyor are regulated according to the screw rotation
speed, which is adjusted by the operators to achieve a specified chamber pressure (Borghi,
2006; A. S. Merritt, 2004). These factors significantly affect the muck characteristics in the
screw and belt conveyors.

Important features. All feature importance analysis methods consistently produced
features related to cutter (i.e., cutter torque and cutter rotation speed), thrust (i.e., thrust
force and advance rate), and ground conditioning systems (i.e., foam and polymer) at high
ranks. This is expected as the cutter and thrust systems directly interact with the encoun-
tered grounds (Sousa & Einstein, 2012). In contrast, another feature from the thrust group,
i.e., thrust stroke, was consistently at the lowest importance rank. Thrust stroke is typically
pushed to its maximum stroke length or the specified tunnel lining segment length. There-
fore, the stroke length values should not depend on the encountered soils. This can be a sign
that the feature importance analysis returned sensible results.

All features related to ground conditioners, except the foam volume, are consistently at
high ranks. The foaming agent (or surfactant) and the foam liquid (or solution) volumes
were recorded by measuring their flows using flowmeters. In contrast, the foam volume
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was obtained by combining the foam liquid and injected air volumes. The air volume was
approximated based on the air injection pressure. Thus, the measurements of the foaming
agent and liquid volumes should be more accurate than the foam volume. This inaccuracy
might be the reason why foam volume is at a different rank compared to the other features
in the ground conditioning system.

The association between ground conditioners and the encountered soils seems obvious.
Ground conditioners are typically injected into the encountered soils at the cutter head to
achieve favorable soil flow characteristics (e.g., high compressibility, low strength, low perme-
ability). The favorable soil characteristics can be achieved by applying ground conditioners
in appropriate mixtures, depending on the encountered soil type. Laboratory tests were usu-
ally conducted on retrieved soil samples before the tunneling began to get some guidelines
on the ground conditioning mixture (Peila, 2014; Peila et al., 2019).

However, applying ground conditioners during tunneling is not straightforward. First,
the encountered grounds at the TBM face are unknown. Second, the effective characteristics
of the mixture are not only determined based on the intrinsic properties of the ground
conditioners but also depend on the specific soil properties, e.g., porosity (Thewes et al.,
2012; Thewes & Budach, 2010), and specific pressure levels (Mori, 2016) at every location
along the tunnel alignment. This information is impossible to obtain in the pre-tunneling
stages. Therefore, in reality, the TBM operators must continuously adjust the conditioners
to achieve favorable soil flow characteristics during tunneling (JSCE, 2016).

7.4.5 The Importance of Feature Interactions

Figure 7.12 reveals that some TBM features may have larger weights in the classification
model. However, this does not mean that each of those features has an exclusive relationship
that can be used directly for the ground interpretation. This premise is demonstrated in
Figure 7.13. This figure presents the accuracy of the RF models that made the classification
using a single predictor feature only. The figure shows that a single feature could only produce
a classification accuracy of about 0.5 or below. This applies to all features, including the
high-rank features (i.e., thrust, cutter, and ground conditioning systems). An accuracy of
0.5 or lower means that the classifier model did not perform better than a random guess.
The low accuracy indicates that information in a single feature may not be adequate for soil
classification. This suggests that it is the interactions among the TBM features that contain
the “true” information about the geologic conditions.

7.5 Conclusions

This study has proposed a supervised AI system to interpret the geologic conditions based
on TBM operation data. The proposed system can infer the encountered geologic transitions
in real-time during tunneling. Thus, it can be employed as a tool to systematically infer the
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Figure 7.13: Soil classification accuracy when RF models were trained using a single predictor
feature only.

encountered geologic conditions along tunnel alignments. The main findings of this study
are summarized in the following.

• Prediction model. This study demonstrates that the geologic interpretation model
can be developed using RF, which can deliver stable and decent prediction performance
with simple hyperparameter tuning. This is important considering the sequential pro-
cess in tunneling, where the model needs to be dynamically retrained whenever new
training data become available (i.e., when the TBM arrives at a borehole location).

• Detecting geologic transition. The geologic transition detection can be performed
using classification or regression approaches, i.e., by representing geologic conditions
as probabilities of several geologic labels or by representing the thickness of every geo-
logic deposit at borehole locations as numerical percentages. The regression approach
is computationally more expensive than the classification approach since it requires
multiple regression models to be built (one for each geologic deposit type). However, it
can estimate the percentage of every soil type in a borehole, enabling a direct geologic
interpretation. This approach also enables better prediction performance from early
tunneling phases, where the classification approach performs poorly due to limited
available training data.

• Geologic information in TBM features. This study quantitatively shows that
TBM data contain information about the geologic conditions. The feature importance
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analysis has shown that features related to the cutter, thrust, and ground condition-
ing systems contain relatively larger “weights” in the geologic interpretation model.
However, the information in a single feature may not be adequate for interpretation,
even if it is from a highly important feature. This indicates that information about
the geologic conditions is contained in the interactions of the features (i.e., nonlinear
normalization of the features). Capturing these interactions is essential to infer the
geologic conditions encountered during tunneling. This highlights the importance of
nonparametric and nonlinear machine learning algorithms to exploit complex interac-
tions of TBM data.

Based on these findings, more work can be done to further develop the proposed geologic
interpretation system. This may include the following.

• Machine learning algorithms and extrapolation problems. It is important to
investigate the effects of different machine learning algorithms on the model, especially
how they behave in extrapolation problems. The TBM may always encounter new
geologic conditions along the alignment, forcing the model to extrapolate. It is widely
known that machine learning, especially the decision tree-based algorithms such as RF,
may perform poorly in extrapolation problems (Ebert et al., 2014; Webb et al., 2020).

• Change of optimal hyperparameters along the tunnel alignment. Investi-
gating how the optimal hyperparameters change along the tunnel alignment can be
important since tunneling involves sequential learning, where the model should be
continuously retrained. The new data may affect the best hyperparameter configu-
ration. Highly fluctuating hyperparameter configurations mean the model should be
continuously tuned (e.g., by cross-validation), which may cause a computation time
bottleneck during tunneling.

• Model interpretation. Understanding the model is essential to build some gener-
alizations from the model. This is also critical to ensure model reliability. However,
this task can be challenging since the appropriate way to interpret the model, e.g., by
measuring the feature importance, is still an active research area (as discussed in Chap-
ters 5 and 6). Some efforts may include exploring different model interpretations and
feature importance analysis methods, as well as implementing the model in different
tunneling cases.
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Chapter 8

Detecting Geologic Anomalies during
Tunneling

Some contents of this chapter have been accepted in Apoji, D. and Soga, K. (2023). Soil
Clustering and Anomaly Detection Based on EPBM Data using Principal Component Anal-
ysis and Local Outlier Factor. Geo-Risk. American Society of Civil Engineers.

8.1 Introduction

8.1.1 Background

Detecting the changing ground conditions during tunneling has always been one of the most
critical tasks in tunnel boring machine (TBM) operation. The TBM operators need to be
continuously aware of the changing ground conditions. The geologic map can provide a guide.
However, it only contains limited information since it is interpreted from limited boreholes
at discrete locations. Therefore, during tunneling, the operators must continuously infer the
encountered geologic conditions based on TBM operation data (Garcia et al., 2021). The
TBM operation data is typically generated every few seconds by numerous sensor measure-
ments. Interpreting this kind of data stream can be challenging and lead to unsystematic
interpretation, human bias, and errors.

Many studies have been produced to develop a more systematic method to infer the
encountered geologic conditions based on TBM operation data. Many used data-driven
approaches such as using probabilistic models (Sousa & Einstein, 2012) and machine learning
(Apoji et al., 2022b; Erharter et al., 2020; Q. Zhang et al., 2019; Zhao et al., 2019). Most
of the developed data-driven methods used a supervised learning method to convert the
TBM operation data into the predicted ground classifications. Supervised learning is a
powerful prediction tool. However, it strongly depends on available training data and the
ground truth labels. In tunneling, the ground truth (i.e., borehole data) is very sparse and
limited. It typically only captures less than one percent of the geologic conditions along
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the tunnel alignment. Furthermore, supervised ground prediction methods will always have
problems when the TBM encounters new ground conditions (i.e., soil units) that have not
been experienced before. Unfortunately, this will happen all the time in tunneling due to
the variability of geology.

8.1.2 Related Works

Unsupervised learning is a potential tool to tackle this problem. Unlike supervised learning,
unsupervised learning algorithms do not require training data and labels. The algorithms
find structures and patterns in the given data set as is. Some previous studies have tried to
implement unsupervised anomaly detection methods in tunneling. Sheil, Suryasentana, and
Cheng (2020) explored various anomaly detection methods for micro-tunneling applications.
The study indicates that non-parametric anomaly detection methods may perform better
than density-based methods. However, the conclusion was derived only from univariate data
set as input (i.e., jacking force).

Meschke et al. (2019) implemented Page-Hinkley Test (Hinkley, 1971), an unsupervised
learning algorithm, to detect a sudden change in the ground during TBM tunneling. How-
ever, they also only used univariate data set as the input, i.e., the specific torque, which is
computed based on the torque and penetration rate. Cao et al. (2021) implemented a drift
detection method (Saadallah et al., 2019), also to detect sudden changes in the ground dur-
ing TBM tunneling. Different from the previous studies, they used a multivariate data set
as the input. However, as a trade-off, it can be difficult to interpret the model. Furthermore,
the study was carried out to detect TBM advances through a concrete wall. No discussion
on the performance of detecting less sensitive changes such as geologic variability.

8.1.3 Objectives

This study aims to propose a more interpretable unsupervised anomaly detection method to
infer changing ground conditions in real-time during tunneling based on multivariate TBM
data. The proposed method uses a dimensionality reduction method, i.e., the Principal
Component Analysis (PCA), to (i) extract information on the ground conditions from se-
lected TBM variable features, and (ii) project the lower dimension data set on a geometrical
space. Subsequently, the proposed method uses a density-based outlier detection method,
i.e., the Local Outlier Factor (LOF), to measure the degree of the anomaly of the projected
data points. The combination of the geometrical space projection and the density-based
clustering was expected to enable the geometrical interpretation of the model.
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8.2 Data

8.2.1 Tunneling Case and Geologic Conditions

This study used a data set of the State Route 99 (SR99) highway tunnel in Seattle, Wash-
ington, USA. Along the tunnel horizon, the geologic conditions were dominated by over-
consolidated glacial and non-glacial pre-Vashon geologic units. More discussion of this tun-
neling case and the geologic conditions can be found in Chapters 5 and 7, respectively.

8.2.2 Data Description and Preparation

Similar to Chapter 7, this study used ring-length aggregate spatial series as the observation
data points. A set of variable features was selected from the earth pressure balance (EPB)
TBM data set as the input for the proposed unsupervised anomaly detection method. The
input consisted of 13 features related to the cutter, thrust, and ground conditioning systems
(Table 8.1). As concluded in Chapter 7, these features contain larger weights in the soil
classification model. Therefore, relationships among these features are expected to contain
information on the ground conditions. The data preparation and cleaning were done in
accordance with the steps discussed in Chapter 7.

Table 8.1: List of EPB TBM features used in the unsupervised geologic anomaly detection
method.

No. Feature Unit Group

1 Cutter torque kNm Excavation

2 Cutter rotation speed rpm

3 Copy cutter position deg

4 Copy cutter stroke mm

5 Thrust force kN Advancing

6 Thrust stroke mm

7 Advance rate mm/min

8 Foam volume m3/m Ground conditioning

9 Foam pressure kPa

10 Polymer volume m3/m

11 Polymer pressure kPa

12 Slurry volume m3/m

13 Slurry pressure kPa
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8.3 Methods

The proposed unsupervised anomaly detection method was developed under several hypothe-
ses, as listed below.

1. Some variable features in EPB TBM data contain information on the ground con-
ditions. Therefore, EPB TBM data with properly selected features can be used to
identify the ground conditions of a chainage location.

2. By projecting the data on a geometrical space, data points (i.e., chainage locations)
with similar ground conditions will cluster together. A dimensionality reduction
method such as PCA can be used to extract the information from the original data set
into a data set with a lower dimension. This enables the projection of the data into a
geometrical space.

3. Data points that do not belong to any clusters can be identified as potential outliers
(i.e., anomalies) and may have a unique ground condition. The degree of the anomaly
for every data point on the projection space can be measured using density-based
outlier detection methods. LOF may be suitable for this purpose, considering an EPB
TBM data set is a non-parametric data set where clusters of the projected data points
may have different density levels.

4. The PCA projection of EPB TBM data can be made dynamically in a sequence during
the tunneling (in an online manner). Meaning that a new projection can be created
every time the EPB TBM advance forward and produce new streams of data. The
LOF of the newest data point on the projection can be used to identify the degree of
the anomaly of the ground condition at the EPB TBM location. A new data point
with LOF ¿ 1.0 indicates that the EPB TBM is entering a new ground condition that
is not similar to the previous ground conditions. The higher the LOF, the more the
ground condition potentially changes.

8.3.1 Model Setup

These hypotheses can be derived into an unsupervised anomaly detection method to infer
changing ground conditions in real-time during tunneling. Table 8.2 presents the algorithm
of the proposed method. In this method, PCA was used to transform the original data set
into PC scores at every TBM advance in an online manner. In other words, PC scores at
chainage i were obtained by transforming the data set with all observation data points from
the beginning of the tunneling to chainage i. Subsequently, PC scores at chainage i+1 were
obtained by transforming the data set with all observation data points from the beginning
of the tunneling phase to chainage i+1. This process was repeated until the end of the
tunneling sequence.

Note that PCA transforms an original data set into PC scores based on variances of the
data variables. Since variable features of EPB TBM data are in various units, the magnitude
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and distribution of every feature can be significantly different. Therefore, the EPB TBM
variable features should be standardized before performing PCA. Without standardization,
the PC scores will be governed by the features that the units are in higher magnitude. The
standardization can be done by transforming every feature to have zero mean and a unit
standard deviation.

This study selected minimum points k-nearest neighbors of 10 for the LOF analysis.
This value is the minimum k value as recommended by Breunig et al. (2000). Based on their
experiment, any k value below this threshold may produce unwanted statistical fluctuations
that can result in insensible LOF.

Table 8.2: Algorithm of the unsupervised geologic anomaly detection method.

1: data = TBM data with selected features
2: for chainage in StartCainage to EndChainage do
3: Scale data from StartChainage to chainage
4: Compute PCA on the scaled data
5: Get PC scores
6: Select k value for LOF
7: Compute LOF on PC scores (e.g., PC1 and PC2)
8: Get LOF at chainage data point
9: end for

8.3.2 Principal Component Analysis

PCA is an unsupervised learning algorithm to reduce the dimensionality of a large data
set. The algorithm can find representative variables in a lower dimension that contain most
of the variability (i.e., information) in the original data set (Hastie et al., 2009; James et
al., 2013). The algorithm converts measured variables (X1, X2, . . . , Xp) to derived variables
called principal component (PC) scores (Z1, Z2, . . . , Zp). The amount of stored information
is ordered. The first PC contains the most information (i.e., the largest variance in the
original data set), and followed by the second PC.

The first PC and its relationship to the measured variables can be written as

Z1 = ϕ11X1 + ϕ21X2 + · · ·+ ϕp1Xp, (8.1)

where coefficients of ϕ are the PC loadings, which essentially are the eigenvectors. Typical
data sets consist of n observations on each measured variable p(n × p). Thus, the kth PC
of data with ith observation data points and jth measured variables can be generalized with
the equation

zik =
p∑

j=1

ϕjkxij. (8.2)
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PCA can be solved using the eigendecomposition of the covariance matrix or singular
value decomposition (SVD). For computation, the SVD solver is typically more efficient and
stable.

8.3.3 Local Outlier Factor

LOF is an algorithm that measures the degree of being an outlier by comparing the local
density of a data point to the local densities of the neighboring data points (Breunig et al.,
2000). Conceptually, a data point is considered to be an outlier if it has a substantially lower
density than its neighbors. LOF can be computed by first determining k-nearest neighbors
and measuring the reachability distance (RD) of data points in a given data set. RD of a
point p with respect to a point o is defined as the larger value between the distance of the
two data points and the k-nearest neighbor distance of point o

RDk(p, o) = max{distance(p, o), k distance(o)}. (8.3)

Local reachability density (LRD) measures how far a point is from the nearest cluster. A
low value of LRD implies that the point is far from the closest cluster. LRD is defined as
the inverse of the average RD of a data point p from its neighbors

LRDk(p) = 1/

(∑
o∈Nk(p) RDk(p, o)

|Nk(p)|

)
, (8.4)

where Nk(p) is the minimum points k-nearest neighbors of p.
Finally, LOF score can be computed as a ratio of the average LRD of the neighbors and

the LDR of the data point p,

LOFk(p) =
∑

n∈Nk(p)

LRDk(o)

LRDk(p)
× 1

|Nk(p)|
. (8.5)

LOF values of 1 or less indicate that the data point is similar or inlier to its neighbors. In
contrast, values significantly larger than 1 indicate outliers. LOF can identify outliers in a
data set that has clusters with different densities.

8.4 Results and Discussion

8.4.1 PCA Projection

Figure 8.1 presents PCA projections of the EPB TBM data set at nine chainage locations
along the tunnel alignment. The figure shows examples of two-dimensional (2D) projections
of the first two PCs, i.e., PC1 on the x-axis and PC2 on the y-axis. Each data point represents
EPB TBM data at a chainage location, hence, the number of data points increases as the
chainage increases. To interpret the projection, the data points were colored based on
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available boreholes according to the largest percentage of soil units at each of their location.
Data points without any borehole information were colored in grey. The size of the data
points represents the percentage of the dominant soil unit. Larger data points indicate that
the soil unit was dominant in the tunnel horizon, while smaller data points indicate more
mixed ground conditions.

Several findings can be drawn from Figure 8.1. First, the projected data points shifted
dynamically as the data increased. It can be observed that every chainage plot had different
patterns of data points. This is true since every new observation data point added to a data
set can change its variance. The change in data variance affects the PCA transformation
and alter the produced PC scores. Second, it appears that data points with similar ground
conditions tended to cluster together. Interestingly, the dynamic behavior of the projected
data points did not substantially affect the soil clusters. Data points with similar ground
conditions were continually clustered. These findings confirm the first two hypotheses of this
study. This suggests the potential application of PCA projection to cluster data points with
similar ground conditions, dynamically.

Better visualization of the clusters can be seen in Figure 8.2. This figure presents the
three-dimensional (3D) projection (i.e., PC1, PC2, and PC3) of all observation data points
in the data set, which is comparable to Figure 8.1(i). The 3D projection shows better cluster
separations that cannot be clearly seen in the 2D projection. This is true since the three
PCs contain more information than the two PCs. As shown in the scree plot (Figure 8.3(a)),
the first two PCs capture about 42% of the information in the original data set. While
the first three PCs capture about 55% of the information. The figure also shows that the
first eight PCs can represent about 90% of the information in the original data set. This
demonstrates the capability of PCA to reduce the dimensionality of high-dimensional data.
The dimensionality reduction enables the projection and visualization of the data without
losing too much of its information.

Figure 8.3(b) presents the PCA biplot, which shows the contribution of each original vari-
able feature to the first two PCs. As mentioned, these PCs stored most of the information
in the data set. The biplot shows that many variable features shared large contributions
to PC1 and PC2, for instance, the cutter torque, cutter rotation speed, thrust force, ad-
vance rate, and features related to ground conditioners. The biplot also shows that three
variable features had insignificant contributions to the PCs, i.e., the thrust stroke, copy cut-
ter stroke, and copy cutter position. These are sensible since the thrust stroke is specified
by the target advancement length, which is typically determined based on tunnel segment
length. Similarly, the copy cutter features are used to create over-excavation for shield ma-
neuvers (Chanchaya & Suwansawat, 2014). These features are specified based on the tunnel
alignment design and may not relate to the ground conditions.

8.4.2 Local Outlier Factors

It has been demonstrated that the PCA projection can dynamically cluster EPB TBM data
points with similar ground conditions. This implies that a data point that does not belong
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Figure 8.1: Examples of 2D PCA projections of the EPB TBM data at different chainages
along the tunnel alignment.
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Figure 8.2: Example of 3D PCA projection of the EPB TBM data (at Chainage 28730).
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(a) (b)

Figure 8.3: Interpreting PCA results: (a) Scree plot to visualize the information in each PC
score, (b) biplot to visualize the contribution of each variable feature to PC1 and PC2.

to any clusters may have a unique ground condition. This concept can be used to indicate
anomalies in ground conditions during tunneling. If a new data point is projected far from
any existing clusters, the EPB TBM may be entering a new ground condition. The degree
of the anomaly can be measured using LOF.

Figure 8.4 presents 2D PCA projections together with the LOF plots, which represent
the degree of the anomaly of the data points. The 2D projection plot was still used (instead
of the 3D projection) for easy visualization and interpretation. The LOF are shown in red
circles. The larger the LOF of a data point, the larger the circle that surrounds the data
points. Figure 8.4(a) shows an example of a representation when the EPB TBM appears
to be located in a similar ground condition to the previous ground conditions. The new
projected data point is located inside clusters. This results in a low LOF (small red circle).
In contrast, Figure 8.4(b) shows an example of a representation when the EPB TBM enters
a new ground condition that differs from the previous ground conditions. This is shown by
the new projected data point, which is located outside any clusters on the projection. This
results in a high LOF (large red circle).
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Figure 8.4: Examples of degree of anomaly of projected data points: (a) current EPB TBM
location inside clusters, (b) current EPB TBM location outside clusters (i.e., potentially at
new ground conditions).

8.4.3 Anomaly Detection

Figure 8.5 presents the ground anomaly level plot, i.e., the LOF of every new EPB TBM
data point projection along the tunnel alignment. In more detailed explanation, a PCA
projection was created for every chainage along the tunnel alignment. Subsequently, for
each PCA projection, the LOF of the latest data point in the projection (i.e., the current
EPB TBM chainage) was obtained and stored to measure the anomaly of ground conditions.
The longitudinal geologic map of the tunnel was plotted as a background on the figure to
provide a qualitative comparison between the LOF and the interpreted ground conditions.

This investigation was performed to simulate a real-time anomaly detection of ground
conditions during tunneling. The results indicated that locations with high LOF values
were associated with changes in ground conditions. The LOF values spiked when the TBM
entered mixed soil regions and fully cohesive soils at approximate chainages of 20700, 21000,
and 22200, respectively. Additionally, spikes at chainage 21500 might suggest the presence
of a sandy soil bump in predominantly cohesive soils. The LOF values also spiked when the
EPB TBM encountered mixed soils with substantial Till-like and Till deposits at chainages
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Figure 8.5: Longitudinal plot of the geologic anomaly measurement: LOF of every new EPB
TBM data point projection along the tunnel alignment.

24100 and 24700, respectively. LOF peaks after chainage 25000 may indicate the presence of
mixed soil regions, specifically silt and fine sand layers. Finally, several LOF spikes occurred
after chainage 26500, as the EPB TBM encountered irregular mixed soils until it reached
the end of tunneling. These results confirm the third and fourth hypotheses of the study.

This result suggests the potential application of PCA projection combined with LOF
for anomaly detection of ground conditions during tunneling. This method allows real-time
interpretation of TBM data without any predefined soil labels that are required in supervised
learning-based interpretation methods (e.g., Apoji et al. (2022b)). The development of this
method is expected to be able to assist TBM operators in detecting the changing ground
conditions systematically and quantitatively.

8.5 Conclusions

This study has introduced a more interpretable unsupervised anomaly detection method to
infer changing ground conditions in real-time during tunneling based on multivariate EPB
TBM data. The method combines PCA as a tool to project the data into a lower dimension
space and LOF to measure the degree of the anomaly of the projected data points. This
study has demonstrated that, with appropriately selected EPB TBM features, PCA could
dynamically cluster EPB TBM data according to the ground conditions. Interestingly, the
dynamic behavior of the projected data points did not substantially affect the soil clusters
as they were always grouped together. This study has also demonstrated that LOF could
be a sensible measure to detect changing ground conditions.

Further investigations can be performed to improve the performance of the proposed
method and to ensure its reliability and generalizability. (i) Applying a nonlinear dimension-
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ality reduction method may be worth to explore to better cluster the data points, especially
since interactions among EPB TBM variable features can be complex and nonlinear (e.g.,
Apoji et al. (2022a)). (ii) Investigating the effect of selected k in LOF analysis, which can
affect the degree of anomaly (Breunig et al., 2000). (iii) Using finer observation data points
as the input to evaluate its reliability against data noises. (iv) Testing the method with more
tunneling cases to evaluate its generalizability.
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Chapter 9

Connecting TBM to the Ground
Responses

Some contents of this chapter have been accepted in Apoji, D., Ning, Z., and Soga, K. (2023).
Connecting EPBM Data to Ground Movement Data using Machine Learning. Geo-Congress.
American Society of Civil Engineers.

9.1 Introduction

9.1.1 Background

Tunneling-induced ground movements constitute a major concern in tunneling projects. The
induced ground movements are mainly governed by (i) the tunnel spatial geometries, (ii)
the geologic conditions, and (iii) the tunneling processes, i.e., the tunnel boring machine
(TBM) behaviors. The movements can be estimated using various methods, for instance,
empirical (Mair & Taylor, 1999; Peck, 1969), analytical (Loganathan & Poulos, 1998; Pinto
& Whittle, 2014; Pinto et al., 2014), and numerical methods (Avgerinos et al., 2018; Kasper
& Meschke, 2004; Komiya et al., 1999). Every method offers different approaches, but
the key input parameters are always dominated by the tunnel geometries and the geologic
conditions. Limited attention has been given to the effects of TBM operations.

9.1.2 Related Works

Maximum Ground Movements. Some studies have been conducted to include more in-
formation related to TBM operations in tunneling-induced ground movement models. Most
of the studies used a data-driven method by utilizing TBM operation data and machine
learning algorithms. Shi et al. (1998) proposed a method to estimate tunneling-induced
ground movements using Artificial Neural Networks (ANN). The study used a data set from
the Brasilia Tunnel project in Brazil. Two types of ANN were examined, i.e., general and
modular ANNs. They concluded that the modular ANN model produced better prediction
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accuracy and computation convergence in the training process. This is an early implemen-
tation of data-driven methods for estimating tunneling-induced ground movements.

Suwansawat and Einstein (2006) examined the performance of various ANN architectures
in estimating the maximum surface settlements. The study used a data set from the Bangkok
MRTA project in Thailand. The best ANN architecture was evaluated by developing 18 ANN
models with different numbers of hidden layers (1, 2), hidden nodes (10, 15, 20), and training
epochs (1000, 2000, 3000). They reported that the best ANN architecture was achieved using
one hidden layer, 20 nodes, and 2000 training epochs.

Boubou et al. (2010) proposed a method to estimate the cross-section profile of tunneling-
induced ground movements. The study used a data set from the subway line B tunnel project
in Toulouse, France. Two algorithms were used to develop the models, i.e., ANN and least
square approximation. The most influential TBM features were evaluated using a feature
elimination procedure. They concluded that the models could produce more realistic ground
movements since the estimated cross-sectional ground settlements were not restricted to the
typical Gaussian shape. They also concluded that the three most influential parameters
from models were the same, i.e., the advance rate, hydraulic pressure used for the cutting
wheel, and TBM vertical guidance parameter. Furthermore, the sensitivity analysis results
indicated that the ANN model could not be trained with less than 40% of the total data set
and in optimal performance when trained using at least 60% of the total data set.

The implementation of data-driven methods to estimate tunneling-induced ground move-
ments has become more prevalent in the past decade. Different machine learning algorithms
have been used as prediction models. For example, Bouayad and Emeriault (2017) imple-
mented the Adaptive Neuro-Fuzzy-based Inference System algorithm (ANFIS) to develop
a prediction model for ground settlement data from the subway line B tunnel in Toulouse,
France. Goh et al. (2018) implemented Multivariate Adaptive Regression Splines (MARS)
to develop a prediction model for ground settlement data from three different earth pressure
balance (EPB) TBM tunneling projects in Singapore. Su et al. (2022) implemented Extreme
Gradient Boosting (XGBoost), an ensemble supervised learning algorithm, to develop a pre-
diction model for 533 cases of ground surface settlements from an urban shield tunneling
project.

These studies have demonstrated the opportunity of estimating tunneling-induced ground
movements using data-driven methods. Machine learning algorithms also allow more realistic
estimation results since tunneling-induced ground movement profiles may not always follow
the assumed Gaussian type. Furthermore, the algorithms enable flexible mapping between
the input features (TBM operation parameters) and the response (the estimated ground
movement). The model could produce good prediction performance, although they were
built using different input features.

Comparative Studies. Some studies have been conducted to compare and evaluate
the performance of different machine learning algorithms in estimating tunneling-induced
ground movements. These studies include Mahmoodzadeh et al. (2020), Ocak and Seker
(2013), Tang and Na (2021), P. Zhang, Wu, Chen, and Chan (2020), and W. G. Zhang et al.
(2021). These studies involved various machine learning algorithms, from regression-based
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and decision trees-based algorithms to neural network-based algorithms. The algorithms
used in studies and the best performer algorithm are summarized in Table 9.1.

Table 9.1: Comparison of machine learning algorithms for estimating tunneling-induced
ground movements from previous studies.

Reference Models Best Performer

Ocak and Seker (2013) ANN, SVM, GPR GP

Mahmoodzadeh et al. (2020) LSTM, DNNs, kNN, GPR,
SVM, DT, LR

DNN

P. Zhang, Wu, Chen, and
Chan (2020)

BPNN, GRNN, ELM, SVM, RF RF

W. G. Zhang et al. (2021) XGBoost, ANN, SVM, MARS XGBoost

Tang and Na (2021) SVM, RF, BPNN, DNN RF

ANN: Artificial Neural Networks

BPNN: Backpropagation Neural Networks

DNN: Deep Neural Networks

DT: Decision Tree

ELM: Extreme Machine Learning

GPR: Gaussian Process Regression

GRNN: General Regression Neural Networks

kNN: k-Nearest Neighbor

LR: Linear regression

LSTM: Long Short-Term Memory

MARS: Multivariate Adaptive Regression Spline

RF: Random Forest

SVM: Support Vector Machine

XGBoost: Extreme Gradient Boosting

The table shows that almost every study produced a different best-performer algorithm.
This means no solid conclusion can be taken to decide the best algorithm for estimating
tunneling-induced ground movements. The difference can be caused by various reasons,
such as different tunneling data sets, data preparation methods, feature selection, and hy-
perparameter methods. These factors are critical in building a machine learning model and,
therefore, might have substantial effects on the prediction performance.

Longitudinal Ground Movements. The discussed studies focused on connecting
TBM operation data to the maximum surface settlements. It should be noted that tunneling-
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induced ground movement is a function of the TBM position. The ground movement evolves
as the TBM advances toward and passes the location. This progression can be related to
different TBM operation parameters (JSCE, 2016; Suwansawat, 2002). F. Wang et al. (2013)
reported an early development of the study that connected TBM operation parameters to
the longitudinal ground movements. They used a wavelet smooth relevance vector machine
algorithm to model longitudinal ground movement progression during EPB TBM tunneling.
The algorithm was selected as it requires simpler hyperparameter tuning than other machine
learning algorithms such as SVM and ANN.

P. Zhang, Wu, Chen, Dai, et al. (2020) investigated interactions between a shield TBM
and the ground in cross-sections and longitudinal sections. They used two machine learn-
ing algorithms to develop the prediction models, i.e., RF and LSTM. The performance of
the two models was compared using a data set from the Changsha metro project. The
generalizability of the models was evaluated using a data set from the Zhengzhou metro
project. They concluded that the RF model performed the best when predicting discrete
output (i.e., maximum settlement) with limited data. In contrast, the LSTM model per-
formed best when predicting sequential form (i.e., the longitudinal settlement profile) and
multioutput (i.e., TBM operation parameters). The LSTM model was also less sensitive to
the input parameters and performed better when tested using a different data set. These
results demonstrated the advantages of data-driven methods to model complex relation-
ships between TBM operations and the progression of ground movements in the longitudinal
section.

9.1.3 Objectives

The review demonstrates the opportunity to utilize data-driven methods for estimating
tunneling-induced ground movements in the cross and longitudinal sections. Machine learn-
ing algorithms have been shown to be capable of finding complex interactions between the
input features (e.g., the TBM operation) and the response (i.e., the estimated ground move-
ment) without predefined assumptions. This is important in estimating tunneling-induced
ground movements since they are affected by numerous factors and may not always follow
the typical Gaussian shape assumption. Nevertheless, the review also reveals some gaps, as
listed below.

• Most previous studies focused on predicting the maximum ground movements. Lim-
ited studies have been performed on modeling the progressions of tunneling-induced
ground movements in the longitudinal section. This progression should result from in-
teractions between different TBM parameters at different phases of ground movements
(i.e., before, during, and after passing). These complex interactions are difficult to be
explored without the help of machine learning algorithms.

• No solid conclusion can be drawn on the most appropriate machine learning algorithm
for estimating tunneling-induced ground movements. Previous studies indicate that
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most machine learning algorithms may produce reasonably good prediction perfor-
mance if they are appropriately built and trained. This also implies that the selection
of algorithms and their predictability may not be the central issue in developing a
data-driven method for estimating tunneling-induced ground movements.

• Furthermore, many studies still reported conflicting results on the feature importance
analysis. More efforts should be given to understanding the proper way to build and
interpret the model, e.g., setting data set requirements, unifying data preparation
methods and input features, and developing robust validation and evaluation methods.
This may lead to a more generalizable model.

This study aims to develop a supervised artificial intelligence (AI) system that (i) connects
TBM operation data to ground monitoring data and (ii) estimate various tunneling-induced
ground movements solely based on the TBM data in real-time during tunneling. Segmenta-
tion and feature importance analyses were performed to investigate different TBM-ground
interaction mechanisms and TBM control parameters that may affect ground movements
during tunneling.

9.2 Data

9.2.1 Tunneling Case and Geologic Conditions

This study used a data set of the State Route 99 (SR99) highway tunnel in Seattle, Wash-
ington, USA. More discussion of this tunneling case and the geologic conditions can be found
in Chapters 5 and 7, respectively.

9.2.2 Ground Monitoring Data

The tunneling-induced ground responses along the tunnel alignment were measured using
various monitoring instruments (Ning et al., 2019). Surface settlement monitoring plates
and interferometric synthetic aperture radar (InSAR) were employed to monitor the sur-
face movements. Multi-point borehole extensometers (MPBX) were employed to monitor
the underground movements. To limit the scope, this study only considered underground
movement obtained from the MPBX data, i.e., records at 5 ft (approx. 1.5 meters) and 10
ft (approx. 3 meters) above the tunnel crown. To limit the data size and reduce the noise,
this study used the median values of the daily records. Note that the measured underground
movements are the relative movement of these elevations to the movement at the ground sur-
face. This selection resulted in a total of 159 MPBX location points. The MPBX locations
along the tunnel alignment are shown in Figure 9.1.
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Figure 9.1: Locations of MPBX instrumentation along the tunnel alignment
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9.2.3 TBM Data

Similar to Chapter 7, this study used ring-length aggregate spatial series as the observation
data points and focused on the continuous data of the primary EPB TBM system, i.e.,
features related to (i) excavation, (ii) advancing, (iii) steering, (iv) ground conditioning, (v)
earth pressure balancing, (vi) muck discharging, and (vii) tail grouting. List of EPB TBM
features used in the tunnelling-induced ground movement estimation model is presented in
Table 9.2. The features were selected based on the hierarchical feature selection discussed
in Chapter 6. The data preparation and cleaning were done in accordance with the steps
discussed in Chapter 7. This resulted in a total of 28 EPB TBM features and 1253 observation
data points.

9.2.4 Data Integration

The main data frame used for the modeling was constructed by integrating the TBM and
MPBX data frames. The TBM data frame consisted of the chainage head position, the cor-
responding time record, and the TBM operation features. The MPBX data frame consisted
of the MBPX identity number, the location (latitude and longitude, chainage point), the
distance to the tunnel alignment (to tunnel crown and the center of alignment), the ground
movement value, and the corresponding time record. The two data frames were connected
by the time record columns. This means one row of TBM data at a particular chainage
head position can correspond to ground movement records from several MPBX locations.
In this arrangement, the distances between the TBM head to every MPBX location can be
measured, and the tunneling-induced ground movement at different locations relative to the
TBM head can be obtained (Figure 9.2).

9.3 Methods

Conceptually, a model of ground movement at a particular location point can be estimated
as a function of (i) the tunnel spatial geometries, (ii) the geologic condition of that point,
and (iii) the TBM behaviors while passing that point. In this study, the tunnel spatial
geometries consisted of the tunnel depth and distances between the estimated location point
to the TBM head, the center of tunnel alignment, and the tunnel crown (Figure 9.3). The
effects of tunneling on ground movements were considered negligible at 50 m ahead of the
TBM face and 100 m behind the TBM tail. The TBM behaviors were represented by the 28
selected features of TBM operation data. The geologic conditions of the estimated point were
not explicitly provided since this information has been implicitly contained in the interactions
among the TBM features (Chapter 7). This resulted in a total of 32 input features for the
models.
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Table 9.2: List of EPB TBM features used in the tunnelling-induced ground movement esti-
mation model.

No. Feature Unit Sub-Component Group

1 Cutter torque kNm Excavation

2 Cutter rot. speed rpm

3 Copy cutter stroke mm

4 Copy cutter position deg

5 Thrust force kN Advancing

6 Thrust stroke mm

7 Advance rate mm/min

8 Shield roll deg Front shield Steering

9 Shield pitch deg Front shield

10 Shield yaw deg Front shield

11-12 Thrust stroke
difference

mm Left-Right,
Top-Bottom

13-14 Deviation at head mm Vertical,
horizontal

15 Foam volume m3/m Ground conditioning

16 Foam pressure kPa

17 Polymer volume m3/m

18 Polymer pressure kPa

19 Slurry volume m3/m

20 Slurry pressure kPa

21 Additive volume m3/m

22 Chamber pressure kPa Earth pressure
balancing

23 Screw rot. speed rpm Muck discharging

24 Screw pressure kPa

25 Belt muck volume m3/m

26 Belt muck weight ton

27 Grout volume m3/m Backfill grouting

28 Grout pressure kPa
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Figure 9.2: Tunneling-induced ground movement data relative to the TBM head position.

9.3.1 Model Setup

The tunneling-induced ground movement estimation system was developed using two data-
driven models with different data-splitting schemes, i.e., (i) static random model and (ii)
dynamic sequential model.

(i) Static Random Model. Similar to the geologic interpretation model (Chapter 7), the
static random model was developed as a benchmark model that follows the standard
practice in machine learning analysis. In this model, the integrated data frame was
split randomly into training and testing data sets in a ratio of 70:30. The prediction
results were evaluated using the mean absolute errors (MAE).

(ii) Dynamic Sequential Model. The dynamic sequential model was developed to be
a model that can be implemented in an actual tunneling process, where the ground
movements were estimated sequentially based on the relationship between the previ-
ously recorded ground movements and TBM operation data. The predictions were
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Figure 9.3: Schematic illustration of tunnel spatial geometries.

continuously performed in an area adjacent to the TBM, i.e., between 50 m ahead
and 100 m behind the TBM face. This area was envisaged to be the area that could
be affected by the TBM behaviors. A schematic diagram of the static and dynamic
models is shown in Figure 9.4.

9.3.2 Prediction Methods

The ground movement model was developed using two prediction methods, i.e., the Ordinary
Least Squares (OLS) and Random Forests (RF). Similar to Chapter 5, OLS was selected to
represent parametric linear prediction methods, and RF was selected to represent nonpara-
metric nonlinear machine learning methods. This study used the RF fast implementation
in C++ and R (Wright & Ziegler, 2017). More discussion of these prediction methods and
their mathematical bases can be found in Chapter 4.

9.3.3 Model Hyperparameters

Similar to Chapter 7, hyperparameter analysis was performed on the static random model.
The analysis was performed to investigate the effects of the hyperparameters on the model
performance and to select the best hyperparameter configuration. The analysis was also
conducted in five times repeated 10-fold cross validation (CV), but with only three RF
hyperparameters, i.e., (i) ntrees, (ii) mtry, and (iii) minimum node size. Since ground move-
ment estimation is a regression problem, the estimated response variance was used as the
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Figure 9.4: Schematic diagram of the (a) static random and (b) dynamic sequential models.

split rule (Wright & Ziegler, 2017). More discussion on the hyperparameters can be found
in Chapter 6. The model performance was evaluated using the out-of-bag samples (OOB).

9.3.4 Feature Importance

Feature importance analysis was performed to investigate the role of TBM features in
tunneling-induced ground movements. The analysis was done using the permutation-based
feature importance. More discussion on the permutation feature importance can be found
in Chapter 5.

9.3.5 Segmentation Analysis

Segmentation analysis was performed to investigate different ground response mechanisms
relative to TBM positions. The algorithm of the segmentation analysis is presented in Table
9.3. In principle, the analysis was conducted by dividing the ground movement response into
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several segments. A segment was defined as a distance where an RF model produced negli-
gible prediction errors. The segment was analyzed using a moving boundary line throughout
the ground responses. For example, the first segment was from 50 m ahead of the TBM
face to a boundary line where errors within this segment were negligible. The next segment
started from the end of the previous segment’s boundary. This analysis was repeated until
the final segment was obtained, where the end boundary of the segment was 100 m behind
the TBM face.

Table 9.3: Algorithm of the segmentation analysis.

1: Input = training and testing data from randomly split instrument IDs
2: Set StartBoundary, EndBoundary, and ErrorThreshold
3: while StartBoundary < EndBoundary do
4: Initialize SegmentMAE
5: for b in StartBoundary to EndBoundary do
6: Slice data from StartBoundary to b
7: Get training and testing data within the slice
8: Train model
9: Initialize InstrumentMAE
10: for each instrument in the testing data do
11: Get prediction
12: Get InstrumentMAE and store the result
13: end for
14: Get SegmentMAE as InstrumentMAE at boundary b
15: end for
16: Get SegmentBoundary as the last b where MAE < ErrorThreshold and store the

result
17: Update StartBoundary as SegmentBoundary at the current iteration
18: end while

The mean absolute error (MAE) of 0.2 mm was selected as the error threshold, where
the model’s error was assumed to be negligible. This threshold was selected to allow better
interpretability of the model. Note that an ideal threshold of 0 mm MAE resulted in a very
sensitive analysis that produced too many ground response segments. This might be due to
various factors, such as noises in the measurement data.
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9.4 Results and Discussion

9.4.1 Effects of Hyperparameters

Figure 9.5 presents the effects of RF hyperparameters on the OOB predictions. The left
panel presents the effect of the ntrees parameter on MAE in different mtry parameters, with
a constant minimum node size parameter of 1. The figure shows that a low number of ntrees
(e.g., ntrees < 200) produced substantially low prediction performance. Increasing the ntrees
improved the prediction performance until it reached the threshold value and stabilized. This
result agrees with previous studies, either using the EPB TBM data set (Apoji et al., 2022b)
or other data sets (Probst et al., 2019). In this study, ntrees of 500 were selected for the
model to ensure high prediction performance and reasonable computation costs.
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Figure 9.5: Effects of RF hyperparameters on the OOB samples of the training data set.

The right panel presents the effect of the mtry parameter on the MAE in different mini-
mum node size parameters, with a constant ntrees parameter of 500. This figure shows that
higher numbers of mtry produced lower MAE, which means higher prediction performance.
The best prediction performance was produced when the mtry was equal to the number of
predictors (i.e., p = 32). This is an interesting finding since the best prediction performance
for an RF regression is typically produced by mtry = p/3 (e.g., Apoji et al. (2022b) and
Probst et al. (2019)). The minimum node sizes produced fewer effects on the prediction
performance. The best prediction performance was produced at the minimum node sizes 1
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and 3. The large mtry and small minimum node size values indicate that more complex trees
were required for the predictions. This hyperparameter configuration reveals the complexity
of the relationship between TBM and ground responses. In this study, mtry of p = 32 and
the minimum node size of 1 were selected for the models.

9.4.2 Static Random Model Predictions

Figure 9.6 presents tunneling-induced ground movement predictions at several selected loca-
tions from the testing data set. The x-axes show the distance from the measurement points
(MPBX locations) to the TBM head (in meters). The y-axes show the induced ground
movements (in mm). The measured ground responses are shown in black. The OLS and
RF predictions are shown in red and blue, respectively. The figure presents different types
of induced ground responses, i.e., settlement (left column panels), heaving (middle column
panels), and relatively stable responses (right column panels). The selected responses show
the variability of tunneling-induced ground movements. Note that the simplified model, such
as the Gaussian settlement profile-based models, may not capture this variability.

These figures show that the RF model could predict tunneling-induced ground movements
solely based on the TBM data. The predicted ground responses are in reasonably good
agreement with the measured responses. In contrast, the OLS model could not reconstruct
the measured responses, with substantial discrepancies in both pattern and magnitude of
the ground movements. This result indicates the presence of nonlinear interactions between
the TBM and the ground responses. This nonlinearity could not be captured by OLS, which
is a parametric model that strictly constrains the fitting to be linear. This result suggests
the value of nonparametric machine learning methods to model data sets with complex
interactions.

Figure 9.7 presents the absolute error (y-axis, in mm) of every monitoring point relative
to the TBM head distance (x-axis, in meters) from all predictions in the testing data set.
The absolute errors of the OLS and RF models are shown in red and blue, respectively. The
Locally Estimated Scatterplot Smoothing (LOESS) lines are shown to visually represent
the scattering data points. Note that LOESS is essentially a generalization form of moving
average and polynomial regression (Garimella, 2017). The figure shows that the overall
RF model performance was better than the overall OLS model. The RF models produced
relatively small errors at points ahead of the TBM (before passing).

In contrast, the OLS model produced substantial errors in this segment. It even failed
to capture zero ground movements at 50-meter distances ahead of the TBM. Note that all
the training data at this point were set to zero movements. Both models’ errors increased
during TBM passing and stabilized after the passing. This indicates different mechanisms
of TBM and ground interactions before, during, and after TBM passing.
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Figure 9.6: Tunneling-induced ground movement predictions with different types of responses
at selected MPBX testing data set: settlement (panels in the left column), heaving (the middle
column), and relatively stable responses (the right column).
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9.4.3 Dynamic Sequential Model Predictions

The static random model can provide some understanding of how the models perform in
different ground responses and using different prediction methods. However, the model
cannot be implemented in real tunneling cases. This is where the dynamic sequential model
is required. Figure 9.8 presents a simulation of real-time tunneling-induced ground estimation
based on TBM data. The simulation was performed from chainage 26000 to 28000 ft, and at
about 3 m distance above the tunnel crown. The colored points on the top panel represent
the measured ground movements obtained from MPBX records. The colored lines on the
bottom panel show the TBM operation data during tunneling at a particular TBM location.
These data were connected by the proposed AI system (i.e., the dynamic sequential model)
to estimate the ground movements along the longitudinal section. The estimated ground
movements are represented in the black points. The red-shaded area indicates the region in
active predictions (i.e., 50 m ahead and 100 m behind the TBM face).
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Figure 9.8: Simulation of real-time tunneling-induced ground movement predictions using
the dynamic sequential model.
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The simulation demonstrates that the system could produce a continuous estimation of
ground responses along the chainage, covering the gaps of ground movement information
provided by the discrete monitoring instruments. Furthermore, the system could also model
the progression of longitudinal ground movements during TBM passing, taking into account
the changing TBM control parameters and the measured ground monitoring. Figure 9.9
shows the average mean absolute errors (MAE) of the predictions at every TBM location
along the chainages. The figure shows that the MAE tends to decrease along the chainages.
This might be due to more training data being available for the model, suggesting that the
system can perform better along the tunnel chainages during the TBM advance.

Figure 9.9: Mean absolute error of predictions along the tunnel alignment.

9.4.4 Three-Dimensional Expansion

Figure 9.10 presents a three-dimension (3D) ground movement estimation at about 3 m
distance above the tunnel crown, when the TBM was at chainage 28000 ft. This prediction
was produced by setting two-dimension (2D) horizontal grids at the specified elevation as
thrprediction points. The figure shows reasonable ground movement results around the TBM
region, indicating the largest ground settlement occurred on top of the TBM centerline and
diminished with more distance. This suggests another advantage of machine learning, where
the prediction can flexibly be expanded to more dimensions.

9.4.5 Ground Response Segmentation

Figure 9.11 presents ground response segments based on the segmentation analysis. Each
segment is shown as a distance between two dashed boundary lines (red), where the model
produces negligible errors (MAE < 0.2 mm). In this case, the first segment was produced
from -50 to 3 m to the TBM head. This segment represents the ground response ahead of the
TBM. The second, third, and fourth segments were produced from 3 to 7 m, 7 to 13 m, and
13 to 21 m to the TBM head, respectively. These segments represent the ground response
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Figure 9.10: Three-dimensional expansion of the tunnelling-induced ground movement pre-
dictions.
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during the TBM passing. The fifth segment was produced from 21 to 31 m, representing
the post-tunneling ground response over the newly constructed tunnel lining. The sixth and
seventh segments were from 31 to 95 m and 95 to 100 m to the TBM head, respectively.
These segments represent post-tunneling ground responses in the longer term. The smaller
segment size during TBM passing may indicate a more complex ground response mechanism
during this period.
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Figure 9.11: Ground response segments based on the segmentation analysis. Each segment
produces MAE < 0.2 mm and is shown as a distance between the two red dashed boundary
lines.

9.4.6 Feature Importance for Overall Response

Figure 9.12 presents the feature importance rank of the overall ground response model,
covering from -50 m to 100 meters distance to the TBM head. The rank shows that spatial
geometries are the key parameters in estimating the ground responses (i.e., the distance
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from the point of interest to the center of tunnel alignment, the tunnel depth, and the
distance from the point of interest to the TBM head and crown). This is expected as the
conventional tunneling-induced ground movement prediction methods have also considered
the geometrical information in the models.
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Figure 9.12: Feature importance rank of the overall ground response model

However, interestingly, the figure shows that features related to steering control (i.e.,
pitch, yaw, and deviation) and chamber pressure are in high-importance ranks. Note that
these features are not commonly included as specific parameters in conventional prediction
methods. This suggests that TBM control parameters substantially govern the tunneling-
induced ground movement and should be considered more carefully in the prediction models.

9.4.7 Feature Importance for Segmental Response

Figure 9.13 presents simplified ground response segments (top panel) and the feature im-
portance ranks of each segment (bottom panels). The simplified ground response segments
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were approximated based on the segmentation analysis result. The feature importance ranks
only show the top 8 features, to focus on the most critical features in the predictions. The
figure shows that each ground response segment produced different feature ranks, indicating
different TBM-ground interaction mechanisms. The simplified ground response segments are
described below.

• Segment 1 represents the ground response ahead of the TBM. This segment appears
to be dominated by geometrical parameters. This suggests that the ground response
mainly depends on the distance to the TBM.

• Segment 2 represents the ground response above the TBM front shield. This segment
indicates a strong influence of the screw-related features. Note that these features
can be related to how the operators regulate the chamber pressure. This suggests the
critical role of pressure control on the ground response.

• Segment 3 represents the ground response above the TBM articulation and rear shield.
This segment shows domination from features related to the steering control (i.e.,
deviation and thrust stroke difference). This suggests that appropriate shield attitude
controls can limit the induced ground movements. This means erratic shield movements
may contribute to excessive ground movement responses.

• Segment 4 represents the post-tunneling ground response above the newly constructed
tunnel lining. This segment appears to be dominated by the geometrical parameters
and the muck volume. This may be related to ground loss. The more the ground loss,
the larger the tail void between the excavated ground and the segment. And the larger
the tail void, the more the induced ground movements.

• Segment 5 represents the longer-term post-tunneling ground behavior. This segment
is strongly dominated by features related to the ground conditioning system, i.e., the
polymer volume. Note that polymer volume is typically injected to minimize the
stickiness of clayey soils (Todaro et al., 2021). This indicates that the ground response
mainly depends on the soil type, e.g., more long-term settlement is expected on clayey
soils due to the soil consolidation.

9.5 Conclusions

This study has proposed an AI system to connect TBM operation data to the ground mon-
itoring data. The proposed system can estimate various types of tunneling-induced ground
movements in real-time during tunneling solely based on the EPB TBM features and the
tunnel spatial geometries. Thus, it can be employed as a tool to control the TBM and limit
the induced ground movements. This also enables quantitative investigation of the interac-
tions between TBM control parameters and the ground responses at different locations (i.e.,
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Figure 9.13: Feature importance rank of each ground response segment.

before, during, and after TBM passing). The main findings of this study are summarized in
the following.

• Estimating ground movements. The proposed system can estimate any shape of
ground movements solely based on TBM operation data and tunnel spatial geometries
without any prior assumption on the ground movement shape, geologic material pa-
rameters, and expected ground loss. Furthermore, unlike most previous data-driven
models, the model can perform real-time estimation of tunneling-induced ground move-
ments during tunneling in both longitudinal and cross sections. The nonparametric
and nonlinear machine learning prediction model produces better estimations than
the parametric linear regression model, indicating the complexity and nonlinearity of
TBM-ground interactions.

• Segmentation analysis. The segmentation analysis shows tunneling-induced ground
movements can be divided into several ground response segments relative to the TBM
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positions, indicating different TBM-ground interaction mechanisms at each ground
response segment. This result quantitatively confirms the theoretical segmentation
proposed in previous literature (e.g., JSCE (2016)).

• Feature importance. The feature importance analysis reveals that each segment
may have different controlling parameters. This information can be useful to deter-
mine which control parameters need to be specified to limit ground movements during
tunneling. Features related to the steering and pressure controls appear to influence
the induced ground movements during TBM passing strongly. These features are not
typically considered in conventional tunneling-induced ground movement estimation
methods.

Based on these findings, more work can be done to further develop the proposed
tunneling-induced ground movement estimation system. This may include as the follow-
ing. (i) Incorporating records from multi-instruments with a finer resolution of both TBM
and ground monitoring data. (ii) Examining the effects of the threshold value in the segmen-
tation analysis. (iii) Investigating the effects of different machine learning algorithms and
their behavior in extrapolation problems (as discussed in Chapter 7). (iv) Investigating the
change of hyperparameter configuration along the tunnel alignment (as discussed in Chapter
7), and (v) Exploring more model interpretation tools to obtain a more solid conclusion on
the role of TBM features in tunneling-induced ground movements (as discussed in Chapters
5 and 6).
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Chapter 10

Modeling TBM Excavation Process

Some contents of this chapter have been published in Apoji, D., Fujita, Y., and Soga, K.
(2022). Exploring Interactions among EPBM Features using Bayesian Networks. World
Tunnel Congress. International Tunneling and Underground Space Association.

10.1 Introduction

10.1.1 Background and Related Works

Tunneling is a complex process due to unpredictable interactions between geologic conditions
and tunnel boring machine (TBM) behaviors. To control a TBM, the operators have to
continuously make real-time interpretations, judgments, and decisions. For example, in
soft ground tunneling using an earth pressure balance (EPB) TBM, the operators have
to interpret the encountered geologic conditions, decide the excavation control parameters,
inject foam to condition the encountered ground, balance the chamber pressure, and navigate
the shield to achieve the correct tunnel position (JSCE, 2016; Maidl et al., 2013). Therefore,
tunneling performance, quality, and safety are strongly reliant on the skill and experience of
the TBM operators.

Typically, TBM operators are guided by instruction sheets that are prepared by tunnel en-
gineers prior to each tunneling excavation phase. However, during the excavation phase, the
operators have to make judgments and adjustments according to the numerous operational
data collected by TBM sensors. For humans, continuously making real-time interpretations,
judgments, and decisions in various control tasks based on numerous streaming sensor data
is not straightforward and may lead to inconsistent results. A more systematic approach
is required to utilize TBM operation data to support the tunneling process (Garcia et al.,
2021).

Studies to address this challenge have been emerging in recent years. Especially due to the
growing number of data collected by TBM sensors, the increase in computing power, and the
emergence of machine learning techniques. For example, many studies have been attempted
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to predict or forecast the ahead geologic conditions (e.g., Apoji et al. (2022b), Erharter et al.
(2020), Sousa and Einstein (2012), Q. Zhang et al. (2019), and Zhao et al. (2019)), predict the
tunneling performance (e.g., Martins and Miranda (2013) and Mokhtari and Mooney (2020)),
and predict the tunneling-induced settlement (e.g., R.-P. Chen et al. (2019) and W. G. Zhang
et al. (2021)). However, most past studies focus on prediction performance. Less focus has
been paid to understanding the features (measured variables used as predictors), the causal
inference, and the generalization of the data (Sheil, Suryasentana, Mooney, et al., 2020).

10.1.2 Objectives

This study aims to introduce a method to explore interactions and causal relationships of
EPB TBM features in a systematic and quantitative approach. Bayesian Networks (BN) and
a structure learning algorithm were used to model the interactions of EPB TBM features
along the tunnel alignment. The relationship between the feature dependencies and EPB
TBM control mechanisms was explored. The effects of providing explicit information about
geologic conditions (i.e., soil labels) in the interactions were also evaluated.

10.2 Data

10.2.1 Tunneling Case and Geologic Conditions

This study used a data set of the State Route 99 (SR99) highway tunnel in Seattle, Wash-
ington, USA. More discussion of this tunneling case and the geologic conditions can be found
in Chapters 5 and 7, respectively.

Similar to Chapter 7, the data was labeled according to soil types based on the borehole
information and physical characteristics described as engineering soil units (ESU) in the
geotechnical baseline project reports (WSDOT, 2010a, 2010b, 2010c). The boreholes were
envisaged to represent about 25 feet (about 7.62 meters) radius distance of their vicinity.
Five labels were created to represent mixtures of the ESU at each borehole location, namely,

(i) cohesive clay and silt (CCS),

(ii) predominantly cohesive clay and silt with layers of cohesionless silt, fine sand, sand,
and gravel (CCS-CSGCSF),

(iii) predominantly cohesionless silt, fine sand, sand, and gravel with layers of cohesive clay
and silt (CSGCSF-CCS),

(iv) predominantly cohesionless silt, fine sand, sand, and gravel with layers of till/till-like
deposits (CSGCSF-TLTD), and

(v) mix of cohesionless silt, fine sand, sand, and gravel; cohesive clay and silt; till/till-like
deposits (TLTD-CSGCSF-CCS).
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10.2.2 Data Description and Preparation

To capture the key interactions, this study focused on features related to excavation pro-
cesses, i.e., features related to cutter head, thrust, ground conditioning, and earth pressure
balancing systems (Table 10.1). To allow more generalization and interpretability of the
results, data from the same sensor types were summed (e.g., for sensors related to volume,
force, and pressure) or averaged (e.g., for sensors related to speed, and length) together.

This study used statistical ring data as the observation data points. In other words,
observation records of a feature within a ring were represented by a data point. Depending
on the data characteristics, the data point was obtained by taking the final observation (e.g.,
for features related to volume, length), or taking the average observation (e.g., for features
related to force, pressure, speed) along the ring.

The data was prepared by removing (i) observations of non-advancing stages, (ii) obser-
vations with an incomplete set of features, i.e., missing values, (iii) observations with other
erroneous records such as data outliers and duplications. The data outliers were determined
using a modified interquartile range (Maher, 2015).

Table 10.1: List of EPB TBM features used in the tunneling excavation process modeling

No. Feature Unit Group

1 Cutter torque kNm Excavation

2 Cutter rotation speed rpm

3 Cutter head force kN

4 Thrust force kN Advancing

5 Thrust stroke mm

6 Advance rate mm/min

7 Penetration rate mm/rot.

8 Foam volume m3/m Ground conditioning

9 Air volume m3/m

10 Foam liquid volume m3/m

11 Foam agent volume m3/m

12 Chamber pressure kPa Earth pressure
balancing

13 Screw rotation speed rpm Muck discharging
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10.3 Methods

10.3.1 Bayesian Networks

Bayesian network (BN) is a probabilistic graphical model that uses a directed acyclic graph
(DAG) to compactly represent the joint distributions of a set of variables and their condi-
tional independencies (Koller & Friedman, 2009). In a BN graph G, the joint probability
distribution P over variables x1, . . . , xn can be expressed as a product of the individual
conditional probability distributions (CPDs),

P (x1, . . . , xn) =
n∏

i=1

P (xi|PaGxi
). (10.1)

PaGXi
denotes the parents of xi in G. And G encodes the local independencies Il(G)

which state that each node xi, given its parent nodes Pa, is conditionally independent of its
non-descendants ND, as expressed by

For each xi : (xi ⊥ NDxi
|PaGxi

). (10.2)

By using this method, the global complexity of a high-dimensional distribution can be re-
duced into local probabilistic models and dependencies.

10.3.2 Structure Learning

BN graphs can be constructed manually based on domain knowledge or can be inferred based
on data using Bayesian network structure learning (BNSL) algorithms. In general, BNSL
can be divided into classes of (i) constraint-based method, (ii) score-based method, and (iii)
hybrid method.

In this study, the BN graphs were constructed using the score-based method. Tabu search
algorithm (Glover & Laguna, 1993) was used to iteratively construct and modify the graphs
toward an optimum network model. The score of the constructed graphs was computed
based on the Bayesian information criterion (BIC), defined as

score BIC(G) = logL(θ̂G)− 1/2 log(n) dim(G), (10.3)

Where L is the likelihood function, θ̂G is the parameter of the graph, n is the sample size,
and dim(G) is the model dimension or the number of parameters of the whole network. This
study was performed using a BN framework implementation by Scutari and Ness (2020).

10.3.3 Model Setup

First, a simple BN graph was constructed using the structure learning algorithm to model the
relationship of ground conditioning volumes, i.e., foam volume, foam liquid (solution) volume,
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and foam agent (surfactant) volume. This was performed to demonstrate the capability of
BNSL to model a true physical mechanism that can be easily validated.

Subsequently, more complex BNSL graphs were constructed to model interactions of
EPB TBM excavation features. To evaluate the effect of providing explicit information
about geologic conditions, the graph models were constructed with and without soil labels
included as a feature. To evaluate the stability and the change of feature interactions along
the tunnel alignment, the graphs were sequentially retrained for each ring chainage. Meaning
that a graph was constructed at each ring chainage based on data from all the previous ring
chainages.

No prescribed graph structure was provided to the algorithm. The strength of the node
connections (links) and the directions were ensured probabilistically by repeating each graph
construction 200 times.

10.4 Results and Discussion

10.4.1 Ground Conditioning System

A simple BN graph was constructed to examine the capability of the structure learning
algorithm to model the true physical mechanism of ground conditioning volumes. The graph
was constructed by the algorithm without any prescribed network skeleton. Figure 10.1
shows the constructed BN graph at the end of chainage (using all observations in the dataset).
This figure shows that BNSL successfully modeled the true physical mechanism of the ground
conditioning volumes. The graph shows that the foam volume had conditional dependencies
on the foam liquid volume and the air volume. And the foam liquid volume had a conditional
dependency on the foam agent volume. This represents the true ground conditioning physical
mechanism where foam is a product of foam liquid plus injected air, and foam liquid is a
product of foam agent plus water.

To evaluate the stability of these interactions, the graph was sequentially retrained for
each ring chainage location using all the previous ring chainages. Normalized data (for
visualization) of the ground conditioning volumes, probabilistic strength of the network
links, and probabilistic direction of the links along the tunnel alignment are shown in Figure
10.2(a), (b), and (c), respectively. Probabilistic strength of 1 means a link was always
connected in 200 repetitions of graph construction. The probabilistic direction of 1 and
0 means a link always had direction as shown in Figure 10.1 and always had its reverse
direction, respectively, in the repetitions.

This figure shows that the links were consistently connected along the tunnel alignment.
This indicates the robustness of this method in capturing the interactions of these features,
even when the data distributions were altered as the data were continuously added during
tunneling. However, the probabilistic direction of the links shows more mixed results. The
figure shows that the link directions could be switched. It seems the algorithm could not
decide which feature was the parent or the child node since the foam agent volume can be
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FoamVol

AirVol FoamLiquidVol

FoamAgentVol

Figure 10.1: Interactions of features related to ground conditioning volumes constructed by
the structure learning algorithm. Red links denote true relationship.

estimated based on foam liquid volume, but foam liquid volume can also be estimated if
the foam agent volume is known. This might be due to the score equivalence of the graph
(Koller & Friedman, 2009) and further investigation should be perform to draw a stronger
conclusion (Chickering, 2002).

10.4.2 Interactions of Excavation Features

More complex BN graphs were constructed to model the interactions of EPB TBM excavation
features. Similar to the ground conditioning system model, the graphs were constructed by
the structure learning algorithm without any prescribed network skeleton. Examples of BN
graph iteration during the structure learning process is presented in Figure 10.3. In this
process, the algorithm re-iterated the graph configuration to find the highest BIC score.

Figure 10.4 shows two samples of BN graphs that model the interactions of EPB TBM ex-
cavation features at ring chainage of 23000 ft (predominantly cohesive soils and till deposits)
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Figure 10.2: Ground conditioning volumes along the tunnel alignment: (a) normalized data,
(b) probabilistic strength of the links, and (c) probabilistic direction of the links.

and 28000 ft (predominantly cohesionless soils). To observe more possible interactions of the
features, probabilistic strength of 0.5 was used as the link threshold (the link appeared at
least in 50% of the 200-graph construction repetition).

Both graphs share several identical results. First, both graphs show that the thrust
stroke was independent of other features. This result is sensible since thrust strokes are
typically pushed to their length capacity according to the subsequent tunnel lining width
and, therefore, should not have any dependencies on excavation conditions. Second, both
graphs show that the penetration rate had conditional dependencies on the advance rate
and the cutter rotation speed. This constructed interaction successfully models the true
mechanism since, in this case, the penetration rate (mm/rotation) was computed as the
advance rate (mm/min) divided by the cutter rotation speed (rpm).

Both graphs also show an interaction between the foam volume and the penetration
rate, as well as between the foam volume and the advance rate. This is sensible since some
studies have shown that ground conditioning can be associated with tunneling excavation
performance (Mokhtari et al., 2020; Roby & Willis, 2014). Furthermore, to maintain the
expected foam injection ratio (FIR) during each excavation step, foam flow is typically
regulated automatically to correspond to the advance rate (Maidl et al., 2013).

Besides the above-mentioned results, both graphs show that interactions of the features
might change during tunneling. The graph at chainage 23000 ft shows that the chamber
pressure had a conditional dependency on the advance rate, whereas no noticeable link to
the screw rotation speed. In contrast, the graph at chainage 28000 ft shows that the screw
rotation speed had a conditional dependency on the chamber pressure, whereas no noticeable
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Figure 10.3: Examples of iteration during structure learning to find a BN graph configuration
with the highest BIC score.
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Figure 10.4: Interactions of features related excavation constructed by the structure learning
algorithm: (a) chainage 23000 ft, (b) chainage 28000 ft. Red links denote true relationship
as calculated; blue links denote sensible interactions based on available literatures; black links
denote possible interactions.

link between the chamber pressure and the advance rate.
Furthermore, the graph at chainage 23000 ft shows that speed features (i.e., cutter ro-

tation speed and advance rate) were the root parents of the interactions. In contrast, at
chainage 28000 ft, it seems force features (i.e., cutter torque, thrust force, and cutter head
force) were the root parents. Typically, advance rate and cutter rotation speed are the key
excavation control parameters used by EPB TBM operators. After specifying these control
parameters, the operators need to check whether the produced forces and torques are still
within the tolerable limits. Therefore, these graphs may indicate that at chainage 23000 ft
(predominantly cohesive soils), the operators controlled the speeds without any significant
intervention was taken regarding the forces and torques limits. In contrast, at chainage 28000
ft (predominantly cohesionless soils and till deposits), the operators had to keep adjusting
the speeds according to the forces and torques limits.

10.4.3 Effects of Soil Labels

To evaluate the effect of providing explicit information about geologic conditions, the BN
graphs were also constructed with soil labels included as a feature. Figure 10.5 shows two
samples of BN graphs that model the interactions of EPB TBM excavation features with
soil labels included as a feature. Similar to the previous graphs, probabilistic strength of 0.5
was used as the link threshold. By incorporating the soil labels, the dataset contained both
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numerical and categorical variables. In a conditional linear gaussian BN model with a mixed
variable dataset, the categorical features will always be the parent nodes for the numerical
features (Scutari & Denis, 2015). Hence, the soil label node was the parent node of almost
all features on these graphs.

Figure 10.5: Interactions of features related excavation with soil labels constructed by the
structure learning algorithm: (a) chainage 23000 ft, (b) chainage 28000 ft. (See Figure 10.4
caption for links color legend.)

Nevertheless, several key interactions in these graphs were similar to the previous graphs
without the soil labels. The thrust stroke was independent of other features. The penetration
rate always had conditional dependencies on the advance rate and the cutter rotation speed.
The foam volume always interacted with the penetration rate. At chainage 23000 ft, the
chamber pressure interacted with advance rate, but not with the screw rotation speed. At
chainage 28000 ft, the screw rotation speed had a conditional dependency on the chamber
pressure, but in this case, the chamber pressure still interacted with the advance rate.

In general, the graphs with soil labels produced fewer interactions between speed features
(i.e., cutter rotation speed and advance rate) and force features (i.e., cutter torque, thrust
force, and cutter head force). In contrast, features in the graphs without soil labels had more
dependencies to force features. This might indicate that the information about the geologic
conditions (i.e., the soil types) was stored and represented by these force-related “reaction”
features.
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10.4.4 Feature Interactions along Tunnel Alignment

To evaluate the stability and the change of feature interactions along the tunnel alignment,
the BN excavation graphs were sequentially retrained for each ring chainage location using
all the previous ring chainages.

Penetration Rate. Figure 10.6 shows the interactions of features related to the pene-
tration rate along the tunnel alignment. This figure shows that along the tunnel alignment,
links between the advance rate and the penetration rate, as well as between the cutter rota-
tion speed and the penetration rate, were consistently strong. The direction of the links was
also consistent. These interactions successfully modeled the true mechanism of penetration
rate interactions along the tunnel alignment.

Figure 10.6: Features related to penetration rate along the tunnel alignment: (a) normalized
data, (b) probabilistic strength of the links, and (c) probabilistic direction of the links.

The interaction between the penetration rate and the foam volume was also consistent
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along the tunnel alignment. This interaction was stronger especially in the end half of
the alignment. However, the link direction was inconsistent. Again, this might be due
to the score equivalence of the graph. Or this might indicate the tendency on how the
operators controlled the advance rate and the injected foam volume. As previously discussed,
ground conditioning can be associated with tunneling excavation performance. Injected foam
volumes may affect the excavation performance (Mokhtari et al., 2020; Roby & Willis, 2014).
Reciprocally, engineers and operators estimate the injected foam volume for the subsequent
excavation step based on the previous excavation performance. further investigations should
be carried out to obtain more conclusive results on this interaction.

Chamber Pressure. During tunneling, chamber pressures must be regulated to balance
the earth pressure. Typically, a target earth pressure is specified according to the overburden
pressure and the estimated lateral earth pressure coefficient at a chainage location. Operators
regulate the chamber pressure by adjusting the advance rate, which dictates the speed of the
chamber to contract or expand, and/or adjusting the screw rotation speed, which dictates
the depressurization of the chamber pressure (JSCE, 2016; Maidl et al., 2013).

Figure 10.7 shows the interactions of features related to the chamber pressure along
the tunnel alignment. This figure shows that the link between the advance rate and the
chamber pressure was stronger during the early half of the tunnel alignment. During this
period, the direction of the link was mostly consistent. In contrast, the link between the
chamber pressure and the screw rotation speed was stronger during the end half of the tunnel
alignment. The direction of the link was also relatively consistent during this period.

This graph might reveal how the chamber pressure was regulated by the operators during
tunneling. These results might indicate that no significant intervention on the screw rotation
speed was required to regulate the chamber pressure during the early half of the tunnel
alignment when the geology was dominated by predominantly cohesive soils. In contrast,
more intervention on the screw rotation speed was required to regulate the chamber pressure
during the end half of the tunnel alignment when the geology was dominated by mixtures of
cohesionless soils and till/till-like deposits. As evidence, it can be observed in Figure 10.7(a)
that the screw rotation speeds highly fluctuated during the end half of the tunneling, which
indicates stronger control by the operators.

10.5 Conclusions

This study has demonstrated that BN graphs can potentially be utilized to systematically
model the interactions of EPB TBM features in a compact and interpretable representation.
This study has also shown that the score-based BNSL algorithm could successfully capture
several true and sensible mechanisms of the feature interactions based on data, both with and
without soil labels. Furthermore, causal relationships between features could be exploited
by examining their dependencies and therefore might provide some indication on how the
operators controlled the EPB TBM.
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Figure 10.7: Features related to chamber pressure along the tunnel alignment: (a) normalized
data, (b) probabilistic strength of the links, and (c) probabilistic direction of the links.

Detailed investigations should be carried out to obtain more conclusive results about
the interactions, e.g., by introducing more features to add more complexity, by utilizing
probability distribution in a finer spatial distance to capture detailed operator decisions,
and by implementing dynamic BNSL to explicitly capture the sequential decision-making
processes.
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Chapter 11

Modeling TBM Steering Control
Decisions

11.1 Introduction

11.1.1 Background and Related Works

The tunneling industry has been aiming to develop autonomous tunnel boring machine
(TBM) steering control systems in the past few decades. The early development started
more than two decades ago when Uematsu et al. (1996) proposed a rule-based steering control
system for a TBM. In principle, the system was executed if the TBM position exceeded a
specified deviation limit. The steering control was performed by specifying the thrust jack
stroke difference, which was estimated based on the statistical relationship from past data.
The system was implemented at the Tsukui headrace tunnel project in Japan by a Joint
venture of Kumagai, Goyo, and Dainippon.

In the following decade, the development was dominated by numerical and experimental
simulations. The popular control framework was the feedback control system. Many studies
implemented this system in different settings, such as the two closed-loop control structures
(Yue et al., 2012), cascade strategy with fixed-value feedforward (Xie et al., 2012), and
multi-cylinder control system (L. Wang et al., 2018). These feedback systems used different
types of controllers. However, most of them were in the family of PID controllers, such as
the basic PID controller (Huayong et al., 2009), variable PID controllers (Xie et al., 2012),
and fuzzy PID controller (Wu et al., 2022).

The development of autonomous TBM systems in real tunneling projects emerged again
in the past few years. This emergence is most likely due to the availability of massive TBM
operation data, the advancement of machine learning, and the growth of computing perfor-
mance. Hoshino et al. (2020) proposed a force-based steering control system. Unfortunately,
the paper does not explicitly describe the developed steering control system. However, it
appears that the system was developed using conventional control systems such as PID con-
trollers or rule-based algorithms without any machine learning algorithms. The system was
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implemented by Obayashi Corp. at multiple tunneling sites in Japan.
Xiong et al. (2020) proposed an autonomous steering control system that could operate

with minimal human intervention. In principle, the system determined the optimal thrust
jack pressure assignments to maneuver the machine toward the design tunnel alignment. The
jack pressure assignments were adjusted automatically and continuously in real-time as the
data was fed into the system every 3 seconds. Again, the paper does not clearly describe the
predictive system inside the controller. However, it appears to be some rule-based algorithms
embedded in a feedback control system. The system was implemented by MMC-Gamuda
KVRMT(T) Sdn., Bhd. at the Klang Valley MRT Line 2 tunnel in Kuala Lumpur, Malaysia.

Wada et al. (2021) proposed a machine learning-based steering control system. In prin-
ciple, the system guided the TBM maneuver by estimating the optimal resultant force point
produced by the thrust jacks. The system used a gradient boosting type of algorithm as
a predictive model and utilized 14 TBM features as the input predictors. These predictors
included features related to the machine coordinates, attitudes, deviations, and advancing
features (i.e., thrust force, cutter torque, advance rate). The system was implemented by
Shimizu Corp. at an undescribed tunneling project.

Hu et al. (2022) proposed an autonomous earth pressure balance (EPB) TBM control
system that could operate without human intervention. The system was developed based on
the human performance model (Rasmussen, 1983) and used intelligent modules to access and
control various set points, such as cutter rotation, thrust speed, jack selection, earth pressure,
screw rotation, gate opening, as well as tail grease, and grouting quantity. Unfortunately,
the paper does not provide detailed descriptions of each intelligent control module. The
system was implemented by Shanghai Tunnel Engineering Co., Ltd. (STEC) at the intercity
railway tunnels between Hangzhou and Shaoxing, China.

11.1.2 Objectives

From the discussion above, it can be noticed that most of these developments were backed
by the industry. This allows the implementation of the developed systems in real tunneling
projects, which is immensely valuable for advancing this technology. However, on the other
hand, this may be the reason why many of the published works provide obscure descriptions
of the developed systems (e.g., due to proprietary-related issues). Nevertheless, it should
be noted that most of the proposed systems were developed based on conventional control
systems such as rule-based algorithms and PID controllers. These systems may not be
fully intelligent to learn and adapt to changing trajectories and ground conditions, which
are the main challenge in tunneling. These lead to problems with generalization. Wada
et al. (2021) mentioned that the performance of their guidance system deteriorated when
the tunnel alignment rate changed. Hu et al. (2022) admitted that their system needs to be
readjusted and retrained in different ground conditions.

This study aims to develop an artificial intelligence (AI) system that is capable of making
steering control decisions in changing trajectories and external disturbances. The system was
developed in a feedback control system framework to ensure its robustness. The system’s
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controller unit was built using machine learning. This enables the controller to (i) make
concurrent decisions in multiple TBM steering control parameters and (ii) adapt to the
changing target trajectories and ground conditions.

11.2 Data

11.2.1 Tunneling Case and Geologic Conditions

This study used a data set of the State Route 99 (SR99) highway tunnel in Seattle, Wash-
ington, USA. This data set was considered suitable for the steering control simulation since
the tunnel alignment has different trajectories in various ground conditions. More discus-
sion of this tunneling case and the geologic conditions can be found in Chapters 5 and 7,
respectively.

11.2.2 Data Description and Preparation

This study used the 20 mm-length aggregate spatial series as observation data points. This
data resolution was considered adequate for simulating detailed TBM movements and be-
haviors with sensible data noises and computation costs. Also, this study used 54 features
(excluding ring numbers and the chainages) that were obtained from the original data set.
These features were selected based on the EPB TBM taxonomy and the hierarchical fea-
ture selection discussed in Chapter 6. The selected features are listed in Table 11.1. Note
that the coordinate positions were transformed as the model’s input. This transformation is
discussed later in the model setup section.

After the initial selection, the data sets were prepared by (i) normalizing volume-related
features with the stroke length, (ii) removing non-excavation observation data points, and
(iii) creating features that represent the difference between the current and the next TBM
coordinate positions, and (iv) removing rows with missing data. This resulted in 138,926 ob-
servation data points from ring numbers 0 (chainage 19496.93 ft) to 1418 (chainage 28722.99
ft).

11.3 Methods

11.3.1 Steering Control Parameters

The EPB TBM used in the SR99 tunneling project could be maneuvered using active and
passive articulation systems. The passive system is the primary steering control system of
a TBM. In this system, the steering is performed by regulating the patterns and pressures
of thrust jacks to achieve a specified jack stroke difference (JSD). In contrast, the active
system is essentially articulation jacks that connect the front and rear shields of a TBM. This
system allows the TBM to maneuver in a smaller curve radius. The steering is performed
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Table 11.1: List of EPB TBM features and positions used in the steering control decision
model.

Group Component Sub- Unit Num. Remark

component Feature

Shield
Position

Coordinates Northing m 3 Head, artic., tail

Easting m 3 Head, artic., tail

Elevation m 3 Head, artic., tail

Deviations Horizontal mm 3 Head, artic., tail

Vertical mm 3 Head, artic., tail

Articulation mm 2 Left-Right,
Top-Bottom

Excavation Cutter head Cutter rot.
speed

rpm 1

Cutter torque kNm 1

Advancing Thrust Advance rate mm/min 1 Average

Force kN 1

Stroke mm 1 Net stroke

Steering Thrust Pressure bar 8 Thrust jack groups

Articulation Stroke mm 4 Artic. jack groups

Attitude Pitch deg 2 Front, rear

Roll deg 2 Front, rear

Yaw deg 2 Front, rear

Ground Foam Volume m3/m 1 Total of 32

conditioning Pressure bar 1 Average of 32

Polymer Volume m3/m 1 Total of 15

Pressure bar 1 Average of 15

Slurry Volume m3/m 1 Total of 26

Pressure bar 1 Average of 26

Additive Volume m3/m 1 Total of 15
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Earth
pressure
balancing

Excavation
chamber

Pressure bar 1 Average of 12

Muck
discharging

Screw
conveyor

Rot. speed rpm 1 Average of 2

Pressure bar 1 Average of 4

Belt conveyor Muck weight ton 1 Total of 2

Muck volume m3/m 1 Total of 2

Backfill Tail grout Pressure bar 1 Average

grouting Volume m3/m 1 Total

by regulating jack strokes to achieve a specified articulation angle. The schematic diagram
of these systems is shown in Figure 11.1.
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Figure 11.1: Schematic diagram of TBM steering systems.

In this study, the passive and active steering control systems of the EPB TBM were
represented as thrust pressures and articulation strokes. The thrust jacks were arranged into
eight pressure groups formed into a circle inside the cutter head periphery. The articulation
jacks were also arranged into four articulation groups, i.e., the top, bottom, right, and left
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strokes. The configuration of the thrust and articulation jack groups used in this study are
presented in Figure 11.2.
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Figure 11.2: Configuration of the thrust and articulation jack groups.

11.3.2 Model for Steering Control Decisions

Feedback control systems have been popularly used to build robust autonomous systems.
The configuration of this system enables the controller to adjust the input by injecting the
system’s errors, i.e., the difference between the desired output (reference point) and the ac-
tual output. In this study, the steering control system was developed in the framework of a
feedback control system (Figure 11.3). In this framework, TBM behaviors and movements
correspond to the system’s process. The ground conditions correspond to the external distur-
bances that affect the system’s process. The tunnel design alignment and the actual position
correspond to the reference point and the process output, respectively. The difference be-
tween the target and actual TBM positions corresponds to the system’s error. This error
can be identified using the system’s measurement unit to be injected back into the controller
unit. In manual operation, the human operator represents the controller unit. This unit is
responsible for making the steering control decisions based on the given reference point and
measured errors. This unit is also responsible for activating the steering control actuators,
such as the thrust and articulation jacks.

Essentially, the system’s process (i.e., TBM movements) can be seen as a dynamical
system that transforms the TBM position, given the actuated steering control parameters and
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Figure 11.3: Schematic diagram of the feedback system for TBM steering control.

the external disturbance, such as the ground conditions (Figure 11.4). In this perspective, the
system’s process can be inversed into a model that outputs the steering control parameters
based on the TBM current position, the TBM target position (with an expected deviation
of 0), and the external disturbances (Figure 11.5). Data-driven techniques can be used to
model this process. This data-driven approach was chosen due to the complexity of the
process and the uncertainty of the external disturbance. These conditions are difficult to be
modeled using analytical or numerical approaches.

11.3.3 Model Setup

The steering control decision model was simulated using the SR99 data set. This model was
developed based on the premise that there must be a relationship between the steering control
parameters and the three other factors of the TBM movement process, i.e., the TBM current
position, the TBM next position, and the external disturbances. In this real data set, the
TBM positions were represented by the TBM delta coordinates (i.e., the difference between
the current and next coordinates) and the deviations. Note that, transforming the current
and the next target coordinates to the delta are required. Without this transformation, the
machine learning model will always extrapolate the predictions since the next coordinate will
always be outside the training boundary (all previous coordinates). As discussed in Chapter
7, machine learning may perform poorly in extrapolation problems.

The external disturbances should correspond to information about the ground conditions.
This information was represented by the TBM excavation data at observation data point i+1.
Previous studies have shown that TBM excavation operation data contain information that
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Figure 11.4: TBM movements as a dynamical system.
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Figure 11.5: Inverse of TBM movement process that outputs the steering control parameters.
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can characterize the ground conditions and their interactions with TBM behaviors (Chapters
7, 8, and 10). Machine learning was used to map these three factors to the steering control
parameters at observation data point i+1, i.e., thrust pressures and articulation strokes. The
schematic diagram of the model input-output mapping in the training phase is presented in
Figure 11.6.
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Figure 11.6: Schematic diagram of the model input-output mapping (training phase).

The steering control decision model was developed in the training phase by accurately
mapping the input and output based on the real physical process. However, the model’s
input must be modified in the testing (or prediction) phase. In real tunneling, the external
disturbances (i.e., the TBM excavation data) at the next observation data point (i+1) do
not exist at the current observation data point i. Thus, the model must use the latest
available external disturbance (at observation data point i) as a proxy for the external
disturbance at the following observation data point (i+1). This substitution was made by
presuming that the external disturbance (i.e., ground conditions) at the current and following
observation data points is not substantially different. This assumption should be valid in
fine-level observation data points (see Chapter 5), where there is no substantial time and
space difference between observation data points i and i+1. The schematic diagram of the
prediction model input and output (testing phase) is presented in Figure 11.7.

The models were trained and tested in a sequential scheme. This scheme was selected
to represent the real tunneling sequence. In this scheme, the following steering control
parameters were determined by the model trained using all data from the previous tunneling
sequence. This training process was performed at every tunneling sequence simulation. This
sequential training allows the model to learn incrementally during tunneling.
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Figure 11.7: Schematic diagram of the prediction model input and output (testing phase).

11.3.4 Prediction Method

Multivariate Random Forest (MRF) was selected as the machine learning algorithm that
maps the model’s inputs and outputs. MRF is a supervised learning algorithm that can pro-
duce multiple prediction outputs simultaneously (Ishwaran et al., 2021). Similar to random
forests (Breiman, 2001), MRF is a nonparametric nonlinear prediction method, where the
prediction results are produced by bootstrapping the training data, constructing a number
of decision trees, and aggregating all the single decision tree results. This algorithm was
also selected due to its robustness to overfitting and straightforward hyperparameter tuning.
The selection of the hyperparameters is discussed in the following.

• Number of trees = 500. This number of trees was considered adequate to ensure decent
predictability of the model (see Chapters 6, 7, and 9).

• Number of randomly selected features to split in each node = number of predictors
divided by 3. This value was selected based on the default number recommended by
Probst et al. (2019) and the previous chapters (see chapters 6 and 7).

• Minimum size of terminal nodes = 5. This value was selected based on the default
number recommended by Probst et al. (2019).

• Number of random splits for splitting a feature = 10. This stochastic approach was
selected to reduce the computation cost. The value was selected according to a recom-
mendation by including stochastic (Ishwaran et al., 2021).
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• Splitting rule = Mahalanobis distance. This rule was selected since this rule takes into
account the correlation over the response feature coordinates, as proposed by Ishwaran
et al. (2021). By using this splitting rule, the multivariate outputs do not need to be
standardized to avoid unbalanced influence from outputs with a larger range of values
(Ishwaran et al., 2021).

More discussion and mathematical background of this algorithm can be found in Chapter
4. This study used the MRF implementation by Ishwaran and Kogalur (2022).

11.3.5 Model Evaluation

The model was evaluated by comparing the steering control parameters produced by the
model and the actual steering control parameters determined by human operators. The
simulation was carried out at five selected ring segments, i.e., ring numbers 251, 501, 751,
1001, and 1251. These ring segments were selected to represent various geologic conditions
and TBM trajectories along the tunnel alignment. Subsequently, another simulation was
performed to investigate the effects of incremental learning on the model predictability.
In this simulation, the model was used to estimate the steering control parameters of the
following six ring segments, i.e., ring numbers 1009 to 1014. In this case, the training was
done one-time using data from the beginning of the tunneling to ring number 1008. This
simulation was then compared to another model at the same simulation condition but was
retrained in every ring segment advancement.

11.4 Results and Discussion

11.4.1 Steering Control Decisions: Human Operator versus
Machine Learning

Figure 11.8 presents the result of the steering control simulations at the five selected ring
segments. The figure compares the average steering control parameters of each ring segment
that were determined by the human operator (from the real TBM operation data) and the
machine learning model (from the simulation). As discussed previously, the steering control
parameters were represented as the assigned pressures on eight thrust jack groups and stroke
lengths of four articulation jack groups. The human operator and machine learning control
decisions are shown in red and blue bars, respectively.

Ring number 251 represents segments with a straight trajectory and increasing depth.
For this prediction, the model was trained using all previous operation data until ring number
250. It can be observed that the human operator assigned almost the same pressures on all
the thrust jack groups and slightly longer strokes for the top articulation jack group. It
should be noted that no dominant thrust pressure is required when a TBM increases the
depth as gravity tends to drag the shield to pitch downward. The simulation shows that the
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Figure 11.8: Simulation of steering control decisions at five selected ring segments: human
operator vs. machine learning.
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machine learning model could produce reasonable steering control parameters with similar
thrust pressure and articulation stroke patterns to the human operator decisions.

Ring number 501 represents segments that curve to the left. At this ring segment, the
human operator maneuvered the TBM to follow this trajectory by assigning larger pressures
on the right side thrust jack groups, i.e., thrust group numbers 2 to 5. The operator also
specified longer strokes at the top and right articulation jacks, indicating the TBM was still
moving down to a greater depth. Interestingly, the machine learning model could capture
these steering control decisions. The model produced similar thrust pressure and articulation
stroke patterns to the human operator. Minor discrepancies can be observed in the thrust
group numbers 5 and 6. These discrepancies may be due to a bias in the training data, where
the model was trained using more straight segments than curving segments. Note that the
TBM just started to curve to the left side from a long straight trajectory at this chainage.

Ring numbers 751 and 1001 represent segments that curve to the right. The TBM climbed
up at these ring segments to decrease the tunneling depth. To follow this trajectory, the
human operator assigned higher pressures on the left and bottom thrust jack groups, i.e.,
thrust group numbers 4 to 7. The high pressures on the bottom side were required to push
the TBM upward against gravity. The articulation jacks were in similar stroke lengths, with
slightly longer strokes at the left articulation jack. This indicates that the radius of the
curve was large enough, and adjusting the thrust jacks with only small intervention from the
articulation jacks was adequate to maneuver the shield. These patterns apply to both ring
segments and machine learning simulations. No obvious errors can be seen in every thrust
and articulation group, indicating the increase in the model’s predictability performance.
This is expected since, at this point, the model had been trained using more data with
various trajectories.

Ring number 1251 represents the end of the tunnel alignment. At this segment, the
TBM continuously climbed up to reach the ground surface. It can be observed that both
the human operator and machine learning assigned larger thrust jack pressures and longer
articulation jack strokes at the bottom side of the shield, i.e., thrust group number 4 to 6
and articulation group number 3. These results demonstrate the capability of the machine
learning model to mimic human operator decisions. The model successfully assigned appro-
priate steering control parameters based on the current and the next TBM position, given
the TBM excavation data as the proxy of ground conditions.

11.4.2 Incremental versus Non-Incremental Learning

The discussion above shows that the machine learning model could reasonably determine
the average steering control parameters of a ring segment. The following questions were,
should the model be trained in every ring segment advancement? Could the model estimate
the steering control parameters of the following ring segments without retraining? Figure
11.9 presents a simulation where the machine learning model was employed to determine
the steering control parameters of six consecutive ring segments, i.e., ring numbers 1009 to
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1014. In this simulation, the training was done one-time using data from the beginning of
the tunneling to ring number 1008.
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Figure 11.9: Simulation of steering control decisions at six consecutive ring segments without
incremental learning.

The top panel presents the absolute errors of the thrust jack pressures in percentage
to the actual values. The average error of all the thrust pressures is shown as the black
line. Firstly, the model was employed to estimate the thrust pressures in ring 1008, which
is inside the training boundary. As expected, the model resulted in a decent performance
with very low errors. Then, the model was employed to estimate the following ring segment,
i.e., ring number 1009. It can be observed that the errors were inflated with an average
error of about 15%. Note that there is also a substantial range of errors for every individual
thrust group. This may indicate different trajectory characteristics between ring number
1009 and the training data, which might force the model to do extrapolation. As widely
known, machine learning models may have poor performance when predicting new data
outside their training boundary (Dubois et al., 2020; H. Zhang et al., 2017). These errors
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even increase in the following ring (ring 1010), with the average error reaching more than
20%. The average error drops to about 10% in rings 1011 and 1012 but increases again
to about 15% in rings 1013 and 1014. This shows the instability of the model’s prediction
performance.

The bottom panel presents the absolute errors of the articulation jack strokes in per-
centage to the actual values. This figure shows that the articulation strokes fluctuated less
than the thrust pressures, which can be seen from a smaller range of errors. The average
error in predicting ring 1009 is only less than 0.5%. However, the average error continuously
increases in the following ring segments, producing an average error of almost 1.5% at ring
1014. This shows that the model suffered more errors as the distance to the training data
increased. This increase might be due to error accumulation since articulation stroke is a
geometrical parameter, where the error of a prediction can affect the following prediction.

Figure 11.10 presents another simulation where the machine learning model was also
used to estimate the steering control parameters of ring numbers 1009 to 1014. However, in
this simulation, the model was retrained at every ring segment advancement. For example,
to estimate the steering control parameters in ring 1014, the model was retrained using all
previous operation data until ring 1013. Similar to Figure 11.9, the top and bottom panels
present the absolute errors of the thrust pressures and the articulation strokes in percentage
to their actual values.

This figure shows considerably lower errors than Figure 11.9, especially in rings 1010 to
1014, where the model had incrementally learned from the preceding ring segments. The
average error of thrust pressures is stable at about 15% in rings 1009 and 1010 and decreases
to about 10% or less in the following ring segments. Similarly, the average error of articulation
strokes is about 5% in ring 1009, slightly increased to about 5 to 10% in rings 1010 and 1011,
and finally stabilized at about 5% in the following ring segments. Note that no accumulation
of errors can be observed in the articulation strokes.

The decent performance of this simulation highlights the importance of the sequential
training scheme in developing machine learning models for steering control decision-making,
especially since the steering process involves different ground conditions, trajectories, and
shield attitude responses that may be outside the previous training boundaries. Updating
the model by retraining enables incremental learning and helps the model overcome this
extrapolation problem.

11.5 Conclusions

This study has proposed an AI system that is capable of making TBM steering control
decisions in changing trajectories and external disturbances. The proposed system uses
multivariate random forests (MRF), a multi-output supervised learning algorithm, to si-
multaneously determine the assignment of multiple steering control parameters, i.e., thrust
pressure and articulation stroke arrangements. The machine learning model utilizes the cur-
rent TBM position, the next step target position, and the current step TBM excavation
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Figure 11.10: Simulation of steering control decisions at six consecutive ring segments with
incremental learning.

data (a proxy of the ground conditions) as predictors of the steering control parameters.
The main findings of the simulation are summarized in the following.

• Simulating steering control decisions. The proposed system successfully mim-
ics human operator decisions by producing appropriate patterns of steering control
parameters. This result demonstrates the possibility of using an end-to-end learning
framework to develop a self-driving TBM system.

• The importance of incremental learning. This study demonstrates the impor-
tance of incremental learning (i.e., the sequential training scheme) in developing a
machine learning model for steering control decisions. Without this learning scheme,
the model may produce unstable prediction performance or accumulate the produced
errors. The incremental learning helps the model overcome extrapolation problems, es-
pecially since the steering process may inherently involve prediction outside the training
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boundaries.

These results indicate that the steering control model will be more accurate if the training
is conducted in a smaller step, e.g., every few seconds during TBM advancement. This will
substantially increase the computation demand since the steering control parameters must
be decided continuously and the training must be completed immediately. This highlights
the importance of computability and scalability in developing steering control decision mod-
els, which can be an interesting area for future work. In addition, similar to Chapters 7 and
9, more studies should be done to investigate the effects of different machine learning algo-
rithms, their behavior in extrapolation problems, and the change of their hyperparameter
configuration along the tunnel alignment.
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Chapter 12

Conclusions

12.1 Summary and Conclusions

This study has proposed an integrated framework of artificial intelligence (AI) systems for
earth pressure balance (EPB) tunnel boring machine (TBM) tunneling. The proposed frame-
work was developed based on the feedback loop control system. The AI systems were devel-
oped using data-driven models by employing machine learning algorithms, and structured
to follow the human cognitive model, i.e., sensing, perceiving, and decision-making. The
findings of this study are summarized below.

• Effects of data aggregation. This study has identified that different aggregation lev-
els do not substantially affect the central tendency of TBM data. However, it changes
the data variance and distribution. Data with a coarser aggregation level tend to have
lower variance. The effects on data distribution are less predictable. These characteris-
tics may affect data-driven models. In the conditions of sufficient observation data and
predictor features, models developed using different data aggregation levels produce
comparable prediction trends. However, models with a coarser aggregation level enjoy
higher prediction performance due to the lower variance. Interestingly, if the predictors
are sufficient to represent the response feature, models with different aggregation levels
may produce similar feature importance ranks. This stable feature importance rank
may indicate the stability of the model.

• Effects of feature selection. This study has identified that TBM operation data
contain severe multicollinearity. This demonstrates the importance of feature selection
when developing TBM data-driven models. Models with selected features can produce
comparable prediction performance to models with the original features, with less com-
putation cost and without multicollinearity-related issues. Furthermore, this study has
shown that knowledge-guided TBM feature selection offers benefits over embedded ma-
chine learning-based feature selections. The models can produce relatively consistent
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feature importance in different tunneling cases. This indicates better generalizability
of the model.

• Perceiving geologic transitions. This study has proposed a supervised AI system to
interpret the encountered geologic conditions along the tunnel alignment based on TBM
operation data. Different from most previous studies, the proposed system can infer
the geologic transitions in real-time during tunneling. The geologic transition detection
can be performed using two approaches: (i) classification, by representing geologic
conditions as probabilities of several geologic labels, and (ii) regression, by representing
the thickness of every geologic deposit at borehole locations as numerical percentages.
The regression approach is computationally more expensive than the classification
approach since it requires multiple regression models to be built. However, it enables
better prediction performance from early tunneling phases, where the classification
approach performs poorly due to limited available training data.

The proposed system was developed using Random Forests (RF). This study shows the
model can deliver stable and decent prediction performance with simple hyperparame-
ter tuning. This is important considering the sequential process in tunneling, where the
model needs to be dynamically retrained whenever new training data become available
(i.e., arriving at a borehole location). This study has provided quantified evidence that
TBM data contain information about the geologic conditions. Features related to the
cutter, thrust, and ground conditioners appear to have relatively larger “weights” in
the geologic interpretation model. However, information on a single feature is inade-
quate for the interpretation, even if it is from the high-rank features. This indicates
that it is the interactions of the features that contain the information.

• Perceiving geologic anomalies. The unsupervised approach can be necessary for
tunneling due to the limited labeled data for training (i.e., boreholes). This study
has proposed an unsupervised AI system to detect the encountered geologic anomalies
along the tunnel alignment based on TBM operation data. The proposed system offers
a more interpretable anomaly detection approach by combining principal component
analysis (PCA) to project the data into a lower dimension space and local outlier factor
(LOF) to measure the degree of the anomaly of the projected data points in real-time
during tunneling. This study has demonstrated that PCA can dynamically cluster
TBM data according to the geologic conditions with an appropriate selection of TBM
features. Interestingly, the dynamics of the projected data points may not substantially
affect the clusters, as similar geologic conditions are always grouped together. This
study has also demonstrated that LOF can be a sensible measure to detect changing
geology.

• Connecting multi-source data and perceiving ground responses. This study
has proposed a supervised AI system to connect TBM features to the ground monitor-
ing data. Different from the conventional methods for estimating tunneling-induced
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ground movements, the proposed system can estimate any shape of ground movements
solely based on TBM operation data and tunnel spatial geometries. No prior assump-
tions on the ground movement shape, geologic material parameters, and the expected
ground loss are required. Furthermore, unlike most previous data-driven models, the
model can estimate tunneling-induced ground movements in real-time during tunnel-
ing, and in both longitudinal and cross sections. This enables quantitative investigation
of the interactions between TBM control parameters and the ground responses at dif-
ferent locations (i.e., before, during, and after TBM passing).

The segmentation analysis has quantitatively corroborated that tunneling-induced
ground movements can be divided into several segments relative to the TBM posi-
tions. This indicates different ground-machine interaction mechanisms at each ground
movement segment. Furthermore, the feature importance analysis has revealed that
each segment may be governed by different TBM features. Features related to the
steering and pressure controls appear to strongly influence the induced ground move-
ments during TBM passing. These features are not typically considered in conventional
tunneling-induced ground movement estimation methods.

• Modeling ground-machine-human interactions. This study has introduced a
combination of Bayesian Networks and structure learning algorithms (BNSL) as a tool
to model and explore the causal effect interactions of ground conditions, TBM be-
haviors, and operator decisions contained in TBM operation data. This study has
demonstrated that Bayesian networks can quantitatively and systematically model the
interactions of TBM features based on data in a compact and interpretable represen-
tation. This integrated representation has never been investigated before and can be
essential to understand TBM tunneling processes better and constructing a robust
decision-making model.

• Making decisions on control parameters. This study has proposed an AI system
to steer a TBM along the tunnel alignment. Different from most previous studies, the
proposed system employed a multi-output supervised learning algorithm to simultane-
ously determine multiple steering control parameters based on TBM operation data.
The capability of performing multi-output predictions is vital since TBM driving in-
volves making concurrent decisions of multiple control parameters. This study has
also shown the importance of the incremental learning scheme and the scalability of
AI systems in tunneling.

In addition to the findings, this study has shown that TBM data contain valuable in-
formation that can be extracted to benefit the tunneling process. However, the data have
complex and nonlinear relationships since it is produced by causal effect interactions during
tunneling and thus cannot be handled using traditional data analysis techniques. This high-
lights the importance of machine learning in tunneling. In this complexity, the nonlinear
and nonparametric machine learning models offer advantages over the conventional linear
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and parametric models by producing not only better prediction performance but also better
stability and generalizability.

These findings are expected to provide some answers for two main challenges in tunneling,
i.e., (i) reducing the uncertainty by exploiting latent information in massive tunneling data
that are not fully utilized in current practices and (ii) facilitating more quantitative and sys-
tematic perceiving and decision-making systems for complex tunneling processes. This will
minimize laborious, subjective, and biased manual systems. This development is envisioned
to be a building block that can increase tunneling performance, reduce risk and cost, and
advance the fundamental development of autonomous TBM technology.

12.2 Future Works

It is evident that the implementation of AI and data-driven modeling in tunneling will
continue to advance. This is motivated by the drive toward more autonomy in the tunneling
process. The advancement will be boosted by the growth of data production in the tunneling
process and the maturity of machine learning domain knowledge. In light of the findings
from this study, insights for future challenges and opportunities are briefly discussed below.

• Developing an integrated database for global tunneling operation data. Tun-
neling data is not openly available and is often separately kept by different stakeholders.
Furthermore, most published studies did not publish the data due to confidentiality
issues from the data owners. Therefore, almost all previous studies were conducted
using different data sets. Since data is one of the essential building blocks of data-
driven models, this data availability issue limits the reproducibility and generalization
of the developed models. Some questions may arise from this issue, will it be possible
to create an integrated database for global tunneling operation data? Considering the
massive data size, how should the data be structured? How to manage the computa-
tion issues? Governments and agencies that own the tunnel infrastructures may have
an important role in this initiative. This database will enable everyone to contribute
to advancing the development of AI in tunneling.

• Developing a unified and reproducible modeling scheme. Until now, there
has been no unified procedure to build data-driven models for tunneling data. Ev-
ery previous study was done using different modeling procedures, e.g., for their data
preparation methods, data splitting schemes, selection of input features, hyperparam-
eter tuning methods, validation methods, and model evaluation methods. This may
be one of the reasons why many previous studies produced conflicting results. Further-
more, many of the studies provided obscure descriptions of their modeling procedures
and did not publish the code openly. This causes reproducibility issues. Some questions
may arise from this issue: Would it be possible to provide a unified scheme or guidance
for developing data-driven models in tunneling? Note that the scheme should include
not only the modeling part but also characterizing and preparing the data (Anik &
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Bunt, 2021). The next question is, how to push reproducibility culture in tunneling
communities? This is critical to provide solid foundations for scientific discoveries and
engineering innovations in tunneling.

• Developing a novel framework to evaluate the generalizability of machine
learning models in dynamic sequential data environments. The generalizability
of machine learning models has been typically seen from the perspective of the bias-
variance trade-off, i.e., an optimal spot between underfitting and overfitting. In this
perspective, the generalizability of a model can be evaluated by finding minimum error
in the validation data set. This approach is applicable to static data sets (Jankowsky
& Schroeders, 2022). However, actual tunneling is done in dynamic sequential envi-
ronments. Thus, the models should continuously be retrained dynamically in sequence
using the generated streaming data. This leads to questions: How should model gener-
alizability be seen in dynamic sequential training? How should it be measured? How to
develop a generalizable model in this environment? This may require designing novel
modeling and evaluation frameworks customized for data-driven modeling in tunneling.

• Developing learning algorithms that can extrapolate. Due to the changing
ground conditions, a deployed machine learning model will be exposed to new envi-
ronments at every advance during tunneling. This means the model will continuously
make predictions in new ranges of data, which can be outside its training boundary. Su-
pervised learning is a powerful interpolator tool that can find complex patterns within
high-dimensional data without predefined physical laws and assumptions. However, it
may perform poorly in extrapolation problems where the conditions are outside the
training boundaries (Ebert et al., 2014; Hooker, 2004). This becomes a fundamental
problem in deploying machine learning models in tunneling. This leads to questions:
How can machine learning be reliable in making predictions for data outside its training
boundary? How to evaluate this extrapolation reliability? Or, more radically, can we
build machine learning algorithms that can extrapolate? Developing algorithms that
can extrapolate remains an open question in other AI and machine learning research
communities (Webb et al., 2020).

• Developing tools to scrutinize machine learning models. No matter how ad-
vanced the employed AI systems are, in the end, tunneling stakeholders hold the engi-
neering responsibilities. These stakeholders may not be comfortable being responsible
for something they cannot comprehend, especially since tunneling presents substantial
risks. The consequences of wrong decisions can be catastrophically expensive and may
involve casualties. Unfortunately, machine learning has been notoriously known as
“black box” models (Rudin & Radin, 2019). This leads to questions: What tools are
available to scrutinize machine learning models? Are these tools adequate to elucidate
and understand how the model comes at the results? How to develop or customize the
tools to be appropriate for data-driven models in tunneling? Interpretable machine
learning is still an active research area, even in other AI and machine learning com-
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munities (Linardatos et al., 2021; Ras et al., 2022). Tunnel engineers and researchers
should engage more in this problem since it is critical to facilitate the deployment of
AI systems in tunneling.

• Developing scalable systems and computing strategies. TBM operation data
are generated every few seconds. This produces enormous training data for every
batch in the dynamic sequential training process. This training must be completed
instantaneously to be able to make decisions (predictions) for the subsequent TBM
advance. Training machine learning models with massive streaming data in a restricted
time constraint can be computationally challenging (Gomes et al., 2019). Therefore,
computation bottlenecks will be an issue in deploying machine learning models in
tunneling. This leads to questions: How should the massive streaming data be handled
during tunneling? How should the computation be managed? How to increase the
computation performance with limited computing resources owned by the tunneling
contractors? Developing scalable AI systems will be a requirement in actual tunneling
projects.
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