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This report is the first in a series of three companion
reports presenting the results of an investigation into the use
of mathematical models for predicting subsidence caused by geo-
thermal fluid extraction. The results of the investigation are
summarized in the report, "Simulation of Geothermal Subsidence"
(LBL 10571). The titles of the other companion reports are
listed below.

Report No. Title

Detailed Report on Tested Models LBL-10837
3 Case Study Data Base LBL-10839

An additional report on the subject of reservoir models was
generated as part of this project. The report was produced in
1979 by Dr. George F. Pinder under subcontract to Golder Associ-
ates and is titled "State-of-the-Art Review of Geothermal Reser-
voir Modelling" (LBL 9093).
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ABSTRACT

There are a variety of theories, techniques, and parameters
in the subsidence literature. Biot's theory, Terzaghi's theory,
and the theory of interacting continua (TINC) are used to explain
solid-fluid interaction; stress-strain theories range from linear
elastic to e-log p to plasticity and pore-collapse theories.
Parameters are numerous: void ratio, permeabilility, compaction
coefficient, pore compressibility, Young's modulus, bulk modulus,
shear modulus, Poisson's ratio, Lame coefficients, coefficient of
consolidation, and storage coefficient. This report reviews the
physical processes which govern compaction and deformation in
geothermal systems. The review is an aftempt to provide a '
reasonably coherent general structure for the theories and para-
meters which were referred to above. The material we present is
a compendium of existing published work.

Processes governing flow and the behavior of the pore fluid
are not discussed. The reader is referred to the George F.
Pinder report (LBL 9093) for a discussion of geothermal reservoir

flow models.
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1.0 INTRODUCTION

There are a variety of theories, techniques, and parameters
in the subsidence literature. Biot's theory, Terzaghi's theory,
and the theory of interacting continua (TINC) are used to explain
s0lid-fluid interaction; stress-strain theories range from linear
elastic to e-log p to plasticity and pore-collapse theories.
Parameters are numerous: void ratio, permeabilility, compaction
coefficient, pore compressibility, Young's modulus, bulk modulus,
shear modulus, Poisson's ratio, Lame coefficients, coefficient of

consolidation, and storage coefficient.

The dominant variables affecting the deformation of geo-
logical systems are widely accepted to be stress, temperature,
pore fluid pressure, and time. In Section 2.0 we will present a
discussion of theories describing the effect of these variables.
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2.0 BASIC EQUATIONS

The basic equation which follows is based on that by Lewis
and Schrefler (1978), with the inclusion of thermal terms. Lewis
and Schrefler's work is essentially a generalization to nonlinear
problems of the linear theory of Biot (e.g., Biot and Willis
1957) and also uses an approach developed by Bishop (1973). The
theory of interacting continua (TINC) (e.g., Garg and Nur 1973),
provides identical results to Biot when high-order terms are

neglected.

'The followingvSign conventions will be followed in this

report,

Stresses will have tensions positive, shear stresses on
‘positive faces acting in positive directions. (See Figure

1.)
F4
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FIGURE 1

-SIGN-AND-AXIS CONVENTIONS
. FOR STRESS AND STRAIN




Pore Pressure has compression positive.

Strains. Engineering strains are used:

_ou -\ _ Ow
E.x a)( 2 &y-— ay ) 5: = az

where (u,v,w) are deformations in (x,y,z), re-
spectively. Only small strains are covered by

the theory. Strains are positive in tension.

Notation. Stress-and-strain tensors are in a vectorial
representation and are identified by a single underscore.

Matrices are represented by a double underscore.

3 ¢
f'o; £y h
Oy Ey
g- (G £- (& |
Txy S'xy
Tyz Koz
Tax Sx
N / \ /

2.1 EFFECTIVE STRESS

The method by which Lewis and Schrefler (1978) extend the
linear Biot theory to incorporate nonlinear stress-strain laws is
similar to that of Nur and Byerlee (1976).

"Effective stress" is defined in the traditional form:
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p = pore fluid pressure.

Terzaghl or1g1na11y deflned effectlve stress as that portlon
of the stress tensor which causes strain (1 e.,ée D-,- 50‘ ).
However, when the above deflnltlon of effectlve stress is used,
there is 1n fact a small straln 1nduced when the fluid pressure
1s changed wh11e holding the effectlve stress constant. Imagine
»a small porous sample submerged in a container of fluld where
the fluid pressure 1s 1ncreased by<5P., Although the effectlve
stress is constant (and equal to zero), the sample w111 contract
slightly as the SOlld grains respond to the fluid pressure. In
the Lewis and Schrefler (1978) presentation, the strain due to
thls contraction is in addltlon to that caused by any effective

stress changes

Sef= 6e - 6 = by

|
4
|
WO
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where: 5§f is the elastic change in strain.

V! B
6§_P is the nonrecoverable strain ‘due to v1scous or

Vplastic deformatlons. It is often 1gnored.

is the tangent stress-strain matrix for the elastic

e}
_’ N

‘strains. Dt is discussed in Section 2.4,
]
é@! is the change in effective stress.

o' = Sg + SPm




Kg is the bulk modulus of the matrix material and is
assumed constant (linear). (Ks ~ 1 -2 x 109 psf
for geological materials.)

The first term on the right-hand side is the strain due to

the effective stress. This strain is computed exactly as though
the material were dry. The second term on the right-hand side is

~ the édditional strain due to compaction of the matrix material.

‘For the reader who is unfamiliar with the nature of the
stress straln matrix Dr, a discussion is presented in Section
2. 4. One commonly used variant of Dr is that for a linear elas-
tic 1sotroplc material. The following Dy matrix for this mater-

ial is used several times in the following equetions:

ANt 26G A A (o] o) o

A A+ 26 A o) o) 0

A A A+26G o) ) o

Dy = o o o G o o)
o o} o) o) G o

o e} o o] o) G

2.2 THERMAL EFFECTS

For geothermal problems, it is necessary to add a third term
in order to incorporate the effect of temperature variationms,
which can also cause strains in the absence of effective stress

changes. Assuming that thermal expansion is isotropic, we get:

[2] O€f = Se -&€ P-Df'éa—gfsm +o<cSTm=g;'<So-'+éég




where: o 1is the coefficient of linear isotropic thermal
expansion (q=10"° °c-l for geological materials).

8T 1is the change -in temperature.

deg - is the ‘strain caused by pure volumetric expansion of
-the matrix material due to thermal effects and
pore-pressure effects.

‘5§§5= G%%E} + 51i> m

2.3 GENERAL EQUATION

Multiplying the above expression by Dy and rearranging
gives:

(3] 6 =Dy (e ?"3"5% m - 8£"F- 5Trﬁ) -o, (éé -6~ S€4)

The above expression is the key equation for the calculation
of deformation in fluid-solid interaction problems. For linear
poroelastic problems, Dr can be replaced by D.

In the following sections we will derive .a number of results
for specific problems, but all will be based on equation [3].
The viscoplastic term §eVP Will*beaigno}ediin most of the fol-
lowing derivations, which are therefore valid only for»elastic
materials. Nonlinearrelasticity,ofwthe:form commonly observed in
hydrostatic compression tests is within the scope of the simpli-

.fied equations. -




2.4 PORE VOLUME CHANGES

In order to couple the deformation relationship in equation
[3] with the flow equations for the pore fluid, it is necessary
to keep track of the amount of fluid stored in the matrix. This
is achieved by computing the pore volume. The pore volume is
defined by either the porosity, n, or the void ratio, e:

[4] n = =

<

where: Vp is the volume of voids or pores, Vp = V-Vs
V is the total volume
Vs is the volume of solid matrix material.

We will compute the change in the volume of voids as the
change in total volume less the change in the volume of solids:

[6] éVP= 6\/" éVs

For small deformations, the change in the total volume is:
[7] Ov=6e"m = O&, + bey + O,

The change in the volume of solids is computed as the sum of
(a) the change due to changing both ¢ and P by ép, holding g'vA
constant, plus (b) the change due to changingg' by 60' = é¢ - éPm,
holding P constant, and (c¢) the change due to the change in
temperature. During (a) the volume of solid matrix material.

decreases by (1—n)_§£: During (b) the mean normal (average)
Ks




) . i
direct stress in the matrix increases by'iﬁiﬁf §gfrg, so the

|
volumetric strain in the matrix material is'iﬁ‘%i;3'5° T m .,
>4

Since the matrix material has volume 1-n, the change in its
- 1 T!
volume is EE—GG me
s
The volume change due to temperature is 3(1-n) adT. Thus,
the total change in the volume of solid matrix material is:

[81 &y, =20- ;\gép +3”< 8a''m + 3 (1-n) & &T
s

= = (4 8¢"m - (1-n) &P+ 3 (1-n) < 67

Substituting [7] and [8] into equation [6] gives the change
in pore volume:

[91 &vp =6 m——-—(-—-éa m - (1-n) 6P)- 3 (1-n) K 8T

Substituting for QE%E from equation [3] and simplifying
gives, for an isotropic material:

[10) Svp = (G -7 ) 0~ 6P +3n o 8T

. )
where:‘dom'==1/3 &ITE is the change in mean normal effective
stress.

-ié- = bulk compressibility - matrix compressibility.

1
Kr
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A term arising in the petroleum literature is the '"pore
volume compressibility," or "pore compressibility." It is the
fractional change in pore volume due to stress or pore-pressure
changes. From equation [10], the pore compressibility for an
isotropic material is as follows:

S Ny AL B for changes in mean normal
Ce=vw (% kg &

effective stress.

[ ) ) 3
Cp=—K—— for changes in pore pressure with
s
constant effective stress.

For changes in pore pressure with constant total stress
(8c' = -6P).
m

1+n |

Ks KT

|
C¢>=-ﬁ-
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3.0 THE ‘PORE  PRESSURE ' INTERACTION COEFFICIENT

Equation [3] can be formulated in terms of total stress as:

[11] &g + 6Pm =D, (&€& + ;‘;s m-o STm)

or: OO0 + (SP(l—g',—(-; D) m=Dr (é_&_—ok STm)

If the material is isotropic:

Wo

Tm=3KTm

where K7 is the tangent bulk modulus of the material:
= 2
Ky >\T*'36T

Substituting into the preceding equation gives:

(121 &g + &p(1--)m = Dy (8 - = &7 m)

or: &g + &P (I- :2* ym + 6T (3«Kr)m = D5 &8
S

where the second form indicates how temperature changes can be
treated like pore-pressure changes.

Equation [12] is a form which appears in most discussions of
poroelasticity. The term (l—-é%: is the "pore-pressure inter-
action coefficient." Terzaghi's theory and conventional soil
mechanics practice assume that the skeletal stiffness is mdch
less than the matrix material stiffness, ife., KI<< Ks , and thus
that the pore pressure interaction factor is unity. For rocks,
however, KT/KS can become significant and should be considered.
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The value of equations [11] and [12] is that they define a
reduced stress (the left-hand sides of the equations) which acts
as if the material had no pore fluid. 2I is, however, usually a
function of the effective stress.

e
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4.0 " HAND CALCULATIONS

4.1 VOLUMETRIC BEHAVIOR

Equation [3] is a general equation for the three-dimensional
deformation of fluid-<filled porous materials with temperature
changes. As:such, it ‘can be readily used in finite-element com-
putations. It is, however, too complex for hand calculation
except in very simple problems. There are two widely used
assumptions which can be used to make equation [3] much simpler:
the assumption of purely volumetric behavior of an isotropic
material (&0y = 60y =503 , O&, = dey = €5, STy = 5Tyz =0Tz =S¥y
O8yz =6&;x =0O) and the assumption of one-dimensional strains of
an isotropic material (&6, =80y, O£, = dey = 525‘x), =5%; =
O%yy = (5Txy=6TY£ =T,y =0 ) that is appropriate for vertical
compaction of extensive horizontal layers.

4.1.1 Governing Equations

In the deformaticn‘of_an isotrépic material, the volumetric
strain 65V=5gx+égy+c§gz =5§;ka is a function of only the mean
normal effective stress 60’m'=—é— (Soy +S0y +5o—z')=é ch'Tm
the fluid pressure and the temperature.

For an elastic material, equation [3] becomes:

[13] Sy = wr (b2, +E5 -3 5T)

where K{ is the tangent bulk modulus, Ki= 7\7"'% Gy

Alternatively, from equation [11]:
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(14] Sop, + 6P (1-F2) = Kr (88,-3 4 57T)

Some useful results can be calculated for the case of
undrained loading (Bishop 1973). In this case, the change in
pore volume has to equal the compression of the pore fluid. For
an isotropic material, this case gives the ratio of the generated
pore pressure to the mean normal total stress as: '

l )

éP - . —R: KS
So: 4 _ L ) N R I
m r1(K¥ Ke L Ke

The apparent bulk modulus is:

ko o Som K+

NG S

I T D IR N

For the case where the matrix material is much stiffer than

the bulk material of the fluid, these become:

e |
&50im

I
+
I
-

K:D:_Sﬁ = K-‘- + KL
S n
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4.2 ONE-DIMENSIONAL LINEAR PROBLEMS

4.2.1 Governing Equations

For compacting layers it;iS'eemmonly assumedfthat'the defor-
mation is one-dimensionai, i;e;, that there are no lateral
strains. If the changes in effective stress are moderate when
compared to the initial effective stress, it is also reasonable
to treat the material as linear. These two assumptions render

equation [3] much simpler.
For one-~-dimensional strain:

(o)

(o]
- E

o

o

T/

and thus the term D ¢ in equation [3] becomes:

T

C o ) : - |
H'V.zkfi% (Dropping the T subscript from D,
5;+ZG ~ since for a linear material D
DE =&, 49 o 3 is constant.)
-~ O
O
\ S

Similarly, the term 2'1'9 becomes:

"QmEE@A+ZGﬁg£3Km‘
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Substituting the above expressions into equation [3] gives:

A

A
[15] O + 6P (1= Ym = 685{ A+26} - 3KA STm

o]
O

Expanding the individual rows in the above equations gives:
[152] doy =50'y=“6P(i"K§)+>\5&z'3Kd\éT

8oz =5P (=) + (A +26 _3KK ST
[15b]6C% %) ( ) b€z -3 |
[150]51)(), = 5Ty£ = 52)( =0

Solving equation [15b] for 652 gives:

(161 8¢ - Sox + 6P (“é)+3 KA ST
A+2G

Substituting into [15a] gives:

K
' &0z +SP(1-Rg )+BKAST
[17] éa'x =<SO’Y= —éP(!*%}-I-}\ { z : >(\+2.6) }"5l<o(5T

4.2.2 The Compaction Coefficient

The compaction coefficient Cp is the compaction per unit
fluid pressure drop; thus, if the above assumptions about
linearity, isotropy, and constant total vertical stress are made,
then: |
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| Rl "
[{18] Cin= SEz = K§-— = pore-pressure interaction coefficient
P ?\"'ZG "7 the constrained (1-D) modulus

4.,2.,3 Pore Volume Change

A number of useful relationships can be derived relating the

volume or mass of fluid drained to the pore-pressure change. In
~order to develop,thgm,.we,w;ll first need tquetermlne the change

in'pore ?plume due to loads or fluid pressure'changes.

From equation [9] we find:

SVe = BE 5 -—,3<-5— (—é— 50" m - (1-n) 8P) =3 (1-n) AT
Now, 80" 'm = b0, + boy +50; = ch; +¢‘_‘>ay +35z +35P

[19] &V = BE, - oo * 60;;;656" 20 o -5 (1-n)y=&T

where Gez is defined by equation [16], Sox and §oy are defined by
equation [17], and 60, , 6P, and 8T are assumed known.

As discussed'in:Sthion_2.l.4;!the "boré compressibility" is
the fractional change in pore volumé due té stréss 6r pore volume
-.changes. From equation,[lQ],‘the pore. compressibility for an
elastic isotropic material in one—diménsional compressioh‘iswgs

follows:

[20a] Cp =T—l,' (7\:-26 - ’.—3}(5 (’+7\+ZG))

for changes in the vertical stress, and
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12001 Cp = % (1) (w21 BR)

for changes in pore pressure with constant vertical stress.

4.2.4 Storage Coefficient

Specific storativity, s, is used in groundwater hydrology to
denote the volume of water squeezed out of a unit volume of for-

mation due to a unit drop in head.

S:

) aVP n éff f
vV or T ap> f

. where: Vp is the pore volume
V is the volume of material
n is the porosity

pf is the fluid density
g is the gravitational constant.

[21] S = (n Cp-r—'%—) £%9

where: Cp is the pore compressibility from equation [20b]

Kf is the bulk modulus of the fluid

For the case where Kg is much larger than K or G, the above
equation simplifies to: ' '

[22] < = <7\l?.5+ ’26 )fca
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‘4,2,5 Ratio of Volume of Fluid Drained -
to Volume of Compaction

For liquid-dominated geothermal reserv01rs, it is possible
to directly estimate the amount of compactlon w1thout computlng

the reservoir pressure drop. This is because water is only
slightly compressible. The following expressions neglect thermal
‘effects, although ‘they:‘can readily be incorporated into noniso-
thermal problems. ' :

If the total vertical stressoz is constant, _then the
relationship between the pressure‘d}dp¥gnd}tﬁé volume of water
removed from the reservoir is:

c5v '?{é’ SP

where: §vw 1s the ratio of: ‘the volume of water removed to the:
volume of formation. .
s is the storage coefficient.

‘Substituting the- value of' s from- equatlon [21] and re-— -

arranglng giveS"'fj [ TN TEN S S

5 (nCP+——> .
The compaction coefficient relates the pressure to the
vertical strain (equation [18]). Solving for the vertical '~

strain:

stz - om o7 = (S0) (22
‘ t+ n P-qur
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The ratio of the volume of compaction to the volume of water
removed is:

- 5Vw A +zc—3 nCp+

For the case where Ks is much larger than K or (A + 2G), this
simplifies to:

[24] _SE&z _ !
SV, |+ -2~
W Ke (9\"’26)

4.2.6 Undrained Loading

For rapidly-applied external loads 602, there is no time for
any flow to occur. In this case, the decrease in pore volume
equals the amount of fluid compression:

SP
Ke

"C; SOE‘CF SP =

where: (;;' is the pore compressibility with respect to the
vertical stress, as defined in equation [20a] and
C%f is the pore compressibility with respect to the with
respect to the pore pressure, as defined in equation
[20b].

(28] sp = (—B) &0,
-—+C
P

P ——

S—————LL AL
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~ Again, where Kg is much larger than K or A + 2G, the
equation becomes much simpler:

[26] 6P = ~ O0%

(l . n(2;~163>

Changes in atmospheric pressure cause undrained loading in
confined aquifers. Hydrologists use the "barometric efficiency"
B to represent the ratio of the pore pressure change to the
atmospheric pressure change, i.e., B = -3 For the assumption

56;
of large Kg, this gives: z

[27] B =8P _ ( !
: 502 | + n(A+26)
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5.0 - STRESS~-STRAIN RELATIONSHIPS ..

In the preceding sections the general form of the formation
stress-strain relationship was presented by the use of a tangent

stress-strain.matrix D+:

&g = T(5£+§"<’sm -5 o<5Tm> D, 5&°

where Sg€ is-.the "elastic" component of the strain.

This form is quite general, though restricted to cases where
strains are small. The Dy matrix is normally considered to be a
function of the effective stress only’and thus in principle can
be derived equally well from lab tests on dry or saturated speci-
mens. In the following sections, we will discuss a number of
common forms of the stress-strain relationship. -

5.1 LINEAR ELASTIC ISOTROPIC MATERIAL

) While it is true that no geological material is linear over
& large range of stresses, the assumption of linearity is still

common. There are several reasons for this, including:

o - The assumption of linearity.makes problems much easier

to analyze

o Nonlinear: mater1a1 models require parameters that can be
very difficult to determine

o ;For modest effectlve stress changes (say, no less than
50 percent of the 1n1tia1 value) the effects of nonlin-

earity are usually not large.
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These reasons justify the assumption of linearity for a
large number of cases.

The assumption of isotropy is purely for convenience, as
anisotropic effects are equally significant for small and large

stress changes.

For a linear elastic isotropic material the _E_Q.,. matrix is
constant and thus the subscript "T" (for tangential) can be
dropped. The matrix is a function of just two elastic coeffi-
cients. There is a wide choice as to which two to use; in this
report, we use the Lame/coefficients A and G wherever possible.
In terms of A and G, the D, matrix is:

A+ 2G A A O (o] o
A A+26G A o) o (o)
A A A+2G (o) O o]
Dy = o o o G o) o
o) (o) &) o G o
o] (o) 0] o (o) G
e -

For convenience, the following table sets out some common

conversions between elastic constants. The constants used are:

A

G = Second Lamé coefficient (the shear modulus):

Pd
Lame coefficient

shear stress
shear strain

K = Bulk modulus: volumetric stress; 1
volumetric strain compressibility

E = Young's modulus: tensile stress
elongation
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V o= Poisson's ratio: lateral shrinkage
elongation

TABLE 1
RELATIONSHIPS BETWEEN ELASTIC CONSTANTS

A6 -k, - G, E, E,G

A = o S 1-26 26 " E G(E-2G)
| - 3 12 (It )(1-2 ) (3G-E)
G = .G -G G E G
‘ : : C2(1+ )
K = A+ 2G kK 2G(1+ )  E ° EG
o .3 .. 3(1-2)  3(1-2) 3(3G-E)
E = G(31+2G) 9kG 2G(1+ ) E E
A1G 3K+G |
vV = A 3k-2G E -1
2(A+G) . BK¥2G , | | - 2G

For anisotropic linear elastic materials the Dy matrix be-
comes more complex, though it is still symmetric. In particular,
' off diagonal terms can appear ‘which cause shearing stresses to
produce direct strains (dllatancy) ‘and direct stresses to produce
shear strains. A~ relatively cormon anlsotroplc formulation used
for geological materials is 1sotropic within one plane but has
different properties perpendicular to the plane. This material
is defined by'fiVe eiastic"coéfficieﬁts.‘ ‘A discussion of aniso-
tropic materlals can be found in Jaeger and Cook (1969)

'5;27'N0NLiNEAR'ELAsTIC MATERIAL:“

The implication of assuming nonlinear elasticity is that an
unloading stress-strain path will duplicate the loading path.
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Use of the tangent E?T is based on a curve-fitting description of
the bulk modulus. It is possible for hysteretic materials which
unload along a different path than they loaded to have an
"unloading" stress-strain curve which is different from the
loading curve. This technique represents an alternative to the

use of plasticity theories (see Section 5.3).

There is generally a middle portion of the volumetric
stress-strain curve for rocks which can be represented by a
nonlinear elastic model. Hertz's theory of the contact of
elastic spheres suggests that the bulk modulus should vary with
the cube root of the effective stress. A discussion of this
concept can be found in Geertsma (1957) or Van der Knaap (1959).

5.3 PLASTIC MATERIAL

Plasticity theories represent a sophisticated phenomenolog-
ical description of the complete stress-strain behavior of a
material. In general, conventional plasticity theories assume
that the __DT matrix is linear and isotropic and treat all non-
linear behavior as plastic (irreversible)--an assumption that is
not particularly sound for volumetric behavior of rocks. 1In
addition, they assume that plastic behavior is isotropic--an

assumption that is not proven for shearing behavior.

Nevertheless, plasticity theories have wide applicability.
A discussion of plasticity theories for soil mechanics can be
found in Zienkiewicz et al. (1975). Plasticity theories for rock
behavior are described in Sandler et al. (1974) and Cheney et al.

(1979) .
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5.4 MECHANISTIC MODELS .

These are models where the stress-strain behavior is based
on a model of the behavior of the component parts of the
material. Hertz's theory (see :Geertsma 1957; Van der Knaap 1959)
of the behavior of an aggregate of elastic spheres: falls in this
category, as does Rowe's stress-dilitancy theory (Rowe 1962). A
review- of mechanistic models can be found. in Schatz (1976). In
their most sophisticated form, mechanistic models consist of
elasto-visco-plastic matrices containing both cracks and spheri-
cal pores.‘: These models:can be computationally very difficult,
but provide a more.complete description of ' the full range of
stress-strain behavior than do simpler: models.

5.5 TERZAGHI'S E-LOG P RELATIONSHIP

Terzaghi (1943) presented a theory in which solid defor-
mation is described by an empirical relatioh between pore volume
change and strgsé;7;The Terzaghi_équatiéné‘are~baSically a one-
dimensional theory;iénd it is notyélear tﬁét the one-dimensional
equations can be correctly generalized to three dimensions
(Jaeger and Cook :1969). .For one-dimensional problems, however,
the theory has been widely accepted as an adequate representation
of the deformation of fine-grained soils. The applicability to
fine-grained, low porosity rocks has remained largely untested.

4The:one—dimensionalgconsolidation.fheory assumes. that there
z;areﬂno;lateralrdefOrmations~énd>tbat,the soil grains:are incom-

-pressible: Terzaghi:(1943). presented the theory in terms of the
void ratio, e-= volume of:voids .divided by:. the volume of solids,
. -and the effective vertical compressive stress p (p =-—0;).; The

relationship he derived assumed that void ratio varied with the

logarithm of the effective stress:
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e=¢e,-C. logw)(_EL%§§E3€>
o

where: Cc is known as the compression index
€., B, are the starting values of e and p.

For unloading situations where p is decreasing. (due to
decreasing overburden stress or increasing pore pressure), Ce
is replaced by Cg, the swelling coefficient. The swelling .
coefficient is also used for reloading, while p is less than its
previous highest value (Pp, the preconsolidation pressure).
Two other coefficients are commonly used with Terzaghi's theory:
ay and my. Their definitions are:

o, = oe _ -—.u34 Cc
op P
m - —O&z _ 1 oe _ —H34 C.
v = SR
op I+e  op P()+e)

Note that my ié equivalent to the compaction coefficient
Cn (equation [9]).

5.6 TIME-DEPENDENT BEHAVIOR

Little experimental work has been performed to assess the
time-dependency of deformations. In general, it is assumed that
most apparent time-dependency is merely due to the time required
for excess pore pressures to be dissipated.. However, there is
evidence that at least for shales, substantial creep strains can
follow the instantaneous elastic strains. J
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5.7 TEMPERATURE EFFECTS

Temperature effects are fairly well understood. The assump-
tions that the coefficient of thermal expansion is both isotropic
and independent of temperature and stress level are not necessary
to the theory set out in Section 2.1. We know of no data which
indicate that these are not adequate approximations.

There is evidence that the stress-strain relationship is
temperature-dependent. Van Gonten and Choudhary (1969) found
that compressibility increased by about 20 percent as the
temperature was raised from room temperature to 400°F. 1In
addition, the rate of plastic flow is temperature-dependent in

most materials.
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6.0 CHEMICAL EFFECTS

All of the preceding material has focused on the effects on
deformation of stresses, temperatures, pore-fluid pressures, and
time. The only other physical processes that appear able to
significantly affect deformation are chemical processes. These
include such effects as leaching and precipitation of minerals
and chemical reactions induced by changing temperature, pressure,
or pore fluid chemistry. We have found no documented evidence of
chemical processes (other than massive dissolution of carbonates)
seriously affecting deformations. '




32




33

7.0 PARAMETER ESTIMATION

Due to the great difficulty of obtaining representative
parameter values from lab tests on core samples, there may in
some cases be advantages to measuring subsidence parameters
indirectly by field measurements of storage coefficients (from
pump tests) and barometric efficiencies.

Several of the parameters used in the above equations can be
determined relatively easily. Thermal expansion coefficients
vary little between geologic materials and are readily measured
in the laboratory. The matrix material bulk modulus Kg is
also relatively easily measured in the laboratory. Poisson's

~ratio is not highly variable for different materials and thus can
often be estimated with sufficient accuracy. Combining these
paraneters with indirect measurements of performance such as
storage coefficients and barometric efficiencies should in many
cases allow reasonably accurate deduction of material behavior

models.
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LIST OF SYMBOLS

‘Description

Coefficient of compressibility = ée,/dp

Barometric efficiency = pore pressure
change/atmospheric pressure change

Compression index
Compaction coefficient = O€; /op
~ i
Pore compressibility = < 2Ve

P Y7 V% op

Compression index for unloading,
Terzaghi theory. Swelling coefficient.

Stress-strain matrix. D 8 =8g for no
pore pressure or temperature.

Void ratio = W/Vg

Young's modulus

Acceleration of gravity
Shear modulus
Bulk modulus

Bulk modulus of pore fluid

Bulk modulus of solid matrix material
~ "Special vector: mt = <11100 0>

- Coefficient of volume compressiblity
=0z JoP

Porosity, W /V

Vertical effective stress in Terzaghi

Pore-fluid pressure




Symbol

Dimensions

L—-I

L.3
LS
LB

ML T2
ML-I T ~2
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Description

Storage coefficient, specific
storativity

Subscript indicates tangential modulii
for nonlinear materials

Displacements in x,y,z directions
Overall volume of sample

Volume of pores

Volume of solid matrix material

Volume of water squeezed out of sample
Coordinate directions. =z = elevatioﬁ

Coefficient of isotropic linear thermal
expansion

Shear strains

Indicates a small variation in a
parameter

Direct strains.

Total strain vector §T=-. {EXELE; Ixy Xy X‘ax >

Elastic strain vector

Volumetric strain in matrix material due
to pore-pressure and temperature

Viscous and/or plastic strains vector
Volumetric strain = & + €, vt &,

Stresses in x,y,z directions

Total stress vector gT.-: L0, Oy T, ’[‘xy Tz Tax>




Symbol

T;(Yl ’rYi lTZX

Dimensions

ML T

[ VTR
ML T2
ML T

ML

ML T2
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Description

Effective stress vector g' =0 + Pm

=L
Mean normal stress Op =3 (O‘x + 0y +03z)
Mean normal effective stress ¢, =Op, + P

Lame elasticity coefficient
Density of pore fluid

Shear stresses. T&y = shear stress on
x-plane in y-direction

Poisson's ratio






