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BOUNDARY VALUE PROBLEM AND THE EHRHARD INEQUALITY

PAATA IVANISVILI

ABSTRACT. let I,J ⊂ R be closed intervals, and let H be C3 smooth real valued function on I× J with nonvan-
ishing Hx and Hy. Take any fixed positive numbers a,b, and let dµ be a probability measure with finite moments
and absolutely continuous with respect to Lebesgue measure. We show that for the inequality∫

Rn
esssup

y∈Rn
H
(

f
(

x− y
a

)
,g
( y

b

))
dµ(x)≥ H

(∫
Rn

f dµ,
∫
Rn

gdµ

)
to hold for all Borel functions f ,g with values in I and J correspondingly it is necessary that

a2 Hxx

H2
x
+(1−a2−b2)

Hxy

HxHy
+b2 Hyy

H2
y
≥ 0,

|a− b| ≤ 1, a+ b ≥ 1 and
∫
Rn xdµ = 0 if a+ b > 1. Moreover, if dµ is a gaussian measure then the necessary

condition becomes sufficient. This extends Prékopa–Leindler and Ehrhard inequalities to an arbitrary function
H(x,y). As an immediate application we obtain the new proof of the Ehrhard inequality. In particular, we show
that in the class of even probability measures with smooth positive density and finite moments the Gaussian
measure is the only one which satisfies the functional form of the Ehrhard inequality on the real line with their
own distribution functions.

1. INTRODUCTION

Let I,J ⊂ R be closed intervals. Set Ω := I × J, and let H : Ω→ R. Fix some n ≥ 1. Let dµ be a
probability measure on Rn and absolutely continuous with respect to the Lebesgue measure. For simplicity
we will always assume that H ∈C3(Ω) and

∫
Rn ‖x‖5dµ < ∞.

In this paper we address the following question: what is the necessary and sufficient condition on H,
positive real numbers a,b and a measure dµ such that the following inequality holds∫

Rn
esssup

y∈Rn
H
(

f
(

x− y
a

)
,g
( y

b

))
dµ(x)≥ H

(∫
Rn

f dµ,
∫
Rn

gdµ

)
(1)

for all Borel measurable f ,g with values in I and J correspondingly. Essential supremum in (1) is taken with
respect to the Lebesgue measure. Our main result is the following theorem.

Theorem 1. Suppose that Hx and Hy never vanish in Ω. For inequality (1) to hold it is necessary that

a2 Hxx

H2
x
+(1−a2−b2)

Hxy

HxHy
+b2 Hyy

H2
y
≥ 0,(2)

|1−a2−b2| ≤ 2ab, and
∫
Rn xdµ = 0 if a+b > 1. Moreover, if dµ(x) is a Gaussian measure then the above

conditions are also sufficient.

By Gaussian measure we mean a probability measure of the form

exp(−xAxT +bxT + c)dx for some n×n matrix A > 0, b ∈ Rn and c ∈ R.(3)

The symbols Hx,Hy,Hxx,Hxy and Hyy denote partial derivatives. xT denotes transpose of the row vector x∈Rn.
Constraint

∣∣1−a2−b2
∣∣≤ 2ab on number a,b > 0 can be rewritten as a+b≥ 1 and |a−b| ≤ 1. Moreover, if

a+b > 1 then it is necessary that
∫
Rn xdµ is the zero vector.

2010 Mathematics Subject Classification. 42B35, 47A30.
Key words and phrases. Gaussian measure, essential supremum, Prekopa–Leindler, Ehrhard.

1

ar
X

iv
:1

60
5.

04
84

0v
2 

 [
m

at
h.

A
P]

  2
0 

Ju
n 

20
17



2 PAATA IVANISVILI

In the applications usually a+ b = 1. Therefore the most important condition the reader needs to keep
in mind is the partial differential inequality (PDI) in (2). We should also notice an independence from the
dimension, i.e., the necessity conditions follow from the one dimensional case n = 1 of (1), and for the
Gaussian measures (2) is sufficient for (1) to hold for all n≥ 1.

Partial differential inequality (2) first time appeared in the PhD thesis of the author (see Theorem 3.0.22 in
[20]), and later in [17] (see Corollary 5.2 in [17]) as a sufficient condition for inequality (1) to hold in case of
the Gaussian measure with supremum in (1) and smooth compactly supported functions f ,g. Namely, it was
proved in [17] that if Hx,Hy are nonvanishing, and H satisfies (2), then the following inequality holds∫

Rn
sup

ax+by=t
H ( f (x),g(y))dµ(t)≥ H

(∫
Rn

f dµ,
∫
Rn

gdµ

)
(4)

for all smooth compactly supported functions f ,g with values in I,J correspondingly and the Gaussian mea-
sure dµ . In this case we need the assumption that I,J contain the origin.

In the present paper we obtain a certain extension of (4) by using different techniques. The first immediate
extension is that we have (1) with essential supremum and Borel measurable functions1. Our second extension
is that we obtain if and only if characterization, moreover we obtain the necessity part for almost arbitrary
probability measures dµ . Our approach to (1) sheds light to a question about optimizers, and it provides us
with some quantitative version of (1) (see Lemma 5 and Lemma 7), and, more importantly, it shows a hidden
link between two different type of PDEs considered in [17] (see PDE (1.3) and (1.5) in [17]).

Our argument, at some point, uses a remarkable Theorem A obtained, for example, in [26, 23, 17] (we also
present the sketch of the proof of Theorem A in the Appendix). The proof of Theorem A relies on the classical
maximum principle for parabolic PDEs unlike the proof of (4) in [17] which uses a subtle maximum principle
used first time by Borell [7] (hill property in [17], and Lemma 1 in [3]), and it does not follow at all from the
classical maximum principle. Hence, in particular, we obtain the new proof of the Ehrhard inequality from
the classical maximum principle. We should also mention that authors in [27] ask whether one can deduce
the Ehrhard inequality solely from Theorem A. The current paper gives an affirmative answer.

In Section 2 we present the proof of Theorem 1. In Section 3, using arguments from exterior differential
systems, we will linearize PDE, the left hand side of (2), and we will explain how to find functions H for
which inequality in (2) is equality. Besides, we will illustrate various applications of the theorem.

Acknowledgements. I am grateful to Christos Saroglou who initiated this project and with whom I had many
discussions. He should be considered as co-author (despite his insistence to the contrary). I am extremely
thankful to the Kent State Analysis Group especially Fedor Nazarov who gave me some valuable suggestions
in obtaining the necessity part, and Artem Zvavitch for providing C. Borell’s lecture notes. The talk given by
Grigoris Paouris on the Informal Analysis Seminar at Kent State University served as a guide and inspiration
for the present article.

2. PROOF OF THEOREM 1

2.1. The necessity condition. First we notice that if (1) holds for some n≥ 1 then it holds for n = 1. Indeed
we can test (1) on the functions f (x1,x2, . . . .xn) = f̃ (x1), g(x1,x2, . . . ,xn) = g̃(x1) for some Borel functions
f̃ , g̃ from R to I,J correspondingly. In what follows we will assume that n = 1. Finiteness of the fifth moment
together with the Lebesgue dominated convergence theorem implies that

R5
∫

∞

R
dµ → 0 and R5

∫ −R

−∞

dµ → 0 as R→ ∞.(5)

We need several technical lemmas. We fix a number α ∈ (0,1/3) close to 1
3 which will be determined later.

1Since the proof of (4) in [17] essentially uses intermediate value theorem for continuous functions f ,g to verify property (3.3) in
[17], it is unclear how to extend the argument of [17] to discontinuous functions.
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Lemma 1. ∣∣∣∣∫ ±∞

±ε−α

|t|dµ

∣∣∣∣= o(ε4α) and
∣∣∣∣∫ ±∞

±ε−α

t2dµ

∣∣∣∣= o(ε3α),

as ε → 0.

Proof. We have ∣∣∣∣∫ ±∞

±ε−α

|t|dµ

∣∣∣∣≤ ε
4α

∣∣∣∣∫ ±∞

±ε−α

|t|5dµ

∣∣∣∣= o(ε4α).

Similarly for the second integral. �

Let (u,v) be the point in the interior of Ω. Let Hu = Hu(u,v) and Hv = Hv(u,v).

Lemma 2. If H satisfies (1) then

p Hvv
H2

v
+ pq+q Huu

H2
u
+ HuuHvv−H2

uv
H2

u H2
v

Huu
H2

u
+ p−2 Huv

HuHv
+ Hvv

H2
v
+q

≥ pa2 +qb2(6)

for all real numbers p and q such that p+q+ Huu
H2

u
−2 Huv

HuHv
+ Hvv

H2
v
< 0.

Proof. Let δ > 1 be a number which will be determined later.
We consider the following test functions ( f ,g):

f (x) = u+ ε
ϕε,δ (ax)

Hu
+ ε

2
pϕ2

ε,δ (ax)

2Hu
;(7)

g(y) = u+ ε
ϕε,δ (by)

Hv
+ ε

2
qϕ2

ε,δ (by)

2Hv
;(8)

where ϕε,δ (t) =


−δε−α t ≤−δε−α ;
t −δε−α ≤ t ≤ ε−α ;
ε−α ε−α ≤ t .

(9)

We notice that |ϕε,δ (t)| ≤ δε−α . Since α < 1 it is clear that f : R→ I and g : R→ J for all 0≤ ε ≤ ε0 where
ε0 is a small number. Ideally we want to choose ϕε,δ (t) = t for all t ∈ R but then the image of ( f ,g) will
escape from the rectangle Ω.

Let
∫
R tdµ = τ and

∫
R t2dµ(t) = β . Choose α ∈ (0, 1

3) so that 4α > 1. Notice that for each fixed δ > 1 by
(5) and Lemma 1 we have∫

R
f dµ = u+ ε

aτ

Hu
+ ε

2 pa2

2Hu
β +o(ε2) and

∫
R

gdµ = v+ ε
bτ

Hv
+ ε

2 qb2

2Hv
β +o(ε2) as ε → 0.

Using the fact that H ∈C3(I× J) by Taylor’s formula we obtain

H(s, t) = H(u,v)+(s−u)Hu +(t− v)Hv +
1
2
(
(s−u)2Huu +2(s−u)(t− v)Huv +(t− v)2Hvv

)
+O((|s−u|+ |t− v|)3).

Taking s =
∫

f dµ and t =
∫

gdµ we obtain

H
(∫

R
f dµ,

∫
R

gdµ

)
= H(u,v)+ ετ(a+b)+

ε2

2
β (pa2 +qb2)(10)

+
1
2

ε
2
τ

2
(

a2 Huu

H2
u
+2ab

Huv

HuHv
+b2 Hvv

H2
v

)
+o(ε2) as ε → 0.
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On the other taking s = f (x) and t = g(y) we obtain

H( f (x),g(y)) = H(u,v)+ ε(ϕε,δ (ax)+ϕε,δ (by))+

ε2

2

(
pϕ

2
ε,δ (ax)+qϕ

2
ε,δ (by)+

Huu

H2
u

ϕ
2
ε,δ (ax)+2

Huv

HuHv
ϕε,δ (ax)ϕε,δ (by)+

Hvv

H2
v

ϕ
2
ε,δ (by)

)
+O(ε3(1−α)).

Since α < 1/3 we have O(ε3(1−α)) = o(ε2). First we should compare small order terms in order to get a
restriction on τ .

Since f ,g are continuous clearly the essential supremum of the integrand in (1) becomes supax+by=z H( f (x),g(y)).
Thus, introducing new variables x̃ = ax, ỹ = by and using the fact that supremum of the sum is at most the
sum of the supremums, we obtain that (1) implies the inequality

ε

∫
R

sup
x+y=t

(ϕε,δ (x)+ϕε,δ (y))dµ(t)≥ ετ(a+b)+o(ε).(11)

Notice that supx+y=t(ϕε,δ (x)+ϕε,δ (y)) = t for t ∈ [(1− δ )ε−α ,2ε−α ], and it is bounded as Cε−α other-
wise. Therefore (11) implies that τ ≥ (a+b)τ . On the other hand we can considered the new test functions
ϕ̃ε,δ =−ϕε,δ , and we can obtain the opposite inequality −τ ≥−(a+b)τ . This implies that if a+b > 1 then
τ = 0. Notice that in the case a+b = 1, without loss of generality, we can assume that

∫
R tdµ = 0. Indeed,

we can test inequality (4) on the translated functions fc(x) = f (x− c) and gc(y) = g(y− c). After change
of variables in (4), and using ac+bc = c, we obtain that (4) holds with initial test functions f ,g and shifted
measure µc(·) = µ(·+ c). Clearly we can choose c ∈ R so that

∫
R tdµc(t) = 0.

In what follows we assume τ = 0, and therefore, the terms involving τ in (10) are zero. Inequality (1)
implies that

ε

∫
R

sup
x+y=t

(ϕε,δ (x)+ϕε,δ (y))dµ(t)+

ε2

2

∫
R

sup
x+y=t

[(
Huu

H2
u
+ p
)

ϕ
2
ε,δ (x)+2

Huv

HuHv
ϕε,δ (x)ϕε,δ (y)+

(
Hvv

H2
v
+q
)

ϕ
2
ε,δ (y)

]
dµ(t)≥

ε2

2
β (pa2 +qb2)+o(ε2).(12)

Since
∫
R tdµ = 0, (5) and Lemma 1 we obtain∫

R
sup

x+y=t
(ϕε,δ (x)+ϕε,δ (y))dµ(t) = o(ε) as ε → 0.

Set

ψε,δ (t)
def
= sup

x+y=t

[(
Huu

H2
u
+ p
)

ϕ
2
ε,δ (x)+2

Huv

HuHv
ϕε,δ (x)ϕε,δ (y)+

(
Hvv

H2
v
+q
)

ϕ
2
ε,δ (y)

]
.

We remind that p and q are chosen in such a way that p+ Huu
H2

u
+q+ Hvv

H2
v
−2 Huv

HuHv
< 0.

We need the following lemma.

Lemma 3. Let δ > 1 be such that for all s, 1
δ
≤ s≤ δ we have(

p+
Huu

H2
u

)
s2−2

Huv

HuHv
s+q+

Hvv

H2
v
< 0,(13)

then there exist sufficiently small positive constants c and ε0 > 0 such that

ψε,δ (t) =
p Hvv

H2
v
+ pq+q Huu

H2
u
+ HuuHvv−H2

uv
H2

u H2
v

Huu
H2

u
+ p−2 Huv

HuHv
+ Hvv

H2
v
+q

· t2,(14)

for all real |t| ≤ cε−α and all ε ≤ ε0.
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ε−α

−δ ε−α

ε−α

−δ ε−αt− ε−α

A

BC

D

y

x

x+ y = t

FIGURE 1. Domain of the function w(x,y)

Before we proceed to the proof of the lemma, let us mention that Lemma 2 follows from Lemma 3.
Indeed, first we choose δ > 1 such that (13) holds. Such choice is possible because of the continuity and the
assumption on the numbers p and q. Lemma 3, (12), (5), Lemma 1 and the fact that |ψε,δ (t)| ≤Cε−2α on the
complement of the interval [−cε−α ,cε−α ] imply (6). Thus it remains to prove Lemma 3.

Proof. Set

w(x,y) =
(

Huu

H2
u
+ p
)

ϕ
2
ε,δ (x)+2

Huv

HuHv
ϕε,δ (x)ϕε,δ (y)+

(
Hvv

H2
v
+q
)

ϕ
2
ε,δ (y).

We should describe behavior of w(x,y) on the red line x+ y = t (see Figure 1). If 2ε−α ≥ t ≥ (1− δ )ε−α

then the line x+ y = t will cross the sides DA and DC of the rectangle ABCD as it is shown on Figure 1.
We have

w(x, t− x) =



ε−2α

[(
Huu
H2

u
+ p
)

δ 2−2 Huv
HuHv

δ +
(

Hvv
H2

v
+q
)]

x≤−δε−α ;(
Huu
H2

u
+ p
)

x2 +2 Huv
HuHv

xε−α +
(

Hvv
H2

v
+q
)

ε−2α t− ε−α ≥ x≥−δε−α ;(
Huu
H2

u
+ p
)

x2 +2 Huv
HuHv

x(t− x)+
(

Hvv
H2

v
+q
)
(t− x)2 t− ε−α ≤ x≤ ε−α ;(

Huu
H2

u
+ p
)

ε−2α +2 Huv
HuHv

ε−α(t− x)+
(

Hvv
H2

v
+q
)
(t− x)2 ε−α ≤ x≤ t +δε−α ;

ε−2α

[(
Huu
H2

u
+ p
)
−2 Huv

HuHv
δ +

(
Hvv
H2

v
+q
)

δ 2
]

x≥ t +δε−α .

Notice that because of the assumption (13) the values of w(x, t− x) approach to negative infinity as −cε−2α

if x≤−δε−α or x≥ t +δε−α where c > 0 is some constant.
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If t− ε−α ≥ x ≥ −δε−α then let us reparametrize the function w(x, t− x) as follows x = −ε−αs where
1− tεα ≤ s≤ δ . Then

w(−ε
−αs, t + ε

−αs) = ε
−2α

[(
Huu

H2
u
+ p
)

s2−2
Huv

HuHv
s+
(

Hvv

H2
v
+q
)]

.

Clearly if t ≤ (1− 1
δ
)ε−α then 1− tεα ≥ 1

δ
and by (13) the maximal value of w(x, t − x) behaves as

−cε−2α for some c > 0 on the interval t− ε−α ≥ x≥−δ ε−α . Behavior of w(x, t− x) on the interval ε−α ≤
x≤ t +δε−α is completely symmetric to the previous case.

Since the value of the map x 7→ w(x, t − x) goes to negative infinity at the endpoints of the interval [t −
ε−α ,ε−α ] as ε → 0, one can check that the maximum of the function w(x, t − x) is attained inside of the
interval [t− ε−α ,ε−α ] at the point

x0 =−

(
Huv

HuHv
− Hvv

H2
v
−q
)

t
Huu
H2

u
+ p−2 Huv

HuHv
+ Hvv

H2
v
+q

.

Thus, we have

sup
x∈R

w(x, t− x) = max
x∈[t−ε−α ,ε−α ]

w(x, t− x) = w(x0, t− x0) =
p Hvv

H2
v
+ pq+q Huu

H2
u
+ HuuHvv−H2

uv
H2

u H2
v

Huu
H2

u
+ p−2 Huv

HuHv
+ Hvv

H2
v
+q

· t2,(15)

for all |t| ≤ cε−α and all ε ≤ ε0 where ε0 and c are some sufficiently small numbers. Therefore, we obtain
(14).

�

�

Lemma 4. Inequality (6) holds for all real p and q with p+q+ Huu
H2

u
−2 Huv

HuHv
+ Hvv

H2
v
< 0 if and only if(

1−a2−b2

2ab

)2

≤ 1 and a2 Huu

H2
u
+(1−a2−b2)

Huv

HuHv
+b2 Hvv

H2
v
≥ 0.

Proof. Let us rewrite (6) as follows

M(p,q) = (p,q)C (p,q)T + p
[

a2
(

Huu

H2
u
−2

Huv

HuHv

)
+(a2−1)

Hvv

H2
v

]
+

q
[

b2
(

Hvv

H2
v
−2

Huv

HuHv

)
+(b2−1)

Huu

H2
u

]
− HuuHvv−H2

uv

H2
u H2

v
≥ 0

on the half plane

p+q+
Huu

H2
u
−2

Huv

HuHv
+

Hvv

H2
v
< 0,(16)

where

C =

(
a2 a2+b2−1

2
a2+b2−1

2 b2

)
.

In order for the quadric form M(p,q) to be nonnegative on the half plane it is necessary that C ≥ 0. Indeed,
suppose there is (p0,q0) 6= (0,0) such that (p0,q0)C(p0,q0)

T < 0. Without loss of generality we can assume
that p0 + q0 < 0, otherwise if p0 + q0 ≥ 0 we can consider a new pair (p̃, q̃) = (−p0,−q0) and perturb it
slightly, if necessary, to ensure that p̃+ q̃ < 0. Finally taking (pλ ,qλ ) := λ (p0,q0) we can choose λ > 0
sufficiently large so that (16) holds. On the other hand limλ→∞

M(pλ ,qλ )
λ 2 = (p0,q0)C(p0,q0)

T < 0. Thus we
must have C ≥ 0, and the latter condition, namely, detC ≥ 0 gives the constraint on the numbers a,b > 0.
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Notice that M(p,q) is nonnegative on the boundary of the half plane, i.e.,

M
(
−q− Huu

H2
u
+2

Huv

HuHv
− Hvv

H2
v
,q
)
=

(HvvHu−HuvHv +HuH2
v q)2

H2
u H4

v
≥ 0.

Next we consider the case when
(

1−a2−b2

2ab

)2
< 1.

Let (p0,q0) be the vertex of the paraboloid M, i.e., ∇M(p0,q0) = 0. The direct computations show that

M(p0,q0) =

(
a2 Huu

H2
u
+(1−a2−b2) Huv

HuHv
+b2 Hvv

H2
v

)2

4a2b2

((
1−a2−b2

2ab

)2
−1
) ,

and

p0 +q0 +
Huu

H2
u
−2

Huv

HuHv
+

Hvv

H2
v
=

a2 Huu
H2

u
+(1−a2−b2) Huv

HuHv
+b2 Hvv

H2
v

2a2b2

(
1−
(

1−a2−b2

2ab

)2
) .(17)

Therefore M ≥ 0 in the halfplane (16) if and only if the right hand side of (17) is nonnegative

If
(

1−a2−b2

2ab

)2
= 1 then det(Hess) M = 0, therefore, M is the developable surface, i.e., M is linear along

some straight line segments. The direction (x0,y0) of these straight line segments satisfy the equation
Hess M (x0,y0)

T = 2C (x0,y0)
T = (0,0), i.e., (x0,y0) =

(
a2+b2−1

2 ,−a2
)

which, clearly, is not parallel to the

boundary of the halfplane (16). Condition
(

1−a2−b2

2ab

)2
= 1 implies that b = |1−a| or b = a+1. If b = |1−a|

then (x0,y0) · (1,1) = a2+b2−1
2 −a2 = b2−a2−1

2 < 0. In this case

lim
λ→∞

M(p+λx0,q+λy0)

λ
= a

(
a2 Huu

H2
u
+(1−a2−b2)

Huv

HuHv
+b2 Hvv

H2
v

)
,

and the latter expression must be nonnegative. Finally, if b = a+1 then (x0,y0) · (1,1) = b2−a2−1
2 > 0. In this

case

lim
λ→∞

M(p−λx0,q−λy0)

λ
= a

(
a2 Huu

H2
u
+(1−a2−b2)

Huv

HuHv
+b2 Hvv

H2
v

)
,

and the latter expression must be nonnegative. Since M is nonnegative on the boundary of the halfplane (16),
this finishes the proof of the lemma �

2.2. The sufficiency for the Gaussian measure. Our main ingredient will be a subtle Theorem 3 from [17].
Let us precisely formulate it in the way we will use it. Let k,k1,k2 and k3 be some positive integers with
k ≥ k j, j = 1,2,3. Let A j be k× k j size matrices of full rank for j = 1,2 and 3. Set A = (A1,A2,A3) to be
k× (k1 + k2 + k3) size. Let B : Ω ⊂ R3→ R be in C2(Ω) where Ω is a closed bounded rectangular domain,
i.e., Ω = I1× I2× I3 where I1, I2, I3 are closed subintervals in R. Let C be a positive definite k× k matrix. Set

dγC(x) =
1√

(2π)k det(C)
e−

|C−1/2x|2
2 dx.

By A∗ we denote the transpose of the matrix A. Let x ∈ Rk be a row vector, i.e., x = (x1, . . . ,xk). Let
A∗CA •HessB denotes (∑k j)× (∑k j) matrix {A∗i CA j∂i jB}3

i, j=1, i.e., A∗CA •HessB is constructed by the
blocks A∗i CA j∂i jB.
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Theorem A. A∗CA•Hess B≥ 0 on Ω if and only if∫
Rk

B(u1(xA1),u2(xA2),u3(xA3))dγC(x)≥(18)

B
(∫

Rk1
u1(y

√
A∗1CA1)dγk1(y),

∫
Rk2

u2(y
√

A∗2CA2)dγk2(y),
∫
Rk3

u3(y
√

A∗3CA3)dγk3(y)
)

for all Borel measurable u j : Rk j → I j, j = 1,2,3.

Here dγn(y) = e−|x|
2/2

(2π)n/2 dy is the standard Gaussian measure on Rn. Sometimes we will omit dependence on
dimension n and we will write dγ , and the corresponding dimension of the Gaussian measure will be clear
from the context.

The theorem was formulated for smooth B and compactly supported functions u j, j = 1,2,3. We should
mention that the theorem still remains true for B ∈ C2(Ω) and for smooth bounded u j. The proof proceeds
absolutely in the same way as in [17]. For the conveninence of the reader we decided to sketch the proof in
Section 4.1 (see Appendix).

In order to obtain (18) for all Borel measurable functions u j : Rk j → I j we approximate pointwise almost
everywhere by smooth bounded functions un

j such that Im(un
j) ∈ I j. Finally, the Lebesgue dominated conver-

gence theorem justifies the result (notice that all functions u1,u2,u3 and B are uniformly bounded).
We should also mention that inequality (18) for the function B(x,y,z) = xpyqzr recovers the reverse Young’s

inequality for convolutions with sharp constants, and the latter was used in [9] in obtaining the Prékopa–
Leindler inequality. In our case the situation is slightly different. We will be using (18) for some sequence
of functions BR, matrices CR, AR, test functions (uR

1 ,u
R
2 ,u

R
3 ), and very special sequence of Gaussian measures

dγR where R≥ 1. Finally, in the limit R→ ∞ we will obtain (1).
Further in obtaining the sufficiency condition, without loss of generality we can assume that dµ = dγ . The

case of the arbitrary Gaussian measure (3) follows by testing (1) on the shifts and dilates of f ,g and change of
variables in (1). Next we consider two different cases, when |1−a2−b2|= 2ab and when |1−a2−b2|< 2ab.
To the first case we refer as parabolic case and the second case we call elliptic case. These names originate
from studying the solutions of the partial differential inequality in (2), see Remark 1.

2.2.1. Parabolic case. In this subsection we consider the case when(
1−a2−b2

2ab

)2

= 1.(19)

(19) holds if and only if a = |1− b| or a = 1+ b. Without loss of generality we will assume that H > δ for
some δ > 0. Moreover, we can choose δ > 0 so that |Hx|, |Hy|> δ > 0. Set

dγp,q,x(y) =
( p

2π

)n/2
e−

|py+qx|2
2p dy for x,y ∈ Rn.(20)

The choice of the numbers p,q will be specified later. So far we assume that p > 0. Notice that dγp,q,x(y) is a
probability measure on Rn. We need the following lemma.

Lemma 5. For any 1 > α > β > 0 with α +β > 1 there exists R0 = R0(α,β ,H) such that for all R > R0 we
have ∫

Rn

(∫
Rn

HR
(

f
(

x− y
a

)
,g
( y

b

))
dγp,q,x(y)

) 1
R−Rα

dγn(x)≥

H
R

R−Rα

(∫
Rn

f

(
x

√
1+

1
a2Rβ

)
dγ(x),

∫
Rn

g

(
x

√
1+

1
b2Rβ

)
dγ(x)

)
,(21)

where p = Rβ , q =−bRβ if a = |1−b| and q = bRβ if a = b+1.



BOUNDARY VALUE PROBLEM AND THE EHRHARD INEQUALITY 9

Before we proceed to the proof of the lemma let us explain that the lemma implies the desired result (1).
It is clear that if R→ ∞ then the right hand side of (21) tends to H(

∫
f dγ,

∫
gγ). We claim that the left hand

side of (21) tends to
∫
Rn esssupy H( f ((x− y)/a),g(y/a))dγ(x). Indeed, let

ϕR(x) =
(∫

Rn
HR
(

f
(

x− y
a

)
,g
( y

b

))
dγp,q,x(y)

) 1
R−Rα

.

We claim that ϕR(x)→ esssupy H( f ((x− y)/a),g(y/a)) a.e. as R→ ∞. Notice that

ϕR(x)≤
(

esssup
y

H( f ((x− y)/a),g(y/a))
) R

R−Rα

−−−→
R→∞

esssup
y

H( f ((x− y)/a),g(y/a)).

On the other hand let ε > 0. Consider

Aε = {y : H( f ((x− y)/a),g(y/a))> esssup
y

H( f ((x− y)/a),g(y/a))− ε}.

Let N be a sufficiently large number such that |Aε ∩B(0,N)| > 0. Here B(0,N) denotes the ball centered at
the origin with radius N. Then

ϕR(x)≥ (γp,q,x(Aε ∩B(0,N)))
1

R−Rα (esssup
y

H( f ((x− y)/a),g(y/a))− ε)
R

R−Rα

−−−→
R→∞

esssup
y

H( f ((x− y)/a),g(y/a))− ε.

The last passage follows from the fact that the power in the exponent (20) is of order Rβ where β < 1. Since
ε is arbitrary we obtain the pointwise convergence for ϕR(x).

Finally, since ϕR(x) are uniformly bounded the Lebesgue dominated convergence theorem implies∫
Rn

ϕR(x)dγ(x)−−−→
R→∞

∫
Rn

esssup
y

H
(

f
(

x− y
a

)
,g
( y

b

))
dγ(x).

It remains to prove the lemma.

Proof. Take an arbitrary Borel measurable ϕ such that δ ′>ϕ > 1/δ ′> 0 for some δ ′> 0. Let a(R) =R−Rα .
First, we show that

∫
Rn

∫
Rn

HR
(

f
(

x− y
a

)
,g
( y

b

))
ϕ

1−a(R)(x)dγp,q,x(y)dγ(x)≥

HR

(∫
Rn

f

(
x

√
1+

1
a2Rβ

)
dγ,

∫
Rn

g

(
x

√
1+

1
b2Rβ

)
dγ

)
·
(∫

Rn
ϕdγ

)1−a(R)

.(22)

We should apply Theorem A. In order to do that notice that

dγp,q,x(y)dγn(x) =
e−〈C

−1~x,~x〉/2√
(2π)2n

det(C−1/2)dxdy := γC(~x)dxdy,(23)

where~x = (x,y) and

C−1 =

(
1+ q2

p q
q p

)
⊗ In×n = C̃−1⊗ In×n,(24)

where In×n is n×n identity matrix. Clearly C > 0. Set

A1 :=
( 1

a
−1

a

)
⊗ In×n := a1⊗ In×n, A2 :=

(
0
1
b

)
⊗ In×n := a2⊗ In×n, A3 :=

(
1
0

)
⊗ In×n := a3⊗ In×n.

Let A := (A1,A2.A3) be 2n×3n matrix. Notice that A = Ã⊗ In×n where Ã = (a1,a2,a3) is 2×3 matrix.
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Next, we notice that in this case

C =

(
1 − q

p

− q
p

1
p +

q2

p2

)
⊗ In×n = C̃⊗ In×n.

Therefore

A∗3CA3 = 〈C̃a3,a3〉⊗ In×n = In×n;

A∗2CA2 = 〈C̃a2,a2〉⊗ In×n =
1
b2

[
1
p
+

q2

p2

]
⊗ In×n;

A∗1CA1 = 〈C̃a1,a1〉=
1
a2

[
1+

1
p
+2 · q

p
+

q2

p2

]
⊗ In×n.

By Theorem A the desired inequality (22) holds, namely,∫
R2n

HR( f (~xA1),g(~xA2))ϕ
1−a(R)(~xA3)dγC(~x)≥

HR
(∫

Rn
f (x
√

A∗1CA1)dγ,
∫
Rn

g(x
√

A∗2CA2)dγ

)
·
(∫

Rn
ϕ(x

√
A∗3CA3)dγ

)1−a(R)

(25)

if and only if A∗CA •HessB = {A∗i CA j∂i jB}n
i, j=1 ≥ 0 where B(x,y,z) = HR(x,y)z1−a(R) is given on I× J×

[δ ′,1/δ ′].
Denote ε := R−β , and lets think of it as a sufficiently small number. We remind that p = ε−1, and q =

−bε−1 if a = |1−b| and q = bε−1 if a = 1+b. Then 〈C̃a2,a2〉= 1+ ε

b2 and 〈C̃a1,a1〉= 1+ ε

a2 .
First we consider the case when a+b = 1. The remaining cases are similar. We obtain

C =

(
1 b
b b2 + ε

)
⊗ In×n and, A∗CA =

1+ ε

a2 1− ε

ab 1
1− ε

ab 1+ ε

b2 1
1 1 1

⊗ In×n = Ã∗C̃Ã⊗ In×n.(26)

For B(x,y,z) = HR(x,y)z1−a(R) we have

Hess B = RHR−2z1−a(R)×

 HxxH +(R−1)H2
x HxyH +(R−1)HxHy (1−a(R))HxHz−1

HxyH +(R−1)HxHy HyyH +(R−1)H2
y (1−a(R))HyHz−1

(1−a(R))HxHz−1 (1−a(R))HyHz−1 a(R)(a(R)−1)
R H2z−2

 .

We have Hess B = RHR−2z1−a(R) ·ST S∗ where S is a diagonal matrix with entries 1, 1 and (1−a(R))Hz−1 on
the diagonal, and

T =

 HxxH +(R−1)H2
x HxyH +(R−1)HxHy Hx

HxyH +(R−1)HxHy HyyH +(R−1)H2
y Hy

Hx Hy
a(R)

R(a(R)−1)

 .

Thus A∗CA•Hess B≥ 0 if and only if Ã∗C̃Ã•T ≥ 0. If we set R−1 = N and a(R)
R(a(R)−1) =

1
M then we have

Ã∗C̃Ã•T =

 (HxxH +N ·H2
x )
(
1+ ε

a2

)
(HxyH +N ·HxHy)

(
1− ε

ab

)
Hx

(HxyH +N ·HxHy)
(
1− ε

ab

)
(HyyH +N ·H2

y )
(
1+ ε

b2

)
Hy

Hx Hy
1
M

 .

By choosing N to be sufficiently large we will make the diagonal entries positive. Notice that such choice is
possible because H ∈C2(Ω) and Hx,Hy 6= 0. Let us investigate the sign of 2×2 leading minor. We have

det
(

(HxxH +N ·H2
x )
(
1+ ε

a2

)
(HxyH +N ·HxHy)

(
1− ε

ab

)
(HxyH +N ·HxHy)

(
1− ε

ab

)
(HyyH +N ·H2

y )
(
1+ ε

b2

) )= εN2H2
x H2

y

(
a+b

ab

)2

+O(N),(27)
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where O(N) ≤ N ·C1 where C1 =C1(H) is some absolute constant. Thus we see that choosing Nε >C2 for
some arbitrary large absolute C2 =C2(H) (we remind that ε = R−β and N ∼ R) the determinant of the minor
will be positive. For the next 2×2 minor we have

det
(
(HyyH +N ·H2

y )
(
1+ ε

b2

)
Hy

Hy
1
M

)
= H2

y

(
N
M
−1+

Nε

Mb2

)
+

HyyH
M

.(28)

Notice that N−M = R
a(R)−1 and since a(R)< R we have H2

y
( N

M −1+ Nε

Mb2

)
+

HyyH
M ≥ 1

M (H2
y Nε +HyyH) and

the last expression is nonnegative if εN > C3 for some large absolute C3 = C3(H). In the similar way we
obtain that all 2×2 minors are nonnegative provided that Nε is sufficiently large.

So it remains to check the sign of det(Ã∗C̃Ã•T ). We have

a2b2M det(Ã∗C̃Ã•T ) = NεH(a2HxxH2
y +b2HyyH2

x +(1−a2−b2)HxyHxHy)+(29)

(N−M)

[
Nε

2
H2

x H2
y (a+b)2 +H(a2b2 +

ε2N
N−M

)(HxxH2
y +HyyH2

x −2HxyHxHy) +

εH(b2HxxH2
y +a2HyyH2

x +2HxyHxHyab)
]
+(N−M)

Nε

2
H2

x H2
y (a+b)2+

H2(a2b2 + ε
2)(HxxHyy−H2

xy)+ εH2(HxxHyy(a2 +b2)+2abH2
xy).

Notice that the first term, i.e., NεH(a2HxxH2
y +b2HyyH2

x +(1−a2−b2)HxyHxHy) is nonnegative by the con-
dition of the theorem. For the rest of the terms we notice that if we set a(R) = R−Rα and ε = R−β for any
1 > α > β > 0, α +β > 1, then we obtain that for sufficiently large R we have N−M ≈ Rα−1,

Nε ≈ R1−β → ∞,
ε

N−M
≈ R1−α−β → 0 and (N−M)Nε ≈ Rα−β → ∞.

Therefore the second term Nε

2 H2
x H2

y will dominate the rest of the terms, and in the last terms we notice that
(N−M)Nε

2 H2
x H2

y will dominate all the bounded terms.
For the remaining cases when a = b+1 and a = b−1 we have Ã∗C̃Ã = 1+ ε

a2 −1− ε

ab −1
−1− ε

ab 1+ ε

b2 1
−1 1 1

 if a = b−1;

 1+ ε

a2 −1− ε

ab 1
−1− ε

ab 1+ ε

b2 −1
1 −1 1

 if a = b+1.

In both of the cases there is a diagonal matrix D having entries ±1 on the diagonal such that

DÃ∗C̃ÃD =

1+ ε

a2 1+ ε

ab 1
1+ ε

ab 1+ ε

b2 1
1 1 1

 .(30)

Notice that (30) is the same as Ã∗C̃Ã in (26) except b has switched the sign. Formulas (27), (28) and (29) are
still valid if we switch the sign of b to −b. The rest of the discussions proceed without any changes.

Finally in order to obtain (21) we take infimum of the left hand side of (22) over all positive ϕ such that∫
ϕdγn = 1. Indeed, for the convenience of the reader let us mention the following classical result.

Lemma 6. Let s > 1 and t < 0 be such that s+ t = 1 then for any positive bounded F,G we have∫
FsGtdµ ≥

(∫
Fdµ

)s(∫
Gdµ

)t

.(31)

The equality holds if F = λG for a constant λ > 0.

Proof. Indeed, notice that B(x,y) = xsyt is a 1-homogeneous convex function for x,y > 0. Therefore (31)
follows from the Jensen’s inequality. �



12 PAATA IVANISVILI

In case of (22) we take t = 1−a(R) and s = a(R). Taking infimum over all positive and bounded ϕ with∫
ϕdγn = 1 and finally rising the obtained inequality to the power 1/a(R) we obtain (21). In fact the infimum

is attained on the following function

ϕ(x) = m ·
(∫

Rn
HR
(

f
(

x− y
a

)
,g
( y

b

))
dγp,q,x(y)

)1/a(R)

(32)

where the constant m is chosen so that
∫

ϕdγn = 1. Clearly such optimizer satisfies δ ′ < ϕ ≤ 1/δ ′ for some
nonzero δ ′ > 0 because H is bounded and H > δ . This finishes the proof in the parabolic case. �

2.2.2. Elliptic case. In this subsection we consider the following case(
1−a2−b2

2ab

)2

< 1.

Lemma 7. There exist positive constants c = c(H)> 0 and R0 = R0(H) such that for any R > R0 we have∫
Rn

(∫
Rn

HR
(

f
(

x− y
a

)
,g
( y

b

))
dγp,q,x(y)

) 1
R−c

dγn(x)≥ H
R

R−c

(∫
Rn

f (x)dγ(x),
∫
Rn

g(x)dγ(x)
)
,

where dγp,q,x(y) is defined as in (20) and

p =
4

(1− (a−b)2)((a+b)2−1)
and q =

2(a2−b2−1)
(1− (a−b)2)((a+b)2−1)

.(33)

As before using Lemma 6 it is enough to prove (25) for all bounded, positive and uniformly separated from
zero ϕ where a(R) = R− c, c will be determined later.

Notice that (33) implies that

〈C̃ã3, ã3〉= 1; 〈C̃ã2, ã2〉=
1
b2

[
1
p
+

q2

p2

]
= 1; 〈C̃ã1, ã1〉=

1
a2

[
1+

1
p
+2 · q

p
+

q2

p2

]
= 1.

We have

C̃ =

(
1 − q

p

− q
p

1
p +

q2

p2

)
=

(
1 1−a2+b2

2
1−a2+b2

2 b2

)
.

Notice also that C = C̃⊗ In×n is positive-definite if and only if |a−b|< 1 and a+b > 1. Let A = (A1,A2,A3)
be the same matrix as before. By Theorem A, the inequality

∫
R2n

HR( f (~xA1),g(~xA2))ϕ
1−a(R)(~xA3)dγC(~x)≥ HR

(∫
Rn

f (x)dγ,
∫
Rn

g(x)dγ

)
·
(∫

Rn
ϕ(x)dγ

)1−a(R)

holds if and only if A∗CA•Hess B≥ 0 where again B(x,y,z) = HR(x,y)z1−a(R). We have

A∗CA =

 1 1−a2−b2

2ab
1+a2−b2

2a
1−a2−b2

2ab 1 1−a2+b2

2b
1+a2−b2

2a
1−a2+b2

2b 1

⊗ In×n.

Notice that as before it is enough to check positive definiteness of the following matrix

Ã∗C̃Ã•T =


HxxH +N ·H2

x (HxyH +N ·HxHy)
(

1−a2−b2

2ab

)
Hx

(
1+a2−b2

2a

)
(HxyH +N ·HxHy)

(
1−a2−b2

2ab

)
HyyH +N ·H2

y Hy

(
1−a2+b2

2b

)
Hx

(
1+a2−b2

2a

)
Hy

(
1−a2+b2

2b

)
1
M

 ,
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where R− 1 = N and a(R)
R(a(R)−1) =

1
M . If R is sufficiently large then all diagonal entries are positive. One

can notice that all principal 2× 2 minors have positive determinant provided that R is sufficiently large and
R > a(R). This follows from the fact that

1−
(

1−a2−b2

2ab

)2

=
((a+b)2−1)(1− (a−b)2)

4a2b2 > 0,

1−
(

1−a2 +b2

2b

)2

=
((a+b)2−1)(1− (a−b)2)

4b2 > 0,

and N−M = R
a(R) −1 > 0.

So it remains to check the sign of det(Ã∗C̃Ã•T ). We have

4a2b2M det(Ã∗C̃Ã•T ) = MH(1− (a−b)2)((a+b)2−1)[a2HxxH2
y +(1−a2−b2)HxyHxHy +b2HyyH2

x ]+

(N−M)

[
1
2

NH2
x H2

y (1− (a−b)2)((a+b)2−1)+H(4a2b2(HxxH2
y +HyyH2

x )−2HxyHxHy(1−a2−b2)2)

]
1
2
(N−M)NH2

x H2
y (1− (a−b)2)((a+b)2−1)+4a2b2H2

(
HxxHyy−H2

xy

(
1−a2−b2

2ab

)2
)

=

= MI1 +(N−M)I2 + I3 + I4.

Notice that the first term I1 ≥ 0 by (2). The second term I2 contains a factor of the form 1
2 NH2

x H2
y (1− (a−

b)2)((a− b)2− 1) which will dominate the remaining subterms as N → ∞. Finally the sum of the last two
terms I3 + I4 will be positive provided that

(N−M)N ≥−
8a2b2H2

(
HxxHyy−H2

xy

(
1−a2−b2

2ab

)2
)

H2
x H2

y (1− (a−b)2)((a+b)2−1)
.(34)

The last inequality holds provided that c is sufficiently large number. Indeed, notice that if R > R0 for some
large R0 > 0 then (N−M)N = R−1

a(R)(R−a(R))> c. On the other hand the right hand side of (34) is bounded.
This finishes the proof of the lemma.

3. APPLICATIONS

3.1. How to solve PDE. In this section we describe how to find solutions of the following PDE

a2 Hxx

H2
x
+(1−a2−b2)

Hxy

HxHy
+b2 Hyy

H2
y
= 0.(35)

For simplicity we will stick to the case when a = b = 1
2 , however, our arguments can be extended to an

arbitrary a,b > 0 without any difficulties.

Proposition 1. Let V (s, t) be a smooth function which satisfies the heat equation Vss = Vt in a simply con-
nected domain Λ⊂ R2. Assume that

(s, t)→
(

e−s−t

2
(Vt +Vs),

es−t

2
(Vt −Vs)

)
(36)

is a C∞ diffeomorphism from Λ onto int(Ω) = int(I× J). Then the smooth function H(x,y) parametrized as

H
(

e−s−t

2
(Vt +Vs),

es−t

2
(Vt −Vs)

)
=Vt −V(37)

solves PDE
Hxx

H2
x
+2

Hxy

HxHy
+

Hyy

H2
y
= 0,

and it has the property that Hx,Hy > 0.
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Proof. The conclusion of the proposition can be checked by a straightforward computation, but let us explain
it in details how the argument works. First we linearize (35). For now let a,b > 0. Let U : Λ̃⊂ int(R2

+)→ R
be a smooth function such that

(p,q) 7→ (Up,Uq)(38)

is a smooth diffeomorphism from Λ̃ onto int(Ω). Define H(x,y) using the following system of equations
x =Up;
y =Uq;
H(x,y) = px+qy−U(p,q).

(39)

Since U is a smooth diffeomorphism, we can find smooth functions p = p(x,y),q = q(x,y) such that the first
two equations in (39) are satisfied. Differentiating the third equation in (39) it follows that Hx = p > 0,Hy =
q > 0. Therefore Hxx = px,Hyy = qy and py = qx = Hxy. Taking the differential of the first two equations of
(39) we obtain

px =
Uqq

UppUqq−U2
pq
, qy =

Upp

UppUqq−U2
pq

and py =−
Upq

UppUqq−U2
pq
.(40)

Notice that since the mapping (38) is a smooth diffeomorphism we have UppUqq−U2
pq 6= 0, therefore the

expressions in (40) are well defined. Notice that the transformation (39) linearizes the Monge–Ampère type
PDE (35). Indeed, PDE (35) takes the form

a2b2

p2q2(UppUqq−U2
pq)
×
(

q2Uqq

b2 −
(

1−a2−b2

a2b2

)
pqUpq +

p2Upp

a2

)
= 0.(41)

Since p,q,a,b > 0 and UppUqq−U2
pq 6= 0 we can ignore the first factor in the left hand side of (41). Next, if

define Ũ(u,v) as U(p,q) = Ũ(a ln p,b lnq), then equation (41) takes the following standard form

Ũuu +Ũvv−
(

1−a2−b2

ab

)
Ũuv−

Ũu

a
− Ũv

b
= 0.(42)

Pick numbers u1,u2,v1,v2 such that u1v2− v1u2 6= 0, and define the function V (s, t) as

Ũ(u,v) =V (u1u+ v1v,u2u+ v2v).

After the direct computations we notice that (42) takes the form(
u2

1 +u2
2−

1−a2−b2

ab
u1v1

)
Vss +

(
u2

2 + v2
2−

1−a2−b2

ab
u2v2

)
Vtt+(43)

(2(u1v1 +u2v2)+u1v2 +u2v1)Vst −
(u1

a
+

v1

b

)
Vs−

(u2

a
+

v2

b

)
Vt = 0.

Next, if we consider a = b = 1/2, then we see that choosing u1 = −v1 = u2 = v2 = 1 the equation (43)
simplifies to the heat equation

Vss−Vt = 0.(44)

Tracing back to our change of variables we obtain

U(p,q) =V
(

1
2

ln
(

p
q

)
,
1
2

ln(pq)
)
.(45)

Therefore, the system of equations (39), namely, H(Up,Uq) = px+ qy−U(p,q) transform to (37), and the
fact that (p,q) 7→ (Up,Uq) is diffeomorphism implies that the mapping (36) is a smooth diffeomorphism. �

Such a systematic approach to Monge–Ampére type PDEs the reader can find in a more comprehensive
theory of Exterior Differential Systems of Bryant–Griffiths, see, for example, [11].
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Remark 1. In general, for an arbitrary a,b > 0, if |1−a2−b2|
2ab < 1, then (43), after a suitable change of

variables, reduces to an elliptic equation, namely, Laplacian eigenvalue problem. If |1−a2−b2|
2ab = 1, then (43)

reduces to Parabolic equation, namely, heat equation.

Remark 2. For the mapping (36) to be smooth diffeomorphism we should assume that the determinant of its
Jacobian matrix is nonzero. Using Vss = Vt the determinant takes the form − e−2t

2 (Vsss−Vs)
2, and we obtain

the necessary condition Vs 6=Vsss.

Remark 3. If one is only interested with partial differential inequality (2) unlike (35), then instead of requir-
ing Vss =Vt we need only require that Vss ≤Vt and UppUqq−U2

pq < 0 where U is defined as in (45).

Next, let us illustrate how Proposition 1 works on the examples.

3.2. The Ehrhard function. Take

V (s) :=
(

es + e−s

2
−1
)
1(0,∞)(s).

We recall that the heat extension V (s, t) of the initial data V (s) can be written as

V (s, t) =
∫
R

V (s+
√

2ty)dγ1(y) =
1
2

(
es+t

Ψ

(
s√
2t

+
√

2t
)
+ e−s+t

Ψ

(
s√
2t
−
√

2t
))
−Ψ

(
s√
2t

)
,

where t ≥ 0, and Ψ(x)= γ1((−∞,x]) is the Gaussian distribution function. After straightforward computations
it follows that

e−s−t

2
(Vt +Vs) =

1
2

Ψ

(
s√
2t

+
√

2t
)

;

es−t

2
(Vt −Vs) =

1
2

Ψ

(
s√
2t
−
√

2t
)

;

Vt −V = Ψ

(
s√
2t

)
.

Denoting x = 1
2 Ψ( s√

2t
+
√

2t), and y = 1
2 Ψ( s√

2t
−
√

2t) for (x,y) ∈ (0,1/2)2 with x > y, and using (37) we
obtain

H(x,y) = Ψ

(
Ψ−1(2x)+Ψ−1(2y)

2

)
where x > y and (x,y) ∈ (0,1/2)2.(46)

Stretching the variables x̃ = 2x, ỹ = 2y and extending the definition of H in a natural way to the domain y > x
we obtain the Ehrhard function (see Section 3.6).

Next we consider a more peculiar example.

3.3. Example with Hermite polynomial. Take

V (s) = s2 for s <−1.

Clearly V (s, t) = s2 +2t for t ∈ R solves the heat equation with V (s,0) = s2. In this case we have

e−s−t

2
(Vt +Vs) = (s+1)e−s−t ;

es−t

2
(Vt −Vs) = (1− s)es−t ;

Vt −V = 2− s2−2t.

Notice that the mapping

(s, t) 7→
(
(s+1)e−s−t ,(1− s)es−t)
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is a smooth diffeomorphism from (−∞−1,0)×R onto (−∞,0)× (0,∞). Indeed, let

(1+ s)e−s−t = x < 0;(47)

(1− s)es−t = y > 0.(48)

Then `(s) := 1−s
1+s e2s maps (−∞,−1) onto (−∞,0), and it is decreasing. Let r(s) be its inverse map. It follows

from (47) and (48) that

s = r (y/x) ;

t =
1
2

ln
(

1− r2(y/x)
xy

)
.

Thus we obtain

H(x,y) =Vt −V = 2− r2(y/x)− ln
(

1− r2(y/x)
xy

)
,

with H ∈C3((−∞,0)× (0,∞)), and H satisfies (35). Therefore by Thoerem 1 we obtain inequality∫
Rn

ess infy r2
(

f (2(x− y))
g(2y)

)
+ ln

(
r2
(

f (2(x− y))
g(2y)

)
−1
)
− ln | f (2(x− y))g(2y)|dγ(x)≤(49)

r2
(∫

Rn f dγ∫
Rn gdγ

)
+ ln

(
r2
(∫

Rn f dγ∫
Rn gdγ

)
−1
)
− ln

∣∣∣∣∫Rn
f dγ

∫
Rn

gdγ

∣∣∣∣
for all bounded Borel functions f < 0, g > 0 and uniformly separated from zero. We do not know if the
estimate (49) can be obtained from the Ehrhard inequality.

Sometimes one can try to guess a function H(x,y) which would satisfy (2). Let us show how this guess
works.

Next, we will assume that a,b > 0, a+b≥ 1 and |a−b| ≤ 1. For any real p > 0, and any Borel function
f we define

‖ f‖Lp(dγ) =

(∫
Rn
| f |pdγ

)1/p

.

3.4. Young’s functions.

Corollary 1. Let p,q > 0. The following inequality holds∫
Rn

esssup
y∈Rn

f p
(

x− y
a

)
gq
( y

b

)
dγ ≥

(∫
Rn

f dγ

)p(∫
Rn

gdγ

)q

(50)

for all nonnegative Borel functions f ,g ∈ L1(dγn) if and only if a2

p + b2

q ≤ 1.

We notice that the case p = a,q = b with a+b = 1 recovers the Prékopa–Leindler inequality.

Proof. First let us obtain (50) for bounded f and g and uniformly separated from zero. Set H(x,y) = xpyq on
some bounded closed rectangular domain Ω ⊂ int(R2

+). Then (1) holds if and only if a2

p + b2

q ≤ 1. Indeed,
notice that (2) takes the form

a2 Hxx

H2
x
+(1−a2−b2)

Hxy

HxHy
+b2 Hyy

H2
y
=

1
xpyq

(
1− a2

p
− b2

q

)
≥ 0.

Thus we obtain (50) for bounded functions f ,g and uniformly separated from zero, i.e., f ,g ≥ ε for some
ε > 0. The general case of bounded f ,g follows by considering f̃ = f + ε and g̃ = g+ ε . By sending ε → 0
and using the dominated convergence theorem we obtain (50) for bounded f ,g with positive integrals.

For arbitrary f and g we can approximate by bounded fn := min{n, f} ≤ f and gn := min{g,n} ≤ g with
fn→ f in L1 and gn→ g in L1. Since esssupy f p((x− y)/a)g(y/b)| ≥ esssupy f p

n ((x− y)/a)gq
n(y/b) almost

everywhere we obtain the desired result. �
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3.5. Minkowski’s functions: reverse inequalities.

Corollary 2. Let p,q,r > 0. Then∥∥∥∥∥esssup
y∈Rn

(
f
(

x− y
a

)
+g
( y

b

))∥∥∥∥∥
Lr(dγ)

≥ ‖ f‖Lp(dγ)+‖g‖Lq(dγ)(51)

for all nonnegative f ∈ Lp(dγ) and g ∈ Lq(dγ) if and only if 0 < p, q≤ 1 and r≥ 1− (a
√

1− p+b
√

1−q)2.

Proof. Indeed, consider H(x,y) = (x
1
p + y

1
q )r. Let s = y1/qx−1/p. Then notice that (2) takes the form

1
sr(x1/p + y1/q)r

(
a2s2(1− p)+ s(b2(1−q)+a2(1− p)−1+ r)+b2(1−q)

)
=(52)

1
sr(x1/p + y1/q)r

(
(as
√
(1− p)−b

√
1−q)2 + s(r−1+(a

√
1− p+b

√
1−q)2)

)
.(53)

For the quantity in (52) to be nonnegative it is necessary that p,q≤ 1. We can assume that p,q 6= 1 otherwise
the conclusion follows easily. Finally (53) implies that (1) holds if and only if r≥ 1− (a

√
1− p+b

√
1−q)2.

Now we consider (1) with the test functions f̃ = f p, g̃ = gq and we obtain (51). �

It is interesting to mention that if a
√

1− p+b
√

1−q= 1 then we can take r→ 0 in (51), since lim‖h‖Lr →
exp(

∫
ln |h|dµ) (assuming −∞ <

∫
ln |h|< ∞), we obtain the following corollary

Corollary 3. Let p,q > 0 be such that a
√

1− p+b
√

1−q = 1. Then∫
Rn

esssup
y

ln
(

f
(

x− y
a

)
+g
( y

b

))
dµ ≥ ln

(
‖ f‖Lp(dγ)+‖g‖Lq(dγ)

)
.

for all nonnegative f ∈ Lp(dγ) and g ∈ Lq(dγ).

3.6. Ehrhard inequality and the Gaussian measure. In what follows H will not belong to the class C3(Ω).
Instead we will only have H ∈ C3(int(Ω)) and H is lower-semicontinuous on Ω. Thus we cannot directly
apply Theorem 1. In order to avoid this obstacle we will slightly modify the functions H and then pass to
the limit in (1). For example, if Ω = [0,1]2 we will consider auxiliary functions Hε1,ε2,δ1,δ2(x,y) = H(ε1 +
xδ1,ε2 + yδ2) for 0 < ε1,ε2,δ1,δ2 < 1, and we apply (1) to these functions. Finally we just send ε1,ε2→ 0
and δ1,δ2→ 1 in the appropriate order.

Let Ψ(s) =
∫ s
−∞

dγ (this is slightly different notation unlike the classical one Φ). The Ehrhard inequality
states that if a+b≥ 1 and |a−b| ≤ 1 then

γn(aA+bB)≥Ψ
(
aΨ
−1(γn(A))+bΨ

−1(γn(B))
)

(54)

for all Borel measurable A,B ⊂ Rn such that the Minkowski sum aA+ bB is measurable. The equality is
attained in (54) for the half spaces with one containing the other one.

Inequality (54) was proved by Ehrhard [15] when A and B are convex sets under the assumptions that
a+b = 1. Ehrhard, by developing Gaussian symmetrization method, showed that (54) is enough to prove in
the case n = 1. It was an open problem whether (54) holds for the Borel measurable sets A and B (see [24]).
Latala [21] showed that the inequality is true if at least one of the sets is convex (again under the constraints
a+b = 1). It was also noticed that the inequality is equivalent to its functional version∫

Rn
sup

ax+by=t
Ψ
(
aΨ
−1( f (x))+bΨ

−1(g(y))
)

dγn ≥Ψ

(
aΨ
−1
(∫

f dγn

)
+bΨ

−1
(∫

gdγn

))
(55)

for all smooth f ,g : Rn → [δ ,1− δ ]2 for some 0 < δ < 1/2. Finally, Borell in his series of papers [7, 8]
using a subtle maximum principle (see Lemma 1 in [3] which was later called hill property in [17]) obtained
(55). Recently, Ramon [30] gave an elegant proof of the Ehrhard inequality using infsup representation via
stochastic processes for a certain Bellman function. Also recently the author learned that Neeman–Paouris
[27] gave an interpolation proof of the Ehrhard inequality using a more subtle version of Theorem A, and
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they asked a question if one can deduce the Ehrhard inequality using solely Theorem A (the positive answer
wad demonstrated in the previous section).

Ehrhard inequality can be used to find isoperimetric profile for the Gaussian measure. Let dµ be a proba-
bility measure on Rn. Let Aε be an epsilon neighborhood of the set A. Set

µ
+(A) = liminf

ε→0

µ(Aε)−µ(A)
ε

and Iµ(p) = inf
µ(A)=p

µ
+(A).

The function Iµ(p) is called isoperimetric profile of the measure µ . Iµ(p) measures minimal perimeter of
the set A under the constraint that µ(A)= p is fixed. One can obtain from (54) that Iγn(p)≥Ψ′(Ψ−1(p)) which
is regarded as an infinitesimal version of γn(Aε)≥Ψ(Ψ−1(p)+ ε). A subtle result of Bobkov [4] asserts that
for any even, log-concave measure dµ on the real line we have Iµ(p) = Φ′(Φ−1(p)) where Φ(x) =

∫ x
−∞

dµ .
We should also mention that if dµ is a probability measure with positive distribution function Φ on the real
line then there is a trivial upper bound

inf
A,B⊂R: µ(A)=x,µ(B)=y

µ(aA+bB)≤Φ(aΦ
−1(x)+bΦ

−1(y)) for all x, y > 0.

The inequality is exhausted by half-lines. If dµ is a log-concave measure then we also have a trivial lower
bound µ(aA+bB)≥ µ(A)aµ(B)b for a+b = 1 via the Prékopa–Leindler inequality.

These considerations motivate to the following question: which measures dµ satisfy (54) or (55) with Ψ

replaced by Φ(x), i.e., with a distribution function of dµ . Further by dµn we denote product measure, i.e.,
µn = µ×µ× . . .×µ .

Theorem 2. Let dµ be a probability measure with positive density function ϕ = e−V ,V ∈C2(R) and finite
absolute fifth moment. Let Φ(s) =

∫ s
−∞

dµ . Let a and b be some fixed positive numbers. Let

H(x,y) = Φ(aΦ
−1(x)+bΦ

−1(y)) on [0,1]2 \{(0,1)∪ (1,0)},
and set H(0,1) = H(1,0) = 0.

(i) For the inequality∫
Rn

esssup
y∈Rn

H
(

f
(

x− y
a

)
,g
( y

b

))
dµn(x)≥ H

(∫
f dµn,

∫
gdµn

)
(56)

to hold for n = 1 and all Borel measurable f ,g : Rn→ [0,1] it is necessary that

V ′(ax+by)≤ aV ′(x)+bV ′(y), |1−a2−b2| ≤ 2ab,
∫
Rn

xdµ = 0 if a+b > 1.(57)

(ii) If dµn = dγn is the Gaussian measure then (57) is necessary and sufficient for the inequality (56) to
hold for any n≥ 1, and all Borel f ,g : Rn→ [0,1].

Further inequality (56) we call the Ehrhard inequality.

Proof. First we prove the necessity part. We consider H(x,y) on the domain Ωδ = [δ ,1− δ ]2 for some
δ ∈ (0,1/2). Clearly H ∈ C3(Ωδ ) and in particular (56) holds for Borel measurable f ,g : Rn → [δ ,1− δ ].
Notice that Hx and Hy never vanish in Ωδ . It remains to use the Theorem 1. Direct computations show that

a2 Hxx

H2
x
+(1−a2−b2)

Hxy

HxHy
+b2 Hyy

H2
y
=

1
ϕ(aΦ−1(x)+bΦ−1(y))

[
−a

ϕ ′(Φ−1(x))
ϕ(Φ−1(x))

−b
ϕ ′(Φ−1(y))
ϕ(Φ−1(y))

+
ϕ ′(aΦ−1(x)+bΦ−1(y))
ϕ(aΦ−1(x)+bΦ−1(y))

]
.

Therefore if we introduce new variables x̃ = Φ−1(x) and ỹ = Φ−1(y) we see that by Theorem 1 the necessary
condition for (56) is (57).

For the sufficiency condition we should introduce an auxiliary function

Hε,δ (x,y) = H(ε + xδ ,ε + yδ ) for 0 < ε,δ < 1, ε +δ < 1.(58)
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Notice that Hε,δ ∈ C3([0,1]2) and it satisfies (2). By Theorem 1 we have (1) for Hε,δ and µ = γn. We
consider

hε,δ (x) = esssup
y∈Rn

Hε,δ

(
f
(

x− y
a

)
,g
( y

b

))
.

From limε→0+ ‖Hε,δ −H0,δ‖C([0,1]) = 0 it follows that hε,δ → h0,δ in L1(dµn). Using the fact that H is
increasing in each variable we obtain h0,δ ≤ h0,1. This gives the left hand side of (56). For the right hand side
notice that if the point (

∫
f ,
∫

g) coincides with (0,1) or (1,0) then there is nothing to prove because H ≥ 0.
In the remaining case when (

∫
f ,
∫

g) is the point of continuity of H in [0,1]2 we obtain the right hand side of
(56) by taking the limit. �

The next corollary says that in the class of even probability measures on the real line with smooth pos-
itive density and finite moments, the only measures which satisfy the Ehrhard inequality are the Gaussian
measures.

Corollary 4. An even probability measure dµ with finite absolute fifth moment and the density function
e−V ,V ∈ C2(R) satisfies Ehrhard-type inequality (56) with n = 1 and some a,b > 0 if and only if it is the
Gaussian measure.

Proof. By (57) and the fact that V ′ is an odd function we obtain

−V ′(ax+by) =V ′(−ax−by)≤ aV ′(−x)+bV ′(−y) =−aV ′(x)−bV ′(y).

Therefore V ′(ax+ by) = aV ′(x)+ bV ′(y) for all x,y ∈ R. If we take derivative with respect to x we obtain
aV ′′(ax+by) = aV ′′(x). Choose y so that ax+by = 0 then we obtain that V ′′(x) =V ′′(0) for all x ∈ R. Thus
V = cx2 +d if a+b > 1 and V = cx2 + kx+d if a+b = 1. Further we will just write V (x) = cx2 + k(a+b−
1)x+d instead of considering previous cases separately. In both cases c > 0 because

∫
e−V < ∞.

On the other hand testing the Ehrhard inequality (56) with dγ1 and test functions f̃ (x) = f (px+q), g̃(y) =
g(py+ q) we see that after the change of variables the inequality holds for the probability measures dµ =

e−V dx with V (x) = ecx2+k(a+b−1)x+d . �

The following remark was pointed out to us by R. Latała.

Remark 4. If we drop the assumption of smoothness, namely, dµ = e−V ,V ∈C2(R) then Corollary 4 fails.
Indeed, consider dµ(x) = 1[−1/2,1/2](x)dx. We are thankful to R. Latała for pointing out this example.

It turns out that the measures e−V which satisfy V ′(ax+ by) ≤ aV ′(x) + bV ′(y) for all x,y ∈ R and all
a,b > 0 with a+b≥ 1 and |a−b| ≤ 1 have a simple geometrical description.

Corollary 5. Let dµ be a probability measure with the density function e−V ,V ∈C2(R) and finite absolute
fifth moment. Assume that the Ehrhard inequality (56) holds for all a,b > 0 with a+ b ≥ 1 and |a− b| ≤ 1.
Then

∫
R xe−V (x)dx = 0 and V ′ is a convex function. Moreover, there exist constants c± > 0 with c− ≤ c+ such

that limx→±∞ |V ′(x)− xc±|= 0.

Proof. By Theorem 2 we have

V ′(ax+by)≤ aV ′(x)+bV ′(y)(59)

for all real x,y and for all positive numbers a,b with a+ b ≥ 1 and |a− b| ≤ 1. Inequality (59) has the
following geometrical meaning. Let epi V ′ = {(x,y) ∈ R2 : y ≥ V ′(x)} be the epigraph of V ′. Condition
(59) means that a(x,V ′(x))+b(y,V ′(y)) ∈ epi V ′ for all a+b≥ 1 and |a−b| ≤ 1. It follows that the infinity
parallelogram P (see Figure 2) with sides

s · (x,V ′(x))+(1− s) · (y,V ′(y)), s ∈ [0,1];

(x,V ′(x))+ s · ((x,V ′(x))+(y,V ′(y))), s ∈ [0,∞)

(y,V ′(y))+ s · ((x,V ′(x))+(y,V ′(y))), s ∈ [0,∞)
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P L

V ′
y

x

y = x · c−

y = x · c+

FIGURE 2. Graph of V ′, parallelogram P and the line L

belongs to epiV ′. Since this is true for all x,y ∈ R it follows that this can happen if and only if V ′ is convex
and epiV ′ contains all lines L of the form s · (x,V ′(x)), s ≥ 1 for all x ∈ R. Then it follows that there exist
real numbers c±, c− ≤ c+ such that limx→±∞ |V (x)−xc±|= 0. Since

∫
e−V dx < ∞ it follows that there exists

sufficiently large p,q > 0 such that V ′(p)> 0 and V ′(−q)< 0. This implies that c± > 0.
�

One can observe that c+ = c− if and only if dµ is the Gaussian measure. It would be interesting to see
whether the converse of Corollary 5 is also true at least for a+b = 1, i.e., a probability measure with density
e−V and the function V described in Corollary 5 satisfies the Ehrhard inequality (56) with n = 1. If this is the
case then for such measures we obtain µ(Aε)≥Φ

(
Φ−1(µ(A))+ ε

√
c−
c+

)
.

Next we investigate 1-homogeneous functions which satisfy (1). The class of 1-homogeneous functions
was studied in a remarkable paper of Borell [6]. One should compare our results of Subsection 3.7 with the
results of Borell. For the convenience of the reader we have included Borell’s theorem in Appendix (see
Theorem B).

3.7. Lebesgue measure and 1-homogeneous functions. In this section we describe all 1-homogeneous
functions H which satisfy (1). It turns out that they are either convex functions, or the Prékopa–Leindler type
functions (61), (62) and (63). Further we will always assume that the numbers a,b > 0 satisfy the constraint
a+b≥ 1 and |a−b| ≤ 1.

Corollary 6. Let H ∈C3(int(R2
+)) be 1-homogeneous function with Hx,Hy 6= 0. Partial differential inequality

(2) holds on int(R2
+) if and only if one of the following holds:

H is a convex function ;(60)

H(x,y) =Cxayb, C > 0, b = 1−a, a ∈ (0,1);(61)

H(x,y) =Cxay−b, C < 0, b = a−1, a ∈ (1,∞);(62)

H(x,y) =Cx−ayb, C < 0, b = a+1, a ∈ (0,∞).(63)
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Proof. Since H is 1-homogeneous we have H(x,y) = xh( y
x) for some h ∈ C3(int(R+)). Conditions Hx 6= 0

and Hy 6= 0 imply that h′ 6= 0 and h(t)− th′(t) 6= 0. Notice that (2) takes the following form

a2 Hxx

H2
x
+(1−a2−b2)

Hxy

HxHy
+b2 Hyy

H2
y
=

(b|h|− |h′|t)2 + |h||h′|t(2b+ sign(hh′)(a2−b2−1))
x(h− th′)2(h′)2 ·h′′(64)

where h = h(t) and t = y/x. Notice that (2b± (a2−b2−1))≥ 0. We have

(b|h|− |h′|t)2 + |h||h′|t(2b+ sign(hh′)(a2−b2−1))≥ 0.(65)

Thus, if h′′(t)≥ 0 for all t > 0 (i.e., condition (60) holds), or one of the conditions among (61), (62) and (63)
hold then clearly the right hand side of (64) is nonnegative., i.e., (2) holds. Now let us show the converse.

Assume the right hand side of (64) is nonnegative. If h′′(t)≥ 0 for all t > 0 then H satisfies (60). Therefore
without loss of generality assume that on some interval I ⊂ (0,∞) we have h′′ < 0. Thus the right hand side
of (64) is nonnegative on I if and only if the left hand side of (65) is zero. This can happen if and only if
b|h|= |h′|t and |h||h′|t(2b+ sign(hh′)(a2−b2−1)) = 0. Also notice that if b|h|= |h′|t then h 6= 0 on I (since
h′ 6= 0). We consider several cases.

Suppose h′t = bh on I. Then h =Ctb on I for some nonzero C ∈R. Then sign(hh′) = 1 on I, and we obtain
that 2b+(a2−b2−1) = 0. The last equality implies that either a+b = 1 or b−a = 1. Thus we obtain that
h(t) =Ctb on I for some nonzero C with a+b = 1 or b−a = 1.

Suppose h′t =−bh on I. Then h =Ct−b on I for some nonzero C ∈ R. Then sign(hh′) =−1 on I and we
obtain that 2b− (a2−b2−1) = 0. The last equality can happen if and only if a−b = 1. Thus h(t) =Ct−b on
I with some nonzero C and a−b = 1.

Thus if h′′ < 0 and, thereby, the left hand side of (65) is zero on some interval I then the several cases might
happen: 1) a+b = 1 and h(t) =Ctb, C > 0; 2) b−a = 1 and h(t) =Ctb, C < 0 ; 3) a−b = 1 and h =Ct−b,
C < 0. Notice that non of these strictly concave functions can be glued C2 smoothly with a convex function.
It follows that I = (0,∞) (otherwise choose the maximal interval I and consider the value h′′ at the endpoints
of I). Thus (64) is nonnegative if and only if either h is a convex function, or h is a concave function of the
form

h(t) =Ctb, C > 0, a+b = 1 and H(x,y) =Cxayb;(66)

h(t) =Ctb, C < 0, b−a = 1 and H(x,y) =Cx−ayb;(67)

h(t) =Ct−b, C < 0, a−b = 1 and H(x,y) =Cxay−b.(68)

�

So, in case of smooth 1-homogeneous functions there are two instances: H is convex, or H coincides with
one of the functions (61), (62) and (63). Next we describe measures dµ which satisfy (1) for 1-homogeneous
functions H. We consider the case when H is a function of the form (66), (67) and (68).

3.7.1. Case of the Prékopa-Leindler functions. Functions found in (66), (67) and (68) provide us with the
following inequalities.

Corollary 7. Let dµ be the Gaussian measure (or the Lebesgue measure). We have∫
Rn

esssup
y∈Rn

f a
(

x− y
a

)
g1−a

(
y

1−a

)
dµ(x)≥

(∫
f dµ

)a(∫
gdµ

)1−a

, a ∈ (0,1)(69)

for all nonnegative Borel measurable f ,g ∈ L1(dµ). Moreover, if dµ is even then∫
Rn

ess inf
y∈Rn

f a
(

x− y
a

)
g1−a

(
y

1−a

)
dµ(x)≤

(∫
f dµ

)a(∫
gdµ

)1−a

, a ∈ (−∞,0)∪ (1,∞)(70)

for all bounded compactly supported nonnegative Borel measurable f ,g with positive
∫

gdµ and
∫

f dµ .
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Proof. Inequalities in the corollary follow from the application of Theorem 1 to the functions (61), (62) and
(63). The only obstacle to directly apply Theorem 1 is that H /∈C3(R2

+). To avoid this obstacle one needs to
consider an auxiliary function Hε(x,y) = H(x+ ε,y+δ ) for ε,δ > 0 and then send ε,δ → 0 (see the similar
discussions in (58)).

Case of the Lebesgue measure follow from the Gaussain measure and the fact that H is 1-homogeneous.
Indeed, we can test inequalities in the corollary for the following test functions fλ (x) = f (λx) and gλ (x) =
g(λx). By making change of variables and using 1-homogeneity of H we can send λ → ∞ and obtain the
desired result. �

Inequality (69) is the classical Prékopa–Leindler inequality [25, 29]. Among its many applications we
should mention a remarkable paper [5]. Stability of (69) was studied in [2]. The inequality implies that the
marginals of log-concave measures are log-concave. For a local version of the latter fact we refer the reader
to [1] (see also [12] for the complex setting). An extension of the inequality was obtained in [14].

Inequality (70) can be understood as an extension of the classical Prékopa–Leindler inequality for a /∈ [0,1].
In fact, one can show that (69) and (70) are equivalent if instead of essential infimum in (70) we would have
only infimum.

It is the remarkable result of Borell [6] that (69) holds if and only if dµ has a density woth respect to the
Lebesgue measure on some affine hyperplane, and this density is logarithmically concave function. One can
show that the weaker version of (70), i.e., when essential infimum is replaced by infimum, also holds for even
log-concave measures.

Finally we would like to mention that even though among C3 smooth 1-homogenous functions H with
nonvanishing Hx and Hy there are only two instances either H is convex or H is of the form (61), (62) and
(63), it is not the case in general if we drop the assumption of smoothness. We can always take the maximum
of any two functions which satisfy (2). Indeed, next proposition says that (1) is closed under taking maximum.

Proposition 2. If H1 and H2 satisfy (1) then H = max{H1,H2} also satisfies (1).

Proof. Indeed, suppose H (
∫

f ,
∫

g) = H1 (
∫

f ,
∫

g) then since H ≥ H1 we have∫
esssup

y
H
(

f
(

x− y
a

)
,g
( y

b

))
dµ(x)≥

∫
esssup

y
H1

(
f
(

x− y
a

)
,g
( y

b

))
dµ(x)≥ H1

(∫
f dµ,

∫
gdµ

)
.

�

4. APPENDIX

The following remarkable result belongs to Borell [6].

Theorem B. Let ϕ : Rn×Rn→ Rn be a continuously differentiable function such that

ϕ = (ϕ1, . . . ,ϕn);

ϕ
k(x1,x2) = ϕ

k(xk
1,x

k
2), xi = (x1

i , . . . ,x
n
i ) for i = 1,2; k = 1, . . . ,n;

∂ϕk

∂xk
i
> 0, i = 1,2, k = 1, . . . ,n.

Let f ,g,h≥ 0 and f ,g,h∈L1
loc(Rn). Further suppose Φ : [0,∞)×[0,∞)→ [0,∞] is a continuous 1-homogeneous

function and increasing in each variable. Then the inequality∫ ∗
Rn

h1ϕ(A,B)dm≥Φ

(∫ ∗
Rn

f1Adm,
∫ ∗
Rn

g1Bdm
)

(71)

holds for all nonempty A,B ⊂ Rn if and only if there are sets Ω1,Ω2 ⊂ Rn, m(Rn \Ω1) = m(Rn \Ω2) = 0
such that

h(ϕ(x,y))
n

∏
k=1

(
∂ϕk

∂xk
ρk +

∂ϕk

∂yk
ηk

)
≥Φ

(
f (x)

n

∏
k=1

ρk, g(y)
n

∏
k=1

ηk

)
(72)
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for all x ∈Ω1, y∈Ω2, ρ1, . . . ,ρn > 0 and for every η1, . . . ,ηn > 0. Moreover if (71) is holds then Ω1 = supp f
and Ω2 = suppg will do.

Borell obtained the theorem in more general case when one can include arbitrary number of test functions
and ϕ can be defined only on some subdomains of Rn.

Let us consider a particular case when n = 1. Since in the current paper we are interested when the in-
equalities of the form h(ax+by)≥ H( f (x),g(y)) imply its integral version

∫
h≥ H(

∫
f ,
∫

g) then in order to
apply Borell’s result we should take ϕ(x,y) = ax+by for x,y≥ 0. Then (72) takes the following form h(ax+
by)(aρ+bη)≥Φ( f (x)ρ,g(y)η). The form (71) reduces to the form (1) if h(t)= supax+by=t Φ( f (x)1A,g(y)1B)
and h is supported on 1aA+bB. This may happen if and only if Φ(0,0) = Φ(0,1) = Φ(1,0) = 0. Since A and
B is arbitrary we obtain that h(ax+by) = Φ( f (x),g(y)). Therefore the last condition takes the form

Φ( f (x),g(y))(aρ +bη)≥Φ( f (x)ρ,g(y)η).(73)

Thus if (73) holds for all η ,ρ > 0 and all nonnegative f (x),g(y) then we obtain the integral inequality∫ ∗
R

sup
ax+by=t

Φ( f (x),g(y))dt ≥Φ

(∫
R

f dx,
∫
R

gdx
)

for all nonnegative f ,g ∈ L1.(74)

Since supax+by=t Φ( f (x),g(y)) may not be measurable we should understand the integral in the left hand side
of (74) as an upper integral.

Proposition 3. Let Φ ∈C1(int(R2
+))∩C(R2

+) be 1-homogeneous, nonnegative and increasing in each vari-
able. Assume Φ(0,0) = Φ(0,1) = Φ(1,0) = 0. If Φ satisfies (73) for all positive ρ,η , f (x),g(y), and with
some positive a,b such that a+b = 1 then Φ(x,y) =Cxayb.

Proof. Φ is one homogeneous therefore Φ(p,q) = pm
(

q
p

)
for some nonnegative increasing function m ∈

C1(0,∞). (73) simplifies to m(s)(a + bt) ≥ m(st) for all s, t > 0. Let st = u and s = v then we obtain
m(v)(av+bu)≥ m(u)v. Set u = v+ ε . Then by Taylor’s expansion we obtain that for sufficiently small ε we
have m(v)v+m(v)bε ≥ vm(v)+ vm′(v)ε +o(ε). Since ε can be negative as well we obtain bm(v) = vm′(v)
and hence m(v) =Cvb for some C > 0. Therefore Φ(p,q) =Cpaqb. �

Thus the corollary shows that in the particular case ϕ = ax+by the functions which satisfy the assumption
of Borell’s theorem (73) and hence would give us integral inequality (74) are of the form Φ(x,y) = xayb. The
reader can recognize that this is the instance of the Prékopa–Leindler inequality. Notice that this also confirms
our result: in Subsection 3.7 we have found that Φ has to be convex function or Φ has to be function of the
form (61), (62) and (63). Since in application of Borell’s theorem we require that Φ(0,0) =Φ(0,1) =Φ(1,0),
and Φ ≥ 0 then the only possibility is Φ(x,y) = xayb. Indeed, 1-homogeneous convex nonnegative function
Φ(x,y) on R2

+ with values zero at the points (0,0), (0,1) and (1,0) must be identically zero.

4.1. Sketch of the proof of Theorem A. Without loss of generality we can assume that C is identity matrix.
Indeed, we can denote Ãi := C1/2Ai for i = 1,2,3, and Ã := (Ã1, Ã2, Ã3), and make change of variables
x̃ := xC−1/2 in the left hand side of (18). Thus, it is enough to show that A∗A•HessB≤ 0 if and only if∫

Rk
B(u1(xA1),u2(xA2),u3(xA3))dγk(x)≥(75)

B
(∫

Rk1
u1(y

√
A∗1A1)dγk1(y),

∫
Rk2

u2(y
√

A∗2A2)dγk2(y),
∫
Rk3

u3(y
√

A∗3A3)dγk3(y)
)
.

Next, denote ũ j(x) := u j(xA j), and let Pt ũ j be its heat extension, i.e., ∂tPt ũ j = ∆Pt ũ j, and P0ũ j = ũ j. We will
need the following key identities

Pt ũ j(x) =
∫
Rk

ũ j(x+ y
√

2t)dγk(y)
(∗)
=
∫
Rk j

u j(xA j + ỹ(2tA∗jA j)
1/2)dγk j(ỹ),

∇Pt ũ j(x) =
(∫

Rk j
∇u j(xA j + ỹ(2tA∗jA j)

1/2)dγk j(ỹ)
)

A∗j =: (P j
t ∇u j(x))A∗j , j = 1,2,3,
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where ∇u j(z) := ∇u j(y)|y=z. Equality (∗) follows from a property of the Gaussian measure, namely,∫
Rk

u j(yA j)dγk(y) =
∫
Rk j

u(ỹ
√

A∗jA j)dγk j(ỹ) for j = 1,2,3.

Next, let~u(x) := (ũ1(x), ũ2(x), ũ3(x)) and Pt~u(x) = (Pt ũ1(x),Pt ũ2(x),Pt ũ3(x)). If we test inequality (75) on
the functions f j(y) := u j(xA j + y

√
2t), we obtain that (75) is equivalent to the following inequality

V (x, t) := B(Pt~u(x))−PtB(~u(x))≥ 0

for all x ∈ Rk and all t ≥ 0, and the case x = 0, t = 1/2 gives exactly (75). Denote

Pt∇~u(x) := (P1
t ∇u1(x),P2

t ∇u2(x),P3
t ∇u3(x))

It follows from the straightforward calculation that

(∆−∂t)V (x, t) = (Pt∇~u)(A∗A•HessB(Pt~u))(Pt∇~u)∗.

Therefore, if A∗A•Hess B≤ 0 then (∆−∂t)V ≤ 0. Since V (x,0) = 0, it follows from the classical maximum
principle V (x, t)≥ 0 for all x ∈ Rk, t ≥ 0.

On the other hand if (75) holds, then we have explained that V (x, t)≤ 0 for all x ∈Rk and t ≥ 0. Therefore

0≤ lim
t→0+

V (x, t)
t

= lim
t→0+

V (x, t)−V (x,0)
t

=−(P0∇~u(x))(A∗A•HessB(P0~u(x)))(P0∇~u(x))∗.

Since P0~u(x) =~u(x), P0∇~u = (∇u1(xA1),∇u2(xA2),∇u3(xA3)), and~u is arbitrary, we obtain A∗A•HessB≤ 0.
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