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INGREDIENTS FOR A THEORY OF INSTRUCTION l

RICHARD C. ATKINSON 2

Stanford University

THE term "theory of instruction" has been
in widespread use for over a decade and
during that time has acquired a fairly spe-

cific meaning. By consensus it denotes a body of
theory concerned with optimizing the learning
process; stated otherwise, the goal of a theory of
instruction is to prescribe the most effective meth-
ods for acquiring new information, whether in the
form of higher order concepts or rote facts. Al-
though usage of the term is widespread, there is no
agreement on the requirements for a theory of in-
struction. The literature provides an array of
examples ranging from speculative accounts of how
children should be taught in the classroom to
formal mathematical models specifying precise
branching procedures in computer-controlled in-
struction.3 Such diversity is healthy; to focus on
only one approach would not be productive in the
long run. I prefer to use the term theory of in-
struction to encompass both experimental and the-
oretical research, with the theoretical work ranging
from general speculative accounts to specific quan-
titative models.

The literature on instructional theory is growing
at a rapid rate. So much so that, at this point, a
significant contribution could be made by someone
willing to write a book summarizing and evaluating
work in the area. I am reminded here of Hilgard's
(1948) book, Theories oj Learning; it played an

1 A briefer version of this article was presented as an
invited address at the meetings of the American Educa-
tional Research Association, Chicago, April 1972. This
research was sponsored in part by National Science Foun-
dation Grant No. NSF GJ-443X2 and by Office of Naval
Research Contract No. N00014-67-A-0112-0054.

2 Requests for reprints should be sent to Richard C.
Atkinson, Department of Psychology, Stanford University,
Stanford, California 94305.

3 See, for example, Smallwood (1962), Carroll (1963),
Hilgard (1964), Bruner (1966), Groen and Atkinson
(1966), Crothers and Siippes (1967), Gagne (1970), Seidel
and Hunter (1970), Pask and Scott (1971), and Atkinson
and Paulson (1972).

important role in the development of learning the-
ory by effectively summarizing alternative ap-
proaches and placing them in perspective. A book
of this type is needed now in the area of instruc-
tion. The present article provides an overview
of one of the chapters that I would like to see
included in such a book; a title for the chapter
might be "A Decision-Theoretic Analysis of In-
struction." Basically, I consider here the factors
that need to be examined in deriving optimal in-
structional strategies, and then I use this analysis
to identify the key elements of a theory of
instruction.

A DECISION-THEORETIC ANALYSIS OF INSTRUCTION

The derivation of an optimal strategy requires
that the instructional problem be stated in a form
amenable to a decision-theoretic analysis. Analyses
based on decision theory vary somewhat from field
to field, but the same formal elements can be found
in most of them. As a starting point, I think it
useful to identify these elements in a general way,
and then to relate them to an instructional situa-
tion. They are as follows:

1. The possible states of nature.
2. The actions that the decision maker can take

to transform the state of nature.
3. The transformation of the state of nature that

results from each action.

4. The cost of each action.

5. The return resulting from each state of
nature.

In the context of instruction, these elements divide
naturally into three groups. Elements 1 and 3 are
concerned with a description of the learning pro-
cess; Elements 4 and 5 specify the cost-benefit
dimensions of the problem; and Element 2 requires
that the instructional actions from which the deci-
sion maker is free to choose be specified precisely.

AMERICAN PSYCHOLOGIST • OCTOBER 1972 • 921



For the decision problems that arise in instruc-
tion, Elements 1 and 3 require that a model of the
learning process exist. It is usually natural to
identify the states of nature with the learning states
of the student. Specifying the transformation of
the states of nature caused by the actions of the
decision maker is tantamount to constructing a
model of learning for the situation under con-
sideration. The learning model will be proba-
bilistic to the extent that the state of learning is
imperfectly observable or the transformation of
the state of learning that a given instructional ac-
tion will cause is not completely predictable.

The specification of costs and returns in an in-
structional situation (Elements 4 and 5) tends to
be straightforward when examined on a short-term
basis, but virtually intractable over the long term.
For the short term, one can assign costs and re-
turns for the mastery of, say, certain basic reading
skills, but sophisticated determinations for the long-
term value of these skills to the individual and so-
ciety are difficult to make. There is an important
role for detailed economic analyses of the long-
term impact of education, but such studies deal
with issues at a more global level than are con-
sidered here. The present analysis is limited to
those costs and returns directly related to a specific
instructional task.

Element 2 is critical in determining the effective-
ness of a decision-theory analysis; the nature of
this element can be indicated by an example. Sup-
pose one wants to design a supplementary set of
exercises for an initial reading program that involve
both sight-word identification and phonics. Assume
that two exercise formats have been developed, one
for training on sight words, the other for phonics.
Given these formats, there are many ways to design
an overall program. A variety of optimization
problems can be generated by fixing some features
of the curriculum and leaving others to be de-
termined in a theoretically optimal manner. For
example, it may be desirable to determine how the
time available for instruction should be divided
between phonics and sight-word recognition, with
all other features of the curriculum fixed. A more
complicated question would be to determine the
optimal ordering of the two types of exercises in
addition to the optimal allocation of time. It
would be easy to continue generating different
optimization problems in this manner. The main

point is that varying the set of actions from which
the decision maker is free to choose changes the
decision problem, even though the other elements
remain the same.

Once these five elements have been specified, the
next task is to derive the optimal strategy for the
learning model that best describes the situation.
If more than one learning model seems reasonable
a priori, then competing candidates for the optimal
strategy can be deduced. When these tasks have
been accomplished, an experiment can be designed
to determine which strategy is best. There are
several possible directions in which to proceed
after the initial comparison of strategies, depend-
ing on the results of the experiment. If none of
the supposedly optimal strategies produces satis-
factory results, then further experimental analysis
of the assumptions of the underlying learning
models is indicated. New issues may arise even
if one of the procedures is successful. In the sec-
ond example that I discuss, the successful strategy
produces an unusually high error rate during learn-
ing, which is contrary to a widely accepted prin-
ciple of programmed instruction (Skinner, 1968).
When anomalies such as this occur, they suggest
new lines of experimental inquiry, and often require
a reformulation of the learning model.4

CRITERIA FOR A THEORY OP INSTRUCTION

The discussion to this point can be summarized
by listing four criteria that must be satisfied prior
to the derivation of an optimal instructional
strategy:

1. A model of the learning process.
2. Specification of admissible instructional

actions.
3. Specification of instructional objectives.
4. A measurement scale that permits costs to be

assigned to each of the instructional actions
and payoffs to the achievement of instruc-
tional objectives.

If these four elements can be given a precise in-
terpretation, then it is generally possible to derive
an optimal instructional policy. The solution for
an optimal policy is not guaranteed, but in recent

4 For a more extensive discussion of some of these points,
see Atkinson and Paulson (1972), Calfee (1970), Dear,
Silberman, Estavan, and Atkinson (1967), Laubsch (1970),
and Smallwood (1971).

922 • OCTOBER 1972 • AMERICAN PSYCHOLOGIST



years some powerful tools have been developed for
discovering optimal or near optimal procedures if
they exist.

The four criteria just listed, taken in conjunction
with methods for deriving optimal strategies, define
either a model of instruction or a theory of instruc-
tion. Whether the term theory or model is used
depends on the generality of the applications that
can be made. Much of my own work has been
concerned with the development of specific models
for specific instructional tasks; hopefully, the col-
lection of such models will provide the groundwork
for a general theory of instruction.

In terms of the above criteria, it is clear that a
model or theory of instruction is in fact a special
case of what has come to be known in the mathe-
matical and engineering literature as optimal con-
trol theory or, more simply, control theory (Kal-
man, Falb, & Arbib, 1969). The development of
control theory has progressed at a rapid rate both
in the United States and abroad, but most of the
applications involve engineering or economic sys-
tems of one type or another. Precisely the same
problems are posed in the area of instruction except
that the system to be controlled is the human
learner, rather than a machine or group of indus-
tries. To the extent that the above four elements
can be formulated explicitly, methods of control
theory can be used in deriving optimal instructional
strategies.

To make some of these ideas more precise, I
consider here two examples. One involves a re-
sponse-insensitive strategy and the other a response-
sensitive strategy. A response-insensitive strategy
orders the instructional materials without taking
into account the student's responses (except pos-
sibly to provide corrective feedback) as he pro-
gresses through the curriculum. In contrast, a
response-sensitive strategy makes use of the stu-
dent's response history in its stage-by-stage deci-
sions regarding which curriculum materials to
present next. Response-insensitive strategies are
completely specified in advance and consequently
do not require a system capable of branching dur-
ing an instructional session. Response-sensitive
strategies are more complex, but have the greatest
promise for producing significant gains, for they
must be at least as good, if not better, than the
comparable response-insensitive strategy.

OPTIMIZING INSTRUCTION IN INITIAL READING

The first example is based on work concerned
with the development of a computer-assisted in-
struction (CAI) program for teaching reading in
the primary grades (Atkinson & Fletcher, 1972).
The program provides individualized instruction in
reading and is used as a supplement to normal
classroom teaching; a given student may spend any-
where from 0 to 30 minutes per day at a CAI
terminal. For present purposes, only one set of
results are considered, where the dependent mea-
sure is performance on a standardized reading
achievement test administered at the end of the
first grade. Using the Atkinson and Fletcher data,
a statistical model can be formulated that predicts
test performance as a function of the amount of
time the student spends on the CAI system.
Specifically, let Pt(t) be student »'s performance on
a reading test administered at the end of first
grade, given that he spends time t on the CAI
system during the school year. Then within cer-
tain limits, the following equation holds:

Pi(t) = o!,--/3<exp(-7<0

Depending on a student's particular parameter
values, the more time spent on the CAI program,
the higher the level of achievement at the end of
the year. The parameters «, ft, and y characterize
a given student and vary from one student to the
next; a and (a — ft) are measures of the student's
maximal and minimal levels of achievement, re-
spectively, and y is a rate of progress measure.
These parameters can be estimated from a stu-
dent's response record obtained during his first
hour of CAI. Stated otherwise, data from the
first hour of CAI can be used to estimate the
parameters «, ft, and y for a given student, and
then the above equation enables one to predict
end-of-year performance as a function of the CAI
time allocated to that student.

The optimization problem that arises in this
situation is as follows: Suppose that a school has
budgeted a fixed amount of time T on the CAI
system for the school year and must decide how to
allocate the time among a class of n first-grade
students. Assume, further, that all students have
had a preliminary run on the CAI system so that
estimates of the parameters a, ft, and y have been
obtained for each student.

Let h be the time allocated to student i. Then

AMERICAN PSYCHOLOGIST • OCTOBER 1972 • 923



the goal is to select a vector (ti, <2, . . . , tn) that
optimizes learning. To do this, one must check the
four criteria for deriving an optimal strategy.

The first criterion is that there be a model of
the learning process. The prediction equation for
P-i(t) does not offer a very complete account of
learning; for purposes of this problem, however,
the equation suffices as a model of the learning
process, giving all of the information that is re-
quired. This is an important point to keep in
mind: the nature of the specific optimization prob-
lem determines the level of complexity that must
be represented in the learning model. For some
problems, the model must provide a relatively com-
plete account of learning in order to derive an
optimal strategy, but for other problems a simple
descriptive equation of the sort presented above
will suffice.

The second criterion requires that the set of
admissible instructional actions be specified. For
the present case, the potential actions are simply
all possible vectors (*i, tz, . . . , tn) such that the
tts are nonnegative and sum to T. The only free-
dom decision makers have in this situation is in the
allocation of CAI time to individual students.

The third criterion requires that the instructional
objective be specified. There are several objectives
that could be chosen in this situation. Consider
four possibilities:

(a) Maximize the mean value of P over the class
of students.

(b) Minimize the variance of P over the class
of students.

(c) Maximize the number of students who score
at grade level at the end of the first year.

(d) Maximize the mean value of P satisfying
the constraint that the resulting variance
of P is less than or equal to the variance
that would have been obtained if no CAI
were administered.

Objective a maximizes the gain for the class as a
whole; Objective b aims to reduce differences among
students by making the class as homogeneous as
possible; Objective c is concerned specifically with
those students who fall behind grade level; Objec-
tive d attempts to maximize performance of the
whole class but insures that differences among stu-
dents are not amplified by CAI. Other instructional
objectives can be listed, but these are the ones
that seemed most relevant. For expository pur-

poses, I have selected a as the instructional ob-
jective.

The fourth criterion requires that costs be as-
signed to each of the instructional actions and that
payoffs be specified for the instructional objectives,
In the present case, one can assume that the cost
of CAI does not depend on how time is allocated
among students and that the measurement of pay-
off is directly proportional to the students' achieved
value of P.

In terms of the four criteria, the problem of
deriving an optimal instructional strategy reduces
to maximizing the function

1 V
Mi.,

1 "

subject to the constraint that

and

0.

This maximization can be done by using the
method of dynamic programming (Bellman, 1961).
In order to illustrate the approach, computations
were made for a first-grade class for which the
parameters a, /?, and y had been estimated for each
student. Employing these estimates, computations
were carried out to determine the time allocations
that maximized the above equation. For the op-
timal policy, the predicted mean performance level
of the class, P, was 15% higher than a policy that
allocated time equally to students (i.e., a policy in
which ti = tj for all i and ;). This gain represents
a substantial improvement; the drawback is that
the variance of the P scores is roughly 15%
greater than for the equal-time policy. This means
that if one were interested primarily in raising the
class average, one would have to let the rapid
learners move ahead and progress far beyond the
slow learners.

Although a time allocation that complies with
Objective a did increase overall class performance,
the correlated increase in variance leads one to
believe that other objectives might be more bene-
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ficial. For comparison, time allocations also were
computed for Objectives b, c, and d. Figure 1
presents the predicted gain in P as a percentage of
P for the equal-time policy. Objectives b and c
yield negative gains, and so they should since their
goal is to reduce variability, which is accomplished
by holding back on the rapid learners and giving
a lot of attention to the slower ones. The reduc-
tion in variability for these two objectives, when
compared with the equal-time policy, is 12% and
10%, respectively. Objective d, which attempts to
strike a balance between Objective a on the one
hand and Objectives b and c on the other, yields
an 8% increase in P and yet reduces variability
by 6%.

In view of these computations, Objective d seems
to be preferred; it offers a'substantial increase in
mean performance while maintaining a low level
of variability. As yet, this policy has not been
implemented, so only theoretical results can be
reported. Nevertheless, these examples yield dif-
ferences that illustrate the usefulness of this type
of analysis. They make it clear that the selection
of an instructional objective should not be done in
isolation, but should involve a comparative analysis
of several alternatives taking into account more
than one dimension of performance. For example,
even if the principal goal is to maximize P, it
would be inappropriate in most educational situa-
tions to select a given objective over some other if
it yielded only a small average gain while vari-
ability mushroomed.

Techniques of the sort presented above have
been developed for other aspects of the CAI read-
ing program. One of particular interest involves
deciding for each student, on a week-by-week
basis, how time should be divided between train-
ing in phonics and in sight-word identification
(Chant & Atkinson, in press). However, these de-
velopments are not considered here; it is more use-
ful to turn to another example of a quite different
type.

OPTIMIZING THE LEARNING OF A SECOND-
LANGUAGE VOCABULARY

The second example deals with learning a foreign
language vocabulary. A similar example could be
given from our work in initial reading, but this
particular example has the advantage of permitting
us to introduce the concept of learner-controlled

15

Z 10

UJo
UJ i
a.
u
>

5
UJ<r -i

-15

1 i
a b e d

INSTRUCTIONAL OBJECTIVE

FIG. 1. Percentage gains in the mean value of P when
compared with an equal-time policy for four policies each
based on a different instructional objective.

instruction. In developing the example, I con-
sider first some experimental work comparing three
instructional strategies and only later explain the
derivation of the optimal strategy.5

The goal is to individualize instruction so that
the learning of a second-language vocabulary oc-
curs at a maximum rate. The constraints imposed
on the task are typical of a school situation. A
large set of German-English items are to be learned
during an instructional session that involves a
series of trials. On each trial one of the German
words is presented, and the student attempts to
give the English translation; the correct transla-
tion then is presented for a brief study period. A
predetermined number of trials is allocated for the
instructional session, and after an intervening pe-
riod of one week a test is administered over the
entire vocabulary. The optimization problem is
to formulate a strategy for presenting items during
the instructional session so that performance on
the delayed test will be maximized;

Three strategies for sequencing the instructional
material are considered here. One strategy (desig-
nated the random-order strategy) is simply to cycle
through the set of items in a random order; this

5 A detailed account of this research can be found in
Atkinson (in press).
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Round-robin of Seven Lists Typical List

2.
3.
4.
5.
6.
7.
8.
9.

10
1 1 .
12.

das
die
das
die
der
die
die
der
das
der
das
die

Rod
Seite
Kino
Cans
Fluss
Gegend
Kamera
Anzug
Geld
Gipfel
Bein
Ecke

FIG. 2. Schematic representation of the round robin of display lists
and an example of one such list.

strategy is not expected to be particularly effec-
tive, but it provides a benchmark against wh|ch to
evaluate others. A second strategy (designated
the learner-controlled strategy) is to let the student
determine for himself how best to sequence the
material. In this mode the student decides on each
trial which item is to be tested and studied; the
learner, rather than an external controller, de-
termines the sequence of instruction. The third
scheme (designated the response-sensitive strategy)
is based on a decision-theoretic analysis of the in-
structional task. A mathematical model of learn-
ing that has provided an accurate account of vo-
cabulary acquisition in other experiments is as-
sumed to hold in the present situation. This model
is used to compute, on a trial-by-trial basis, an in-
dividual student's current state of learning. Based
on these computations, items are selected from
trial to trial so as to optimize the level of learn-
ing achieved at the termination of the instructional
session. The details of this strategy are com-
plicated and can be discussed more meaningfully
after the experimental procedure and results have
been presented.

Instruction in this experiment is carried out
under computer control. The students are re-
quired to participate in two sessions: an instruc-
tional session of approximately two hours and a
briefer delayed-test session administered one week
later. The delayed test is the same for all students

and involves a test over the entire vocabulary.
The instructional session is more complicated. The
vocabulary items are divided into seven lists, each
containing 12 German words; the lists are ar-
ranged in a round-robin order (see Figure 2). On

No

Evaluate Student's Respom
lo Tested Word If Correct
so Indicate ; If Incorrect
so Indicate and Provide
Correct Translation

FIG. 3. Flow chart describing the trial sequence during
the instructional session. The selection of a word for test
on a given trial (box with heavy border) varied over ex-
perimental conditions.
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Response-Sensitive
Strategy

Learner -Controlled
Strategy

O Random-Order Strategy

1 2 3 4
SUCCESSIVE TRIAL BLOCKS
( INSTRUCTIONAL SESSION )

DELAYED TEST
SESSION

FIG. 4. Proportion of correct responses in successive trial blocks during the instructional
session, and on the delayed test administered one week later.

each trial of the instructional session a list is dis-
played, and the student inspects it for a brief
period of time. Then one of the items on the dis-
played list is selected for test and study. In the
random-order and response-sensitive conditions, the
item is selected by the computer. In the learner-
controlled condition, the item is chosen by the
student. After an item has been selected for test,
the student attempts to provide a translation; then
feedback regarding the correct translation is given.
The next trial begins with the computer displaying
the next list in the round robin, and the same pro-
cedure is repeated. The instructional session con-
tinues in this fashion for 336 trials (see Figure 3).

The results of the experiment are summarized in
Figure 4. Data are presented on the left side of
the figure for performance on successive blocks of
trials during the instructional session; on the
right side are results from the test session ad-
ministered one week after the instructional session.
Note that during the instructional session the
probability of a correct response is highest for the
random-order condition, next highest for the learner-
controlled condition, and lowest for the response-
sensitive condition. The results, however, are re-

versed on the delayed test. The response-sensitive
condition is best by far with 79% correct; the
learner-controlled condition is next with 58%; and
the random-order condition is poorest at 38%.
The observed pattern of results is expected. In
the learner-controlled condition, the students are
trying, during the instructional session, to test and
study those items they do not know, and they
should have a lower score than students in the ran-
dom-order condition where testing is random and
includes many items already mastered. The re-
sponse-sensitive procedure also attempts to iden-
tify for test and study those items that have not
yet been mastered and thus also produces a high
error rate during the instructional session. The
ordering of groups on the delayed test is reversed
since now the entire set of words is tested; when
all items are tested, the probability of a correct
response tells how much of the list actually has
been mastered. The magnitude of the effects ob-
served on the delayed test is large and of practical
significance.

Now that the effectiveness of the response-sensi-
tive strategy has been established, I turn to a dis-
cussion of how it was derived. The strategy is
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based on a model of vocabulary learning that has
been investigated in the laboratory and has been
shown to be quite accurate (Atkinson, in press;
Atkinson & Crothers, 1964). The model assumes
that a given item is in one of three states (P, T,
and U) at any moment in time. If the item is in
State P, then its translation is known, and this
knowledge is "relatively" permanent in the sense
that the learning of other vocabulary items will not
interfere with it. If the item is in State T, then
it is also known but on a "temporary" basis; in
State T, other items can give rise to interference
effects that cause the item to be forgotten. In
State U, the item is not known, and the student
is unable to provide a translation. Thus, in States
P and T a correct translation is given with prob-
ability 1, whereas in State U the probability is 0.

When a test and study occur on a given item, the
following transition matrix describes the possible
change in state from the onset of the trial to its
termination:

P
A= T

U

P T U

1 0 0
a 1 - a 0
be (1 - b)c 1 - c

Rows of the matrix represent the state of the item
at the start of the trial, and the columns represent
its state at the end of the trial. On a trial when
some other item is presented for test and study, a
transition in the learning state of the original
item also may take place; namely, forgetting is
possible in the sense that if the item is in State T,
it may transit into State U. This forgetting can
occur only if the student makes an error on the
other item; in that case the transition matrix ap-
plied to the original item is as follows:

F =

P
P
T
U

1
0
0

T
0

1 - /
0

U
o"
/
1

To summarize, consider the application of Matrices
A and F to some specific item on the list; when
the item itself is presented for test and study,
transition Matrix A is applied; when some other
item is presented that elicits an error, then Matrix
F is applied. The above assumptions provide a
complete account of the learning process. The
parameters in Matrices A and F measure the dif-

ficulty level of a German-English pair and vary
across items. On the basis of prior experiments,
numerical estimates of these parameters exist for
each of the items used in the experiment.

As noted earlier, the formulation of a strategy
requires that one be precise about the quantity to
be maximized. For the present task, the goal is
to maximize the number of items correctly trans-
lated on the delayed test. To do this, a theoretical
relationship must be specified between the state
of learning at the end of the instructional session
and performance on the delayed test. The as-
sumption made here is that only those items in
State P at the end of the instructional session will
be translated correctly on the delayed test; an
item in State T is presumed to be forgotten during
the intervening week, Thus, the problem of maxi-
mizing delayed-test performance involves, at least
in theory, maximizing the number of items in State
P at the termination of the instructional session.

Having numerical values for parameters and
knowing the student's response history, it is possible
to estimate his current state of learning.6 Stated
more precisely, the learning model can be used to
derive equations and, in turn, compute the prob-
abilities of being in States P, T, and U for each
item at the start of trial n, conditionalized on the
student's response history up to and including trial
n — I . Given numerical estimates of these prob-
abilities, a strategy for optimizing performance is
to select that item for presentation (from the cur-
rent display list) that has the greatest probability
of moving into State P if it is tested and studied
on the trial. This strategy has been termed the
one-stage optimization procedure because it looks
ahead one trial in making decisions. The true
optimal policy (i.e., an ./V-stage procedure) would
consider all possible item-response sequences for the
remaining trials and select the next item so as to
maximize the number of items in State P at the
termination of the instructional session. For the
present case, the W-stage policy cannot be applied

6 The student's response history is a record (for each
trial) of the item presented and the response that oc-
curred, It can be shown that a sufficient history exists
which contains only the information necessary to estimate
the student's current state of learning; the sufficient his-
tory is a function of the complete history and the assumed
learning model. For the model considered here, the suf-
ficient history is fairly simple but cannot be readily de-
scribed without extensive notation.
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because the necessary computations are too time
consuming even for a large computer. Fortunately,
Monte Carlo studies indicate that the one-stage
policy is a good approximation to the optimal
strategy for a variety of Markov learning models;
it was for this reason, as well as the relative ease
of computing, that the one-stage procedure was
employed.7 The computational procedure described
above was implemented on the computer and per-
mitted decisions to be made on-line for each stu-
dent on a trial-by-trial basis.

The response-sensitive strategy undoubtedly can
be improved on by elaborating the learning model.
Those familiar with developments in learning the-
ory will see a number of ways of introducing more
complexity into the model and thereby increasing
its precision. I do not pursue such considerations
here, however, since my reason for presenting the
example was not to theorize about the learning
process but rather to demonstrate how a simple
learning model can be used to define an instruc-
tional procedure.

CONCLUDING REMARKS

Hopefully, these two examples illustrate the
steps involved in developing an optimal strategy
for instruction. Both examples deal with rela-
tively simple problems and thus do not indicate
the range of developments that have been made
or that are clearly possible. It would be a mis-
take, however, to conclude that this approach offers
a solution to the problems facing education. There
are some fundamental obstacles that limit the
generality of the work.

The major obstacles may be identified in terms
of the four criteria that were specified as pre-
requisites for an optimal strategy. The first cri-.
terion concerns the formulation of learning models.
The models that now exist are totally inadequate
to explain the subtle ways by which the human
organism stores, processes, and retrieves informa-
tion. Until there is a much deeper understanding
of learning, the identification of truly effective
strategies will not be possible. However, an all-
inclusive theory of learning is not a prerequisite
for the development of optimal procedures. What
is needed instead is a model that captures the es-

7 For a discussion of one-stage and JV-stage policies and
Monte Carlo studies comparing them, see Groen and Atkin-
son (1966), Calfee (1970), and Laubsch (1970).

sential features of that part of the learning process
being tapped by a given instructional task. Even
models that may be rejected on the basis of labora-
tory investigation can be useful in deriving instruc-
tional strategies. The two learning models con-
sidered in this article are extremely simple, and yet
the optimal strategies they generate are quite ef-
fective. My own preference is to formulate as
complete a learning model as intuition and data
will permit and then to use that model to investi-
gate optimal procedures; when possible the learn-
ing model will be represented in the form of
mathematical equations but otherwise as a set of
statements in a computer-simulation program. The
main point is that the development of a theory of
instruction cannot progress if one holds the view
that a complete theory of learning is a prerequisite.
Rather, advances in learning theory will affect the
development of a theory of instruction, and con-
versely the development of a theory of instruction
will influence research on learning.

The second criterion for deriving an optimal
strategy requires that admissible instructional ac-
tions be specified clearly. The set of potential in-
structional inputs places a definite limit on the ef-
fectiveness of the optimal strategy. In my opinion,
powerful instructional strategies must necessarily
be adaptive; that is, they must be sensitive on a
moment-to-moment basis to a learner's unique re-
sponse history. My judgment on this matter is
based on limited experience, restricted primarily
to research on teaching initial reading. In this
area, however, the evidence seems to be absolutely
clear: the manipulation of method variables ac-
counts for only a small percentage of the variance
when not accompanied by instructional strategies
that permit individualization. Method variables
like the modified teaching alphabet, oral reading,
the linguistic approach, and others undoubtedly
have beneficial effects. However, these effects are
minimal in comparison to the impact that is pos-
sible when instruction is adaptive to the individual
learner. Significant progress in dealing with the
nation's problem of teaching reading will require
individually prescribed programs, and sophisticated
programs will necessitate some degree of computer
intervention either in the form of CAI or computer-
managed instruction. As a corollary to this point,
it is evident from observations of students in our
CAI reading program that the more effective the
adaptive strategy the less important are extrinsic
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motivators. Motivation is a variable in any form
of learning, but when the instructional process is
truly adaptive the student's progress is sufficient
reward in its own right.

The third criterion for an optimal strategy deals
with instructional objectives, and the fourth with
cost-benefit measures. In the analyses presented
here, it was tacitly assumed that the curriculum
material being taught is sufficiently beneficial to
justify allocating time to it. Further, in both ex-
amples the costs of instruction were assumed to be
the same for all strategies. If the costs of instruc-
tion are equal for all strategies, they may be
ignored and attention focused on the comparative
benefits of the strategies. This is an important
point because it greatly simplifies the analysis. If
both costs and benefits are significant variables,
then it is essential that both be estimated ac-
curately. This is often difficult to do. When one
of these quantities can be ignored, it suffices if the
other can be assessed accurately enough to order
the possible outcomes. As a rule, both costs and
benefits must be weighed in the analysis, and fre-
quently subtopics within a curriculum vary sig-
nificantly in their importance. In some cases,
whether or not a certain topic should be taught at
all is the critical question. Smallwood (1971) has
treated problems similar to the ones considered in
this article in a way that includes some of these
factors in the structure of costs and benefits.

My last remarks deal with the issue of learner-
controlled instruction. One way to avoid the chal-
lenge and responsibility of developing a theory of
instruction is to adopt the view that the learner is
the best judge of what to study, when to study,
and how to study. I am alarmed by the number
of individuals who advocate this position despite
a great deal of negative evidence. Do not misin-
terpret this remark. There obviously is a place
for the learner's judgments in making instructional
decisions. In several CAI programs that I have
helped develop, the learner plays an important role
in determining the path to be followed through the
curriculum. However, using the learner's judgment
as one of several items of information in making an
instructional decision is quite different from pro-
posing that the learner should have complete con-
trol. My data, and the data of others, indicate
that the learner is not a particularly effective de-
cision maker. Arguments against learner-controlled
programs are unpopular in the present climate of

opinion, but they need to be made so that one will
not be seduced by the easy answer that a theory
of instruction is not required because "who can be
a better judge of what is best for the student than
the student himself."

This article illustrates the steps involved in de-
riving an optimal strategy and their implications
for a theory of instruction. I want to emphasize a
point made at the outset—namely, that the ap-
proach is only one of many that needs to be pur-
sued. Obviously the main obstacle is that adequate
theories as yet do not exist for the learning pro-
cesses that we most want to optimize. However,
as the examples indicate, analyses based on highly
simplified models can be useful in identifying prob-
lems and focusing research efforts. It seems clear
that this type of research is a necessary component
in a program designed to develop a general theory
of instruction.
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