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Controlling the Movement of a TRR Spatial Chain
with Coupled Six-bar Function Generators for

Biomimetic Motion

Mark M. Plecnik∗
Robotics and Automation Laboratory

Department of Mechanical and Aerospace Engineering
University of California
Irvine, California 92697

Email: mplecnik@uci.edu

J. Michael McCarthy
Robotics and Automation Laboratory

Department of Mechanical and Aerospace Engineering
University of California
Irvine, California 92697

Email: jmmccart@uci.edu

This paper describes a synthesis technique that constrains
a spatial serial chain into a single degree-of-freedom mech-
anism using planar six-bar function generators. The synthe-
sis process begins by specifying the target motion of a serial
chain that is parameterized by time. The goal is to create
a mechanism with a constant velocity rotary input that will
achieve that motion. To do this we solve the inverse kinemat-
ics equations to find functions of each serial joint angle with
respect to time. Since a constant velocity input is desired,
time is proportional to the angle of the input link, and each
serial joint angle can be expressed as functions of the input
angle. This poses a separate function generator problem to
control each joint of the serial chain. Function generators
are linkages that coordinate their input and output angles.
Each function is synthesized using a technique that finds 11
position Stephenson II linkages, which are then packaged
onto the serial chain. Using pulleys and the scaling capa-
bilities of function generating linkages, the final device can
be packaged compactly. We describe this synthesis procedure
through the design of a biomimetic device for reproducing a
flapping wing motion.

1 Introduction
This paper presents a procedure for constraining multi-

degree-of-freedom spatial chains into single degree-of-
freedom mechanisms with each joint angle controlled by a
Stephenson II six-bar function generator. We choose to illus-
trate this method by dedicating this paper to the example de-

∗Address all correspondence to this author.

sign of a biomimetic device that aims to reproduce the flap-
ping motion of a bird wing through the control of a spatial
four degree-of-freedom TRR chain.

The synthesis process begins by defining the periodic
motion of a TRR spatial chain by sequences of joint angles
spaced at constant time steps. Joint angle data sequences are
then aligned to coordinate with the motion of a fully rotat-
able input crank, then transformed into continuous periodic
functions via Fourier series. A Fourier-based function of the
input crank angle is created for each of the four serial joint
angles of the TRR chain. These four input-output functions
are then mechanized via the design of Stephenson II six-bar
function generators. The resulting Stephenson II function
generators can be packaged onto the TRR chain in manner
such that their input cranks share a constant angular veloc-
ity and the motion of their output links is transmitted to the
appropriate joint. The function generators can be packaged
compactly onto a final device since coordinated input-output
angles are maintained through stretch-rotations.

The final device creates a complex spatial movement
from a constant rotary input. Since the device is timed by this
input, the velocities and accelerations of the spatial chain are
designed on top of its position requirements. This is evident
in the wing mechanism by a slow extended downstroke and
a quick contracted upstroke characteristic of the vortex ring
gait.

Furthermore, since six-bar function generators are capa-
ble of achieving 11 task positions, the mechanized motion is
fairly accurate to the desired motion. The synthesis equations
for Stephenson II function generators capable of achieving
11 task positions are formulated below and solutions are ob-



tained using a regeneration homotopy implemented by the
polynomial solver Bertini [1, 2]. Large solution sets are gen-
erated which create several linkage design alternatives.

2 Literature Review
Equations for the design of spatial linkages that reach

a finite number of positions were formulated by Roth [3, 4].
Sandor formulated spatial kinematics equations using a gen-
eral quaternion-operator method [5]. Suh used displacement
matrices to design RSSR linkages for rigid body guidance
[6]. Tsai and Roth formulated design equations for dyads
with various joints for rigid body guidance and function gen-
eration [7]. Sandor et al. formulated loop-closure equations
for the synthesis of spatial motion generators comprised of
various joint pairs, and provided a means for eliminating
branch defects [8].

Many researchers have contributed to the field of spatial
linkage design by formulating and solving equations for open
serial chains including SS dyads [9–11], CC dyads [12, 13],
RR dyads [14], RRR chains [15–17], PRS chains [18], RPS
chains [19], RP dyads [20], and RC dyads [21]. These works
construct closed loop mechanisms from open loop chains.
The works of Perez et al. [22], and Perez and McCarthy
[23,24] have generalized these theories to encompass a wide
variety of spatial chains. Simo-Serra and Perez-Gracia [25]
have introduced a new technique of synthesizing spatial tree
structures. Another approach is taken by Soh [26] who be-
gins by specifying a six degree-of-freedom spatial chain then
explores several ways to constrain it with TS chains. Our
work is most like Soh in that we first specify an open serial
chain, but instead of constraining it with more spatial chains
we use planar function generators.

Function generators were designed by Svoboda [27]
using nomographs. McLarnan [28] formulated the design
equations for Stephenson II and III, and Watt II six-bar func-
tion generators and solved them with the Newton-Raphson
method to obtain some solutions. Dhingra et al. [29] ap-
plied multihomogeneous homotopy method for the solution
of six-bar function generators capable of reaching nine po-
sitions. Luo and Dai [30] applied a method they termed the
Patterned Bootstrap method for the solution of 11 position
function generators. Plecnik and McCarthy [31] applied pa-
rameter homotopy methods for the design of 11 position six-
bar function generators.

Biomimetic flapping devices have seen much attention
in recent years. Banala et al. [32] designed a mechanism for
out-of-plane wing like motion with twist inspired by a hawk
moth that employs a planar five-bar and four-bar. McDon-
ald and Agrawal [33] designed a bio-inspired spherical four-
bar for micro air-vehicles using optimization. Sreetharan et
al. [34] and Teoh and Wood [35] utilize a spherical five-bar
for their Mobee and Robobee designs. Aerovironment, Inc.
patented technology that uses elliptical pulleys to create a
hummingbird-like flapping motion, Keenon et al. [36]. The
mechanical motion of insect wing folding has been studied
by Haas and Wootton [37]. Our work is different because we
utilize a new spatial synthesis technique and base our trajec-

Fig. 1. This figure was reprinted from Tobalske and Dial [38] and
illustrates the wing gait of an accelerating black-billed magpie

tory from data collected by [38].

3 Selection of a Spatial Chain
The goal of the example in this paper is to design a

biomimetic device that recreates the wing kinematics of a
black-billed magpie as documented by Tobalske and Dial
[38]. They placed markers on the wrists and wingtips of
these birds then recorded the frame by frame positions of
these markers using high speed video for various flying con-
ditions. The resulting data conveys information on the po-
sition and velocity of the wrist and wingtip. Tobalske and
Dial conclude that the magpie selects a vortex-ring gait when
accelerating that is characterized by generating lift only dur-
ing the downstroke. Their data appears in Fig. 1 which is
reprinted from Fig. 11 in [38]. The wrist locations are indi-
cated by open circles and the wingtip locations are indicated
by closed circles. The lateral view silhouette is in the up-
stroke/downstroke transition and the dorsal view silhouette is
at midpoint. The time step between points is approximately
constant. Our goal is to reproduce the motion documented in
Fig. 1 with a constrained spatial chain.

A spatial four degree-of-freedom TRR chain is selected
to represent the bones of the magpie. The T joint is placed
at the shoulder and R joints are used to represent the elbow
and wrist. The first axis of the T joint is perpendicular to
the transverse plane of the body (along the y-axis of Fig. 2)
and is measured by ψA. The second axis of the T joint is
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Fig. 2. The links of a TRR spatial chain correlate to the bones of a
bird’s wing. The magpie image is reprinted from [39]

perpendicular to the plane defined by the point locations of
the shoulder, elbow, and wrist joints and is measured by ψB.
This joint is parallel to the elbow and wrist R joints which
are located by distances l1 and l2 from the previous joint,
and measured by ψC and ψD, respectively. The wingtip is a
distance l3 away from the wrist joint.

The lengths of the humerus and radius/ulna links were
not measured but estimated by the authors of this paper as
l1 = 1.8 in and l2 = 2.3 in. The length of the hand wing was
obtained from the mean recorded by Tobalske and Dial of
l3 = 7.6 in.

The Denavit-Hartenberg convention is used to write the
kinematics equations of the TRR chain,

D̂(ψA,ψB,ψC,ψD) = X̂
(
−π

2
,0
)

Ẑ(ψA,0) X̂
(

π

2
,0
)

Ẑ(ψB,0)

× X̂(0, l1) Ẑ(ψC−ψB,0) X̂(0, l2) Ẑ(ψD−ψC,0) X̂(0, l3)
(1)
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(2)

Table 1. Coordinates of the wrist joint and the wingtip estimated
from Fig. 1. The time step between points is approximately constant

Wrist Wingtip

W1 ={1.79, 0.80, 3.55} V1 = {5.58, −2.87, 9.37}

W2 ={3.11, −0.05, 1.61} V2 = {8.97, −0.04, 6.52}

W3 ={3.37, −0.61, −0.24} V3 ={10.77, 0.68, 2.26}

W4 ={2.98, −0.30, −1.18} V4 = {9.63, 0.68, −1.10}

W5 ={2.10, 0.14, −1.40} V5 = {5.49, −1.08, −6.33}

W6 ={1.48, 0.26, −0.46} V6 = {1.66, −2.14, −7.49}

W7 ={0.91, 0.48, 1.08} V7 = {1.35, −5.62, −3.92}

W8 ={0.57, 0.89, 2.24} V8 = {2.67, −5.66, 3.42}

Dual quaternion transformations are described in McCarthy
and Soh [40]. Note that ψB, ψC, and ψD measure the angles
between the fixed y-axis and the humerus, radius/ulna, and
hand wing joints, respectively.

4 Motion of the Shoulder and Elbow Joints
The next step is to determine the motion of the spatial

chain from the data gathered in Fig. 1. To do this we first
determine the configurations of the shoulder-elbow TR sub-
chain defined by ψA, ψB, and ψC from the recorded wrist
positions. The two views of Fig. 1 were manually replotted
into the Solidworks sketch environment in order to obtain the
x, y, z coordinates of each point. This process produced in-
consistencies between views which were resolved by slightly
shifting some points. As well, the exact location of the shoul-
der joint was unknown and so needed to be estimated from
the silhouettes of Fig. 1. The result of this process is a set of
eight estimated point locations of the wrist that are spaced at
equal time steps, Table 1.

Table 1 describes a discrete periodic trajectory. The
number of points in this trajectory is increased by connecting
each data point with straight lines of points spaced apart by
∆P = 0.05 in . These points are expressed as,

Pi, j = Wi +
Wi+1−Wi

|Wi+1−Wi|
∆P j,

i = 1, . . . ,8
j = 0, . . . , li, li = max({m | m ∈ Z, ∆Pm < |Wi+1−Wi|})

(3)

where W9 evaluates to W1 when i = 8 in order to complete
the circuit. For convenience, we quickly abandon the i and j
indices for a single index k so that the new discretized trajec-
tory is Pk for k = 1, . . . ,n where n is the number of points in
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the sequence described in (3). That is,

Pk, k = 1, . . . ,n, for n =
8

∑
i=1

(li +1). (4)

Next we would like to map points Pk to configurations of
the shoulder-elbow TR subchain by solving the inverse kine-
matics. The shoulder-elbow TR subchain is a three degree-
of-freedom linkage that is fully determined when the point
location of the wrist joint is specified. To solve the inverse
kinematics, we separate out the first portion of the Denavit-
Hartenberg equations (1) that pertain to the TR subchain

D̂T R(ψA,ψB,ψC) = X̂(−π

2
,0)Ẑ(ψA,0)X̂(

π

2
,0)Ẑ(ψB,0)

×X̂(0, l1)Ẑ(ψC−ψB,0)X̂(0, l2)
(5)

D̂T R is a transformation that represents a translation to the
point location of the wrist and a rotation that aligns with the
radius/ulna link. D̂T R expands to

D̂T R = h0 +h1ε (6)

where h0 and h1 are the primal and dual parts, respectively,

and evaluate to

h0 =cos
ψA

2
cos

ψC

2
+


sin ψA

2 sin ψC
2

sin ψA
2 cos ψC

2

cos ψA
2 sin ψC

2


h1 =−

1
2

sin
ψA

2

(
l1 sin

(
ψB−

ψC

2

)
+ l2 sin

ψC

2

)
+

1
2


cos ψA

2

(
l1 cos

(
ψB− ψC

2

)
+ l2 cos ψC

2

)
cos ψA

2

(
l1 sin

(
ψB− ψC

2

)
+ l2 sin ψC

2

)
−sin ψA

2

(
l1 cos

(
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)
+ l2 cos ψC

2
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 (7)

The translation vector P of this transformation can be ex-
tracted by the relation

P =

Px
Py
Pz

= 2h1h∗0 (8)

where h∗0 is the quaternion conjugate of h0. We expand P to
obtain the inverse kinematics equations,

Px = cosψA (l1 cosψB + l2 cosψC) (9)
Py = l1 sinψB + l2 sinψC (10)
Pz =−sinψA (l1 cosψB + l2 cosψC) (11)

For the inverse kinematics, the wrist location {Px,Py,Pz}
is specified and joint angles ψA, ψB, ψC are solved for. The
unknown ψA is found by dividing (11) by (9) and taking the
arctan function,

ψA = arctan
−Pz

Px
(12)

In order to find ψB, we rearrange (9) and (10),

l2 cosψC = Px secψA− l1 cosψB (13)
l2 sinψC = Py− l1 sinψB (14)

then square and add (13) and (14) to eliminate ψC and obtain

l2
2 = (px secψA− l1 cosψB)

2 +(py− l1 sinψB)
2. (15)

The identity

secψA =

√
P2

z +P2
x

Px
(16)

can be found from Eqn. (12) and is substituted into the ex-
panded version of (15) to obtain

2l1
√

P2
z +P2

x cosψB+2Pyl1 sinψB−P2
x −P2

y −P2
z −l2

1 +l2
2 = 0
(17)
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Eqn. (17) takes the form

Aconst cosψB +Bconst sinψB +Cconst = 0 (18)

of which the two solutions are known to be

ψ
±
B = arctan

Bconst

Aconst
± arccos

(
−Cconst√

A2
const +B2

const

)
(19)

By dividing (14) by (13) and taking the arctan function, we
obtain two corresponding solutions for ψC,

ψ
±
C = arctan

(
Py− l1 sinψ

±
B√

P2
x +P2

z − l1 cosψ
±
B

)
(20)

Equations (12), (19), and (20) are the inverse kinematics so-
lutions that describe two configurations of a TR subchain
that locates the wrist point at P. The inverse kinematics are
solved for all points Pk of (4) to obtain two configurations of
the TR chain at each point of the discretized trajectory. The
“+” configurations were dropped as they placed the bird’s
elbow in an unnatural location. The resulting sequence of

TR subchain configurations,

{ψA,ψ
−
B ,ψ

−
C }k, k = 1, . . . ,n, (21)

represents a periodic mechanism trajectory.

5 Fitting Trajectories with Fourier Series
Next, we create another sequence of equal length,

φk =
2π

n−1
(k−1), k = 1, . . . ,n, (22)

that represents the equally spaced angles of one rotation of
the input crank. Sequences (21) and (22) are paired so as to
create discrete representations of joint angles ψA, ψB, ψC as
functions of the input crank angle φ.

{φ,ψA}k, {φ,ψB}k, {φ,ψC}k, k = 1, . . . ,n (23)

The discrete functions are then approximated with
Fourier series to create continuous periodic input-output
functions. As well, Fourier series serve to smooth out the dis-
crete data curves, Fig 4. The discrete version of the Fourier



Table 2. Fourier coefficients for the joint angle functions shown in
Fig. 4

ψA = fA(φ) ψB = fB(φ) ψC = fC(φ) ψD = fD(φ)

o 4 4 2 6

a0 −0.418185 −0.818013 0.743278 −0.280661

a1 −0.820203 0.364468 −0.017921 −0.151247

b1 0.197223 0.224286 −0.414395 0.583401

a2 0.143329 0.193916 −0.119443 0.195403

b2 0.166381 −0.072155 0.043389 −0.050086

a3 0.026043 0.004051 0 −0.075214

b3 −0.062797 0.003374 0 −0.115771

a4 −0.011122 0.041918 0 −0.053983

b4 −0.007510 0.011844 0 0.039339

a5 0 0 0 0.020929

b5 0 0 0 0.010725

a6 0 0 0 −0.002909

b6 0 0 0 −0.005818

series for a set of data points (x,y)k, k = 1, . . . ,n spaced over
the interval [c,d] is

f (x) =
1
2

a0 +
o

∑
m=1

(am cos(λmx)+bm sin(λmx))

where λm =
2πm
d− c

m = 0,1,2, . . .

am =
2

d− c

n

∑
k=1

(yk cos(λmxk)∆xk) , m = 0,1,2, . . .

bm =
2

d− c

n

∑
k=1

(yk sin(λmxk)∆xk) , m = 1,2, . . .

(24)

and where o is the order of the Fourier series. For the case
(x,y)k = (φ,ψ)k, ∆xk =

d−c
n−1 , and [c,d] = [0,2π], Eqn. (24)

simplifies to

f (φ) =
1
2

a0 +
o

∑
m=1

(am cos(mφ)+bm sin(mφ))

where am =
2

n−1

n

∑
k=1

(ψk cos(mφk)) , m = 0,1,2, . . .

bm =
2

n−1

n

∑
k=1

(ψk sin(mφk)) , m = 1,2, . . .

(25)

More information of Fourier series is found in Greenberg
[41]. The discrete functions in (23) were approximated with

Wrist
ψD
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l5

l6

l7

Wrist
ψD

l3
Hardstops

Springs

Fig. 5. The addition of sprung joints creates a compliant hand wing
design. Hard stops prevent dorsal flexure of the hand wing. The
new segment lengths are l4 = 0.375, l5 = 2.125,l6 = 2.5, AND
l7 = 2.6

Fourier series to obtain

ψA = fA(φ), ψB = fB(φ), ψC = fC(φ). (26)

where the Fourier coefficients of these functions appear in
Table 2. The functions of (26) represent the trajectory of the
three degree-of-freedom shoulder-elbow TR subchain that
we will design for.

6 Motion of the Wrist Joint
To define the trajectory of the entire TRR chain we must

specify wrist joint angles, ψD, that control the orientations of
the hand wing link. The hand wing link approximates several
distal wing bones that move with respect to each other in-
cluding the radiale, ulnare, carpometacarpus, and phalanges
as well as the flight feathers, see Proctor [42]. We grossly
take into account the movement of these bones and feath-
ers by relaxing the length l3 and making the hand wing link
flexible. We design compliance into the hand wing by cre-
ating sprung joints limited by hard stops to prevent the wing
from flexing dorsally beyond a flat configuration as shown in
Fig. 5. Using this compliant hand wing design in conjunc-
tion with Solidworks Motion Analysis rigid body dynamics
simulator, the function ψD = fD(φ) was manually shaped to
pass the wingtip closely by the points Vi, i = 1, . . . ,8 listed
in Table 1. The manually chosen points, Table 3, were fitted
with a Fourier function of which the coefficients are listed in
Table 2.



Table 3. Manualy chosen values for wrist joint angle ψD

φ ψD φ ψD

0 −0.346448 3.141593 0.072431

0.261799 −0.241728 3.403392 −0.049742

0.523599 −0.137008 3.665191 −0.171915

0.785398 −0.023562 3.926991 −0.520981

1.047198 0.089884 4.188790 −0.957313

1.308997 0.133518 4.450590 −1.219112

1.570796 0.177151 4.712389 −1.219112

1.832596 0.207381 4.974188 −1.044580

2.094395 0.212058 5.235988 −0.765327

2.356194 0.207381 5.497787 −0.555887

2.617994 0.177151 5.759587 −0.486074

2.879793 0.142244 6.021386 −0.416261

7 Formulation of Synthesis Equations

The goal of this section is to mechanize the functions
ψA = fA(φ), ψB = fB(φ), ψC = fC(φ), and ψD = fD(φ).
This is accomplished by synthesizing a Stephenson II six-bar
function generator, Fig. 6, for each function. The synthesis
formulation and solution is described in more depth in Plec-
nik and McCarthy [31].

A Stephenson II consists of five moving links named
Link AC, Link BDF , Link CGH, Link DG, and Link FH.
The objective is to coordinate the rotations between φ and
ψ of Link AC and Link BDF , respectively. In general, a
Stephenson II function generator can coordinate exactly 11
input-output angle pairs. In order to set the scale, orienta-
tion, and location of the linkage, the ground pivots A and B
are chosen to be at A = {0,0} and B = {1,0}. However, for
this planar synthesis procedure we will use complex numbers
to represent vectors, therefore we locate the ground pivots at
A = 0+ i0 and B = 1+ i0.

Formulation of the synthesis equations begins by con-
structing the loop closure equations. From Fig. 6(b), we
construct two sets of loop closure equations,

A−B+Q j(C−A)+R j(G−C)−S j(D−B)−Tj(G−D) = 0,
(27)

A−B+Q j(C−A)+R j(H−C)−S j(F−B)−U j(H−F) = 0,
(28)

j = 1, . . . ,10,

A B

C
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G

H Link FH

L
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G
H
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L
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F

Γ
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Γ

(b)

Fig. 6. A Stephenson II function generator in (a) the initial configu-
ration and (b) the jth configuration

and two sets of conjugate loop equations,

Ā− B̄+ Q̄ j(C̄− Ā)+ R̄ j(Ḡ−C̄)− S̄ j(D̄− B̄)− T̄j(Ḡ− D̄) = 0,
(29)

Ā− B̄+ Q̄ j(C̄− Ā)+ R̄ j(H̄−C̄)− S̄ j(F̄− B̄)−Ū j(H̄− F̄) = 0,
(30)

j = 1, . . . ,10,

where j indexes displacements of each task position from
an unknown initial configuration. Note that j terminates at
10 for 11 position synthesis because the initial configuration
corresponds to the task position (φ,ψ) = (0,0), without loss
of generality. These equations contain the complex rotation
operators Q j, R j, S j, Tj, U j, and their conjugates defined as

Q j = eiφ j , R j = eiρ j , S j = eiψ j ,
Q̄ j = e−iφ j , R̄ j = e−iρ j , S̄ j = e−iψ j .

Tj = eiθ j , U j = eiµ j ,
T̄j = e−iθ j , Ū j = e−iµ j .

(31)

The variables Q j, Q̄ j, S j and S̄ j specify the task. The vari-
ables R j, R̄ j, Tj, T̄j, U j, and Ū j remain as unknowns. In order
for these unknowns to correspond to rotational operators, it



is necessary that they satisfy the normalization conditions,

R jR̄ j = 1, (32)
TjT̄j = 1, (33)

U jŪ j = 1, j = 1, . . . ,10. (34)

Eqns. (27)–(30) and (32)–(34) comprise a system of 70 equa-
tions and unknowns. The unknowns of these equations are

〈
C,C̄,D, D̄,F, F̄ ,G, Ḡ,H, H̄

〉
and

〈
R j, R̄ j, T̄j, T̄j,Ū j,Ū j,

〉
,

j = 1, . . . ,10.
(35)

In order to reduce the system, the unknowns Tj and T̄j are
eliminated by substituting Equations (27) and (29) into (33)
to obtain

(A−B+Q j(C−A)−S j(D−B)+R j(G−C))

× (Ā− B̄+ Q̄ j(C̄− Ā)− S̄ j(D̄− B̄)+ R̄ j(Ḡ−C̄))

= (G−D)(Ḡ− D̄)
(36)

Similarly, U j and Ū j are eliminated by substituting Equations
(28) and (30) into (34) to obtain

(A−B+Q j(C−A)−S j(F−B)+R j(H−C))

× (Ā− B̄+ Q̄ j(C̄− Ā)− S̄ j(F̄− B̄)+ R̄ j(H̄−C̄))

= (H−F)(H̄− F̄)
(37)

Equations (36) and (37) are expanded and written in matrix
form

[
ab̄ j āb j
cd̄ j c̄d j

]{
R j
R̄ j

}
=

{
f f̄ −aā−b jb̄ j
gḡ−aā−d jd̄ j

}
(38)

where

a = G−C, b j = A−B+Q j(C−A)−S j(D−B),

c = H−C, d j = A−B+Q j(C−A)−S j(F−B),

f = G−D, g = H−F. (39)

Solving (38) for R j and R̄ j, substituting into (32), clearing
the denominator, and factoring, we obtain,

aT b̄ jbT
j ā− cT d̄ jdT

j c̄ = 0, j = 1, . . . ,10 (40)

Table 4. Characterization of solutions and computation times for the
ψA, ψB, ψC, and ψD functions

ψA ψB ψC ψD

Linkage solutions 11,428 7,215 12,870 11,693

Design candidates 6,068 4,012 7,363 5,775

11-point mechanisms 0 0 3 0

10-point mechanisms 0 0 12 0

9-point mechanisms 0 7 95 4

8-point mechanisms 21 54 246 95

7-point mechanisms 172 213 603 184

6-point mechanisms 623 364 1,349 499

Synthesis computation
time (hr)

2.2 2.0 2.5 2.2

Analysis computation
time (hr)

20.2 13.4 25.6 19.1

where

a =


a(gḡ− cc̄)
c( f f̄ −aā)

a
c

 , b j =


b j
−d j
−b jd jd̄ j
b jb̄ jd j

 ,

c =
{

ac̄
āc

}
, d j =

{
b jd̄ j
−b̄ jd j

}
. (41)

The degree of Eqn. (40) is 810 ≈ 1.07× 109. Performing a
multihomogeneous root count with the variable groups,

〈C,D,F,G,H〉, 〈C̄, D̄, F̄ , Ḡ, H̄〉, (42)

determines a reduced Bézout number of 264,241,152. This
was determined by computing the coefficient in front of the
monomial α5

1α5
2 in the polynomial (4α1 +4α2)

10.

8 Solution of Synthesis Equations
A general form of Eqns. (40) was solved utilizing a

regeneration homotopy implemented by the Bertini homo-
topy software [1, 2]. This general form consisted of specify-
ing (Q j,S j), j = 1, . . . ,10 as random complex numbers near
unity and (Q̄ j, S̄ j), j = 1, . . . ,10 as the conjugates of those
complex numbers. The computation took 311 hrs on 256
cores processing at 2.2 GHz. The regeneration homotopy
tracked 24,822,328 paths over 10 levels to find 1,521,037
nonsingular solutions. Solutions to the general form can be
used to construct parameter homotopies for efficient gener-
ation of specific solution sets. Parameter homotopies were
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(d) Mechanism for ψD = fD(φ) that passes through 9 task positions

Fig. 7. The four linkage solutions which were selected to mechanize
the magpie wing trajectory. All linkages possess a fully rotatable input
crank

used to solve the synthesis equations for the four function
generators desired in this paper.

Table 4 lists the number of linkage solutions for each
desired function and the computation time required to find
and analyze those solutions. Linkage solutions refers to non-
singular solutions in which unknowns and their overbarred
counterparts, i.e. C and C̄, are indeed conjugate so as to
describe physical point locations. Design candidates ex-
cludes redundant solution pairs and includes additional cog-
nate linkages that were not found through the homotopy so-
lution which is discussed further below. Linkages counted
as 11-point mechanisms are those that achieve 11 task posi-
tions on a single trajectory without encountering a singular
configuration, and so forth for 10-, 9-, 8-, 7-, 6-point mecha-
nisms. Synthesis computation time was how long the Bertini
parameter homotopy took to execute. Analysis computation

Fig. 8. A prototype design for the function generator controlled mag-
pie wing

time was how long it took to solve the forward kinematics,
sort those solutions into trajectories, and count how many
task points each trajectory passed through. For more details
on the analysis process, see Plecnik and McCarthy [31].

Homotopy algorithms are capable of finding entire so-
lution sets for large polynomial systems. However, due to
highly nonlinear synthesis equations and the numerical na-
ture of homotopy, our solution sets have been found to be
incomplete as additional solutions have been discovered. In
particular, the symmetry of the Stephenson II mechanism re-
quires that for every solution

{C,D,F,G,H,C̄, D̄, F̄ , Ḡ, H̄} (43)

there should exist another solution where the values of
{D, D̄} and {F, F̄}, and the values of {G, Ḡ} and {H, H̄}, are
interchanged, yet all these pairs are not found. Both of these
solutions describe the same linkage geometry so we term
them redundant. Furthermore, Dijksman [43] details that
Stephenson II function generators come in cognate triples,
and in our solution sets we find instances of incomplete cog-
nate sets. Therefore, for each set of linkage solutions we re-
move one member of each redundant pair and generate any
missing cognates before we begin the analysis procedure.

The objective of the analysis procedure is to find mech-
anism trajectories that achieve all task positions in the ab-
sence of singularities. The percentage of linkage solutions
that are capable of producing these trajectories is usually
low. However, we find that mechanism trajectories which
produce almost all 11 task positions are still practically use-
ful. Therefore, we keep track of these mechanisms in Ta-
ble 4. None of the linkages chosen to mechanize the mag-
pie trajectory in this paper actually achieved all 11 positions
in a single mechanism trajectory. The four function genera-
tors that were chosen to mechanize ψA = fA(φ), ψB = fB(φ),
ψC = fC(φ), ψD = fD(φ) are shown in Fig. 7. The functions
produced by the chosen mechanisms are plotted in Fig. 4.

9 Results
The four linkages shown in Fig. 7 can be packaged onto

the spatial TRR chain of Fig. 2 such that all four function



Fig. 9. The wingtip path (black) of the function generator controlled
magpie wing alongside the desired path (gray) interpretted from the
data recorded in Fig. 1

generators are driven by the same input crank and the motion
of the output links are transmitted to the proper controlled
joint. An embodiment of this idea is shown in Fig. 8. Since
function generators can be scaled while maintaining the same
input-output angles, the four function generators are made
compact and mounted close to the motor. The shoulder mo-
tion of ψA is transmitted through a pair of bevel gears and
the elbow and wrist motions of ψC and ψD are transmit-
ted through pulleys. The shoulder motion of ψB is directly
driven. A video of this prototype design can be found at
http://sites.uci.edu/markplecnik/projects/wing-mechanism/ .

The wingtip path of the prototype design was generated
using Solidworks Motion Analysis rigid body dynamics sim-
ulator. It is shown compared to the target trajectory in Fig.
9. The lateral view shows the wing at the upstroke to down-
stroke transition. The cephalad view shows the wing at the
downstroke to upstroke transition. The dorsal view shows
the wing at mid downstroke.

10 Conclusion
This paper demonstrates how to constrain a mutli-

degree-of-freedom spatial TRR chain to a complex single
degree-of-freedom mechanism controlled by Stephenson II
six-bar function generators. This process included defining
the target motion as discrete data, computing trajectories of
joint angles, fitting discrete trajectories with smooth contin-
uous periodic functions using Fourier series, synthesizing an
11 position Stephenson II function generator for each joint
angle function, then packaging the function generators onto
the TRR chain such that the input cranks share an angular
velocity and the output links transmit motion to their corre-
sponding joints.

The synthesis equations for Stephenson II six-bar func-
tion generators capable of achieving 11 positions were for-
mulated and solved. The polynomial solver Bertini was used
to solve the system generally with a regeneration homotopy
which was then used to solve specific systems with param-
eter homotopies. The solution sets provided a large set of
linkages of which a small percentage were useful. Four use-
ful mechanisms were chosen to be designed onto a prototype
wing flapping mechanism. The resulting wing trajectory ap-
proximates the data recorded by Tobalske and Dial [38].
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