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Abstract

In this study, we utilize Protein Residue Networks (PRNs), constructed using Local Spatial Pattern 

(LSP) alignment, to explore the dynamic behavior of Catabolite Activator Protein (CAP) upon 

the sequential binding of cAMP. We employed the Degree Centrality of these PRNs to investigate 

protein dynamics on a sub-nanosecond time scale, hypothesizing that it would reflect changes in 

CAP’s entropy related to its thermal motions. We show that the binding of the first cAMP led to an 

increase in stability in the Cyclic-Nucleotide Binding Domain A (CNBD-A) and destabilization in 

CNBD-B, agreeing with previous reports explaining the negative cooperativity of cAMP binding 

in terms of an entropy-driven allostery. LSP-based PRNs also allow for the study of Betweenness 

Centrality, another graph-theoretical characteristic of PRNs, providing insights into global residue 

connectivity within CAP. Using this approach, we were able to correctly identify amino acids 

that were shown to be critical in mediating allosteric interactions in CAP. The agreement between 

our studies and previous experimental reports validates our method, particularly with respect to 

the reliability of Degree Centrality as a proxy for entropy related to protein thermal dynamics. 

Because LSP-based PRNs can be easily extended to include dynamics of small organic molecules, 

polynucleotides, or other allosteric proteins, the methods presented here mark a significant 

advancement in the field, positioning them as vital tools for a fast, cost-effective, and accurate 

analysis of entropy-driven allostery and identification of allosteric hotspots.
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Introduction

Proteins are dynamic entities that exhibit a range of motions across multiple timescales. 

Notably, motions on the sub-nanosecond timescale significantly contribute to the 

conformational entropy of proteins, playing a crucial role in processes such as molecular 

recognition and allostery.1,2 It is now acknowledged that the redistribution of these rapid 

internal dynamics serves as the underlying mechanism for the allosteric response in proteins, 

eliminating the need for predefined molecular pathways, a concept of “dynamics-driven 

allostery” proposed by Cooper and Dryden in 1984.3

The Catabolite Activator Protein (CAP) is a prime example of this phenomenon. In 

Escherichia coli, CAP binds to DNA and regulates transcription in response to elevated 

concentrations of cAMP.4 Structurally, CAP is a dimer made of two identical chains, each 

one with a Cyclic-Nucleotide Binding Domain (CNBD) and a DNA Binding Domain (DBD) 

(Figure 1A). CAP belongs to a large family of cyclic nucleotide binding proteins that 

play important roles in biology, including protein kinases, guanine nucleotide-exchange 

factors and nucleotide-gated channels.5,6 CNBDs are largely conserved with a well-defined 

β-barrel fold; however, CAP is a distinctively different protein as it functions only as a 

dimer of CNBDs that interact directly.7 Two α-helices create a close interface between the 

monomers and engage with cAMP in the opposite dimer (Figure 1B). This establishes the 

allosteric communication between the CNBDs, resulting in a strong negative cooperativity 

of cAMP binding between the CNBDs of Cap.8,9 Traditional structure-based models of 

allostery cannot explain the signaling observed in CAP, as the structures of CNBDs in CAP 

before and after cAMP binding are largely identical (RMSD = 2.4 Å for CBNDs and 3.1 

Å for the whole protein).10 Kalodimos and co-workers proposed that CAP allostery can be 

explained by a “dynamics-driven allostery” mechanism and confirmed this with Nuclear 

Magnetic Resonance (NMR).9 They showed that binding of the first cAMP molecule 

leads to significant destabilization of the second CNBD. As a result of the increased 

mobility, the entropic penalty for the second cAMP is significantly higher, resulting 

in negative cooperativity. That was the first experimental confirmation of the dynamics-

driven allostery mechanism. Since this pioneering study, multiple examples of dynamics-

driven allostery have been identified, including bacterial ribonuclease,11 PDZ domains,12 

E.coli dihydrofolate reductase,13 zinc-dependent transcriptional repressor CzrA,14 peptidyl-

prolyl cis–trans isomerase Pin1,15 human thymidylate synthase.16 These studies not only 

underscore the relevance of dynamics-driven allostery in protein function but also indicate 

that the role of entropy in allostery is a much more widespread strategy used in nature.

NMR is a leading method in the study of dynamics-driven allostery, providing precise 

information on protein dynamics at the residue level. However, NMR can be time-

consuming, expensive, and offers limited atomistic detail. Computational methods present 
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a faster and more cost-effective alternative that provides detailed insights into protein 

dynamics. However, evaluating entropy in proteins computationally is nearly infeasible 

because of the astronomical number of conformational states in a system with thousands 

of degrees of freedom. The complexity of potential spatial arrangements and interactions 

exceeds the capabilities of current computational methods, making the task unattainable. 

Recognizing these challenges, researchers have explored various strategies to overcome 

them. For instance, Kumar and Jernigan employed Elastic Network Models to study protein 

fluctuations, demonstrating the allosteric transfer of these fluctuations to distant regions of 

proteins.17 Similarly, Rodgers et al. studied Normal Modes in CAP, identifying residues that 

significantly impact these modes, suggesting a role for Normal Modes in dynamics-driven 

allostery.18 Singh and Bowman took a different approach, using dihedral angles in CAP to 

quantify order–disorder transitions, and identified several residues that play important roles 

in allosteric communication.19 Despite these advances, the development of a comprehensive 

computational method that allows for a fast and quantitative estimate of entropy, which 

would facilitate the study of entropy-driven allostery, remains an important problem.

In this study, we introduce a new computational method, Local Spatial Pattern (LSP) 

alignment, to evaluate conformational entropy in proteins. Based on graph theory, LSP 

alignment measures the conservation of Cα:Cβ vector orientations in space during 

molecular dynamics (MD) simulations. Initially developed for protein structure comparison, 

independent of their main chain configuration, LSP alignment led to the discovery of 

conserved hydrophobic ensembles in protein kinases that play a critical role in their function 

and regulation.20,21 Recently, we applied this approach to MD simulations of Protein kinase 

A (PKA), constructing Protein Residue Networks (PRNs). Analysis of several centrality 

measures of these networks showed that using Degree Centrality and Betweenness centrality 

it is possible to identify residues crucial for PKA catalytic function and structural integrity.22

Using CAP as a case study, we show that Degree Centrality can also capture entropic 

changes to explain the negative cooperativity of cAMP binding. Additionally, by examining 

the Betweenness Centrality of these networks, we can identify global connectors in CAP. 

This analysis sheds light on allosteric communication at the residue level within the protein, 

highlighting critical mutations that coincide with the well-documented wealth of structural 

and experimental data on CAP. These insights further elucidate areas that can disrupt this 

communication. Our results not only conform to existing data but also introduce a robust 

quantitative tool for understanding local stability in proteins, enriching the analysis of 

dynamics-driven allostery and paving new paths for exploration within the field.

Results

Linking Degree Centrality to protein entropy

In our previous work, we explored several major centrality measures in Protein Residue 

Networks (PRNs) constructed using Local Spatial Pattern (LSP) alignment. We discovered 

that using Degree and Betweenness Centrality for these networks (DC and BC, 

respectively), it was possible to distinguish a small set of residues crucial for Protein Kinase 

A (PKA) from a functional and regulatory perspective, separating them from the rest of the 

protein.22 We propose the use of DC as a tool to examine local stability of proteins, thereby 
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providing insight into their entropic state. Essentially, LSP-alignment assesses the stability 

of spatial patterns formed by residues represented by their Cα:Cβ vectors. In Figure 2, we 

illustrate that residues that maintain a stable spatial relationship with their adjacent residues 

during MD simulations correspond to nodes with higher DC values in the corresponding 

PRNs. This method is comparable to the traditional Root Mean Square Fluctuations (RMSF) 

— which measures mobility of atoms during MD simulation. However, there is a critical 

distinction: RMSF measures the fluctuation of individual atoms compared to their average 

positions, while LSP-based DC evaluates the fluctuation of residue vectors relative to the 

orientation of nearby residues. Thus, LSP gives a significantly more comprehensive picture 

of residue movements, enhancing our understanding of protein dynamics far beyond what 

RMSF can offer.

As demonstrated in Figure 2, residues with high DC are likely to move synchronously with 

their immediate neighbors, analogous to a semi-rigid body. From an entropic perspective, 

these cohesive groups may represent regions of the protein with low entropy. It is important 

to note that LSP-based DC only considers Cα:Cβ vectors and, thus, disregards entropic 

contributions from longer side chains or peptide bond rotations. Yet, our main suggestion is 

that areas of the protein with lower entropy often correspond with higher DC values, and 

vice versa.

Measuring Degree Centrality in CAP

To test the hypothesis that areas of a protein with low entropy often correspond to high 

DC values, we examined cAMP binding by the 9–137 homodimer of Catabolite Activator 

Protein (CAP) which includes the CNBDs and the αC dimerization helix and which was 

used by Popovych et al.9 The NMR studies in this paper demonstrated that binding of 

the first molecule of cAMP to the cAMP-binding domain A (CNBD-A) leads to increased 

mobility in the second cAMP-binding domain CNBD-B. This results in a higher entropic 

penalty for cAMP binding, which explains the negative cooperativity of cAMP binding in 

CAP.

DC was calculated from a 410 ns MD simulation for each residue in the homodimer of 

CAP for three complexes: apo CAP (DCapo), one cAMP bound to the A domain (DCA), 

and two cAMP molecules bound (DCAB) (Figure 3A). The general DC profiles followed the 

secondary structures of CAP in all three cases, indicating that DC is capable of capturing 

the expected higher stability (i.e., lower entropy) of well-structured α-helices and β-strands. 

However, several regions exhibited notable differences. To evaluate these differences, we 

calculated the changes in DC after cAMP binding to CNBD-A (ΔDCA-apo) and after the 

binding of two cAMP molecules (ΔDCAB-apo) (Figure 3B).

When two cAMP molecules were bound, we observed three main features: First, the values 

of ΔDCAB-apo are positive in many regions of the protein, indicating greater stability (or 

lower entropy) in the cAMP-bound state compared to apo. The regions of high stability were 

β2, the β2-β3 loop, β4, β5, β6, the Phosphate Binding Cassette (PBC) and the C-terminal 

part of the βC helix, including the residues that are in direct contact with cAMP and residues 

that are distantly located, that is, long-range effects. Second, residues that are in direct 

contact with cAMP (Figure 1B) show the highest ΔDCAB-apo: G71, E72, S83, S128. A set 
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of hydrophobic residues that form stable contacts with cAMP directly or side chains of two 

main cAMP binding residues (E72 and R82) also increase their DC levels: I30, I51, L61, 

V131. Third, the regions and magnitudes of positive ΔDCAB-apo are similar in both CNBDs, 

indicating symmetric allosteric effects due to cAMP binding.

However, when only CNBD-A had a bound cAMP molecule, we observed a more complex 

and asymmetric ΔDCA-apo response between the two CNBDs in the homodimer. CNBD-A 

showed an increase in ΔDCA-apo similar to that observed when two cAMP molecules 

are bound except at the C-terminal (residues 127–135) which has statistically significant 

negative values (Figure 3C). In contrast, CNBD-B displayed negative ΔDCA-apo values 

throughout its structure (β4: residues 49–52, β5: residues 59–62, and PBC: residues 77–84) 

(Figure 3C). Negative ΔDCA-apo in the CNBD-B values agree with the increase in local 

dynamics detected by NMR9 and is consistent with the dynamics-driven allostery model. It 

also agrees with the result of the computational study by Rodgers et al. suggesting the role 

of L61 and V131 in allosteric signaling in CAP.18

Comparing Degree Centrality values with previous entropy estimates

In their previous work, Popovych et al.9 offered estimates for changes in CAP entropy 

during sequential binding of cAMP molecules. Their isothermal titration calorimetry (ITC) 

measurements suggest an entropic penalty of 8.5 kcal/mol for the binding of the first 

cAMP molecule and a 4.6 kcal/-mol penalty for the second cAMP binding. In comparison, 

their estimates based on NMR-derived order parameters indicated entropic penalties of 3.2 

kcal/mol and 18.1 kcal/mol for the first and second cAMP bindings, respectively. It is 

important to note that the estimates derived from NMR data are based on the assumption 

that the observed fluctuations are independent of other unobserved fluctuations, implying 

that these values represent an upper bound for the entropic penalties. In our work, we 

suggest that changes in DC associated with cAMP binding reflect local order/disorder states 

of the protein, and thus be related to its conformational entropy. When comparing our results 

with ΔS2 (NMR order parameters) of the study by Popovych et al.,9 we did not observe a 

strong correlation between ΔS2 and ΔDC (Figure 4). However, most of the data points are 

located in the upper right quadrant of the plot, indicating that the second binding of cAMP 

led to an increase in both ΔDC and ΔS2. Notable outliers, such as E72 and L73 of the PBC, 

are in the upper left quadrant. According to the ΔS2 estimates they experienced a significant 

increase of dynamics upon second cAMP binding. At the same time, most neighboring 

residues in the PBC were reported to decrease their dynamics (G74, Q80, E81, S83) that 

correlates with our estimates of ΔDC.

As NMR experiments measure the mobility of the peptide bond amides and our method 

assesses mobility of the Cα:Cβ vectors, we repeated our DC calculations using Nitrogen-

Oxygen (N:O) vectors that reflect the mobility of the main chain. As shown in Figure 4, 

the results for both side chain and main chain DC were rather close (R2 > 0.81), with 

few exceptions, such as L73, S83 and Q80 of the PBC. Additionally, a graph of the DC 

difference between the side chain and main chain shows values close to or around zero 

(Figure S1) in the three forms of CAP (apo, bound to one or two cAMP) and were consistent 

for both CNBDs (Figure S2). Altogether, our estimates of entropic properties of CAP follow 
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the same trend as the numbers obtained by NMR, and are consistent with the proposed 

mechanism of the entropy-driven allostery in CAP. The notable difference between the 

ITC measurements of entropy, the NMR-based estimates, and our evaluation using the 

graph-theoretical approach calls for cautious interpretation, suggesting a potential for further 

refinement in understanding the entropic contributions during cAMP binding in CAP. While 

quantifying conformational entropy from Degree Centrality values in our Protein Residue 

Networks is a complex challenge that extends beyond the scope of this study, our primary 

goal is to establish that DC values positively correlate with conformational entropy. This 

correlation indicates that DC can serve as a practical estimator of the entropic characteristics 

of proteins, providing a basis for future research to further explore and refine this approach.

Measuring Betweenness Centrality in CAP

We then studied Betweenness centrality (BC) in the LSP-based PRNs (BC), which can 

provide valuable information on global connectivity within the protein molecule.22 The main 

points of connectivity in the CAP homodimer were at β3, β6, and the αC helix (Figure 

5A). The changes in BC after binding to one and two cAMP molecules are shown in Figure 

5B. Residues with positive ΔBC are not essential connectors in the apo state, but become 

significant points of contact after binding of cAMP. As expected, the new connection points 

are located at the PBC that makes direct contacts with cAMP, such as L61, G71, E72, and 

S83. On the contrary, residues such as Y41 (β3), D68, F69 (β6), and L116 (αC) are vital 

connectors in apo CAP, as they are in the center of the β-barrel but become less prominent 

upon cAMP binding. After binding of a single cAMP to CNBD-A, significant changes were 

observed in BC around the second cAMP binding site, most notably in S128A, L61B and 

D68B (Figure 5C).

To gain deeper insights into the observed changes in DC and BC, we visualized the 

corresponding PRNs using the ForceAtlas2 layout algorithm implemented in the Gephi23 

network visualization software (Figure 6). This algorithm treats the weights assigned to the 

edges as an attractive force that balances the imposed repulsion of the nodes. In LSP-based 

PRNs, compact, highly interconnected nodes correspond to more ordered regions of the 

protein, where Cα:Cβ vectors move cohesively and preserve their mutual orientations. 

In general, the PRN for CAP with two bound cAMP molecules appeared much more 

compact compared to that for the apo state. When cAMP was bound only to CNBD-A, the 

PRN became visibly asymmetrical. This is consistent with the concept that cAMP binding 

introduces new contacts that coordinate the thermal motions of the surrounding residues 

and stabilize their Cα:Cβ vector orientations, as measured by LSP alignment. Although 

the crystallographic structures of these proteins are superimposable, the LSP-based PRNs 

offer a way to visualize the local stability of the residues, serving as a dynamic map of the 

molecule.

When cAMP binds to a CNBD, it introduces new robust connections between L61 and S83 

from the β-barrel and R123 and S128 from the αC helices. These connections are virtually 

absent in the apo state, where the main line of connectivity lies along the Y40-F69-L116-

M120 line. This explains the significant BC changes in the single cAMP-bound CAP, where 

L61 in the CNBD-B and S128 in the CNBD-A become even less of a connector than in the 
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apo CAP. In contrast, D68 becomes a much more significant connector in CNBD-B when 

cAMP is bound to CNBD-A, making it the most prominent outlier in the Δ BCA-apo graph 

(Figure 5B). Noticeably, mutant D68G had been reported to affect CAP activity without 

changing the affinity of CAP to DNA.24 Our results suggest that such a mutation would 

affect connectivity in CNBD-B upon the first cAMP binding, making it even more mobile 

and thus increasing the entropic penalty for the second cAMP binding. This would lead to a 

decrease in the sensitivity of CAP to cAMP.

Discussion

In this study, we introduced a new computational approach to evaluate conformational 

entropy in proteins using Local Spatial Pattern (LSP) alignment. The method uses 

short, approximately 10 ns-long, MD simulations. The conformations derived from these 

simulations are analyzed using LSP alignment to detect stable patterns formed by the 

residues. Based on this analysis, we construct a Protein Residue Network (PRN) where 

the edge weights reflect the mutual stability of the two residues. We argue that Degree 

Centrality in these PRNs (DC) should reflect local stability of residues (Figure 2) and thus 

can be associated with the entropy component that is known to drive the entropy-driven 

allostery in proteins.3

To test this hypothesis, we created LSP-based PRNs for the catabolite activator protein 

(CAP) and calculated Degree Centrality (DC) for these networks. CAP is a well-studied 

protein that binds two cAMP molecules with strong negative cooperativity. It is driven by 

significant changes in entropy and therefore can be used as a benchmark for methods that 

attempt to gauge entropic properties in proteins.9 According to our hypothesis, after the first 

cAMP molecule binding to the A-domain, the DC values have to go up for this domain 

while going down for the B-domain. That was precisely what we observed in the experiment 

(Figure 3). Our results show that the detected values of DC are very robust and allow for the 

calculation of statistical significance of these values.

Our approach diverges sharply from previous computational work on allostery-related 

protein entropy studies, which typically focused on slow, large global motions of proteins. 

While traditional methods, such as Normal Mode Analysis (NMA), conducted with 

microseconds of molecular dynamics (MD), have successfully characterized overall protein 

dynamics,25 the prevailing emphasis on slow motions may overlook other essential aspects 

of protein behavior. Although slow global motions are undeniably vital for protein functions, 

they are less relevant for the study of fast motions in sub-nanosecond timescales, which 

constitute a significant portion of entropy.1,2 The success of LSP-based PRNs presented 

in this work illustrates the potential advantages of prioritizing local stability over global 

dynamics when addressing entropy-related problems. In our study, we examined six 10 

ns intervals, with the first three taken consecutively and the others spaced at 200–210 ns, 

300–310 ns, and 400–410 ns to evaluate possible drifts in centrality values. We demonstrated 

that the centrality calculations were highly convergent across all three states of the CAP 

throughout the trajectory. This finding aligns with our previous results on LSP-based PRNs 

of PKA,22 where we found that centrality values converge at around 10 ns. Here, we further 
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established that this consistency is true for at least several hundred nanoseconds. Whether 

this convergence will persist over longer time frames remains an open question.

Although our approach based on LSP is markedly different from traditional methodologies 

based on NMA, we observed a notable overlap with the previous study by Rodgers et al. 

They found that residues L61 and V131 (from the opposite monomer) affect slow normal 

modes in CAP.18 These residues are in direct contact with each other and with S128, which 

binds to the adenine ring of cAMP (Figure 1B). This interaction may explain why these 

specific residues were found to be so influential. In our study, we discovered that L61 and 

V131 are among the residues that show the most significant destabilization of the CNBD-B 

binding site upon binding of the first cAMP to the CNBD-A. Consequently, it is logical 

that in silico mutations of these residues would lead to a global effect on CAP, as evident 

in changes to the normal modes. However, our method offers more comprehensive and 

statistically significant quantitative data, along with a clear physical interpretation of the 

allosteric phenomenon.

The calculation of DC in LSP-based PRNs enables us to gauge a specific aspect of entropy 

related to thermal motions that elucidate the entropy-driven allostery in CAP. However, 

the creation of these PRNs offers an additional advantage as they can be analyzed using 

standard graph-theoretical methods. Among these, the calculation of Betweenness Centrality 

(BC) which defines global connectivity within a network.26,27 Nodes with high BC serve 

as connectors, bridging densely interconnected communities within the graph. As previously 

demonstrated in our analysis of PRNs in PKA,22 employing both DC and BC effectively 

distinguished residues vital to PKA’s structure and function. Through the calculation of 

BC, we identified known connector residues in the CAP homodimer: E72, S83, L116, 

R123 and S128 (Figure 5). These findings align with established knowledge about CAP, 

particularly the role of these residues at the interface between CNBD and cAMP or between 

two CNBDs, adding quantitative support to the existing understanding. The identification of 

D68 from the β6 strand was somewhat unexpected, as it emerged as a major connector in 

CNBD-B that was most affected by the first binding of cAMP to CNBD-A, indicating its 

role in the propagation of allosteric signaling within CAP. It seems that this residue plays a 

critical role in the connectivity between the central helices and the beta barrel, a finding that 

is consistent with previously reported mutational data.24

This study serves as an assessment of the ability of LSP-based PRNs to replicate 

or approximate what has been previously achieved through NMR to understand the 

CAP allostery.9 The results presented in Figure 3 confirm that this is indeed the case, 

thereby establishing LSP-alignment as a viable tool to study entropy-driven allostery. Two 

significant advantages of the LSP- based approach are worth highlighting. First, as a graph-

theory-based method, it provides additional ways to analyze protein dynamic maps, such as 

calculating centralities. Here, we demonstrate that the calculation of Betweenness Centrality 

provides valuable and meaningful information (Figure 5), confirming our previous report 

on PKA.22 Second, our approach is not limited to individual residues, but can also include 

various non-protein entities, such as polynucleotides, lipids, or ligands, such as ATP in 

our previous work on PKA or cAMP in this study. The versatility of our approach lies in 

its ability to construct network graphs from any elements that can be defined as vectors. 
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For example, in this research, we used Nitrogen:Oxygen vectors instead of Cα:Cβ vectors 

to focus on the movements of the main chain, simply by adjusting the vector definitions 

in our configuration file. Furthermore, these vectors can represent functionally significant 

groups in amino acids, phosphate groups, or other post-translational modifiers. Our method 

is adaptable to any protein whose structure can be analyzed through Molecular Dynamics 

simulations, without limitations on the type of protein. This flexibility greatly expands 

the capabilities of the method to a broad array of protein systems that are regulated 

allosterically.

Although this computational method is relatively efficient, it has certain limitations 

regarding the size of the system. Our current protocol involves an all-to-all comparison 

of 100 structures from a 10 ns trajectory, leading to nearly 5000 LSP-alignments. While 

a single alignment on a standard computer takes under a minute, the total analysis for a 

protein with fewer than 500 residues may take several days. As the size expands to 2000 

residues, the required time also increases, taking several hundred hours and demanding more 

powerful computing resources. Enhancing the efficiency of the algorithm is part of our 

future development goals.

Despite these limitations, our method opens up a broad range of applications across various 

protein systems, allowing for rapid in silico analysis of dynamic maps in sub-nanosecond 

timescale. This capability facilitates the study of changes in thermal motions within proteins, 

which can be related to various factors such as mutations, binding with ligands, or 

interactions with other proteins. The significance of this approach becomes particularly 

relevant with the recent shift in the paradigm of structural biology, recognizing a more 

complex model of “sequence-structure-dyna mics-function.”28,29 The ability to examine 

proteins that can change their dynamics without altering their tertiary structure is crucial, 

especially in the context of entropy-driven allostery, as elucidated by Cooper and Dryden.3

Materials and Methods

Molecular dynamics simulation

The simulation model was established using the dimeric structure of the Catabolite Gene 

Activator Protein (CAP) (PDB: 4hzf). Residues 10 to 137 from both chains were selected as 

the initial model. The full system was parameterized using LEaP in Amber.30 The resulting 

model was solvated in a cubic box of TIP4P-EW and 150 mM KCl with a 10 Å buffer in 

AMBER tools. The energy minimization, heating, and equilibration steps were performed 

using AMBER16.31 Systems were first minimized through 900 steps of hydrogen-only 

minimization, 2000 steps of solvent minimization, 2000 steps of side-chain minimization, 

and 5000 steps of all-atom minimization. The systems were then heated from 0 K to 100 

K linearly over 250 ps with 2 fs time-steps and 5.0 kcal mol−1 Å−2 position restraints on 

the protein backbone under constant volume. Langevin dynamics was used to control the 

temperature using a collision frequency of 1.0 ps−1. Then the systems were heated from 

100 K to 300 K linearly over 200 ps with 2 fs time-steps and 5.0 kcal mol−1 Å−2 position 

restraints on the protein backbone under constant pressure. Constant pressure equilibration 

was performed with a 10 Å non-bonded cut-off and particle mesh Ewald was performed by 

250 ps, with 5.0 kcal mol−1 Å−2 position restrains on the protein backbone, followed by 250 
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ps of unrestrained equilibration. Finally, the simulation was equilibrated for 10 ns before 

the 10 ns production simulations. These simulations were conducted in triplicate for each 

construct for 10 ns using a GPU-enabled AMBER16. Additionally, for each condition, one 

simulation was extended to 410 ns.32,33

Construction of LSP-based PRNs

LSP alignment was performed using previously created software20,21 adapted for molecular 

dynamics simulation as described earlier.22 In brief: protein structures derived from the MD 

simulation were used to create Protein Residue Networks with nodes representing residues. 

Weighted edges between nodes were created if the distance between the corresponding Cα 
atoms was within 12 Å. The weights were represented by four numbers defining the mutual 

orientation of Cα:Cβ vectors of the three distances (Cα1-Cα2, Cα1-Cβ2, Cβ1-Cα2) and the 

dihedral angle Θ (Cβ1-Cα1-Cα2-Cβ2) (Figure 2B). LSP-alignment of two graphs is presented 

as a graph with residues as nodes and links created only if all the three distances and the 

dihedral angles are similar, i.e., within predefined cutoff levels: ΔCα1α2 < 0.2 Å, ΔCα1β2 < 

0.45 Å, ΔΘ < 10°. Weights for the links are calculated using the following formula:

W = 1
4 * 1 − δα1α2

Δ Cα1α2
+ 1 − δα1β2

Δ Cα1β2
+ 1 − δβ1α2

Δ Cα1β2
+ 1 − δθ

Δ θ

where δα1α2, δα1β2 and δΘ are the corresponding differences between two Cα:Cβ vectors. 

Weights for the not matching links are assigned zero values. For LSP-alignment of multiple 

structures, comparisons were made in all-to-all way. The resulting adjacency matrices were 

averaged and used for the subsequent analysis.

Normalized centralities were calculated using the igraph R library (version 1.4.2).34 To 

calculate betweenness and closeness centralities weights were converted to distances using 

the following formula: D = − log W. “Strength” function was used to calculate weighted 

Degree Centrality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

LSP-alignment (Local Spatial Pattern alignment)
A computational method for assessing the similarity of patterns formed by vectors in 3D 

space. For proteins, this typically involves the Cα:Cβ vectors of the residues.

PRN (Protein Residue Network)
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A graph representation of residues in a protein. The nodes in this graph represent residues, 

while the links (or edges) represent relationships between these residues. The nature of these 

relationships can vary depending on the specific definition used for the PRN in question.

Degree Centrality
A metric for a node in a graph that denotes the number of links (or edges) connected to this 

node.

Weighted Degree Centrality
A variant of degree centrality, where the value for a node is the sum of the weights of links 

connected to it.

Betweenness Centrality
A metric for a node in a graph that quantifies the number of times that this node acts as a 

bridge on the shortest path between two other nodes.

CAP (Catabolite Activator Protein)
A transcription activator protein that is activated by cyclic AMP.

CNBD (Cyclic Nucleotide Binding Domain)
A conserved protein domain known for binding cyclic nucleotides, including cyclic AMP.

DBD
The DNA-binding domain present in CAP.

PBC (Phosphate Binding Cassette)
A conserved sequence of about 12 residues in CNBDs that serve as a major binder for 

cAMP phosphate.
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Figure 1. Catabolite Activator Protein (CAP) structure.
A) Overall view of CAP homodimer bound to a DNA molecule. The white cartoon 

represents N-terminal DNA binding domains (DBDs) that were not included in the analysis. 

Two cAMP molecules bind between the corresponding β-barrels and the central bundle of 

two long αC-helices. B) Closeup of the cAMP binding site with several key residues shown 

as sticks. Prominent hydrophobic contacts are shown as semitransparent surfaces.
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Figure 2. Interpretation of Degree Centrality in LSP-based Protein Residue Networks.
A) In unweighted graphs, the Degree Centrality (DC) value for a node is the total number 

of its connections. For weighted graphs, connections carry specific values or “weights” 

(represented by lines of varying width). In this case, DC is determined by summing the 

weights of all connections linked to the node. B) Mutual positions of Cα:Cβ vectors in LSP-

based PRNs are described by four parameters for each residue pair: three distances (Cαa12, 

Cα1β2, Cα2β1) and one dihedral angle Θ. C) Computation of DC for the central residue: 

Four residues within a predefined cutoff level for Cα12 distance (12 Å) are shown, labeled 

I-IV. The weights of their links reflect the mutual stability of each residue with respect to the 

central one during the MD simulation of the protein. Shown stabilities decrease from residue 

I to IV. Spatial variations over time for each residue are compared against the shown cut-off 

levels and calculated by the formula shown in Materials and Methods. W1 has the highest 

weight due to the least fluctuations. Residue IV is not assigned any weight as its variations 

exceed the thresholds. The DC is the cumulative sum of the three weights (W1, W2, and 

W3).
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Figure 3. Changes of Degree centrality in CAP LSP-based PRNs during cAMP binding.
A) DC values for the CAP homodimer, including cAMP molecules. The secondary structure 

of CAP is shown as a cartoon at the top. B) Changes in DC after binding of the first 

cAMP to CNBD-A (ΔDCA-apo) and two molecules of cAMP (ΔDCAB-apo). Standard errors 

of the mean for six measurements are shown. C) Positive (left) and negative (right) values 

of ΔDCA-apo shown on the B panel (green dots) mapped on the CAP structure. Positive 

ΔDCA-apo correspond to more stable regions (blue color is chosen to depict stability), 

negative ΔDCA-apo show increase in the mobility of Cα:Cβ vectors (red color represents 

higher mobility). Two cAMP binding sites are indicated by black lines.
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Figure 4. 
Difference between Degree Centralities in CNBD-B in two cAMP bound (DCAB) and 

one cAMP bound (DCA) CAP compared to the order parameter ΔS2 from Ref.9 DC was 

calculated for two different representations of residues: using Cα:Cβ vectors, representing 

stability of side chains (red dots) and NO vectors, representing main chains (blue dots). The 

values of ΔS2 were approximated from the Figure S5 of Ref.9
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Figure 5. Changes in Betweenness Centrality in CAP LSP-Based PRNs during cAMP binding.
A) Absolute values of BC for CAP homodimer, including cAMP molecules. The secondary 

structure of CAP is shown as a cartoon on the top. B) Changes in BC upon binding of the 

first cAMP to CNBD-A (ΔBCA-apo) and two molecules of cAMP (ΔBCAB-apo). Standard 

errors of the mean for six measurements are shown. C) Positive (left) and negative (right) 

values of ΔBCA-apo shown on the panel B (green dots) mapped on the CAP structure. 

Positive ΔBCA-apo show global connectors newly formed upon the cAMP binding, negative 

ΔBCA-apo show disruption of global connections upon this event. Two cAMP binding sites 

are indicated by black lines.
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Figure 6. LSP-based PRNs visualized using ForceAtlas2 layout algorithm.
A) Apo state. B) cAMP bound to CNBD-A. C) Two cAMP molecules bound. Nodes’ 

diameter is proportional to their DC values, darker color corresponds to higher BC values. 

PBC residues are shown as red circles, cAMP molecules are represented by black circles.
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