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T h i s  report  is t h e  first i n  a series of three companion 
r e p o r t s  p r e s e n t i n g  t h e  r e s u l t s  of an i n v e s t i g a t i o n  i n t o  t h e  use  
of mathematical models f o r  p r e d i c t i n g  subs idence  caused by geo- 
thermal  f l u i d  e x t r a c t i o n .  The r e s u l t s  of t h e  i n v e s t i g a t i o n  are 
summarized i n  t h e  report, "S imula t ion  of Geothermal Subs idence"  
(LBL 10571). The t i t l es  of t h e  other companion reports are 
l i s t e d  below . 

Repor t  No. T i t l e  

2 Deta i led  Report on T e s t e d  Models LBL-10837 
3 Case Study Data Base LBL-10839 

An a d d i t i o n a l  r e p o r t  on t h e  s u b j e c t  of r e s e r v o i r  models was 
g e n e r a t e d  as p a r t  of t h i s  p r o j e c t .  The r e p o r t  was produced i n  

1979 by D r .  George F. P i n d e r  under  s u b c o n t r a c t  to  Golder  Associ- 
ates and is t i t l e d  "State-of-the-Art Review of Geothermal Reser- 
v o i r  Modelling" (LBL 9093). 
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ABSTRACT 

There are a variety of theories, techniques, and parameters 
in the subsidence literature. Biot's theory, Terzaghi's theory, 
and the theory of interacting continua (TINC) are used to explain 
solid-fluid interaction; stress-strain theories range from linear 
elastic to e-log p to plasticity and pore-collapse theories. 
Parameters are numerous: void ratio, permeabilility, compaction 
coefficient, pore compressibility, Young's modulus, bulk modulus, 
shear modulus, Poisson's ratio, Lame coefficients, coefficient of 
consolidation, and storage coefficient. This report reviews the 
physical processes which govern compaction and deformation in 
geothermal systems. 
reasonably coherent general structure for the theories and para- 
meters which were referred to above. The material we present is 
a compendium of existing published work. 

The review is an attempt to provide a 

Processes governing flow and the behavior of the pore fluid 
are not discussed. The reader is referred to the George F. 
Pinder report (LBL 9093) for a discussion of geothermal reservoir 
flow models. 
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1.0 INTRODUCTION 

There are a variety of theories, techniques, and parameters 
in the subsidence literature. Biot's theory, Terzaghi's theory, 
and the theory of interacting continua (TINC) are used to explain 
solid-fluid interaction; stress-strain theories range from linear 
elastic to e-log p to plasticity and pore-collapse theories. 
Parameters are numerous: void ratio, permeabilility, compaction 
coefficient, pore compressibility, Young's modulus, bulk modulus, 
shear modulus, Poisson's ratio, Lame coefficients, coefficient of 
consolidation, and storage coefficient. 

The dominant variables affecting the deformation of geo- 
logical systems are widely accepted to be stress, temperature, 
pore fluid pressure, and time. In Section 2.0 we will present a 
discussion of theories describing the effect of these variables. 
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2.0 BASIC EQUATIONS 

The basic equation which follows is based on that by Lewis 
and Schrefler (1978), with the inclusion of thermal terms. Lewis 
and Schrefler's work is essentially a generalization to nonlinear 
problems of the linear theory of Biot (e.g., Biot and Willis 
1957) and also uses an approach developed by Bishop (1973). The 
theory of interacting continua (TINC) (e.g., Garg and Nur 1973), 
provides identical results to Biot when high-order terms are 
neglected. 

The following sign conventians will be followed in this 
report . 

Stresses will have tensions positive, shear stresses on 
positive faces acting in positive directions. (See Figure 
1.) 

FIGURE/ 1 
SIGN-AND-AXIS CONVENTIONS 
FOR STRESS AND STRAIN 
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Pore Pressure has compression positive. 

Strains. Engineering strains are used: 

where (u,v,w) are deformations in (x,y,z), re- 
spectively. Only small strains are covered by 
the theory. Strains are positive in tension. 

Notation. Stress-and-strain tensors are in a vectorial 
representation and are identified by a single underscore. 
Matrices are represented by a double underscore. 

2 . 1 EFFECTIVE STRESS 

The method by which Lewis and Schrefler (1978) extend the 
linear Biot theory to incorporate nonlinear stress-strain laws is 
similar to that of Nur and Byerlee (1976). 

"Effective stress" is defined in the traditional form: 
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r i i  
I - m = ( o  

p = pore f l u i d  p r e s s u r e .  

. I  

Terzaghi  o r i g i n a l l y  d e f i n e d  e f f e c t i v e  stress as t h a t  p o r t i o n  
of t h e  stress t e n s o r  which c a u s e s  s t r a i n  (i .e., &= - -  Q;' 6_a' ) 
However, when t h e  above d e f i n i t i o n  of e f f e c t i v e  stress is used ,  
there is i n  fac t  a small s t r a i n  induced when t h e  f l u i d  p r e s s u r e  
is changed w h i l e  h o l d i n g  t h e  e f f e c t i v e  stress c o n s t a n t .  
a small po rous  sample submerged i n  a c o n t a i n e r  of f l u i d  where 
t h e  f l u i d  p r e s s u r  s i n c r e a s e d  b y 6 P .  Although t h e  e f f e c t i v e  
stress is c o n s t a n t  (and e q u a l  t o  zero) ,  t he  sample w i l l  c o n t r a c t  
s l i g h t l y  as t h e  so l id  g r a i n s  respond t o  t h e  f l u i d  p r e s s u r e .  
t h e  L e w i s  and S c h r e f l e r  X1978) p r e s e n t a t i o n ,  t h e  s t r a i n  due to  

Imagine 

I n  

t h i s  c o n t r a c t i o n  is i n  a d d i t i o n  t o  that  caused by any e f f e c t i v e  
stress changes: 

where: 6.' is the  e las t ic  change i n  s t r a i n .  

formations . I t  of t e n  ignored  . 
DT - is t h e  t a  stress-stra t r i x  fo r  t h e  e las t ic  . - DT is d i s c u s s e d  i n  S e c t i o n  2.4. 

6,d is t h e  change i n  e f f e c t i v e  stress. 
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is t h e  b u l k  modulus of t h e  m a t r i x  material and is 
assumed c o n s t a n t  ( l i n e a r )  (Ks 
fo r  g e o l o g i c a l  materials.) 

Ks 
1 - 2 x lo9 psf 

The first term on t h e  r igh t -hand s i d e  is t h e  s t r a i n  due to  
t h e  e f f e c t i v e  stress. T h i s  s t r a i n  is computed e x a c t l y  as though 
t h e  material were d ry .  The second t e r m  on t h e  r igh t -hand s i d e  is 
t h e  ' a d d i t i o n a l  s t r a i n  due t o  compaction of t h e  m a t r i x  material. 

For  t h e  reader who is u n f a m i l i a r  w i t h  t h e  n a t u r e  of t he  

s t r e s s - s t r a i n  m a t r i x  ET, a d i s c u s s i o n  is p r e s e n t e d  i n  S e c t i o n  
2.4. One commonly used v a r i a n t  of DT - is t h a t  for  a l i n e a r  elas- 
t i c  isotropic  material. T h e  f o l l o w i n g  DT - m a t r i x  for t h i s  mater- 
i a l  is used s e v e r a l  t i m e s  i n  t h e  f o l l o w i n g  e q u a t i o n s :  

A t  2G h A 0 0 0 
h h + 2 G  A 0 0 0 
h h 2+26 0 0 0 
0 0 0 G 0 0 
0 0 0 0 G 0 
0 0 0 0 0 G 

- 

2.2 THERMAL EFFECTS 

For geothermal  problems,  it is n e c e s s a r y  t o  add a t h i r d  t e r m  
i n  order t o  i n c o r p o r a t e  t h e  effect of t e m p e r a t u r e  v a r i a t i o n s ,  
which can  also c a u s e  s t r a i n s  i n  t h e  absence  of e f f e c t i v e  stress 
changes.  Assuming t h a t  thermal expans ion  is i s o t r o p i c ,  w e  g e t :  
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where : a is the coefficient of linear isotropic >thermal 
expansion ( "c-1 for geological materials). 

6~ is the change in temperature. 

6Eg - is the strain caused by pure volumetric expansion of 
the matrix material due to thermal effects and 
pore-pressure effects. 

2 . 3  GENERAL EQUATION 

Multiplying the above expression by D~ - and rearranging 
gives : 

The above expression is the key equation for the calculation 
of deformation in fluid-solid interaction problems. For linear 
poroelastic problems, I& can be replaced by 2. 

In the following sections we will derive a number of results 
for specific problems, but all will be based on equation [ 3 ] .  
The viscoplastic term 6e:VP will be ignored in most of the fol- 
lowing derivations, which are therefore valid only for elastic 
materials. 
hydrostatic compression tests is within the scope of the simpli- 

Nonlinear elasticity of the form commonly observed in 

.fied equations. 
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2.4 PORE VOLUME CHANGES 

In order to couple the deformation relationship in equation 
[ 3 ]  with the flow equations for the pore fluid, it is necessary 
to keep track of the amount of fluid stored in the matrix. This 
is achieved by computing the pore volume. The pore volume is 
defined by either the porosity, n, or the void ratio, e: 

where: Vp is the volume of voids or pores, Vp = V-VS 
V is the total volume 
Vs is the volume of solid matrix material. 

We will compute the change in the volume of voids as the 
change in total volume less the change in the volume of solids: 

For small deformations, the change in the total volume is: 

The change in the volume of solids is computed as the sum of 
(a) the change due to changing both CT and P by 6 p ,  holding - 0' 
constant, plus (b) the change due to changing - 0' by 60' = 60 - - 6Pm, 

holding P constant, and (c) the change due to the change in 
temperature. During (a) the volume of solid matrix material 
decreases by (I-n) g P .  During (b) the mean normal (average) - 

KS 
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TI 6a m, so the 3(1-n) - - direct stress in the matrix increases by 

T' 6~ m 1 volumetric strain in the matrix material is 3Ks(1-n) - 

Since the matrix material has volume 1-n, the change in its 
1 volume is - 6a T'm - 

3Ks 

The volume change due to temperature is 3(1-n) a6T. Thus, 
the total change in the volume of solid matrix material is: 

Substituting [ 7 ]  and [ 8 ]  into equation [6] gives the change 
in pore volume: 

Substituting for SsTg - from equation 131 and simplifying 
gives, for an isotropic material: 

I T' where: &om = i / 3  6u - m is the change in mean normal effective 
stress 

= bulk compressibility - matrix compressibility. 1 - - -  
KT Ks 
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A term a r i s i n g  i n  t h e  petroleum l i t e r a t u r e  is t h e  "pore 
volume c o m p r e s s i b i l i t y , "  or "pore compressibil i ty." I t  is t h e  

f r a c t i o n a l  change i n  po re  volume due to stress or pore -p res su re  
changes.  From e q u a t i o n  [lo], t h e  po re  c o m p r e s s i b i l i t y  for an 
i s o t r o p i c  material is as follows: 

fo r  changes i n  mean normal 
e f f e c t i v e  stress. 

I 
CP" K, f o r  changes i n  po re  p r e s s u r e  w i t h  

c o n s t a n t  e f f e c t i v e  stress. 

For  changes i n  pore p r e s s u r e  w i t h  c o n s t a n t  to ta l  stress 
(6a ' = -6P). m 
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3.0 THE PORE PRESSURE INTERACTION COEFFICIENT 

Equation [3] can be formulated in terms of total stress as: 

If the material is isotropic : 

where KT is the tangent bulk modulus of the material: 

Substituting into the preceding equation gives: 

where the second form indicates how temperature changes can be 
treated like pore-pressure changes. 

Equation [12 ]  is a form which appears in most discussions of 
KT poroelasticity. 

action coefficient." Terzaghi's theory and conventional soil 
mechanics practice assume that the skeletal stiffness is much 
less than the matrix material stiffness, i.e., J$ << Ks 
that the pore pressure interaction factor is unity. For rocks, 
however, %/Ks can become significant and should be considered . 

The term ( I  - K)  is the "pore-pressure inter- 

, and thus 
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The value of equations [ll] and [12] is that they define a 
reduced stress (the left-hand sides of the equations) which acts 
as if the material had no pore fluid. I, -T is, however, usually a 
function of the effective stress. 
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4.0 BAND CALCULATIONS 

4.1 VOLUMETRIC BEHAVIOR 

Equation [3] is a general equation for the three-dimensional 
deformation of fluid-filled porous materials with temperature 
changes. As such, it can be readily used in finite-element com- 
putations. It is, however, too complex for hand calculation 
except in very simple problems. 
assumptions which can be used to make equation [3] much simpler: 
the assumption of purely volumetric behavior of an isotropic 
material ( b ~ r ,  = 6ay = 6 ~ r ,  , 6&, = &ey = b ~ ~ ,  6Gy= STY,- 57& 
62fyz 
an isotropic material (6a, 6 ~ r ,  , = 6&y = bxXy 62/t, = 

6gZ, = 67q=b7,,z = 61zx =o ) that is appropriate for vertical 
compaction of extensive horizontal layers. 

There are two widely used 

- 
= 0 ) and the assumption of one-dimensional strains of 

I 

4.1.1 Governing Equations 

In the deformation of an isotropic material, the volumetric 
is a function of only the mean strain &,=6~,+&y+&z=&-Tm 

normal effective stress 6a,l=1 6c; +6q,' +6q1)=+6g'  
the fluid pressure and the temperature. 

r 

3( 

For an elastic material, equation [3] becomes: 

2 where Kt is the tangent bulk modulus , yr= h T + ~  Gt. 

Alternatively, from equation [ll]: 
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Some u s e f u l  r e s u l t s  can be c a l c u l a t e d  for t h e  case of 
undra ined  l o a d i n g  (Bishop 1973). I n  t h i s  case, t h e  change i n  
pore volume has t o  e q u a l  t h e  compression of t h e  pore f l u i d .  For 
a n  isotropic  material, t h i s  case g i v e s  t h e  ra t io  of t h e  g e n e r a t e d  
pore p r e s s u r e  t o  t h e  mean normal to ta l  stress as: 

The a p p a r e n t  b u l k  modulus is: 

For  t h e  case where t he  m a t r i x  material is much st iffer than  
t h e  bu lk  material of t h e  f l u i d ,  these become: 
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4.2 ONE-DIMENSIONAL LINEAR PROBLEMS 

4.2.1 Governing Equations 

For compacting layers it is commonly assumed that 'the defor- 
mation is one-dimensional, i.e., that there are no lateral 
strains. If the changes in effective stress are moderate when 
compared to the initial effective stress, it is also reasonable 
to treat the material as linear. These two assumptions render 
equation [3] much simpler. 

For one-dimensional strain: 

=I 
the and 

& 
- 1  

thus 

0 
0 
0 

term equation [3] in becomes : 

(Dropping the T subscript from g, 
since for linear material g 
is constant. ) 

D 

- -  

P 
Similarly, the term Q T m  becomes: 
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Substituting the above expressions into equation 131 gives: 

Expanding the individual rows in th abov equations gives: 

Solving equation [15b] for &E gives: 
z 

Substituting into [15a] gives: 

4.2.2 The Compaction Coefficient 

The compaction coefficient Cm is the compaction per unit 
fluid pressure drop; thus, if the above assumptions about 
linearity, isotropy, and constant total vertical stress are made, 
then : 
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I( 
1-- 

K5 = pore-pressure interaction coefficient 6Ez. E181 C,=:-= d P  A+ZG the constrained (1-D) modulus 

4.2.3 Pore Volume Change 

A number of useful relationships can be derived relating the 
volume or mass of fluid drained to the pore-pressure change. In 
order to develop them, we will first need to determine the change 
in pore v,olume due to loads or fluid pressure changes. 

From equation [9] we find: 

\ IT 
= 6EE -- (* 6~ - m - (I-n) dP)-3 (I-n)otbT 6VP K5 

where 6~ is defined by equation [16], gox and &ay are defined by 
equation [ 171, and 6oz , 6p, and 6~ are assumed known. 

z 

As discussed in Section 2.1.4, the "pore compressibility" is 
the fractional change in pore volume due to stress or pore volume 
changes, 
elastic isotropic material in one-dimensional compression i s  as 
follows : 

From equation [19], the pore compressibility for an 

for changes in the vertical stress, and 
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for changes i n  pore p r e s s u r e  w i t h  c o n s t a n t  v e r t i c a l  stress. 

4.2.4 Storage C o e f f i c i e n t  

Specific s t o r a t i v i t y ,  s ,  is used i n  groundwater  hydrology to  
d e n o t e  t h e  volume of water squeezed o u t  of a u n i t  volume of for- 
mat ion  due t o  a u n i t  drop i n  head. 

where: Vp is t h e  po re  volume 
V is t h e  volume of material 
n is t h e  po ros i ty  

p f  is t h e  f l u i d  d e n s i t y  
g is t h e  g r a v i t a t i o n a l  c o n s t a n t .  

[ Z l ]  5 = ( n C p + z ) p f  9 
K f  

where: CP is t h e  po re  compress ib i l i ty  from e q u a t i o n  [20b]  
Kf is t h e  bu lk  modulus of t h e  f l u i d  

For  t h e  case where Ks is much l a r g e r  t han  K or G ,  t h e  above 
e q u a t i o n  s i m p l i f i e s  to :  



I '  
I 
i 
i 
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1 
I 

4.2.5 Ratio of Volume of Fluid Drained I '  
I 

I to Volume of Compaction 
1 

For liquid-dominated geothermal reservoirs, .it is possible 
to directly estimate the amount of compaction without computing 
the reservoir pressure drop. 
slightly compressible. 
effects, although they"can -readily be incorporated into noniso- 
thermal problems. 

This is because water is only 
The following expressions neglect thermal 

If the total vertical stress-az is constant, -then the 
relationship between the pressure drop and the volume of water 
removed from the reservoir is: 

' a i '  

where: 6vw is the ratio of the volume of water removed to the 
volume of formation. 

s is the storage coefficient. 

Substituting the-value o f ' s  from equation 1211 and re- 
, -  arranging gives: &. ) .  

The compaction coefficient relates the pressure to the 
vertical strain (equation [18]). ,Solving for 'the vertical 
strain: 

r' 
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i 
i 

a i  

i 

i 
i 
t 

The ratio of the volume of compaction to the volume of water 
! removed is: 

For the case where Ks is much larger than K or (A + 2G) ,  this 
simplifies to : 

4.2.6 Undrained Loading 

For rapidly-applied external loads 6oz , there is no time for 
any flow to occur. 
equals the amount of fluid compression: 

In this case, the decrease in pore volume 

where: cp is the pore compressibility with respect to the 
vertical stress, as defined in equation [20a] and i 

1 
C; is the pore compressibility with respect to the with 

respect to the pore pressure, as defined in equation 
[ 20b] . 
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Again, where Ks is much larger than  K or  1 + 2G, t h e  

e q u a t i o n  becomes much simpler:  

- 6 G  1261 bP= - -  

(I +V) 
Changes i n  atmospheric p r e s s u r e  cause  undra ined  l o a d i n g  i n  

c o n f i n e d  a q u i f e r s .  
B t o  r e p r e s e n t  t h e  r a t i o  of t h e  po re  p r e s s u r e  change t o  t h e  

a tmosphe r i c  p r e s s u r e  change,  i .e.,  B = -E. 
of large Ks, t h i s  g i v e s :  

H y d r o l o g i s t s  u se  t h e  "barometric e f f i c i e n c y "  

For t h e  assumption 
der, 
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5.0 STRESS-STRAIN RELATIONSHIPS 

I n  t h e  p r e c e d i n g  s e c t i o n s  t h e  g e n e r a l  form of t h e  fo rma t ion  
s t r e s s - s t r a i n  r e l a t i o n s h i p  was p r e s e n t e d  by t h e  use  of a t a n g e n t  
s t r e s s - s t r a i n  m a t r i x  - ET: 

where - is t h e  "elastic" component of t h e  s t r a i n .  

T h i s  form is q u i t e  g e n e r a l ,  though restricted t o  cases where 
s t r a i n s  are s m a l l .  
f u n c t i o n  of t h e  e f f e c t i v e  stress o n l y r a n d  t h u s  i n  p r i n c i p l e  can 
be d e r i v e d  e q u a l l y  w e l l  from lab tests on d r y  or s a t u r a t e d  speci- 
mens. 
common fopms of t h e  stress-strain r e l a t i o n s h i p .  

The QT m a t r i x  is normally c o n s i d e r e d  t o  be a 

I n  t h e  f o l l o w i n g  s e c t i o n s ,  w e  w i l l  d i s c u s s  a number of 

5.1 LINEAR ELASTIC ISOTROPIC MATERIAL 

While it is t r u e  t h a t  no geological material is l i n e a r  ove r  
a l a r g e  r ange  of stresses, t h e  assumption of l i n e a r i t y  is s t i l l  
common. There are several reasons for t h i s ,  i n c l u d i n g :  

. o The a s sumpt ion  of l i n e a r i t y  makes problems much easier 
t o  a n a l y z e  

Non l inea r  material models .require p a r a m e t e r s  t h a t  can b 
v e r y  d i f f i c u l t  t o  de te rmine  

o 

o For  modest e changes ( s a y ,  less t h a n  

50 p e r c e n t  o 
e a r i t y  are u s u a l l y  not large. 

slue) t h e  effects of nonl in-  
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These reasons justify the assumption of linearity for a 
large number of cases. 

The assumption of isotropy is purely for convenience, as 
anisotropic effects are equally significant for small and large 
stress changes. 

For a linear elastic isotropic material the QT matrix is 
constant and thus the subscript "T" (for tangential) can be 
dropped. The matrix is a function of just two elastic coeffi- 
cients. There is a wide choice as to which two to use; in this 
report, we use the Lame coefficients A and G wherever possible. 

/ 

In terms of 3\ and G ,  the 4 matrix is: - - 

.I 

A+2G 2 2 0 0 0 
A h + 2 6  h 0 0 0 
a 2 X+2G 0 0 0 
0 0 0 G 0 0 
0 0 0 0 C 0 
0 0 0 0 0 G 

For convenience, the following table sets out some common 
conversions between elastic constants. The constants used are: 

0 A = Lame coefficient 
G = Second Lame/ coefficient (the shear modulus): 

shear stress 
shear strain 

K = Bulk modulus: volumetric stress; 1 
volumetric strain compressibility 

E = Young's modulus: tensile stress 
elongation 
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3 = Poisson's ratio: lateral shrinkage 
elongation 

TABLE 1 
RELATIONSHIPS BETWEEN ELASTIC CONSTANTS 

A =  x 1 - 2G 
3 
- 

G =  G G 

2G E G( E-2G) - 1-2 (1+ )(1-2 ) (3G-E) 

G E G 
2(1+ 1 

E EG k =  A+ k 2G( 1+ ), 
3(3G-E) 3 3(1-2 ) 3(1-2 ) 

E =  G( 3X+2GL 
h+G 

9kG 
3k+G 

2G(1+ ) E E 

v =  x 3k-2G 
2(X+G) . 6k+2G 

E -1 - 
2G 

For anisotropic linear elastic m €?rials the ET matrix be- 
comes more complex, though it is still symmetric. 
off-diagonal terms can appear which cause shearing stresses to 

In particular, 

ect strains (dilatancy). and direct stresses to produce 
ns. A relatively common anisotropic formulation used 

for geological materials is isotrop 
different properties rpendicular to the plane. This material 
is defined by five e 
tropic materials can be found in Jaeger and Cook (1969). 

within One plane but has 

tic coefficients. A discussion of aniso- 

5.2 NONLINEAR ELASTIC MATERIAL ' ' 

The implication of assuming nonlinear elasticity is that an 
unloading stress-strain path will duplicate the loading path. 
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Use of the tangent QT is based on a curve-fitting description of 
the bulk modulus. It is possible for hysteretic materials which 
unload along a different path than they loaded to have an 
"unloading" stress-strain curve which is different from the 
loading curve. This technique represents an alternative to the 
use of plasticity theories (see Section 5.3). 

- 

There is generally a middle portion of the volumetric 
stress-strain curve for rocks which can be represented by a 
nonlinear elastic model. Hertz's theory of the contact of 
elastic spheres suggests that the bulk modulus should vary with 
the cube root of the effective stress. A discussion of this 
concept can be found in Geertsma (1957) or Van der Knaap (1959). 

5.3 PLASTIC MATERIAL 

Plasticity theories represent a sophisticated phenomenolog- 
ical description of the complete stress-strain behavior of a 
material. In general, conventional plasticity theories assume 
that the - D matrix is linear and isotropic and treat all non- 
linear behavior as plastic (irreversible)--an assumption that is 
not particularly sound for volumetric behavior of rocks. In 
addition, they assume that plastic behavior is isotropic--an 
assumption that is not proven for shearing behavior. 

,T 

Nevertheless, plasticity theories have wide applicability. 
A discussion of plasticity theories for soil mechanics can be 
found in Zienkiewicz et al. (1975). Plasticity theories for rock 
behavior are described in Sandler et al. (1974) and Cheney et al. 
(1979) 
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5.4 MECHANISTIC MODELS 
. "  

These are models where the stress-strain behavior is based 
on a model of the behavior of the component parts of the 
material. Hertz's theory (see Geertsma 1957; Van der Knaap 1959) 
of the behavior of an aggregate of elastic spheres falls in this 
category, as does Rowels stress-dilitancy theory (Rowe 1962). A 
review of mechanistic models can be found in Schatz (1976). In 
their most sophisticated form, mechanistic models consist of 
elasto-visco-plastic matrices containing both cracks and spheri- 
cal pores. These models can be computationally very difficult, 
but provide a more*.complete description of the f u l l  range of 
stress-strain behavior than do simpler. models . 

- 
5.5 TERZAGHI'S E-LOG P RELATIONSHIP 

Terzaghi (1943) presented 'a theory in ich solid defor- 
mation is described by an empirical relation between pore volume 
change and stress. *: -The Terzaghi equations are basically a one- 
dimensional theory, and it is not clear that the one-dimensional 
equations can be correctly generalized to three dimensions 
(Jaeger and Cook 1969), For one-dimensional problems, however, 
the theory has been widely accepted as an adequate. representation 
of the deformation of fine-grained soils. The applicability to 
fine-grained, low porosity rocks has remained largely untested. 

The. one-dimensional. consolkdation theory assumes that there 
are no lateral deformations and that the soil grains are incom- 
pressible. Terzaghi '(1943) presented .the theory in terms of the 
void ratio, e = volume of voids divided by the volume of solids, 
and the effective vertical compressive stress p (p  =-Di) .  The 
relationship he derived assumed t h a t  void ratio varied with the 
logarithm of the effective stress: 
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( ,,,> e = e, - c, loglb 

where : c, is known as the compression index 
e,, po are the starting values of e and p. 

For unloading situations where p is decreasing (due to 
decreasing overburden stress or increasing pore pressure) , Cc 
is replaced by C s ,  the swelling coefficient. The swelling 
coefficient is also used for reloading, while p is less than its 
previous highest value (Pp, the preconsolidation pressure). 
Two other coefficients are commonly used with Terzaghi's theory: 
a, and mv. Their definitions are: 

Note that mv is equivalent to the compaction coefficient 
Cm (equation [ 9 ] ) .  

5.6 TIME-DEPENDENT BEHAVIOR 

Little experimental work has been performed to assess the 
time-dependency of deformations. In general, it is assumed that 
most apparent time-dependency is merely due to the time required 
for excess pore pressures to be dissipated. However, there is 
evidence that at least for shales, substantial creep strains can 
follow the instantaneous elastic strains. 



29 

5.7 TEMPERATURE EFFECTS 

Temperature effects are fairly well understood. The assump- 
tions that the coefficient of thermal expansion is both isotropic 
and independent of temperature and stress level are not necessary 
to the theory set out in Section 2.1. We know of no data which 
indicate that these are not adequate approximations. 

There is evidence that the stress-strain relationship is 
temperature-dependent. Van Gonten and Choudhary (1969) found 
that compressibility increased by about 20 percent as the 
temperature was raised from room temperature to 400'F. In 
addition, the rate of plastic flow is temperature-dependent in 
most materials . 
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6.0 CHEMICAL EFFECTS 

All of the preceding material has focused on the effects on 
deformation of stresses, temperatures, pore-fluid pressures, and 
time. The only other physical processes that appear able to 
significantly affect deformation are chemical processes. 
include such effects as leaching and precipitation of minerals 
and chemical reactions induced by changing temperature, pressure, 
or pore fluid chemistry. We have found no documented evidence of 
chemical processes (other than massive dissolution of carbonates) 
seriously affecting deformations. 

These 
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7.0 PARAMETER ESTIMATION 

Due t o  t h e  great d i f f i c u l t y  of o b t a i n i n g  r e p r e s e n t a t i v e  
pa rame te r  v a l u e s  from lab  tests on core samples, there may i n  
some cases be advan tages  t o  measuring subs idence  parameters 
i n d i r e c t l y  by f i e l d  measurements of storage c o e f f i c i e n t s  (from 
pump tests) and barometric e f f i c i e n c i e s .  

S e v e r a l  o f  t h e  pa rame te r s  used i n  t h e  above e q u a t i o n s  can be 
de te rmined  r e l a t i v e l y  e a s i l y .  Thermal expans ion  c o e f f i c i e n t s  
va ry  l i t t l e  between g e o l o g i c  materials and are r e a d i l y  measured 
i n  t h e  l a b o r a t o r y .  The m a t r i x  material bu lk  modulus Ks is 
a l s o  r e l a t i v e l y  e a s i l y  measured i n  t h e  l a b o r a t o r y .  P o i s s o n ' s  
r a t i o  is n o t  h i g h l y  v a r i a b l e  for  d i f f e r e n t  materials and t h u s  can 
o f t e n  be estimated w i t h  s u f f i c i e n t  accu racy .  Combining these 
p a r a m e t e r s  w i t h  i n d i r e c t  measurements of performance such  as 
s t o r a g e  c o e f f i c i e n t s  and barometric e f f i c i e n c i e s  shou ld  i n  many 
cases allow reasonab ly  accurate deduc t ion  of material behav io r  
models. 
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Symbol Dimensions 

€3 

G 
Cm 

C P  

cs 
D 
v 

e 
E 

4 
G 

K *  

P 

P Mi' T -z 

LIST OF SYMBOLS 

Description 

Coefficient of compressibility = de/dp 

Barometric efficiency = pore pressure 
change/atmospheric pressure change 

Compression index 

Compaction coefficient = BE, / a p  
Pore compressibility - 
Compression index for unloading, 
Terzaghi theory. Swelling coeffic,ent. 

-1,* 
"P ap 

Stress-strain matrix. 9 5~ -6p for no 
pore pressure or temperature. 

Void ratio = VV/V, 

Young's modulus 

Acceleration of gravity 

Shear modulus 

Bulk modulus 

Bulk modulus of pore fluid 

Bulk modulus of solid matrix material 

'Special vector: gt = <I 1 1 o o O> 

Coefficient of volume compressiblity 

Porosity, %/v \ 

Vertical effective stress in Terzaghi 
theory 

Pore-fluid pressure 

=&&P 
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Dimensions 

L-' 

L 

L3 

L3 
L3 
L3 

L 
temp --' 
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Description 

Storage coefficient, specific 
storativity 

Subscript indicates tangential modulii 
for nonlinear materials 

Displacements in x,y,z directions 

Overall volume of sample 

Volume of pores 

Volume of solid matrix material 

Volume of water squeezed out of sample 

Coordinate directions. z = elevation 

Coefficient of isotropic linear thermal 
expansion 

Shear strains 

Indicates a small variation in a 
parameter 

Direct strains. 

Total strain vector ,ET= - < & € y € z  &'XY If'yr 2f',,) 

Elastic strain vector 

Volumetric strain in matrix material due 
to pore-pressure and temperature 

Viscous and/or plastic strains vector 

Volumetric strain = €x + GY +EE 

Stresses in x,y,z directions 

Total 
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Symbol Dimensions 

- d ML-' T -= 

O;, ML-" T -2 

Gl ML-' T-* 

A ML-I T -e 

fi M i "  

- 3 
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Description 
I 

Effective stress vector = _a + Prn - 

Mean normal stress 0, = 5 (o, + C.. +DE) 

Mean normal effective stress 0,' = cr, + P 

Lame elasticity coefficient 

Density of pore fluid 

Shear stresses. *cxy = shear stress on 
x-plane in y-direction 

Poisson's ratio 




