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ABSTRACT

Defining the molecular dynamics associated with T cell differentiation enhances our 
understanding of T cell biology and opens up new possibilities for clinical implications. In 
this study, we investigated the dynamics of CD5 expression in CD8+ T cell differentiation and 
explored its potential clinical uses. Using PBMCs from 29 healthy donors, we observed a 
stepwise decrease in CD5 expression as CD8+ T cells progressed through the differentiation 
stages. Interestingly, we found that CD5 expression was initially upregulated in response to 
T cell receptor stimulation, but diminished as the cells underwent proliferation, potentially 
explaining the differentiation-associated CD5 downregulation. Based on the proliferation-
dependent downregulation of CD5, we hypothesized that relative CD5 expression could 
serve as a marker to distinguish the heterogeneous CD8+ T cell population based on their 
proliferation history. In support of this, we demonstrated that effector memory CD8+ T cells 
with higher CD5 expression exhibited phenotypic and functional characteristics resembling 
less differentiated cells compared to those with lower CD5 expression. Furthermore, in the 
retrospective analysis of PBMCs from 30 non-small cell lung cancer patients, we found that 
patients with higher CD5 expression in effector memory T cells displayed CD8+ T cells with 
a phenotype closer to the less differentiated cells, leading to favorable clinical outcomes 
in response to immune checkpoint inhibitor (ICI) therapy. These findings highlight the 
dynamics of CD5 expression as an indicator of CD8+ T cell differentiation status, and have 
implications for the development of predictive biomarker for ICI therapy.
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INTRODUCTION

T cells are a highly heterogeneous population and can be classified into distinct 
subpopulations based on their functional and phenotypic characteristics. By utilizing well-
established surface markers, human T cells can be categorized into naïve T cells (Tn; CCR7hi 
CD45RAhi), central memory T cells (Tcm; CCR7hi CD45RAlo), and effector memory T cells 
(Tem; CCR7lo) (1). While most of the Tem express low levels of CD45RA (CCR7lo CD45RAlo), 
some of them re-express CD45RA (Temra; CCR7lo CD45RAhi) (1). The prevailing consensus 
suggests that T cells follow a differentiation sequence of Tn, Tcm, Tem, and Temra, based on 
their self-renewal capacity (2), pluripotent potential (3), and cytotoxicity (4). However, the 
complex immunological history generates heterogeneity even within these subpopulations, 
allowing further stratification based on various phenotypic markers such as CD5, CD27, 
CD28, CD57, and CD95 (1,2,5-8).

CD5 has been extensively studied as a marker to define the heterogeneity within Tn (5,8-11). 
Its unique feature lies in its T cell receptor (TCR)-dependent upregulation mechanism, which 
allows the dissection of Ag-inexperienced Tn based on their affinity to self-Ags (5,8,11-14). Tn 
with high expression level of CD5 (CD5hi), which exhibit a relatively high affinity to self-Ags, have 
been shown to possess superior proliferation ability in response to TCR or cytokine stimulation 
(15-17), as well as a more robust response to viral infection (15,16). While most studies on CD5 
have been conducted in murine models, certain characteristics have also been demonstrated in 
humans. Both human thymocytes and peripheral T cells have been shown to upregulate CD5 
expression in a TCR strength-dependent manner (10). Furthermore, human CD4+ Tn were 
shown to have different functionalities depending on their relative CD5 expression (10).

As CD5 expression is markedly increased upon TCR stimulation, its level and utility as 
a surrogate marker of affinity for self-Ags are less applicable to Ag-experienced cells. 
Consequently, the regulation of CD5 expression in Ag-experienced memory T cells remains 
relatively unexplored. Nevertheless, a recent study reported that CD5 in human memory 
CD8+ T cells inhibits the mTOR pathway, thereby suppressing IL-15-induced proliferation 
(18). Similarly, another study suggested that IL-15 induces the selective expansion of memory 
CD8+ T cells (19). Despite these studies, the precise regulatory mechanisms underlying CD5 
expression and the biological significance of heterogeneous CD5 expression in memory T 
cells remain largely elusive. In this study, using PBMCs from healthy donors and patients with 
non-small cell lung cancer (NSCLC), we demonstrated previously unrecognized regulatory 
dynamics of CD5 expression during CD8+ T cells differentiation with potential clinical 
implications for developing a predictive biomarker for cancer immunotherapy.

MATERIALS AND METHODS

Human samples
Human blood samples for this study were provided by the Korean Red Cross and the Biobank 
of Chonnam National University Hwasun Hospital, a member of the Korea Biobank Network, 
in accordance with a protocol approved by the Institutional Review Boards of Chonnam 
National University Hwasun Hospital (CNUHH-2018-036 and CNUHH-2021-045). All patients 
provided written informed consent. PBMCs were obtained from whole blood by density 
gradient centrifugation using Lymphoprep (Alere Technologies GmbH, Koln, Germany).
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Flow cytometry
PBMCs were stained for flow cytometric analysis with the following Abs (purchased from 
BioLegend [San Diego, CA, USA], eBioscience [San Diego, CA, USA], and BD Biosciences 
[Franklin Lakes, NJ, USA]): CD11b (M1/70), CD56 (5.1H11), CD3 (OKT3), CD19 (HIB19), CD8+ 
(SK1), CD4 (RPA-T4), CD5 (UCHT2), killer cell lectin-like receptor subfamily G member 1 
(KLRG1; 14C2A07), PD1 (29E2A3), CD95 (DX2), CD44 (IM7), CD183 (G025H7), CD39 (A1), 
T cell factor 1 (TCF1; 7F11A10), CD62L (DREG-56), CD27 (LG.7F9), perforin (B-D48), and 
granzyme B (GB11). Flow cytometry samples were run using CytoFLEX LX (Beckman Coulter, 
Brea, CA, USA) and analyzed using FlowJo software (Tree Star Inc., Ashland, OR, USA).

In vitro CD8+ T cell activation
Total CD8+ Tn were purified using MagniSort™ Human CD8+ Naïve T cell Enrichment Kit 
(Invitrogen, Waltham, MA, USA). CCR7+CD45RA+CD95−CD8+ Tn were sorted into CD5lo and 
CD5hi subsets (based on the lower or upper 20% of CD5 expression) using CytoFLEX SRT 
(Beckman Coulter). For some experiments, purified cells were labelled with 2.5 μM of Cell 
Trace™ Violet (ThermoFisher, Waltham, MA, USA) or Carboxyfluorescein succinimidyl ester 
(ThermoFisher). Purified cells were cultured in anti-CD3 (5 μg/ml) (clone OKT3; eBioscience) 
and anti-CD28 (2 μg/ml) (clone CD28.2; Invitrogen) coated Clear Flat-Bottom Immuno 
Nonsterile 96-Well Plate (ThermoFisher) for indicated time points. In some experiments, 10 ng/
ml of cytokines (human IL-1β, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-15, IL-18, IL-21, IL-23, TGF-β, 
IFN-β, IFN-γ, or GM-CSF; PeproTech, Cranbury, NJ, USA) were supplemented in the culture.

Intracellular staining
PBMCs were plated in 96-well Clear Round Bottom TC-treated Microplate (Corning, Corning, 
NY, USA) and stimulated with eBioscience Cell Stimulation Cocktail (plus protein transport 
inhibitors) (Invitrogen) for 4 h in a 37°C CO2 incubator. Cells were stained for surface 
markers, then fixed and permeabilized with BD Cytofix/Cytoperm buffer (BD Biosciences). 
Cells were then stained for the indicated intracellular molecules and analyzed by flow 
cytometry. For analysis of transcription factors, ex vivo PBMCs were fixed and permeabilized 
with eBioscience Foxp3/Transcription Factor Staining Buffer Set (eBioscience), then stained 
for the indicated molecules.

Statistics
Samples were tested for a normal distribution using normality tests. For normally distributed 
samples, paired 2-tailed Student’s t-test were performed. For samples that did not pass the 
normality tests, Wilcoxon matched-pairs signed rank test were performed. The statistics used 
for each figure are indicated in the legends of each figure. All statistics were performed using 
Prism (GraphPad Software). Values of p<0.05, p<0.01, p<0.001, p<0.0001 were considered 
significant. 95% confidence interval (CI) was calculated using R package (survival) for 
progression-free survival, and normal approximation for durable clinical benefit.

RESULTS

Human CD8+ T cells exhibit dynamic CD5 expression during their differentiation
The regulatory mechanisms underlying CD5 expression in human T cell populations remain 
largely unexplored, although they have been well-documented in murine models (20,21). 
Therefore, we initially examined CD5 expression levels in various lymphoid lineage cells 
derived from PBMCs of healthy donors using flow cytometry (Supplementary Fig. 1A and B). 
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Notably, high CD5 expression was observed only in the T cell compartment (Fig. 1A), with the 
exception of certain B cell subsets that expressed CD5 at low levels (Fig. 1A). Within the T cell 
population, CD4+ T cells exhibited slightly higher CD5 expression compared to CD8+ T cells 
(Supplementary Fig. 1C). These findings indicate that the CD5 expression patterns of human 
PBMCs within broadly categorized lymphoid lineages are consistent with those observed in 
murine models (10,20,21).

Next, we investigated whether there were differences in CD5 expression based on T cell 
differentiation status (Supplementary Fig. 1B). CD4+ T cells exhibited nearly constant CD5 
expression throughout differentiation (Supplementary Fig. 1D). Interestingly, however, 
human CD8+ T cells showed a stepwise decrease in CD5 expression throughout the 
differentiation process (Fig. 1B). To elucidate this phenomenon, we explored the regulatory 
mechanisms governing CD5 expression in human CD8+ T cells. First, we isolated CD8+ Tn 
from PBMCs of healthy donors and stimulated them with anti-CD3/CD28 Abs. CD8+ Tn 
increased CD5 expression after 24 h of TCR stimulation (Fig. 1C), confirming the presence 
of a TCR-mediated mechanism for upregulating CD5 expression. Next, we hypothesized the 
existence of an additional mechanism responsible for the downregulation of CD5 expression 
after its initial upregulation in CD8+ T cells. To investigate this, we assessed CD5 expression 
in CellTrace Violet (CTV)-labeled CD8+ Tn following 5 days of TCR stimulation. Notably, 
CD5 expression declined as CD8+ Tn underwent proliferation (Fig. 1D). This proliferation-
associated downregulation of CD5 was observed even when various cytokines were treated 
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alongside TCR stimulation (Supplementary Fig. 1E). Collectively, these data suggest that 
proliferation-associated downregulation of CD5 may be a mechanism responsible for 
decreased CD5 expression as differentiation progresses.

CD5hi effector memory CD8+ T cells display a less differentiated phenotype in 
comparison to their CD5lo counterparts
Considering the observed decrease in CD5 expression as CD8+ T cells undergo proliferation, 
we hypothesized that relative CD5 expression might serve as an indicator of their proliferation 
history. In particular, effector memory T cells, which have participated in numerous 
immunological encounters, represent a highly heterogeneous population ranging from 
recently generated cells to senescent cells (22-24). We aimed to explore whether the relative 
CD5 expression within Tem could elucidate this diversity. To achieve this, we categorized 
Tem into 2 subsets based on their relative CD5 expression, namely CD5hi and CD5lo Tem (top 
20% and bottom 20%, respectively) (Supplementary Fig. 2A), and subsequently conducted a 
comparative analysis of their phenotypic and functional characteristics.

First, to clarify that CD5hi and CD5lo Tem are not simply derived from CD5hi and CD5lo Tn, 
respectively, but rather diverge based on their distinctly different proliferation histories, we 
conducted in vitro stimulation of CD5hi and CD5lo Tn and evaluated their CD5 expression. 
Indeed, CD5 expression after TCR stimulation was primarily influenced by proliferation 
rather than the initial cellular origin prior to stimulation (Supplementary Fig. 2B and C). 
Next, we conducted a comparison of phenotypic markers between CD5hi and CD5lo Tem. 
Numerous molecules have been reported to exhibit differential expression throughout 
the differentiation process (Fig. 2A) (1,4). For instance, KLRG1, a marker associated with 
T cell senescence (1,4,25), displayed an increase as Tn differentiated into Temra (Fig. 2A). 
In addition, the expression of several other molecules (PD1, CD95, CD44, CD183, CD39, 
TCF1, CD62L, and CD27) generally diminished as differentiation progressed, although some 
of them (PD1, CD95, CD44, and CD183) experienced upregulation in the early stages of 
differentiation (Fig. 2A). Interestingly, CD5hi Tem exhibited a molecular phenotype resembling 
less differentiated cells compared to CD5lo Tem (Fig. 2B-E, Supplementary Fig. 2D). Likewise, 
CD5hi and CD5lo Temra also displayed a similar tendency, although some molecules such 
as KLRG1, CD95, or TCF1 was less apparent (Fig. 2B, F-H, Supplementary Fig. 2E). These 
findings strongly suggest an inverse relationship between the CD5 expression in Tem and the 
observed phenotypic changes associated with differentiation.

Cytotoxic function serves as a compelling indicator for discerning the differentiation status 
of human CD8+ T cells (4). We thus examined the expression of both perforin and granzyme 
B, within different subsets of human CD8+ T cells, and observed an increase of these cytotoxic 
molecules as differentiation progressed (Fig. 3A). Notably, within Tem, the CD5lo subset 
exhibited significantly higher levels of perforin and granzyme B expression compared to the 
CD5hi subset (Fig. 3B and C). Similar findings were also observed in Temra (Fig. 3D and E). 
Together, these findings support the notion that compared to CD5lo cells, CD5hi cells have 
phenotypic characteristics that indicate a less proliferative and less differentiated state within 
the heterogeneous pool of Tem.

CD5 expression on effector memory CD8+ T cells is a predictor of clinical 
response to ICI therapy
The advent of ICIs has revolutionized the treatment of cancer patients (26-29). However, 
the relatively low response rate to ICI treatment remains a major challenge (26,27), and 
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there is therefore growing interest in identifying the characteristics of individuals who are 
likely to respond to ICI treatment. Accumulating evidence highlights the importance of less 
differentiated CD8+ T cells in the context of ICI treatment (30-35). Given that CD5 expression 
has been shown to effectively reflect the differentiation status of effector memory CD8+ T 
cells, we sought to investigate whether CD5 expression correlates with ICI responsiveness. 
To accomplish this, we performed a retrospective analysis of CD8+ T cells from PBMCs in a 
cohort of patients with NSCLC (n=30) (Fig. 4A, Supplementary Table 1). Consistent with 
findings in healthy donors, we observed a similar tendency for CD5 expression on peripheral 
blood CD8+ T cells to decrease as their differentiation progressed from naïve to effector 
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memory states (Fig. 4B). Moreover, the superior cytotoxic function of CD5lo cells compared 
to their CD5hi counterparts was also evident (Fig. 4C-F).

Next, we determined whether the observed differences in CD5 expression levels between 
patients could be used as a marker of distinct differentiation states, similar to the differences 
observed between CD5hi and CD5lo cells within the same individual. Notably, strong inverse 
correlations were observed between CD5 expression in Tem (and Temra) and the expression 
levels of perforin and granzyme B across different individuals (Fig. 4G and H). These data 
indicate that CD5 expression on effector memory CD8+ T cells can be a surrogate marker 
to predict the degree of differentiation between individual patients. Therefore, we further 
investigated the relationship between the CD5 expression level and the clinical response 
to ICI therapy. The patient cohort was divided into 2 groups based on the level of CD5 
expression on Tem: Tem-CD5hi-individual and Tem-CD5lo-individual (higher and lower, respectively, 
than the average mean fluorescence intensity [MFI] of CD5 expression on CD8+ Tem from 
patients with NSCLC), and clinical outcomes were compared after ICI treatment (Fig. 5A). 
Notably, compared to Tem-CD5lo-individual, Tem-CD5hi-individual exhibited significantly longer 
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CD5hi and CD5lo (B-C) Tem and (D-E) Temra were assessed. Representative histogram data (left) and frequencies of perforin- and granzyme B-expressing cells 
(right) are shown (n=10). (B-E) Statistical significance was performed with paired Student’s t-test. 
Values of **p<0.01, ***p<0.001 were considered significant
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Figure 4. Correlation between CD5 expression in effector memory CD8+ T cells and cytotoxicity in NSCLC patients. (A) A schematic model illustrating the 
analysis process for the blood samples obtained from NSCLC patients is shown. (B) CD5 expression in CD8+ T cell subpopulations is evaluated in NSCLC patients. 
(C-F) Expression of (C, E) perforin and (D, F) granzyme B in CD5hi and CD5lo (C, D) Tem and (E, F) Temra is assessed. Representative histogram data (left) and 
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granzyme B (right) in (G) Tem and (H) Temra is examined. (C-F) Statistical significance was performed with (C, F) paired Student’s t-test or (D, E) Wilcoxon 
matched-pairs signed rank test. Values of ****p<0.0001 were considered significant.



median progression-free survival (mPFS) (6.3 vs. 1.867 months; 95% CI, 2.07−10.5 months 
vs. 1.60−4.57 months) (Fig. 5B) and a higher proportion of patients with durable clinical 
benefit (DCB) (61.54% vs. 23.53%; 95% CI, 35.0−88.0% vs. 3.4−43.7%) (Fig. 5C-E). Similar 
results were also obtained when patients were divided based on the level of CD5 expression 
on Temra, although the difference was somewhat smaller than for those observed in 
Tem (Supplementary Fig. 3A-D). It is also important to note that this correlation was not 
associated with differences in the proportion of naive CD8+ (Tn) cells (Supplementary Fig. 
3E-G) or differences in CD5 expression levels of Tn (Supplementary Fig. 3H-J). Collectively, 
these findings suggest that the CD5 expression level of effector memory CD8+ T cells in 
patients’ blood is positively correlated with better clinical outcomes and can therefore be 
considered a predictive biomarker of ICI treatment.

DISCUSSION

The precise mechanisms of how CD5 expression levels are regulated in the human effector 
memory CD8+ T cell population remain largely unexplored. In this study, we investigated 
the dynamics of CD5 expression during the differentiation of human CD8+ T cells and 
observed a progressive decrease in CD5 expression as they differentiated. Importantly, CD5 
expression was found to initially increase after TCR stimulation and then gradually decrease 
as cell division continued, which may explain the downregulation of CD5 expression during 
CD8+ T cell differentiation. Moreover, we showed that effector memory CD8+ T cells can be 
further stratified by CD5 expression levels, which are closely related to their proliferation/
differentiation history. Indeed, CD5hi Tem (and Temra) exhibited a less differentiated 
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phenotype compared to their CD5lo counterparts, as evidenced by surface molecule 
expressions and cytotoxic functions. Furthermore, considering the association between less 
differentiated CD8+ T cells and favorable outcomes to ICI therapy, we also showed that CD5, as 
an indicator of less differentiated subsets within effector memory CD8+ T cell population, can 
be a useful biomarker for predicting clinical response to ICI therapy for patients with NSCLC.

CD5 has been extensively investigated due to its close relationship with TCR signaling 
(5,12,15,20,22). Its comprehensive investigation primarily focuses on Tn, and the 
mechanisms governing the regulation of CD5 expression on Ag-experienced effector/effector 
memory T cells are not fully understood. In murine models, it has been observed that Ag-
inexperienced virtual memory T cells display higher levels of CD5 expression compared to 
Tn (36,37). However, in the case of Ag-experienced memory cells, CD5 expression has been 
shown to be lower compared to Tn (38). This pattern was also observed in human memory 
CD8+ T cells, which primarily consist of Ag-experienced memory cells and exhibit a gradual 
decline in CD5 expression (19). This phenomenon was intriguing, particularly considering 
the prevailing notion that CD5 expression is upregulated in response to TCR stimulation. 
However, we showed that following an initial upregulation of CD5 expression, its levels 
subsequently decline during the proliferation of CD8+ T cells. Notably, the observed decrease 
in CD5 expression was not attributed to the potential differences in the inherent proliferative 
capacity of distinct naive subsets, as both CD5hi and CD5lo Tn exhibited comparable 
proliferation. These findings therefore suggest that proliferation-dependent downregulation 
is a key mechanism by which CD5 expression levels on effector memory CD8+ T cells vary 
between different individuals and even within the same individual.

Given that human effector/effector memory CD8+ T cells can be generated in the context of 
various cytokine exposures, it is reasonable to speculate that these cytokines can influence 
CD5 expression levels. In fact, a study reported that human memory CD8+ T cells stimulated 
by IL-15 alone reduced CD5 expression in proliferation-dependent manner (19). However, it 
is important to note that although various cytokines tested in this study affected the overall 
dynamics of CD5 expression to some extent, proliferation-dependent downregulation of CD5 
was still evident with all cytokines analyzed, indicating a strong inverse correlation between 
CD5 expression and proliferation.

The main implication from the above proliferation-dependent CD5 downregulation is that 
relative density of CD5 expression is a discriminative marker to define the cellular continuum 
of human effector memory CD8+ T cell population. Indeed, CD5hi Tem and Temra displayed a 
less differentiated phenotype in terms of expression of both activation-related and cytotoxic 
effector molecules compared to their CD5lo cells. We also confirmed similar phenomenon on 
effector memory CD8+ T cells from different individuals, extending the inverse association 
of CD5 density and differentiation status beyond inter-individual variation. It seems 
therefore clear that the absolute level of CD5 expression rather than its relative expression 
within individual can dictate a more differentiated subset of effector memory CD8+ T cells 
with enhanced cytotoxicity. Whether this phenomenon suggests a direct role of CD5 in 
modulating proliferation and cytotoxic function, possibly through its influence on TCR 
signaling (39) or cytokine responsiveness (15) needs to be further investigated.

The association between the differentiation status of CD8+ T cells and their responsiveness 
to ICI has been extensively demonstrated in various studies (30-35). For instance, adoptive 
transfer of stem cell-like memory CD8+ T cells (Tscm) was shown to induce potent anti-tumor 
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effects with ICI treatment (40,41). Similarly, several studies in mice have also highlighted the 
role of precursor exhausted T cells (Tpex), which possess self-renewing ability and sustain a 
long-term supply of exhausted T cells, as a potential cellular target responding to anti-PD-1/
PD-L1 therapy and mediating potent anti-tumor effect (42-46). In addition, other studies 
have shown that CD28+ PD-1+ CD8+ tumor-infiltrating lymphocytes (TILs) retain proliferative 
capacity in response to anti-PD-1/PD-L1 therapy in contrast to their non-responsive CD28− 
PD-1+ CD8+ TIL counterpart (47,48). These findings highlight the enhanced responsiveness of 
less differentiated CD8+ T cells to ICI therapy.

Building upon this perspective, we investigated whether the relative density of CD5 
expression that is closely associated with differentiation status of effector memory CD8+ 
T cells could be a potential marker for predicting ICI responsiveness. Notably, in our 
retrospective analysis for patients with NSCLC who received anti-PD-1/PD-L1 therapy, 
individuals with higher CD5 expression on their Tem showed improved clinical outcomes 
to anti-PD-1/PD-L1 therapy compared to those with lower CD5 expression. However, it is 
important to note that our findings were not based on TILs but instead largely limited to 
PBMCs, where tumor-specific CD8+ T cells are likely to be much less enriched. While the 
relationship between peripheral blood CD8+ T cells and ICI responsiveness is still not fully 
understood, recent studies have demonstrated correlations between them (30,49-52). For 
instance, patients with NSCLC who exhibited increased proliferation of peripheral blood 
PD-1+ CD8+ T cells after ICI therapy demonstrated positive clinical outcomes (53). In addition, 
a recent study has shown the clonal replacement, suggesting that ICI therapy replenishes 
TILs with new clones derived from the periphery (51). Our findings, which highlight the 
correlation between CD5 expression in peripheral blood CD8+ Tem and positive clinical 
outcomes, further support this notion. It will also be interesting to see if similar relationships 
apply to other peripheral blood CD8+ T cell populations, particularly Tscm and Tpex, which 
will need to be addressed in the future.

There are also limitations in our study. The size of patient cohort is relatively small and thus 
will be important to further validate with large cohort studies in the future. In addition, it 
should be noted that it is difficult to determine the exact cut-off value of CD5 expression 
level, because CD5 expression on human T cell populations displays marked variability along 
a continuous spectrum, with a relatively wide range of expression levels across different 
individuals. Further improvement is thus needed for practical use as a predictive biomarker. 
Overall, this study highlights previously unappreciated aspects on the dynamics of CD5 
expression associated with CD8+ T cell differentiation that have potential implications for the 
development of predictive biomarker for cancer immunotherapy.
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SUPPLEMENTARY MATERIALS

Supplementary Table 1
Patient clinical characteristics.

Click here to view

Supplementary Figure 1
CD5 expression in human PBMCs. (A, B) Gating strategies to distinguish (A) T cells, B cells, 
NK cells, and myeloid cells or (B) CD4+ and CD8+ T cell subpopulations (Tn, Tcm, Tem, and 
Temra) from PBMCs are shown. (C) CD5 expression in CD4+ and CD8+ T cells were assessed. 
Representative histogram data (left) and summary of CD5 MFI of each subset (right) are 
shown (n=29). (D) CD5 expressions of CD4+ T cell subpopulations in PBMCs were assessed. 
Representative histogram data (left) and summary of CD5 MFI of subpopulations (right) are 
shown (n=29). (E) CD8+ Tn were purified and labeled with CFSE, then stimulated with anti-
CD3 (5 μg/ml), anti-CD28 (2 μg/ml), and various cytokines (10 ng/ml) for 5 days. The changes 
in CD5 expression were assessed during the proliferation. Flow cytometric data (left) and 
summary of CD5 MFI of each CFSE peak (right) are shown. (C-E) Statistical significance was 
performed with paired Student’s t-test.

Click here to view

Supplementary Figure 2
Differences in various molecules between CD5lo and CD5hi subset of peripheral blood effector 
memory CD8+ T cells. (A) The expression of CD5 in CD5hi and CD5lo Tem (left) and Temra 
(right) are shown. CD5 expression of CD5hi (top 20%) and CD5lo (bottom 20%) of Tem or 
Temra. (B, C) CD5hi and CD5lo CD8+ Tn were purified and labeled with CTV, then stimulated 
with anti-CD3 (5 μg/ml) and anti-CD28 (2 μg/ml) for 5 days. (B) CD5 expression of CD5hi 
and CD5lo Tn before (left) or after (right) stimulation are shown. (C) The changes in CD5 
expression were assessed during the proliferation of CD5hi and CD5lo Tn. (D, E) Summary of 
surface (PD-1, CD95, CD183, CD62L, and CD27) and intracellular (TCF1) molecule expression 
of CD5hi and CD5lo (D) Tem and (E) Temra are shown (n=10). (D, E) Statistical significance 
was performed with paired Student’s t-test for data that passed normality tests and Wilcoxon 
matched-pairs signed rank test for data that did not passed normality tests.

Click here to view

Supplementary Figure 3
Predictive ability of CD5 expression on peripheral blood effector memory CD8+ T cells to ICI 
therapy. (A) Schematic model describing how blood samples from NSCLC patients with ICI 
treatment were analyzed is shown. (B-D) Thirty patients with NSCLC were categorized into 
Temra-CD5hi-individual and Temra-CD5lo-individual groups based on their CD5 expression in CD8+ 
Temra. (B) Kaplan-Meier curve for progression-free survival is analyzed in Temra-CD5hi-

individual and Temra-CD5lo-individual patients. (C, D) Proportions of patients with durable clinical 
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benefit are assessed in (C) Temra-CD5hi-individual, and (D) Temra-CD5lo-individual patients. (E-G) 30 
patients with NSCLC were categorized into Tn%-high and Tn%-low groups based on their 
proportion of Tn in total CD8+ T cells. (E) Kaplan-Meier curve for progression-free survival 
is analyzed in Tn%-high and Tn%-low patients. (F, G) Proportions of patients with durable 
clinical benefit are assessed in (F) Tn%-high, and (G) Tn%-low patients. (H-J) 30 patients 
with NSCLC were categorized into Tn-CD5hi-individual and Tn-CD5lo-individual groups based on their 
CD5 expression in CD8+ Tn. (H) Kaplan-Meier curve for progression-free survival is analyzed 
in Tn-CD5hi-individual and Tn-CD5lo-individual patients. (I-J) Proportions of patients with durable 
clinical benefit are assessed in (I) Tn-CD5hi-individual, and (J) Tn-CD5lo-individual patients.

Click here to view
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