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Screening p-hackers: Dissemination noise as bait
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We show that adding noise before publishing data effectively screens p-hacked findings:
spurious explanations produced by fitting many statistical models (data mining). Noise
creates “baits” that affect two types of researchers differently. Uninformed p-hackers,
who are fully ignorant of the true mechanism and engage in data mining, often fall
for baits. Informed researchers, who start with an ex ante hypothesis, are minimally
affected. We show that as the number of observations grows large, dissemination
noise asymptotically achieves optimal screening. In a tractable special case where the
informed researchers’ theory can identify the true causal mechanism with very few
data, we characterize the optimal level of dissemination noise and highlight the relevant
trade-offs. Dissemination noise is a tool that statistical agencies currently use to protect
privacy. We argue this existing practice can be repurposed to screen p-hackers and thus
improve research credibility.

p-hacking | research integrity | dissemination noise | privacy

In the past 15 y, academics have become increasingly concerned with the harms of
p-hacking: researchers’ degrees of freedom that lead to spurious empirical findings. For the
observational studies that are common in economics and other social sciences, p-hacking
often takes the form of multiple testing: attempting many regression specifications on
the same data with different explanatory variables, without an ex ante hypothesis, and
then selectively reporting the results that appear statistically significant. Such p-hacked
results can lead to misguided and harmful policies, based on a mistaken understanding
of the causal relationships between different variables. Recent developments in data and
technology have also made p-hacking easier: Today’s rich datasets often contain a large
number of covariates that can be potentially correlated with a given outcome of interest,
while powerful computers enable faster and easier specification-searching.

In this paper, we propose to use dissemination noise to address and mitigate the
negative effects of p-hacking. Dissemination noise is pure white noise that is intentionally
added to raw data before the dataset is made public. Statistical agencies, such as the US
Census Bureau, already use dissemination noise to protect respondents’ privacy. Our
paper suggests that dissemination noise may be repurposed to screen out p-hackers.
Noise can limit the ability of p-hackers to “game” standards of evidence by presenting
spurious but statistically significant results as genuine causal mechanisms. We show that
the right amount of noise can serve as an impediment to p-hacking, while minimally
impacting honest researchers who use data to test an ex ante hypothesis.

p-Hacking. Spurious results in many areas of science have been ascribed to the ability
of researchers to, consciously or not, vary procedures and models to achieve statistically
significant results. The reproducibility crisis in psychology has been blamed to a large
extent on p-hacking (1–3). (4) evaluate experiments in economics and find a significant
number of experiments that do not replicate.*

Most empirical work in economics and other social sciences are observational studies
that use existing field data, not experiments that produce new data. Observational studies
lead to a different sort of challenge for research credibility, where p-hacking stems
mostly from discretion in choosing explanatory variables and econometric specifications.
In experimental work, one remedy for p-hacking is preregistration: Researchers must
describe their methods and procedures before data are collected. But this solution is not
applicable for observational studies because researchers may have already accessed the
public dataset before preregistering.

Dissemination Noise. Dissemination noise is currently used by major statistical agencies
to protect people’s privacy. The US Census Bureau, for instance, only disseminates a
noisy version of the data from the 2020 Census. The practice is not new. Previously, the

*See also refs. 5 and 6. Imai et al. (7) find evidence against p-hacking in experimental economics.

Significance

Motivated by recent problems
with research integrity in the
behavioral sciences, we develop a
model of researcher incentives
and propose “dissemination
noise” as a way to screen
p-hacked findings that arise
from data mining. In our model,
p-hackers use observational data
to uncover spurious explanatory
mechanisms, while honest
researchers use the same data to
test ex ante hypotheses. We find
that intentionally adding noise to
data before making data public
helps distinguish spurious
correlations from genuine causal
mechanisms. We characterize the
optimal noise level in a tractable
special case. This approach
repurposes a privacy-protection
technique currently used by data
producers (e.g., the US Census
Bureau) to help improve
research credibility.

Author affiliations: aDepartment of Economics,
University of California, Berkeley, CA 94720; and
bDepartment of Economics, University of Pennsylvania,
Philadelphia, PA 19104

Author contributions: F.E. and K.H. designed research;
performed research; and wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1F.E. and K.H. contributed equally to this work.
2To whom correspondence may be addressed. Email:
fede@econ.berkeley.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2400787121/-/DCSupplemental.

Published May 17, 2024.

PNAS 2024 Vol. 121 No. 21 e2400787121 https://doi.org/10.1073/pnas.2400787121 1 of 6

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2400787121&domain=pdf&date_stamp=2024-05-10
https://orcid.org/0000-0002-1567-6770
https://orcid.org/0000-0001-5806-0370
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fede@econ.berkeley.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2400787121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2400787121/-/DCSupplemental


Bureau has released a tool called “On the map” whose underlying
data was infused with noise. Even earlier technologies for
preserving respondent confidentiality like swapping data and
imputing data can also be interpreted as noisy data releases. The
contribution of our paper is to propose an alternative use for
dissemination noise.

Setup and Key Results. We consider a society that wants to learn
the true cause behind an outcome variable. Researchers differ
in their expertise: Some are mavens whose domain knowledge
narrows down the true cause to a small set of candidates, and
others are hackers with no prior information about the true cause.
Researchers derive utility both from reporting the true cause and
from influencing policy decisions. So uninformed hackers have
an incentive to game the system by using the data to fish for a
covariate that would convince the policymaker.

We show that dissemination noise can help screen researcher
expertise by introducing spurious correlations that can be proven
to be spurious. These noise-induced correlations act like baits
for p-hackers. But at the same time, they also make the data less
useful for the informed mavens who use the data to test a specific
ex ante hypothesis.

We explore this trade-off in our model. We show that as
the number of observations grows large, dissemination noise
asymptotically achieves optimal screening. In a tractable special
case where the informed researchers’ theory can identify the true
cause with very few data, we characterize the optimal level of
dissemination noise and derive comparative statics. The key
intuition is that a small amount of noise hurts hackers more
than mavens. All researchers act strategically to maximize their
expected payoffs, but their optimal behavior differs. Mavens only
entertain a small number of hypotheses, so a small amount of
noise does not greatly affect their chances of detecting the truth.
Hackers, by contrast, rationally try out a very large number of
covariates because they have no private information about the
true cause. The hackers’ data mining amplifies the effect of even
a small amount of noise, making them more likely to fall for
a bait and get screened out. So, adding noise grants an extra
informational advantage to the mavens, whose prior knowledge
pinpoints a few candidate covariates. The hackers get screened
out precisely because they (rationally) p-hack out of complete
ignorance about the true cause.

We focus on a setting where the types of researchers primarily
differ in terms of their expertise, not their incentives or biases.
While our main results do allow the mavens and the hackers
to assign different weights to correctly reporting the true cause
versus influencing policy-making, our results are mainly driven
by the fact that only the mavens have private information
about the true cause. In terms of the classification of different
kinds of p-hacking practices (see, for example, ref. 8), we focus
on the problem of deterring capitalization on chance, where
the researcher has no preconceived story but fishes around for
anything that appears statistically significant in the data. We
are not studying confirmation bias, where a researcher with a
preconceived story looks for evidence that supports the story
while discarding or downplaying evidence to the contrary.

We use a stylized model to represent researchers analyzing
existing observational data for associations. Our intention is
to explore a channel for screening researcher expertise in a
simple and tractable setup. Of course, the practical usefulness of
dissemination noise will need to be evaluated in more specific and
realistic domains. Also, our focus is on simple correlational studies
that use existing data: other research designs such as experiments

that acquire new data or sophisticated econometric methods that
exploit special structure of the data to credibly infer causation are
outside of the scope of this work.

Alternative Solutions to p-Hacking. As already mentioned, the
most common proposal to remedy p-hacking is preregistration.
While it is a very good idea in many scientific areas, it is of limited
use for observational studies, which are ubiquitous in the social
sciences. Not only does it preclude useful exploratory work, it is
also impossible to audit or enforce because publicly available data
can be privately accessed by a researcher before preregistration.

A second solution is to change statistical conventions and
make p-hacking more difficult. An extreme example is banning
the use of statistical inference altogether (9). A less drastic idea
is contained in ref. 10, which proposes to lower the P-value
threshold for statistical significance by an order of magnitude—
from 5% to 0.5%. Of course, this makes p-hacking harder, but
a p-hacker armed with a sufficiently “wide” dataset and cheap
enough computation power can discover spurious correlations
that satisfy any significance threshold. We address this idea within
our model and argue that our proposed use of dissemination noise
is largely complementary to requiring more demanding statistical
significance.

An idea related to our proposal is simply to reserve data for out-
of-sample testing. Typically, the observations are partitioned into
two portions. One portion is released publicly, and the rest is a
“hold-out” dataset reserved for out-of-sample testing. We instead
focus on a model of noise where each observation of each covariate
is independently perturbed, which more closely resembles the
kind of dissemination noise currently in use for privacy purposes.
Our central message is that the current implementation of noise
can be repurposed to screen out p-hacking. In addition, the
kind of dissemination noise we study may be more applicable
for datasets where the observations are not generated from an
i.i.d. process, and thus it is less reasonable to designate some
observations as a hold-out dataset (e.g., observations are different
days in a time series). In an earlier version of the paper,† we show
that our result about the benefit of a small amount of noise when
mavens’ theory can identify the true model with very few data
continues to hold in the non-i.i.d. setting.

The out-of-sample approach is the focus of ref. 12. We differ
in that we consider a world with two kinds of researchers and
the dissemination noise here serves a screening role to separate
the two types who act strategically to maximize their expected
payoffs.

Related Literature. In economics, there is a recent strand of
literature that seeks to understand the incentives and trade-
offs behind p-hacking. Refs. 13–18 all study different games
between a researcher (an agent) and a receiver (a principal). The
agent has access to some p-hacking technology, which takes
various forms such as repeatedly taking private samples and
then selectively reporting a subset of favorable results to the
principal, or sampling publicly but strategically stopping when
ahead. These papers seek to better understand the equilibrium
interaction between p-hacking agents and their principals, and
study how such interactions are affected by variations in the
hacking technology.

This literature differs from our work in two ways. First, they
consider the case where hacking is costly. On this dimension,
these papers about p-hacking are related to the broader literature

†See ref. 11, available at https://arxiv.org/pdf/2103.09164.pdf.
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on “gaming,” where agents can undertake costly effort to improve
an observable signal (here, the P-value) beyond its natural level
(e.g., ref. 19). We instead consider hackers who incur zero cost
from p-hacking, motivated by our focus on researchers who
data mine an existing dataset (which is essentially free with
powerful computers). Absent any interventions, equilibria with
zero hacking or gaming cost would be uninteresting. Our focus is
instead on a specific intervention, dissemination noise, that can
help screen out the p-hackers even though they face no hacking
costs. The second difference is that these papers do not consider
the problem of expertise screening. In our world, the principal’s
main problem is to provide sufficiently informative data to agents
who have expertise while distorting the data enough to mislead
another type of agent who tries to make up for their lack of
expertise with p-hacking.

Di Tillio et al. (20) also study a game between a p-hacker and
a principal, but give the agent some private information and the
ability to select an area to do research in. This is a mechanism for
hacking that is outside of the scope of our paper.

1. Model and Asymptotically Optimal
Screening Using Dissemination Noise

1.1. The Baseline Model. We propose a model that captures
the essence of how dissemination noise allows for expertise
screening in an environment where nonexpert agents can p-hack,
while keeping the model tractable enough to allow for analytic
solutions.
1.1.1. The raw dataset. Consider an environment where each unit
of observation is associated with an outcome Y and a set A of
potential causal covariates (X a)a∈A. The outcome variable and all
the covariates are binary. Suppose the dataset is wide, so the set
of potential causes for the outcome is large relative to the number
of observations. In fact, we assume a continuum of covariates; so
A = [0, 1]. For instance, the covariates may indicate the presence
or absence of different SNPs in a person’s genetic sequence, while
the outcome refers to the presence or absence of a certain disease.

There is one covariate a∗ ∈ A, the true cause, with P[X a∗ =
Y ] =  for some  ∈ (1/2, 1]. So the true cause is positively
correlated with the outcome, but it may not be perfectly
correlated. For instance, a∗ is the one SNP that causes the disease
in question. There is also a red herring covariate ar

∈ A that is
independent of Y . The red herring represents a theoretically
plausible mechanism for the outcome Y that can only be
disproved with data. For instance, ar might be a SNP that seems
as likely to cause the disease as a∗ based on a biological theory
about the roles of different SNPs.

Nature draws the true cause a∗ and the red herring ar ,
independently and uniformly from A. Then Nature generates the
raw dataset (Yn, (X a

n )a∈[0,1]) for observations 1 ≤ n ≤ N . First,
the values of the true cause in the N observations (X a∗

n )1≤n≤N
are generated independently, each equally likely to be 0 or 1.
Then, each Yn is generated to match X a∗

n with probability  for
1 ≤ n ≤ N , independently across n. Finally, covariates X a

n for
a 6= a∗, 1 ≤ n ≤ N are generated, each equally likely to be 0 or 1,
independent of each other and of all other random variables. (So
there is a continuum of independent Bernoulli random variables.)
Equivalently, once a∗ and ar are drawn, we have fixed a joint
distribution between Y and the covariates (X a)a∈A, and the
raw dataset consists of N independent draws from this joint
distribution. For instance, this may represent a dataset that shows
the complete genetic sequences of N individuals and whether
each person suffers from the disease.

1.1.2. Players and their incentives. There are three players in the
model: a principal, an agent, and a policymaker. The principal
owns the raw dataset, but lacks the ability to analyze the
data and cannot influence policy-making norms. The principal
disseminates a noisy version of the dataset, which we describe
below. The agent uses the disseminated data to propose a
covariate, â. Finally, a policymaker evaluates the agent’s proposal
on the raw dataset using an exogenous test. We think of the
agent as proposing an intervention: If this proposal passes, the
policymaker will implement a policy that changes X â in order to
affect the value of Y . In the background, we implicitly assume
that the principal grants the policymaker access to the raw data
to conduct the test. [Alternatively, an earlier version of this paper
(11) supposes that the principal periodically publishes noisy
versions of the raw data for these tests. Such data releases will
diminish the principal’s ability to screen out p-hackers in the
future.]

The policymaker’s role is mechanical, and restricted to
deciding whether the agent’s proposal passes an exogenous test.
We say that the proposal a passes if the covariate X a equals the
outcome Y in M = b · Nc out of N observations, and that it
fails otherwise. The parameter  is an exogenous passing threshold
with 1/2 <  <  . The policymaker will adopt a policy proposal
if and only if it passes the test on the raw data. Passing the test
does not require a to be the true cause of Y , for we could have
some covariate a 6= a∗ where Yn = X a

n for at least M observations
by random chance.‡

The agent is either a maven (with probability 1 − h) or a
hacker (with probability h). Mavens and hackers differ in their
expertise. A maven knows that the true cause is either a∗ or ar , and
assigns them equal probabilities, but a hacker is ignorant about
the realizations of a∗ and ar . The idea is that a maven uses domain
knowledge (e.g., biological theory about the disease Y ) to narrow
down the true cause to the set {a∗, ar

}. A hacker, by contrast, is
completely uninformed about the mechanism causing Y .

The agent’s payoffs reflect both a desire for reporting the true
cause and a desire for policy impact. If a type � agent proposes a
when the true cause is a∗, then his payoff is

w� · 1{a=a∗} + (1− w�) · 1{at least b·Nc observations n have Yn=X a
n }.

Here, we interpret 1{a=a∗} as the effect of proposing a on
the agent’s long-run reputation when the true cause a∗ of the
outcome Y eventually becomes known. The other summand
models the agent’s gain from proposing a policy that passes the
policymaker’s test and gets implemented. The relative weight
w� ∈ [0, 1] on these two components may differ for the two
types of agent. Our main results in this section are valid for any
values of wmaven and whacker in [0, 1], but some later results in
Section 2 will require restrictions on wmaven.

The principal obtains a payoff of 1 if a true cause passes, a
payoff of −1 if any other a 6= a∗ passes, and a payoff of 0 if
the agent’s proposal is rejected. The principal’s payoff reflects an
objective of maximizing the positive policy impact of the research
done on their data.
1.1.3. Dissemination noise. The principal releases a noisy dataset
D(q) by perturbing the raw data. Specifically, they choose a level
of noise q ∈ [0, 1/2], and every binary realization of each covariate
is flipped independently with probability q. So the noisy dataset
D(q) is (Yn, (X̂ a

n )a∈A), where X̂ a
n = X a

n with probability 1 − q,
and X̂ a

n = 1−X a
n with probability q. The principal’s choice of q is

‡There is no reward in our model for disproving a hypothesis.
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common knowledge. A covariate a that matches the outcome in
at least M observations in the noisy dataset but would not pass the
policymaker’s test—that is X̂ a

n = Y for at least M observations
but X a

n = Y for fewer than M observations—is called a bait.
The form of noise in our model is motivated by the

dissemination noise currently in use by statistical agencies,
like the US Census Bureau. One could imagine other ways
of generating a “noisy” dataset, such as selecting a random
subset of the observations and making them fully uninformative,
which corresponds to reserving the selected observations as a
hold-out dataset for out-of-sample testing. Our analysis explores
the possibility of repurposing the existing practice of adding
dissemination noise, which more closely resembles perturbing
each data entry independently than withholding some rows of
the dataset altogether.§
1.1.4. Remarks about the model. We comment on our assump-
tions regarding the agents and the data in our model.

First, our model features very powerful p-hackers. A fraction h
of researchers are totally ignorant about the true cause, but they
are incentivized to game the system by fishing for some covariate
that plausibly explains the outcome variable and passes the
policymaker’s test. This kind of p-hacking by multiple hypothesis
testing is made easy by the fact that hackers have a continuum
of covariates to search over and incur no cost from data mining.
Our assumptions represent today’s wide datasets and powerful
computers that enable ever easier p-hacking. Our analysis suggests
that dissemination noise can improve social welfare, even in
settings where p-hacking is costless.

Second, the principal is an entity that wishes to maximize the
positive social impact of the research done using their data but
has limited power in influencing the institutional conventions
surrounding how research results are evaluated and implemented
into policies. In the model, the principal cannot change the
policymaker’s test. Examples include private firms like 23andMe
that possess a unique dataset but have little say in government
policy-making, and agencies like the US Census Bureau that
are charged with data collection and data stewardship but do not
directly evaluate research conclusions. Such organizations already
introduce intentional noise in the data they release for the purpose
of protecting individual privacy, so they may be willing to use the
same tool to improve the quality of policy interventions guided
by studies done on their data. In line with this interpretation of
the principal, they cannot influence the research process or the
policymaker’s decision, except through changing the quality of
the disseminated data. In particular, the principal cannot impose
a cost on the agent to submit a proposal to the policymaker, write
a contract to punish an agent who proposes a misguided policy,
or change the protocols surrounding how proposals get tested
and turned into policies.

Third, the dataset in our model contains just one outcome
variable, but in reality a typical dataset (e.g., the US Census data)
contains many outcome variables and can be used to address
many different questions. We can extend our model to allow for
a countably infinite number of outcome variables Y 1, Y 2, . . .,
with each outcome associated with an independently drawn true
cause and red herring. After the principal releases a noisy version
of the data, one random outcome becomes relevant and the agent
§For instance, the Bureau publishes the annual Statistics of U.S. Businesses that contains
payroll and employee data of small U.S. businesses. Statisticians at the Bureau say that
separately adding noise to each business establishment’s survey response provides “an
alternative to cell suppression that would allow us to publish more data and to fulfill more
requests for special tabulations” (21). The dataset has been released with this form of
noise since 2007 (22). For the 2020 Census data, the Bureau will add noise through the
new differentially private TopDown Algorithm that replaces the previous methods of data
suppression and data swapping (23).

proposes a model for this specific outcome. Our analysis remains
unchanged in this world. This more realistic setting provides a
foundation for the principal not being able to screen the agent
types by eliciting their private information about the true cause
without giving them any data. Who is a maven depends on the
research question and the outcome variable being studied, and it
is infeasible to test a researcher’s domain expertise with respect
to every conceivable future research question.

Fourth, the policymaker’s exogenous test only evaluates how
well the agent’s proposal explains the raw dataset and does not
provide the agent any other way to communicate his domain
expertise. Such a convention may arise if domain expertise
is complex and difficult to convey credibly: for instance, an
uninformed hacker who has found a strong association in the
data can always invent a plausible-sounding story to justify why
a certain covariate causes the outcome. We also assume that the
policymaker’s test is mechanically set and does not adjust to the
presence of p-hackers. This represents a short-run stasis in the
science advocacy process or publication norms—for instance,
while we know how to deal with multiple hypotheses testing, a
vast majority of academic journals today still treat P < 0.05
as a canonical cutoff for statistical significance. Our analysis
suggests that dissemination noise can help screen out misguided
policies in the short run, when the principal must take as given a
policymaking environment that has not adapted to the possibility
of p-hacking.

To conclude, our basic model is meant to isolate the tradeoff
between the cost imposed by noise on honest researchers and the
benefit of screening p-hackers. A discussion of how the results are
affected by relaxing our assumptions is in Section 3.

1.2. Screening Using Noise. We first derive the optimal behavior
of the hacker and the maven.

Lemma 1. For any q ∈ [0, 1/2), it is optimal for the hacker to
propose any a ∈ A that satisfies X̂ a

n = Yn for every 1 ≤ n ≤ N . It is
optimal for the maven to either propose a ∈ {a∗, ar

} that maximizes
the number of observations n for which X̂ a

n = Yn (and randomize
uniformly between the two covariates if there is a tie) or to propose
any a ∈ A that satisfies X̂ a

n = Yn for every 1 ≤ n ≤ N .

Given the policymaker’s exogenous test, hackers find it optimal
to “maximally p-hack.” Depending on the relative weight wmaven
that mavens put on reporting the true cause, they will either use
the noisy data to decide between their two true-cause candidates
or engage in p-hacking. If the principal releases data without
noise, then hackers will propose a covariate that is perfectly
correlated with Y in the raw data. This covariate passes the
policymaker’s test, but it leads to a misguided policy with
probability 1. The payoff to the principal from releasing the
data without noise is therefore no larger than 1− 2h.

In fact, the principal cannot hope for an expected payoff
higher than 1 − h. This first-best benchmark corresponds to
the policymaker always implementing the correct policy when the
agent is a maven and not implementing any policy when the
agent is a hacker. We show that with an appropriate level of
dissemination noise, the principal’s expected payoff approaches
this first-best benchmark as the number of observations grows
large.

Proposition 1. For every q with 1− < q < 1/2, the principal’s
payoff from using dissemination noise q converges to 1 − h as
N →∞.
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That is to say, dissemination noise is asymptotically optimal
among all mechanisms for screening the two agent types,
including mechanisms that take on more complex forms that
we have not considered in our analysis.

The intuition is that noise does not prevent the agent from
finding a policy that passes the policymaker’s test whether his
private information narrows down the true covariate to a small
handful of candidates. But if the agent has a very large set of
candidate covariates, then there is a good chance that the noise
turns several covariates from this large set into baits. For example,
if N = 100,  = 0.95,  = 0.9, and q = 0.15, a covariate
that perfectly correlates with Y in the noisy dataset has a 90%
probability of being a bait. In the same environment, a maven
who restricts attention to only two covariates (a∗ and ar) and
proposes the covariate that correlates more with the outcome
only fails the policymaker’s test about 1% of the time. (As N
grows for a fixed value of q in the range given by Proposition
1, the probability of a maven proposing a covariate other than
a∗ or ar under his optimal strategy converges to zero). Hackers
fall for baits at a higher rate than mavens because they engage in
p-hacking and try out multiple hypotheses. Yet p-hacking is the
hackers’ best response, even though they know that the dataset
contains baits.

While Proposition 1 applies asymptotically, the next result
gives a lower bound on the number of observations such that a
given level of noise is better than not adding any noise.

Proposition 2. For every q with 1−  < q < 1/2, the principal
gets higher expected payoff with q level of noise than with zero noise
whenever

N ≥ max
{
− ln(h/8)

2(q +  − 1)2 ,
−2 ln(h/32)

( (1− q) + (1−  )q − 0.5)2 ,

− ln(h/16)
2( − )2

}
.

For example, when  = 0.95,  = 0.9, h = 0.1, this result
says q = 0.15 is better than q = 0 whenever N ≥ 1,016.

2. Optimal Dissemination Noise in a Special
Case

We now turn to a tractable special case where we can characterize
the optimal level of noise with any finite number N of
observations. We make two modifications relative to the baseline
model discussed before.

First, we suppose the environment is such that the maven’s
theory only requires a minimal amount of data to distinguish
a∗ from ar . Specifically, suppose we always have Yn = X a∗

n and
X ar

n = 1 − X a∗
n for every observation n. Unlike in the baseline

model, the true cause is now perfectly correlated with the outcome
Y and perfectly negatively correlated with the red herring X ar

.
We think of X a∗ as the causal covariate that determines the
values of both X ar

and Y . As before, the principal gets 1 if a
proposal targeting a∗ passes, −1 if any other proposal passes,
and 0 if the proposal is rejected. Note that even though X ar

is perfectly negatively correlated with the outcome, it does not
cause the outcome. So a policy intervention that changes X ar

is
as ineffective at changing the outcome as a policy targeting any
other covariate a 6= a∗.

Second, we suppose the policymaker uses the most stringent
test. The proposal a passes if and only if Yn = X a

n for all

1 ≤ n ≤ N . (The principal can only do worse if the policymaker
uses a more lenient test, as we will later show.)

As before, suppose agents maximize a weighted sum between
reporting the true cause and passing the policymaker’s test. Given
the form of the test, the type � agent’s utility from proposing a
when the true cause is a∗ is:

w� · 1{a=a∗} + (1− w�) · 1{Yn=X a
n for every 1≤n≤N }.

We suppose 0 ≤ whacker ≤ 1 and 1/2 < wmaven ≤ 1.

Lemma 2. For any q ∈ [0, 1/2], it is optimal for the hacker to
propose any a ∈ A that satisfies X̂ a

n = Yn for every 1 ≤ n ≤ N , and
it is optimal for the maven to propose a ∈ {a∗, ar

} that maximizes
the number of observations n for which X̂ a

n = Yn (and randomize
uniformly between the two covariates if there is a tie).

When the agents follow the optimal behavior described in
Lemma 2, the principal’s expected utility from choosing noise
level q is −hVhacker(q) + (1 − h)Vmaven(q), where V�(q) is
the probability that an agent of type �’s proposal passes the
policymaker’s test in the raw data, when the noise level is q. The
next result formalizes the core idea that a small amount of noise
harms the hackers more than the mavens.

Lemma 3. V
′

maven(q) = −
(2N−1

N
)
NqN−1(1 − q)N−1 and

V
′

hacker(q) = −N (1−q)N−1. In particular, V
′

maven(0) = 0 while
V
′

hacker(0) = −N .

We can show that the principal’s overall objective
−hVhacker(q)+(1−h)Vmaven(q) is strictly concave, and therefore
the first-order condition characterizes the optimal q, provided the
solution is interior:

Proposition 3. If h
1−h ≤

(2N−1
N

)
(1/2)N−1 then the optimal

noise level is q∗ =
(

h
1−h

1
(2N−1

N )

)1/(N−1)
. More noise is optimal

when there are more hackers and less is optimal when there are more
observations. If h

1−h ≥
(2N−1

N
)
(1/2)N−1 then the optimal noise

level is q∗ = 1/2.

Proposition 3 gives the optimal dissemination noise in closed
form. With more hackers, screening out their misguided policies
becomes more important, so the optimal noise level increases.
With more observations, the same level of noise can create more
baits, so the principal can dial back the noise to provide more
accurate data to help the mavens.

2.1. Dissemination Noise and P-Value Thresholds. Now suppose
the principal can choose both the level of noise q ∈ [0, 1/2]
and a passing threshold N ∈ {1, . . . , N } for the test, so that a
proposal passes whenever X a

n = Yn for at least N out of the N
observations.

Proposition 4. When the principal can optimize over both the
passing threshold and the noise level, the optimal threshold is N = N ,
and the optimal noise level is the same as in Proposition 3.

We can interpret this result to say that stringent P-value
thresholds and dissemination noise are complementary tools
for screening out p-hackers and misguided policies. Think of
different passing thresholds as different P-value thresholds, with
the threshold N = N as the most stringent P-value criterion
that one could impose in this environment. (10)’s article about
lowering the “statistical significance” P-value threshold for new
findings includes the following discussion:
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“The proposal does not address multiple-hypothesis
testing, P-hacking, […] Reducing the P value threshold
complements—but does not substitute for—solutions to
these other problems.”

Our result formalizes the sense in which reducing P-value
thresholds complements dissemination noise in improving social
welfare from research.

3. Concluding Discussion

We argue that infusing data with noise before making data public
has benefits beyond the privacy protection guarantees for which
the practice is currently being used. Noise baits uninformed
p-hackers into reporting correlations that can be shown to be
spurious. The paper investigates these ideas in a simple model that
captures the trade-off between preventing hackers from passing
off false findings as true and enabling legitimate research that
seeks to test an ex ante hypothesis.

In an earlier version of the paper (11), we discuss extensions
that relax the simplifying assumptions of our model.

1. We consider a situation where the N observations of each
covariate are not i.i.d. We find that a small amount of
dissemination noise still strictly improves the principal’s
expected payoff in this setting.

2. We relax the assumption that there is a continuum of
covariates. We find that fixing the number of observations, the
same result goes through whenever the number of covariates
is finite but large enough.

3. We suppose there is some chance that none of the covariates
is a true cause for the outcome, so agents are asked to either
report a cause or to say that no true cause exists. Our results
are also robust to this extension.

The earlier paper (11) also contains a numerical simulation
showing that the idea and the basic trade-offs for dissemination
noise continue to hold in a more realistic empirical setting that
is richer than our simple theoretical model. The simulation also
shows that adding noise to the outcome variable may result in an
overall smaller optimal amount of noise.

Finally, this earlier version considers a dynamic model with
periodic noisy releases of a single dataset, where a finding
submitted for validation in a given month is tested against the
next month’s release of noisy data. We show that it remains
optimal to release data with a strictly positive amount of noise, but
over time the hackers’ access to all past data releases diminishes
the effectiveness of noise.

Data, Materials, and Software Availability. There are no data underlying
this work.
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