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Abstract

Using the power law relationship JðzÞ ¼ J0ðz=z0Þ
�b relating the particulate organic carbon (POC) flux in the water

column at depth z to the export flux J0 at z0 ¼ 100m, I reanalyzed the sediment-trap data set compiled by Berelson [2001.

The flux of particulate organic carbon into the ocean interior: a comparison of four U.S. JGOFS regional studies.

Oceanography 14, 59–67]. The goal is to better understand the variability of the exponent b. I show that the usual

approach of estimating parameters for each station separately and then pooling the estimates from all stations confounds

within-station estimation errors with true regional variability and so tends to inflate the apparent variance of b.

Furthermore, I show that the correlation between b and J0 observed by Berelson [2001. The flux of particulate organic

carbon into the ocean interior: a comparison of four U.S. JGOFS regional studies. Oceanography 14, 59–67] is spurious

and attributable to the fact that the estimation errors for b and J0 are correlated. A two level mixed-effects regression

model is introduced to properly take into account the contribution to the variability of the POC fluxes of within- and

between-station effects. The analysis shows that the variability of b across stations is only a small contributor to the POC

flux variance in the sediment trap data set. In fact the additional POC flux variance captured by a model with regionally

varying b in comparison to a simple model with a fixed b is not statistically significant. The best estimate for the fixed b

applicable to all stations is 0:70� 0:08 (95% C.I. 90 d.f.).

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The depth dependence of the downward flux of
particulate organic carbon (POC) in the ocean, JðzÞ,
is often parameterized by a power law

JðzÞ ¼ J0ðz=z0Þ
�b, (1)

where z0 is some reference depth, typically near
100m, at which the export flux J0 � Jðz0Þ can be
explicitly modeled or measured. The functional
front matter r 2006 Elsevier Ltd. All rights reserved

r.2006.06.003

824 9435; fax: +1 949 824 3874.

ss: fprimeau@uci.edu.
form in Eq. (1) was initially proposed by Martin
et al. (1987) as a way of summarizing sediment-trap
data, but has since been adopted as a useful
parameterization of carbon export by sinking
particles in many global biogeochemistry and
ecosystem models (e.g. Sarmiento et al., 1993;
Yamanaka and Tajika, 1996; Najjar and Orr,
1998). The parameter b controls the depth of
particle remineralization. For large values of b there
is a rapid decrease of the particle flux with depth,
and most of the remineralization happens in the top
of the water column just below the euphotic zone.
For smaller values of b the particle flux decreases
.

www.elsevier.com/locate/dsr
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more slowly, and a larger fraction of the flux
reaches the sea floor. In models, the efficiency of the
biological pump and the resulting partition of
carbon between the atmosphere and ocean is
sensitive to b (Kwon and Primeau, 2006). Con-
straining b from data is therefore important.

In a summary of JGOFS sediment-trap data
using Eq. (1), Berelson (2001) found variability in
the estimates of b from different stations and
suggested that this variability might point to
regional differences in the biogeochemical con-
trols of the attenuation of the POC fluxes with
depth. Furthermore, he noted that a significant
fraction of the variability of bb (hats are used to
indicate estimates of the ‘‘true’’ value) can be
explained by variations in bJ0. Taken at face value,
this result implies that regions of higher export
have a higher fraction of the flux remineralizing in
the upper water column. A similar observation
was made by Lutz et al. (2002), who suggested
that the flux of POC to depth was more efficient
during periods of low primary production after
noting a correlation between the export flux J0

and the ratio, JðzÞ=J0 (what they call the sratio).
Berelson suggests several possible mechanisms
that might explain the correlation: (1) varying
rate constants for POC degradation associated
with differences in molecular compositions; (2)
varying kinetics due to different oxygen, tempera-
ture and mineral distributions in the water
column; (3) differences in microbial and hetero-
trophic communities; and (4) variations in settling
velocities, all of which could plausibly correlate
with the spatially varying biological production in
the top 100m.

Here I show that estimating pairs of b and J0

values separately for each station and then
pooling the resulting estimate pairs as was done
by Berelson (2001) and previously by Martin et al.
(1987) tends to inflate the apparent station-to-
station variability of b because it confounds errors
in the estimates of b with true regional differences.
I show also that such an analysis produces
estimates of b and J0 with correlated errors,
making it difficult to interpret the apparent
covariance between J0 and b noted by Berelson
(2001). One of the goals of this article is therefore
to introduce an improved estimation method that
can properly distinguish within-station errors
from across-station variability in b and J0. I
introduce a two-level mixed-effects regression
model (Raudenbush and Bryk, 2002) to properly
take into account the combined contribution of
within- and between-station effects to the varia-
bility of the POC flux measurements. Within-
station effects include measurement errors and
other effects that contribute to deviations from
the power-law flux profile. Between-station effects
include differences in J0 and b from station to
station. A statistical analysis based on the new
model shows that with some caveats concerning
the North Atlantic Bloom Experiment (NABE)
station, the JGOFS sediment-trap data set com-
piled by Berelson (2001) is consistent with the
hypothesis that there is no detectable covariance
between b and J0. Moreover, the analysis shows
that a model in which b varies from station to
station does not account for a significantly larger
fraction of the POC flux variance than a simpler
model with a fixed b.

2. Expected variance and covariance between the

estimates of the power-law exponent and POC export

flux

Although Berelson (2001) fitted the power law
directly to the flux measurements, it is useful first to
transform the measured fluxes to a logarithmic scale
so that the resulting model becomes linear. Follow-
ing Martin et al. (1987) and Armstrong (2002), we
take the logarithm of (1) to obtain

log JðzÞ ¼ log J0 � b log z=z0. (2)

Applying Eq. (2) to the discrete set of sediment-trap
data from one particular site yields a linear
estimation problem of the form

Xb ¼ yþ e, (3)

where

X ¼

1 � log z1=z0

1 � log z2=z0

..

. ..
.

1 � log zn=z0

26666664

37777775; b ¼
log J0

b

" #
,

y ¼

log Jðz1Þ

log Jðz2Þ

..

.

log JðznÞ

26666664

37777775 and e ¼

e1

e2

..

.

en

26666664

37777775, ð4Þ

where zi are the sediment-trap depths, and ei are the
errors assumed to be independent and identically



ARTICLE IN PRESS
F. Primeau / Deep-Sea Research I 53 (2006) 1335–1343 1337
distributed with variance s2. The least squares
solution of Eq. (3) isbb ¼ ðXTX Þ�1XTðyþ eÞ, (5)

and the expected variance–covariance matrix of the
parameter estimates is s2ðXTX Þ�1 (e.g. Faraway,
2005). Explicitly, the variance–covariance matrix
for the parameter estimates is

Var½ dlog J0� Cov½bb dlog J0�

Cov½bb dlog J0� Var½bb�
24 35
¼

s2

D

Pn
i¼1ðlog zi=z0Þ

2 Pn
i¼1 log zi=z0Pn

i¼1 log zi=z0 n

24 35, ð6Þ

where

D ¼ n
Xn

i¼1

ðlog zi=z0Þ
2
�

Xn

i¼1

log zi=z0

 !2

. (7)

When parameter estimates obtained from different
locations are combined, (e.g. Berelson, 2001; Martin
et al., 1987) it is important to take into account the
within-station sampling variability due to random
errors in the sediment-trap flux measurements
before attributing the variability of bb or the
covariance of bb with bJ0 to any systematic differences
in the processes happening in the water column at
Fig. 1. Plot of the parameter estimates bb and bJ0 together with their 95%

mmolCm�2 day�1. Each point was estimated separately for each statio

compiled by Berelson (2001) was used for the estimation. The data s

Equatorial Pacific (EqPac), North Atlantic Bloom Experiment (NABE
different geographical locations. The variance–cov-
ariance one computes by combining estimates bbj

and bJ0j obtained from different station is the sum of
the across-station variance–covariance plus the
within-station variance–covariance of the estimates.
Only the across-station variance–covariance repre-
sents true geographical differences in b and J0. The
within-station variance–covariance, given by the
average across all stations of the matrix expression
in (6), represents a bias due to within-station
estimation errors.

From the off-diagonal terms in (6) we see that the
sign of the bias in the covariance depends only on
the depths of sediment traps in relation to the
reference depth z0. Because the fluxes are referenced
to the export flux at 100m near the top of the water
column, the depths zi are generally much greater
than z0, and as a result, the expected covariance is
positive for all sites. Importantly, the bias does not
decrease as the number of stations in the ensemble
increases. It decreases only as the number of flux
measurements within each station increases. Be-
cause the number of flux measurements at any given
site in the Berelson (2001) data set is small (n ranges
from 3 to 12), the bias is potentially significant.

In Fig. 1, I show plots of the parameter estimates
for the data set compiled by Berelson (2001)
separated by region, but estimated separately for
confidence intervals separated by region. The units of bJ0 are in

n by the ordinary least squares formula. The POC flux data set

et includes sediment-trap fluxes from the Southern Ocean (SO),

), and Arabian Sea (AS).
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each station by the least squares formula. The data
set comprises sediment-trap and thorium-based
POC flux estimates from the North Atlantic
(NABE: 1 station), Equatorial Pacific (EqPac: 7
stations), Arabian Sea (AS: 5 stations) and South-
ern Ocean (SO, 4 stations). The data set contains
stations with POC flux measurements at shallow,
intermediate and deep levels and is uniquely well
suited for estimating the exponent b. For references
to the original publication of the data, I refer the
reader to Berelson (2001). Fig. 1 also shows the 95%
confidence ellipses. The tilting of the confidence
ellipses relative to the parameter axes in Fig. 1
indicates that the uncertainties of bb are correlated
with those of log bJ0. From Eq. (6), the slope of the
tilt is given by

Cov½bb log bJ0�

Var½log bJ0�
¼

Pn
i¼1 logðzi=z0ÞPn

i�1ðlog zi=z0Þ
2
, (8)

which is fairly uniform for all stations even though
the trap deployment depths vary somewhat between
stations. Because the uncertainties in the parameter
estimates are positively correlated at each site, we
expect the combined parameter estimates from all
four regions (17 stations) to be positively correlated
even if the true parameters are independent.
Berelson (2001) computed a regression line for the
scatter plot of his estimates of b against J0 and
found what appeared to be a statistically significant
positive slope. However, Eq. (6) shows that the
errors in the estimates are not independent and the
usual significance tests are not applicable. The slope
of a regression line through a scatter plot is given by
(e.g. Janke and Tinsley, 2005)

m ¼
dCov½bbj log bJ0j�dVar½log bJ0j�

, (9)

where dCov and dVar are used to denote the sample
covariance and variance of the 17 pairs of para-
meter estimates. If the true b and J0 are indepen-
dent, the numerator in (9) will be given by the
average over the 17 stations of the off-diagonal term
in (6). As already noted, this term is positive for all
stations, so the average will also be positive. That a
positive slope in the scatter plot of b vs. J0 is clearly
visible in Berelson’s (2001) analysis is expected from
the correlation of the errors. This feature of the
covariance of b and log J0 demonstrates the need for
a more careful analysis to ascertain whether b is
spatially varying and whether it co-varies with J0.
It is easy to understand the origin of the biased
covariance between bb and bJ0. A random error that
leads to an over prediction in the export flux at the
surface leads to a positive error in the b-estimate
because the POC flux profile has to decrease more
rapidly in order to be close to the deeper flux
measurements. Similarly, a random error that leads
to an under-prediction in export production at the
surface leads to a negative error in the b-estimate
because in this case the flux profile has to decrease
more slowly if it is to be close to the deep flux
measurements. Mathematically this effect is cap-
tured by the non-orthogonality of the columns in a
regression design matrix X in Eq. (4). By choosing a
deeper reference depth, ðz0 � 670mÞ it is possible to
make the columns of X nearly orthogonal, but the
model is then conceptually less useful because it
relates the sediment flux profile to a depth that is far
from where the particles originate. More fundamen-
tally, the approach of first estimating parameters
separately for each station and then combining the
resulting estimates to study their variability con-
founds within-station errors with the ‘‘true’’ regio-
nal variability of the parameters. Unless the within-
station error variance is much smaller than the
sought after variance–covariance of the ‘‘true’’
parameters, the usual estimation approach is
inadequate for studying the spatial variability of
POC flux profiles.

In the next section I introduce a two-level mixed-
effects model (Raudenbush and Bryk, 2002) to
properly take into account the contribution of
within-station and between-station effects to the
variability of the POC flux measurements. Using the
two-level model, I reanalyze the sediment-trap data
set used by Berelson (2001) to: (i) test if there is a
statistically significant correlation between b and J0,
and (ii) test how much of the often noted station-to-
station variability in the estimates of b is due to true
geographical differences in b.

3. Two-level mixed effects model

To properly treat the uncertainty associated with
modeling POC fluxes measured from sediment traps
using Eq. (1), we introduce a two-level mixed-effects
regression model. A comprehensive introduction to
this type of model can be found in Raudenbush and
Bryk (2002). The two-level mixed-effects model I
use takes into account uncertainty in the predicted
fluxes due to the across-station variability of b and
J0 in addition to uncertainty due to the usual
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within-station effects such as measurement errors.
In the usual parameter estimation problem based on
ordinary least squares (OLS) the coefficients b and
J0 are assumed fixed, whereas here we treat them as
random variables. Mixed-effects models have be-
come well established in several research fields and
routines for estimating parameters are standard in
many statistical software packages. Mixed-effects
models are also known as random-effects models in
the biometric literature, as random-coefficients
regression models in the econometrics literature
and as covariance components models in the
statistical literature (Raudenbush and Bryk, 2002).

To keep the notation manageable I denote the ith
POC flux measurement at the jth station by Jij and
define

Y ij � log Jij ,

Zij � log zij=z0. ð10Þ

The first level of the model (level-1) describes the
within-station flux variability

Y ij ¼ b0j þ b1jZij þ rij, (11)

where rij is the within-station error term and where
b0j denotes the logarithm of the 100m reference
POC flux for the jth station, and where b1j denotes
the b exponent for the jth station.

At the second level (level-2), the model describes
the across-station variability of the b coefficients
(i.e. the station-to-station variability of log J0 and
b):

b0j ¼ g00 þ u0j,

b1j ¼ g10 þ u1j, ð12Þ

where g00 and g10 are, respectively, the across-
station mean log J0 and b values and where u0j and
u1j are random effects that vary from station to
Table 1

Parameters estimated from the Berelson (2001) POC flux data set for t

Model bg00 bg10 ½bt00�1=2 ½bt11�1=2
fixed dlog J0 fixed bb bsd½log J0�

bsd½b�
full 1.4 (1.1,1.8) 0.72 (0.62,0.82) 0.67 (0.44,1.0) 0.14 (0.06,0

null 1.4 (1.1,1.7) 0.70(0.62,0.78) 0.53 (0.36,0.78) n.a.

full� 1.3 (1.0,1.6) 0.68 (0.60,0.76) 0.51 (0.30,86) 0.07 (0.01,0

null� 1.3 (1.0,1.6) 0.68 (0.61,0.75) 0.51 (0.34,0.76) n.a.

The full and null model parameters were estimated from the full data s

data set in which the two shallow POC fluxes at the NABE station (Bue

fixed and is not allowed to vary across stations. J0 is expressed in mmo

upper limits of a 95% confidence interval. The full data set contains 17
station with variance–covariance matrix

Var
u0j

u1j

" #
¼

t00 t01
t10 t11

" #
. (13)

t00 and t11 represent, respectively, the variances of
log J0 and b across stations, i.e. the ‘‘true’’ station-
to-station variance of the parameters as opposed to
the variance of the estimates. Similarly t01 ¼ t10
represents the ‘‘true’’ covariance between log J0 and
b.

Inserting Eqs. (12) for the level-2 effects into the
level-1 model equation (11) gives

Y ij ¼ g00 þ g10Zij þ u0j þ u1jZij þ rij . (14)

Note that estimating the parameters by ordinary
least squares is not appropriate, because the error
terms, u0j þ u1jZij þ rij, do not have equal variance
either within or across stations and moreover are
not independent within stations. A proper estima-
tion of g10 (i.e. the mean b value) in Eq. (14) takes
into account the different precisions with which b is
determined at each station. It thus produces a better
estimate than simply averaging the b values
obtained from different stations (e.g. Berelson,
2001) or as in the case of Martin et al. (1987) by
pooling all the measurements and estimating only a
fixed J0 and b.

I estimated the parameters in (14) using a
maximum likelihood approach as implemented in
the subroutine lme (Bates and Pinheiro, 1998) in
the statistical software package R. The parameter
estimates are listed in the row labeled full in Table 1.
The numbers in parenthesis are the 95% confidence
intervals for the estimated parameters. The estimate
for the fixed b value is bg10 ¼ 0:72� 0:1 (95% C.I.),
and the estimated standard deviation of b across
stations is sd½u1j � ¼ 0:14, with lower and upper 95%
confidence limits of 0.06 and 0.31. In comparison,
he two-level mixed-effects regression model

bt10=½bt00bt11�1=2 sd ½rij � Likelihood ratio testdCorr½b log J0�
sd[residuals]

.31) 0.67 (0.03,0.92) 0.53 (0.46,0.63) full vs. null

n.a. 0.57 (0.50,0.66) p ¼ 0:1547
.45) 0.13 (�0.87,0.92) 0.50 (0.43,0.59) full� vs. null�

n.a. 0.51 (0.44,0.60) p ¼ 0:7807

et. The full� and null� model parameters were estimated from the

sseler et al., 1992) were excluded. In the null and null� models, b is

lCm�2 day�1. The quantities in the parentheses are the lower and

stations and a total of 108 flux measurements.
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the standard deviation of the b values estimated in
Section 2 by ordinary least squares is 0.22,
approximately 60% higher. This is consistent with
the fact that the variance of the estimates obtained
by ordinary least squares is equal to the sum of the
estimation error variance plus the across-station
variance of the true b. The variance of the OLS
estimates of b is 0.047 and the across-station
average of the estimation error variance for b from
the OLS formula is 0.031. If we try to correct the
OLS variance by subtracting the average of the
estimated within-station error variance we obtain an
across-station standard deviation of bsd½b� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:047� 0:031
p

¼ 0:13 which is closer to our
estimate based on the mixed-effects model, but
appears to be biased low. The plot of bbj � bg10 þ bu1j

vs. cJ0j � expfbg00 þ bu0jg estimated from the two-level
mixed-effects model is shown in Fig. 2.

Since the standard deviation of b must be
positive, the confidence interval for the across-
station standard deviation of b excludes zero. To
test the statistical significance of including the
across-station deviations in b, we cannot simply
check to see if its confidence interval excludes zero.
Instead we construct a null model in which across-
station deviations of b are set identically to zero (i.e.
u1j � 0) and compare it to a full model by a
likelihood ratio test (e.g. Faraway, 2005). This test
yielded a p-value of 0.15, indicating that there is a
0.15 probability that the additional POC-flux
5 10 15 20

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7

Jo
^

b^

NABE

Fig. 2. Plot of the exponent bb and export flux bJ0 estimated from

the Berelson (2001) data set and the two-level mixed-effects

model. The units of bJ0 are mmolCm�2 day�1. The outlier labeled

NABE corresponds to the North Atlantic Bloom Experiment.

Note that bJ0 is plotted on a logarithmic scale.
variance captured by the full model is due to chance
alone. Furthermore, a closer look at the data shows
that the already weak evidence for a variable b is
strongly influenced by a single station. The point for
the North Atlantic Bloom Experiment labeled
NABE in Fig. 2 stands out as a clear outlier. At
NABE, two shallow flux estimates, at 150 and
300m, from Buesseler et al. (1992) based on the
thorium method are a factor of 3.5 and 6.5 greater
than those obtained by Martin et al. (1993) from
floating traps at the same depths. To test the
influence of these two flux measurements I repeated
the estimation after excluding them. Without the
two shallow thorium based fluxes at the NABE
station I estimated (bb ¼ 0:68, bsd½b� ¼ 0:07) and
(bb ¼ 0:68) for the full and null models (denoted
full� and null� in Table 1). A likelihood ratio test,
comparing the null� and full� models yielded a p-
value of 0.7807. Without the Buesseler et al. (1992)
shallow NABE fluxes based on the thorium method
there is no evidence for rejecting the null model with
a fixed b.

A plot of the b and J0 values estimated from the
data set excluding the two shallow thorium-based
fluxes at NABE is shown in Fig. 3. Without the high
shallow fluxes, the NABE station no longer stands
out as an outlier. I hypothesize that including the
Buesseler et al. (1992) thorium-derived flux data at
NABE without having thorium-based estimates of
the flux deeper in the water column biases the
exponent towards a higher value because the power
 •
 •

 •
 •

 •

 • •

  •

 •

 •

 •

 •

 •

 •

•

•
 •

2 4 6

Jo
∧

b∧

NABE

3 5 7

0.72

0.70

0.68

0.66

0.64

Fig. 3. Same as Fig. 2 except that the two shallow NABE fluxes

from Buesseler et al. (1992) measured by the thorium method

were excluded from Berelson’s (2001) data set for the estimation.

Note that the axis scales are different than Fig. 2.
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law fit has to decrease more rapidly to approach the
lower floating trap numbers (assuming that thor-
ium-based fluxes below 300 m would be higher than
the floating trap based fluxes in accord with the
higher thorium-based fluxes measured at 150 and
300m). This hypothesis is consistent with the
findings of Yu et al. (2001) and Scholten et al.
(2001), who estimated the trapping efficiency of
sediment traps using 230Th calibration; both con-
clude that traps near 1000m at the NABE site
considerably underestimate the sediment flux. For
example, Yu et al. (2001) report a trapping
efficiency in the range of 38–43% for a trap at
1110m and 70–88% for a trap at 3734m.

On the grounds of simplicity, the best model
appears to be the null model in which b is fixed. The
best estimate for the fixed b is 0:70� 0:08 (95% C.I.
90 d.f.). The value is robust to the inclusion or
exclusion of the level-2 random effects for b or to
the exclusion of either the shallow NABE fluxes
based on the thorium method or the NABE station
data altogether; all cases produced fixed b estimates
well within the quoted uncertainty (Table 1).

From the full model I also estimate t01 � t10 ¼
0:67 with a 95% confidence interval ð0:03ot01
o0:92Þ. Recall that t01 is the true across station
covariance between log J0 and b. Since the con-
fidence interval is positively bounded, there appears
to be some evidence that stations with high 100-m
export fluxes tend to have higher b exponents as
observed by Berelson (2001). However, the correla-
tion is entirely due to the influence of the two
shallow fluxes based on the thorium method at the
NABE station. This is evident from Figs. 2 and 3,
where the apparent correlation disappears when the
shallow thorium-based fluxes are excluded from the
NABE station. Without the two shallow fluxes
based on the thorium method at the NABE site
(null� in Table 1), the estimate for the covariance is
t01 ¼ 0:13, with a ð�0:86; 0:92Þ 95% confidence
interval, confirming that the correlation is not
robust. The tendency for faster remineralization
with depth in regions of high export flux is not
systematic across the entire data set and is sensitive
to the possible inconsistency of using different flux
measurement methods at different depths.

I have highlighted the possible inconsistency of
mixing POC fluxes based on sediment traps and the
thorium method at the NABE site. One should not
infer from this that the NABE site was exceptional
in Berelson’s (2001) data set for having thorium-
based shallow fluxes; in fact all stations in the data
set included thorium-based shallow POC fluxes. I
have no evidence for discounting the thorium-based
shallow fluxes at the NABE site in favor of the
sediment-trap measurements. The point I wish to
make is that the apparent correlation between dlog J0

and bb is sensitive to inconsistencies in the shallow vs.
deep flux measurements, and that the correlation
noted by Berelson (2001) is not a systematic feature
of the parameters once the errors in these para-
meters are properly represented.

4. Discussion

I have shown that the usual approach of fitting
power law exponents to the vertical profile of POC
flux measured from sediment traps overestimates
the variability of the exponent because it confounds
estimation errors with regional differences in the
true b. I introduced a two-level mixed-effects
regression model to properly model the uncertainty
associated with predicting POC fluxes with a power-
law profile. The mixed-effects model takes into
account uncertainty associated with the across-
station variability of b and J0 as well as the usual
within-station uncertainty associated with measure-
ment errors. Contrary to previous studies I found
that a model with a fixed exponent b applicable at
all sites adequately fits the data. The additional
variance in the POC flux captured by a model in
which b varies across stations is not statistically
significant. Our best estimate for the exponent is
b ¼ 0:70� 0:08 (95% C.I. 90 d.f.).

There is of course little reason to expect that a
universal b value would be applicable at all stations.
In fact the existence of a universal b would be
surprising given the complex transformations that
affect particles as they rain down from the surface.
Our result should not be interpreted as meaning that
there is a universal b value. What it tells us is that
the variability in the POC flux data set collected
from sediment traps is dominated by effects other
than the variability of b across stations. This is an
important point to bear in mind if, as suggested by
Berelson (2001), differences in estimated b values
are to be used as guidance for seeking regional
differences in the processes that might system-
atically affect the attenuation of POC fluxes with
depth. To detect significant differences in the power
law exponent a larger number of measurements per
station is needed than was typical in the Berelson
(2001) data set. Another possibility for decreasing
the exponent’s estimation variance would be to pool
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stations into subgroups and test for statistically
significant differences between the groups. Finally,
working directly with the time-series data as
opposed to the annually averaged fluxes might
reveal differences in b as a function of time. For the
purpose of the analysis I presented here, any such
temporal variability was lumped into the within-
station measurement error.

Our estimated b-value is lower than the average
value (b ¼ 0:82� 0:16 1 s.d.) quoted in Berelson
(2001). The reason for this is that our estimation
procedure based on the two-level mixed-effects
model explicitly takes into account the differences
in precision with which b is determined at each
station. Bishop (1989) reviews several parameteriza-
tions of POC flux, and our estimate of b falls in the
range of those that are cast in terms of the power
law profile (bb ¼ 0:628–1.0). Without proper uncer-
tainty estimates for the b values estimated in
previous studies it is difficult to judge if the
differences in b values are significant. For example,
our estimate is lower than the Martin et al. (1987)
open-ocean composite (OOC), b ¼ 0:858, but with-
out a reliable uncertainty estimate for the OOC it is
difficult to assess the significance of the difference.
Based on the published results of Martin et al.
(1987), I estimated the uncertainty of b based on
two methods: one from the quoted r2 value for the
OOC and one from the standard deviation of the b

values fitted for each station separately. Appendix A
show how I backed out a formal standard error for
the residual of the OOC using the quoted r2 value in
Martin et al. (1987). The result is sOOC ¼ 0:059.
Which yields a 95% confidence interval of
ð0:7395obo0:9765Þ. This overlaps with our 95%
confidence interval ð0:62obo0:78Þ. However, the
formal standard error based on the OLS formula is
likely to be an underestimate because it is based on
the incorrect assumption that the OOC residuals are
independent. As our two-level mixed-effects model
makes explicit, the residuals for the OOC fit depend
on a variable J0 value that varies across stations but
not within stations. Martin et al. (1987) analysis for
the OOC assumes a fixed J0 value for the pooled
data. This suggests that the difference is probably
not significant. At the other extreme, if I use the
standard deviation of the b values for the individual
stations that went into the OOC, I obtain a standard
error of 0.12, which would suggest that the
difference between the OOC and our estimate is
insignificant. However, this uncertainty is an over-
estimate since it does not properly take into account
the larger number of degrees of freedom in the
pooled data set. While inconclusive the above
considerations make it clear that proper uncertainty
estimates are needed in order to detect real regional
differences in the power-law exponent.Multi-level
mixed effects regression models are ideally suited for
this task.

The 95% confidence interval for our estimate,
ð0:62obo0:78Þ, is relatively large suggesting that
carbon cycle models have some latitude in tuning
the b value in order to improve the model
performance. Global models might be able to
provide additional constraints on the power law
exponent by optimizing the exponent so as to best
reproduce global dissolved inorganic carbon, phos-
phate or alkalinity fields (e.g. Usbeck et al., 2003).
Ultimately a better understanding of the processes
that affect POC fluxes in the water column should
produce a mechanistically based model to replace
the empirical power law parameterization (e.g. the
mineral-ballast model of Armstrong et al., 2002). I
believe that mixed-effects regression models can also
be usefully applied to test the statistical significance
of parameters in the mineral-ballast model since it
can easily be extended to take into account within-
and across-station differences in mineral fluxes.
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Appendix A

To compare the statistical significance of the
difference of the fixed b value that I estimated and
Martin et al. (1987) OOC we need the standard
error of both estimates. Unfortunately Martin et al.
(1987) did not quote a standard error for their
OOC. For the ordinary least squares approxima-
tion, the standard error for b is given by

bsb ¼ bs ffiffiffiffi
n

D

r
, (15)

where bs is the standard deviation of the residuals
and where D is defined in Eq. (7). The standard
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deviation of the residual can be backed out from the
quoted r2 value of 0.81, and the approximate
depths, zi of the 48 sediment traps used in the
OOC, from the following relationships

b ¼
dVar½log JðzÞ�dVar½logðz=z0Þ�

(16)

and

r2 � 1�
bs2dVar½log JðzÞ�

, (17)

from which we findbs2 ¼ ð1� r2ÞbVar½logðz=z0Þ�. (18)

I obtained approximate trap depths within �25m
from Fig. 5 in Martin et al. (1987). The resulting
standard error for the OOC b value is bsb � 0:059. I
tested that the estimate is not very sensitive to errors
in our estimation of the OOC trap depths by adding
noise with variance of 635m2 to the zi values and
repeating the calculation.
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