
UC Irvine
ICS Technical Reports

Title
Java annotation-aware just-in-time (AJIT) compilation system

Permalink
https://escholarship.org/uc/item/6sq1b6b4

Authors
Azevedo, Ana
Nicolau, Alex
Hummel, Joe

Publication Date
1999-01-22

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6sq1b6b4
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.^

Java Annotation-aware Just-in-Time

(AJIT) Compilation System

Ana Azevedo* Alex Nicolau

University of California, Irvine
aazevedo, nicolau@ics.uci.edu

Joe Hummel

University of Illinois, Chicago
jhummel@eecs.uic.edu

UCI-ICS Technical Report No. 99-04

January 22, 1998

€!•
ip- (!

e 3

Abstract

The Java Bytecodes language lacks expressiveness for traditional compiler optimizations making this

portable, secure softwcire distribution format inefficient as a program representation to produce high

performance native code from. The fact that some bytecode operations intrinsically enclose implicit sub-

operations (e.g., iaload, includes the address computation, array boimd checks and the actual load of the

array element) allied to the fact that Java Bytecodes language implements a stack model account for this

inefficiency. The language has no mechanism to indicate which sub-operations in the bytecode stream are

redundant or subsumed by previous ones. The stack model having no operand registers and restricting

access to only the top of the stack is also a limitation as it prevents the reuse of values emd bytecode

reordering. As a consequence the language inhibits the expression of simple compiler transformations,

such as common sub-expression elinunation md loop invariant removal, and more elaborate ones as

register allocation and instruction scheduling.

Regardless of how optimized the bytecode stream is generated by the Java front-end, it misses ability

to represent some code-improving transformations. When translating the bytecodes into native code, JIT

technology has the options of directly translating the bytecodes into a poor native code or enhancing the

quality of this translated code by applying code optimizations. This second alternative leads to a more

time consuming translation process in the already time-constrained JIT technology. In this paper we

present an alternative to an optimizing JIT compiler that makes use of code cumotations generated by the

Java front-end. These annotations carry information concerning compiler optimizations. In the trans

lation process, an annotation-aware JIT (AJIT) system can use the annotation information to produce

high performance native code without performing the code analysis and sometimes the transformations

necessary for cin optimizing JIT compiler. We describe the implementation of the first prototype of

our annotation-generating compiler and our annotation-aware JIT system and show performance results

comparing our system with other Java Virtual Machines (JVMs) nmning on SPARC machines.

*This work supported in part by CAPES.

1 Introduction , i

Java Bytecodes are emerging as a softwaredistribution language for both their portability and safety features.

The portability property of the language is ensured by the platform independent stack machine model that

all Java source codes are compiled into. On the target machine side this intermediate code representation

is either interpreted [17] or compiled into native code, using traditional ahead of time compilers [14, 21],or

just-in-time compilers [1, 2, 16, 18, 24], the choice depending on the underlying Java Virtual Machine (JVM)

support. The safety features of the language are based on the security violation checks performed at load

time and at run-time [11]. Such checks include enforcement of methods and variables access modifiers, strict

type-checking and array bound checking. Some of these checks are implicit in the bytecodes, forcing the

JVM to perform them unless it carries out code analysis at run-time to prove they are superfluous.

In the design of the Java Bytecodes language a great elfort was done to make it well-suitable for portability

and for enforcing security. However, in order to widely accept Java Bytecodes as a programming language

for the Internet it is is desirable that the language be also efficient when executing in different hardware

architectures. Unfortunately this is the weakest aspect of the language and is currently focus of much

research work. The inneficient execution of Java Bytecode programs lies with the definition of the Java

Bytecodes themselves. The language is poor for expressing the result of many common and important

compiler optimizations that are traditionally expressed in the native code produced by most compilers. A

direct translation of the bytecode stream generated by a Java front-end into a target machine instructions

results in low quality native code.

The first reason accounting for the weakness of Java Bytecodes in expressing compiler optimizations is the

stack model of the language that restricts access to only the top of the stack and provides no operand registers.

The restriction of access to only top of the stack prevents reordering of bytecodes that would be necessary

to express code re-organization induced by compiler transformations, such as instruction scheduling. With

no register to hold values, the stack model sequentializes computation and prevents the reuse of values, since

operands must always be copied onto the top of the stack, which in turn also affects code re-structuring. As

there are no means for referencing registers, the language also prevents the expression of register allocation.

A second feature of the language that negatively contributes to its power as a program representation is the

fact that some bytecodes intrinsically encapsulate many machine sub-operations (e.g., iaload, includes the

address computation, array bound checks and the actual load of the array element). A Java front-end can

detect when sub-operations are redundant or subsumed by preceding sub-operations in the program flow, and

it can implement code-improving transformations that eliminate these sub-operations or move them around.

However, the compiler is still limited on how to generate Java Bytecodes expressing such code changes as

these sub-operations cannot be selectively moved apart from a bytecode and there is no mechanism in the

language to turn them off in the bytecode. For this reason, simpler compiler optimizations such as common

sub-expression elimination and loop invariant removal have limited expressiveness in the Java Bytecodes

Java Code

public Static void foo(int a[]/ int b[l, int offsetl, int offset2){
for (int i=0; i<a.length; i++)

a[i] = b[i] + offsetl + offset2;
}

n?
Optimized IR Optimized

IK. Bytecode

1 : sitiovi 0, i 1 : iadd offsetl, offset2, _tmpl 0 iload 2

2 : aadd a, "array size offset", tempi 2 : smovi 0 , i 1 iload_3
3 : ild (_templ), _temp2 3 : aadd a, "array size_offset", _temp2 2 iadd

4 : icmpge i, temp2, temp3 4 ; ild (temp2), tempB 3 istore 5

5 : br _temp3 (18) 5 : icmpge i, _temp3, _temp4 5 aload 0

6 : ishl i, "ishift", _temp5 6 ; br temp4 (16) 6 arraylength
7 : iadd temp5, "array size offset", _temp6 7 : ishl i, "ishift", _temp6 7 istore 6

8 : aadd b, _temp6, _temp7 8 : iadd temp6, "array_size_offset", _terap7 9 iconst_0
9 : ild (_temp7), __temp4 9 : aadd b, _temp7, _temp8 10 istore 4

10 : iadd temp4, offsetl, temp8 10 : ild (temp8), _temp5 12 goto 29
11 : iadd temp8, offset2, temp9 11 : iadd _temp5, _templ, _temp9 15 aload_0
12 : ishl i, "ishift", _templO 12 : aadd a, temp7, templO 16 iload 4

13 : iadd templO, "array size offset", templl 13 : ist temp9, (_templO) 18 aload_l
14 : aadd a, templl, templ2 14 : iadd i, 1 , i 19 iload 4

15 : ist temp9, (templ2) 15 : jmp (5) 21 iaload

16 : iadd i, 1 , i 16 : return 22 iload 5

17 : jmp (2) 24 iadd

18 : return 25 iastore
26 line 4 1

29 iload 4

31 iload 6

33 if_icmplt 15
36 return

Figure 1: Java Bytecodes as a language for program representation

language. To exemplify these limitations, consider the example in Figure 1.

This example supposes a RISC-like three-address code intermediate representation (IR) is used in the

Java Bytecode Compiler. The leftmost column shows the IR operations corresponding to the Java code on

the top of Figure 1 ^. After optimizing this IR, the compiler was able to produce the optimized bytecode

stream listed in the last column. We can notice, in the second column, some simple optimizations done by

the compiler such as loop invariant removal of expression offsetl + offset2 and the array size reference.

However, although the compiler can optimize the initial IR even more by performing common sub-expression

elimination of the sub-operations comprising array elements accesses (the index is the same for accessing

the integer arrays a and b and therefore the array index computation in lines 6-7 and 12-13 in the first

column are redundant), these transformations could not be expressed in the optimized bytecode stream.

The bytecode operation for array access includes the address computation and the actual load/store of the

array element and cannot be broken down in simpler bytecode operations. As a result all sub-operations are

kept in the loop. A direct translation of this optimized bytecode stream yields native code in need of quality

improvement.

Although a Java front-end can compile a program into a clean and highly optimized sequence of bytecode

operations, the JIT compiler, in order to generate high quality-native code, will have to perform bytecode

analysis to extract information about the program and use it to implement code optimizations during the

' array bound checks have been omitted

translation process. This introduces an overhead in the already time-constrained JIT technology. In this

paper we present an alternative to an optimizing JIT compiler based on bytecode annotations. In our

annotation-aware JIT (AJIT) compilation system, the translation of bytecodes into high-performance native

code is accomplished with the help of extra analysis information carried along with the bytecodes in the form

of annotations. Our idea of Java Bytecode annotations was first introduced in [15] and in this current work

we present the details of the implementation of our annotation-generating compiler and our annotation-aware

JIT system. Particularly we show how effective annotations are for carrying information concerning register

allocation, common sub-expressions and value propagation. We have also collected some initial results on

the performance of the code generated by our AJIT system and we have comparative figures that show how

we outperform other JVM implementations on SPARC machines.

The format of this paper is as follows. In the next section we present the structure of our annotation-

generating Java front-end and we discuss the types and formats of the annotations implemented in our first

prototype. We also give details on our compile-time register allocation that produces annotations to support

dynamic register allocation. In Section 3 we discuss our annotation-aware JIT (AJIT) system and show how

it uses annotations to implement run-time register allocation and to produce native code. In Section 4 we

discuss related work. This section is followed by Section 5 where we present some preliminary results on the

performance of our AJIT system. We finalize the paper with our conclusions and future directions outline

in Section 6.

2 Annotation-Generating Compilation System

The idea of annotating a program representation with analysis information produced by a front-end compiler

comes from the need to speed up the work of a run-time code optimizing system. We have chosen Java

Bytecodes as the program representation to annotate and the JVM as the system supporting annotations.

This choice was based on the Java Bytecodes commercial success induced by its write-once-run-anywhere

feature. However our concept of annotations can be applied to any program representation.

Our annotations types and formats vary with the kind of information that needs to be conveyed to

the run-time code optimizing system. It can consist, for example, of program information available at the

high level source code that is not captured by the program representation used for the software distribution

and compile-time analysis information that is time consuming to produce at run-time. Figure 2 gives an

overview of a general annotation-generating compilation system with the different types of annotations

we have designed or we are in process of designing. During the initial Java to Bytecode translation, our

annotation-generating compiler behaves as a traditional compiler. It builds a three-address code intermediate

representation flexible enough to represent all the sub-operations that the Java Bytecodes are broken into.

On this IR traditional code-improving compiler techniques (e.g., copy propagation, common sub-expression

elimination, loop invariant code removal and register allocation) can be applied and an optimized IR is

obtained. Once this stage has been reached, each operation (or sequence of operations) is translated into

optimized Java Bytecodes. An annotation generator block reads in the optimized IR and the data provided

by compiler analysis and produces the different types of annotations. The compiler has a final mapping

phaise in which bytecode operations are paired with their corresponding IR operations andannotations data.

Forexample, in the case ofVirtual Register Allocation annotations, which will be explained in the following

paragraphs, each bytecode is annotated with thesource anddestination registers (as well as any intermediate

values) allocated for the corresponding Java IRoperations operands. Finally, the bytecode stream is copied

into the code attribute section of the class file together with the annotations, input into the class file as an

extra code attribute. Storing annotations in this way guarantees portability and compatibility with existing

JYMs that do not understand the annotations code attribute, which is by convention just ignored [11].

Source Code

(Java, C, C++...)

Annotation-Generating Compiler
front end

dataflow analysis

control flow analysis

array range checks analysis

object lifetime analysis

high level source code info

Code

Optimization
constant folding,
copy propagation,
CSE,
loop invariant removal

Optimized
Java IR

Mapping
Annotations to

Bytecode
operations

lAnnotationsj

pptimized Bytecodes]

[Annotations Generator

l| VRA~
I annotations

1

I

run-time

checks
annotations

memory
reference

tags
annotations

memory
lifetimes

annotations

alternative
VLIW-like
schedules

annotations

profiling info for
tranches and loops

annotations

Annotated

Optimized
Bytecodes

Annotation-aware JIT

Compilation System

run-time

IR

Code Generation

instruction!

selection

Garbage

Collection

run-time Code

Optimization

optimized
native code

Figure 2: Annotation-generating compiler and annotation-aware JIT (AJIT) system

Our annotation-generating compiler was built on the freely available Java Bytecode compiler guavac

version 0.3.1 [22]. From the Java source code, this compiler generates a parser tree and produces bytecodes.

We augmented the compiler code by introducing functions for building and manipulating our three-address

code Java IR, by implementing compiler optimizations for common sub-expression elimination, copy propa

gation and virtual register allocation and by designing the Virtual Register Allocation (VRA) annotations

generator. VRA annotations are the type of annotations we will be discussing in this current paper. For the

other types of annotations listed in Figure 2, what they mean and the purpose they serve, the reader can

resort to [15]. Some of these annotations types, such as memory lifetimes annotations, alternative VLIW-

like schedules annotations and profiling information annotations are not described in our previous paper and

consist part of our future work discussed in Section 6.

Virtual Register Allocation annotations represent the result of performing register allocation assuming an

infinite number of registers. The information provided by the VRA annotations is used by the JIT compiler

to perform a fast and efficient register allocation and also to indicate which bytecodes or bytecode sub-

operations are redundant ^ or subsumed by preceding operations and therefore do not need to be translated

into machine instructions. How the JIT compiler interprets the annotations, does the register allocation and

produces native code eliminating redundant computation is explained in Section 3. In the remaining of this

section we will dicuss the format of VRA annotations and how our front-end compiler produces them.

Each instruction defined in the Java Bytecodes language is mapped into operations in our Java IR. An

notations for virtual register allocation basically hold information on the operands of the Java IR operations.

The VRA annotations represent source operands, destination operands and any intermediate value implic

itly calculated by the bytecode sub-operations (e.g., array address calculation in an array load operation).

For each bytecode• instruction one or more VRA annotations format exist. Each format indicates how a

particular bytecode sub-operation should be translated: from where to read its input operands, where to

write the result into, or when it should be skipped from translation, as the result value it would produce has

already been generated by some previous computation that reaches this program point and is available in a

virtual register.

Figure 3 shows an example of correspondence between bytecodes, Java IR and VRA annotations for

mats. Each SRC, EXTRA and DEST fields hold virtual register numbers representing the operands for the

sub-operations. In Figure 3(a) the Java IR code sequence for the computation performed by the bytecode

iaload is illustrated. The most general format of an iaload operation includes 2 SRC fields, 2 EXTRA fields

and one DEST field with header format SRC-SRC-EXTRA-EXTRA-DEST. The first SRC field represents the virtual

register that holds the array object reference; the second SRC field represents the virtual register that holds

the index; the first EXTRA field represents the result of the array index calculation; the last EXTRA field repre

sents the result of the array address calculation; finally the DEST field represents the virtual register holding

the array element read from memory. In case the address computation has already been computed before,

as in Figure 3(b), the header SRC-DEST indicates that the SRC field holds the array element address and

DEST field is the suggested virtual register to hold the value read from memory, meaning that the translation

process can skip the sub-operations for array index and address calculation and the bytecode iaload can be

translated into a single load operation.

In Figure 4, we show how local variables and class member variables are represented in our Java IR.

^redundant bytecodes appear in the optimized bytecode stream due to the stack machine model

Bjdecode JavaIR

iaload tempo holds array address
tempi holds index

1 : ishl tempi, "ishift", _temp2
2 : iadd temp2, "array size_offset", _temp2
3 : aadd _tempO, _temp2, _temp3
4 : ild (_temp3), _temp4

Annotated Bytecode
opcode SRC SRC EXTRA EXTRA DEST
iaload tempO tempi _temp2 _temp3 _temp4

(a) Array element address calculationand array load

Bytecode JavaIR

iaload tempo holds array element address

4 : ild (_tempO) , _templ

Annotated Bytecode
opcode SRC DEST
iaload _tempO _templ

(b) Array load

Figure 3: Example of VRA annotations for iaload operation

Bytecode JavaIR VRA Annotation Formats

iload nop
CONST

SRC

limov tempi, temp2 SRC DEST

istore imov const, tempi CONST DEST

nop
CONST

SRC

getstatic amovi ^^address of class variable", tempi
{b,c,s,i,l,d,f,a}ld (_templ), _temp2

EXTRA DEST

{b, c, s, i, 1, d, f, a} id (_templ) , _temp2 SRC DEST

nop SRC

getfield amovi "address of object, _templ
amovi "offset of field", temp2
aadd _templ, _temp2, _temp3
{b, c,s,a,d,f,1,i}id (temp3), _temp4

EXTRA EXTRA EXTRA DEST

amovi "offset of field", temp2
aadd tempi, temp2, temp3
{b,c,s,a,d,f,1,i}Id (temp3), temp4

SRC EXTRA EXTRA DEST

aadd _templ, _temp2, _temp3
{b,c,s,a,d,f,1,i}Id (_temp3), _temp4

SRC SRC EXTRA DEST

{b,c,3,a,d,f,1,i}Id (_templ), _temp2 SRC DEST

nop
SRC

Figure 4; Example of VRA annotations for local variables and class member variables accesses

Local variables are directly mapped to virtual registers. Local variables accesses (e.g, iload and istore)

are represented in our Java IR as nop operations or move operations, annotated as SRC-BEST, CONST-DEST,

CONST or DEST, depending on the result of optimizing the Java IR via copy propagation. When the JIT

interprets these two last formats of annotations, SRC or CONST, it has the information that either the local

variable is in a virtual register indicated by the byte following the header or that it is a constant. In both

cases, no machine code is generated for the bytecode. Class member variables are kept as variables in memory

in our front-end compiler and accesses to them are via load and store operations, as shown in Figure 4 for

bytecodes getstatic and getf ield. As a consequence these variables are also kept in memory in our AJIT

system. In order to still allow some optimization on accesses to class member variables we devised annotations

that make explicit the variable address calculation, just like we did with array references. For example, for

the bytecode getf ield, the different annotations formats EXTRA-EXTRA-EXTRA-DEST and SRC-DEST inform

whether or not the variable address has been computed before. To treat these variables the same way we

deal with local variables we have to extend our register allocation algorithm to assign variables to registers

over the entire program and not only inside methods scope. In this case we have to take into account the side

effect of all the methods that can potentially modify the member variables. The code for these methods can

be known at the bytecode production time or not. We plan to modify our register allocation algorithm and

use our annotation framework to allow global register allocation at run-time, much like the type of register

assignment introduced by David Wall in [23].

The choice of the virtual register to hold the operations operands is crucial to the register allocation done

at run-time. In order to perform a fast and efficient register allocation at run-time the VRA annotations

must indicate which variables should be allocated or have more preference in being allocated to a physical

register. This is accomplished by assigning at compile-time the lowest virtual register numbers to the most

important variables in a method code, and then, at run-time, giving priority to assign those lowest virtual

register numbers to machine registers. The details of our compile-time register allocation algorithm are

presented in Section 2.1.

When designing the VRA annotations we opted for a format that was easy to be decoded by the JVM

run-time system so that processing the annotations introduces low overhead. The general VRA annotations

format includes a byte-long header followed by a variable number of bytes representing the virtual register

numbers. The header indicates how the subsequent annotations bytes should be interpreted. In our first

prototype, we did not try to optimize the space consumed by the annotations, and our measures indicate

annotations can double the size of the bytecode stream [15]. Another drawback of our annotation approach

that we have not yet come around in this first implementation is the need for a validation scheme to verify

the extra information represented in the class file, as malicious or incorrect annotations can cause erroneous

native code to be generated.

2.1 Compile-time Register Allocation

In our annotation-generating compiler we implement a modified priority-based graph-coloring algorithm. In

a traditional Chaitin-style graph coloring algorithm [5, 4], an interference graph is pruned to decide the

ordering in which live ranges are assigned to colors (and ultimately registers). A priority-based coloring

algorithm [6] uses some heuristics and cost analysis to determine the ordering of live ranges and guarantees

that the most important live ranges are assigned colors first. In our first compiler prototype, variables

(including method parameters, method local variables and compiler generated temporaries) are prioritized

by their static reference counts, having references inside loops, no matter how deeply nested, counting as 10.

An alternative algorithm for assigning variables priorities would be to take into account profiling information

instead of static reference counts. This alternative in our list of future research. As we want to keep the

number of virtual registers the smallest as possible, we want to assign the same virtual register number to

variables with non-conflicting live ranges. This is accomplished by building the interference graph which

gives us information on conflicting live ranges. Using the information provided by the interference graph,

the color assignment algorithm picks variables from the priority list and assigns virtual register numbers

(colors) to them, reusing lowest virtual register numbers or creating a new virtual register number in case

of conflicts with all already existing virtual register numbers.

Figure 5 shows the main function implementing the method's virtual register allocation. After the

generation of the Java IR, the compiler runs data flow analyses and implements the optimizations of copy

propagation and common sub-expression elimination. This optimized IR is used by the compiler to calculate

the static reference counts for each variable. As seen in the code, the register allocator runs additional

dataflow analyses, builds the interference graph, the variables priority list and finally assigns colors to the

variables. Figure 5 also shows the variables priority algorithm. In case of matching static reference counts, the

priority of a variable is dictated by the order in which it was referenced in the code. Figure 6 shows the color

assignment algorithm. When assigning virtual register numbers (or colors) we associate each virtual register

number with the Java type of the variable it is allocated for, and we do not allow a virtual register number

holding an integer variable to later be reused to hold a floating point variable. This restriction, although

it has the counter effect of increasing the number of virtual registers it guarantees that the assignment of

a virtual register to a physical register is more fixed in the back-end. Otherwise, the frequent re-mapping

of virtual registers to physical registers breaks the virtual registers priorities and to correct it spilling is

introduced in the code, which has a worse effect.

void method::virtualRegAlloc(){

liveAnalysis();
buildlnterferenceGraphO ;
buildPriorityList() ;
assignColors();

}

void method::buildPriorityList(){

_priorityList.vector 0;

while(hasToVisit()){
unsigned int selected = getVariableWithMaxPriority() ;
_priorityList.push back{ nodeList[selected]);

}
}

unsigned method::getVariableWithMaxPriority(){
// _nodeList holds all the variable arguments referenced in the program

unsigned int i=0;
while((_nodeList[i]->isVisited()) && (i<_nodeList.size())) i++;
unsigned int max = _nodeList[i]->getPriority() ;
int selected = i;

for(i; i<_nodeList.size 0; i++) {
if (_nodeList[i]->isVisited0) continue;
else if (_nodeList[i]->getPriority0 > max){

max = _nodeList[i]->getPriority0 ;
selected = i;

}
}.
_nodeList[selected]->visited(l) ;
return selected;

}

Figure 5: Compile-time algorithm for virtual register allocation

10

void method::assignColors(){
vector <varArg *>::const_iterator i;
unsigned int nodelD, id;
vector <varArg *>::const_iterator j;
unsigned int c;
unsigned int assignedColors;
vector<unsigned int> assigned;
vector<argType> colorTypelnfo;
unsigned int conflict =0;
unsigned int k, m;

assignedColors=l;
assigned.vector();
colorTypelnfo.vector 0 ;
colorTypelnfo.push_back(t_Unknown);
// first position not used

for(i=_priorityList.begin(}; i != _priorityList.end(); i++) {
vector <var Arg *> adjList = (*i)->getAdjList ();
for(j= adjList.begin 0 ; j 1= adjList.end(); j++) {

if ((*j) ->isColored()) {
c = (*j)->getColor () ;
assigned.push_back(c);

}
else continue;

}
if (assigned.empty0){

// the neighbors have not been colored
if (assigne'dColors == 1) {

// first color assignment
(*i)->setColor(assignedColors);
colorTypeInfo.push_back((*i)->getCType());
assignedColors++;

)
else{

//choose among the existent colors
//if not appropriate type, create
for(c=l; c<assignedColors; C++){

if ((((*i)->getCType0 == t_Reference)
((*i) ->getCType ()
((*i) ->getCType ()
((*i) ->getCType ()
((*i) ->getCType ()
((*i) ->getCType ()

{ (colorTypelnfo[c]
(colorTypelnfo[c]
(colorTypelnfo[c]
(colorTypelnfo[c] ==
(colorTypelnfo[c] ==
(colorTypelnfo[c] ==

(*i)->setColor(c)
break;

new color

== t_Byte) I I
== t_Character) I
== t_Short) 1 I
== t_Integer) |[
== t_Long)) &&
== t_Reference) I
== t_Byte) I 1
== t_Character) [
== t_Short) I 1
== t_Integer) 1|

t_Long))){

}
else if ((t_Float)

t_Double)) &&
t_Float) 11
t Double)))(

I I

)
if

((*i)->getCType0 ==
((* i)->getCType() ==
(colorTypelnfo[c] ==
(colorTypelnfo[c] ==

(*i)->setColor(c)
break;

}

(c == assignedColors){
//none of the previous colors served
(*i)->setColor(assignedColors);
colorTypelnfo.push_back((*i)->getCType());
assignedColors++;

} // else
// if

the neighbors have already been colored.
We must check whether the existent colors
match the neighbors'.
If no conflict, the color is a candidate
and it will be the chosen color
if types are compatible */

k=l; conflict=0;
while(k < assignedColors){

for(m=0; m < assigned.size (); m++) (
if (k==assigned[m]){

conflict = 1;
break;

}

(conflict)(
)c++;
conflict=0;

else{
//this color is

if ((

a candidate, must check types
(*i) ->getCType ()
(*i) ->getCType ()
(*i)->getCType()
(*i)->getCType()
(*i)->getCType()
(*i)->getCType()

(colorTypelnfo[k]
(colorTypelnfo[k]
(colorTypelnfo[k]
(colorTypelnfo[k]
(colorTypelnfo[k]
(colorTypelnfo[k]
break;

t_Reference) I I
t_Byte) I I
t_Character) |1
t_Short) 1 I
t_Integer) 1 I
t_Long)) &&
t_Reference)
t_Byte) 1 I
t_Character)
t_Short) I I
t_Integer)
t_Long)))

I I

I I

else if ((((*i)->getCType0 == t_Float) ||
((*i)->getCType() == t_Double))

((colorTypelnfo[k] == t_Float) l|
(colorTypelnfo(ki ~ t_Double))
break;

•else{
// conflicting types, try another color

k++;continue;

)
} // else

I // while
if (k < assignedColors) (*i)->setColor(k);
else{

_nodeList[nodelD]->setColor(assignedColors);
colorTypelnfo.push_back((*i)->getCType ());
assignedColors++;

}
} // else

(*i)->colored(1) ;
assigned.erase(assigned.begin(), as s igned.end());

Figure 6: Coloring algorithm

11

3 Annotation-Aware JIT (AJIT) Compilation System

The lower portion of Figure 2 depicits our annotation-aware JIT (AJIT) system. We modified the public

domain JIT compiler Kaffe system [24] (version 0.9.2) to implement our annotation scheme. The changes

concentrated on a few number of files and consistedon the design of a new register allocator, modifications to

the generation of Kaffe internal intermediate representation and to its code generator for SPARC machines.

Both originalKaffe functions and the newincluded functions coexist in the system, allowing the processing of

annotated methods and non-annotated methods (e.g., Java class libraries files were not annotated and when

compiled they go through the original Kaffe translation scheme), making the system capable of compiling

annotated and non-annotated Java class files.

As VRA annotations are derived from translating the bytecodes into a RISC-like three address code

intermediaterepresentation, onecan wonder whether they are general, fiexible and helpful enough to produce

optimized code for different target architectures. We have experimented with Intel architecture in [15], and

with SPARC architecture in the current paper, which represent two distinct types of machines (CISC and

RISC respectively). Our annotations scheme has proved to suffice the needs for generating code for these

two platforms. As we experiment with other architectures our annotations types and formats will be refined

accordingly.

In the AJIT system, when a class method is first called, the bytecode stream is read into a table buffer,

and if there is an annotation code attribute, the annotations are also read into an annotations table and

the JIT compiler invokes the corresponding translation routine. The process of producing native code from

annotated Java bytecodes is donein a single passover the bytecode stream. A loopiterates over the bytecode

stream, and as it reads each bytecode and its annotations bytes, the corresponding Kaffe IR operation(s) is

(are) generated. The generated Kaffe IR operation (or sequence ofoperations) depends on the information

provided by the annotations. This information maysuggest that the bytecode translation be totally skipped

or some sub-operations be eliminated or simplified. Figure 7 shows a code example of how an iaload

bytecode operation is translated using the annotations information.

The translated Kaffe IR operations operands are specified by virtual register numbers, extracted from

the annotations bytes. Once all bytecode stream has been processed, SPARC native code is produced from

the Kaffe IR operations stream. At this stage, as each Kaffe IR operation is translated into native code, the

register allocator is invoked to replace virtual register numbers by machine registers.

The run-time register allocator is a fast and effective algorithm that essentially maps each virtual register

to a machine register privileging the assignment of lower virtual register numbers. This guarantees that

high priority values (program variables represented by lower virtual register numbers) have preference in the

register assignment. When running out ofphysical registers, virtual registers are mapped to temporaries on

the stack. In the case ofthe SPARC machine, the register allocator reserves four registers ofeach type (four

ofthe global integer registers g0-g7 and four ofthefloating point registers f0-f 31 for evaluating expressions

12

that involve variables that are not mapped into machine registers). The algorithm uses a mapping table as

an auxiliary data structure. The mapping table stores information on a virtual register number, a pointer

to the corresponding physical register table entry and the stack offset value it should use in CEise of spilling.

There are some details on the initialization of the mapping table to correctly handle the SPARC register

windows convention. These details are taken care of in the methods prologue and on the translation of

bytecodes for accessing method local variables. Method local variables that are parameters are passed in

special integer registers (i0-i5) forcing the mapping of virtual registers associated with these parameters.

This may break virtual register priorities, and the register allocator fixes it by spilling already mapped lower

priority virtual registers in case a higher priority virtual register number needs a physical register and there

are none available. The algorithm uses local registers 10-17 , global registers gl-g3, any unused input

register i0-i5 and floating point registers f 0-f27 for allocation. Global registers g4-g7 and floating point

registers f28-f31 are reserved as scratch for those virtual registers mapped as temporaries on the stack.

Registers o0-o7 are also not available for the allocator and are reserved for passing parameters to method

calls.

Our current register allocation scheme does not try to minimize call costs. At method call boundaries

move operations ate generated to guarantee values are in the correct registers required by the calling con

vention and spilling of all active registers is done. Our annotation scheme could be used to carry information

on which values produced in the program are later passed to methods as parameters and also which registers

should be saved across procedure calls. Having the first kind of information would guide the register allocator

in the virtual to physical register mapping and would avoid some copies. The second kind of information

would decrease the overhead of subroutine calls by spilling only the registers that are later referenced in

the program. We are currently investigating how our virtual register allocator in our annotation-generating

front-end can be extended to lower the cost of method calls.

To prove that our AJIT system is an acceptable engineering solution we need to quantify the overhead

of processing the annotated bytecode stream and the overhead of our mapping-based register allocation in

the process of generating optimized native code. If we manage to generate better optimized native code

in a shorter amount of time as compared to an optimizing JIT compiler we show that our framework is a

good solution to speedup Java execution. The annotations overhead is due to the larger size of the class

file that increases downloading time, the time spent on the interpretation of the information conveyed in

the annotation bytes (see the extra processing required to build the Kaffe JIT IR in Figure 7), the time

spent on the run-time register allocatorand the demandfor resource requirement (extra memoryfor storing

annotations table). Network applications are sensitive to the downloading time overhead, but other types of

applications that do not depend on annotated class files being downloaded are not slowed down. In our AJIT

system the run-time IR (the Kaffe IR) is simple to build and manipulate. Other optimizing JIT systems

may need a more complex IR to enable compiler transformations to be easily performed. We believe that the

overhead of processing the annotations, storing them and building a simple run-time IR will ultimately be

13

define_insn(lALOAD)

array ref, index -> value
*/

a = meth->annotations_table->entry[i] ;
i++;

if (a.header == SRC_SRC_EXTRA_EXTRA_DEST){
index = *(a.VRAData); objref = *(a.VRAData+1);
tmpl = *(a.VRAData+2); tmp2 = *(a.VRAData+3); dest = *(a.VRAData+4);

annotated_lshl_int_const(vrslots[tmpl].slots, vrslots[index].slots, SHIFT_jint);
if (object_array_offset !=0) ~

annotated_add_int_const(vrslots[tmpl].slots, vrslots[tmpl].slots, object_array_offset);
annotated_add_ref(vrslots[tmp2].slots, vrslots[objref].slots, vrslots[tmpl].slots);
annotated_load_int(vrslots[dest].slots, vrslots[tmp2].slots);

}else if (a.header == CONST_SRC_EXTRA_EXTRA_DEST)(
cindex = *(a.VRAConst); objref = *(a.VRAData) ;
tmpl = *(a.VRAData+1);trap2 = *(a.VRAData+2); dest = *(a.VRAData+3);

annotated_move_int_const (vrslots [tmpl] .slots, (cindex«SHIFT_j int) , NULL) ;
if (object_array_offset !=0)

annotated_add_int_const(vrslots[tmpl].slots, vrslots[tmpl].slots, object_array_offset);
annotated_add_ref(vrslots[tmp2].slots, vrslots[objref].slots, vrslots[tmpl].slots);
annotated_load_int(vrslots[dest].slots, vrslots[tmp2].slots);

)else if (a.header == SRC_SRC_EXTRA_DEST)(
objref = *(a.VRAData); tmpl = *(a.VRAData+1); tmp2 = *(a.VRAData+2); dest = *(a.VRAData+3);

annotated_add_ref(vrslots[tmp2].slots, vrslots[objref].slots, vrslots[tmpl].slots);
annotated_load_int(vrslots[dest].slots, vrslots[tmp2].slots);

[else if (a.header == SRC_DEST){
tmpl = *(a.VRAData); dest = *(a.VRAData+1);
annotated_load_int(vrslots[dest].slots, vrslots[tmpl].slots);

[else if (a.header == SRC)(
II no action

} else error=l;

Figure 7: AJIT translation process for an iaload bytecode operation

14

less than the overhead of building, storing and manipulating a complex IR in those systems. Finally, our run

time register allocation algorithm is an algorithm that obeys a defined mapping rule and only manipulates

mapping tables and can be claimed fast. No time is spent on conflict graph construction and coloring or

dataflow analysis, to cite some typical tasks of traditional register allocators. For the benchmarks tested in

this paper we observed a 10% average increase in compilation time for the prototype of our AJIT system,

but we expect this overhead to reduce significantly once our prototype is optimized. In the final version of

this paper more thorough results on the compilation time will be included.

4 Related Work

Various approaches are being proposed to overcome the inefficiency of the direct translation of the Java Byte-

codes stack language and increase the execution speed of Java Bytecodes programs. When fast compilation

time is not a constraint, traditional compilation of bytecodes to some higher-level form and then to native

code [7, 14] and translation of bytecodes to higher level language and then the usage of an existing compiler

to produce native code [21] are examples of two alternatives. When speed of compilation is an issue, opti

mizing JIT compilers [1,2, 24] try to improve the quality of the native code generated on the fly by adapting

traditional compilation techniques to run-time code generation. Another time in which optimizations can

be implemented is in the stage after bytecode generation and before run-time translation. Examples of this

possibility are bytecode optimizers [8]. Our annotation scheme is a hybrid approach in the sense that most

work is done at compile time to retain important high leyel program information and compiler optimizations

information while at run-time lightweight code improving transformations accomplish the task of generating

high quality native code.

Several research work exploit the idea of code annotations and relate to our approach. Though not

designed to specifically overcome the Java Bytecodes language inneficiency, these other approaches can po

tentially handle it. In the context of dynamic code generation, code annotations in the form of programmer

hints [12] or high-level language constructs extensions [20] serve as guide to where and on what dynamic

compilation should take place. These code annotations help building optimizing just-in-time compilers by

extending to run-time the applicability of traditional compiler optimizations, such as copy propagation, dead

code elimination, register allocation, even allowing more advanced and Costly ones as cross-module optimiza

tions that cannot be implemented statically. In these dynamic compilation systems the bulk of the compiler

work is done at run-time and oftenly there is a tradeoff between dynamic compilation speed and the quality

of the generated code. This tradeoff is addressed by implementing alternative strategies for code genera

tion in the run-time system that satisfy different goals and picking the one most appropriate for a certain

problem or constraint. In our annotation scheme, this same tradeoff is addressed by conveying information

that decreases the code generation effort of a JIT optimizing compiler, pushing the code generation cost to

compile time as much as possible.

15

Research in the area of developing fast rnn-time algorithms for common compiler optimizations is very

active. In the following paragraphs we overview how some commercial and academic systems implement run

time code optimizations, such as common sub-expression elimination, register allocation and elimination of

array bounds checking, and how these implementations compare to the rnn-time algorithms our annotation

scheme requires.

Most related to our framework of mind and our VRA annotations scheme is the work developed by Wall

[23] for doing cross-module link-time register allocation. In this approach, the assignment of variables to

registers is treated as a form of relocation. The compiler generates code that can be directly linked and

executed, but it annotates some of the instructions with register actions that describe what needs to be done

to the instruction if the variables it manipulates are assigned to a register at link time. Compared to our

mapping-based register allocation this approach has the overhead of the need of building the call graph, need

of doing local data flow analysis and is dependent on good usage estimates (profiling information). However,

it performs global register allocation while our current implementation only works for intra procedural

register allocation.

The Intel's Java JIT compiler described in [2] implements a limited form of common sub-expression

elimination on the' bytecode stream over extended basic blocks. Our 'VRA annotations scheme allows a

traditional CSE algorithm to be implemented at compiletime and has further advantage in revealing common

sub-expressions within bytecode sub-operations. In the Intel JIT compiler, register allocation is accomplished

via a priority-based algorithm. Static reference count determines variables priorities and call costs and spill

costs are considered in the cost analysis for assigning registers to variables. Our mapping based register

allocation is also a priority-based scheme, but faster to implement at run-time as it dispenses any form

of code analysis. Besides, the 'VRA scheme can be expanded to allocate global variables, while the Intel

JIT compiler would need interprocednral dataflow analysis to do the same, incurring in a high cost run

time algorithm. A very simple array bound checks elimination algorithm was implemented in the Intel JIT

compiler, dealing only with constant indexes. As described in [15], our run-time checks annotations allow

powerful range analysis to be implemented at compile time and easily conveys the resultant information to

the run-time system.

Another efiicient JIT compiler is CACAO [1]. The translation process builds a simple IR and a static

stack structnre that keeps track of instrnctions operands and their dependencies and is used to avoid copy

operations. It also runs some stack analysis that helps reducing method calls costs. The efficiency of

the register allocation algorithm relies on the coloring of local variables done by the Java front-end (that

assigns the same local variable number to variables which are not active at the same time) and on the

fact that stack slots variables have their lifetimes implicitly encoded. Compared to our scheme, the stack

analysis information that has to be computed and used in their algorithm is given with less run-time cost

by our VRA annotations. Their rnn-time register allocator takes into acconnt call costs, which is lacking

in our current scheme. If allocation of global variables is considered, interprocedural stack analysis would

16

be necessary, and the algorithm would become more expensive, just like in the case of the Intel's compiler.

Other optimizations such as instruction scheduling, method inlining and array bound checks removal are

planned to be incorporated into CACAO, but not yet implemented.

Kaffe [24] is a freely available JVM that runs on several platforms. The translation process builds a

simple RISC-like IR as it loops through the bytecode stream. Register allocation is combined with machine

code generation. The register allocator is a simple algorithm that maps stack slots and local variable slots

to machine registers. When running out of registers, the least recently used register is spilled and freed for

allocation. There is no special treatment to reduce call costs or take advantage of machine calling conventions,

as CACAO does. At method calls, copy operations are introduced to guarantee values are in the correct

register (e.g., in the SPARC architecture) and all slots that got modified are spilled. No other compiler

optimization is implemented. In Section 5 we have preliminary results that compare the performance of our

AJIT system with Kaffe and they show that we outperform in quality of generated code.

Worthy mentioning in the subject topic of optimizing run-time compilation systems is the Slim Binary

project [10, 19]. The project proposes an architecture-neutral intermediate representation for softwaredistri

bution, called slim binaries, that can be seen as an alternative to Java Bytecodes. Code optimizations either

take place in the background while the system is running, or on specific request of the programmer. Just like

in the dynamic compilation systems discussed in [12, 20], this system tries to utilize run-time information

(e.g., values of variables, run-time profiling information) to perform customized optimizations. This is an

example of system with a more complex tree-based intermediate representation incurring some run-time

overhead. The same way our annotation scheme extends Java Bytecodes with extra information that is

collected during traditional compilation, the Slim Binary representation could benefit from the annotations

scheme, such as the register allocation information, to decrease run-time costs.

In all optimizing JIT compilers there is an attempt to devise compiler optimizations using linear time

algorithms with respect to some parameter (e.g., for Java JIT compilers, the number of bytecode instructions,

or number of local variables or stack variables could be the parameters). When designing annotations we

have this concern in mind as well. Our current implementation of our annotation scheme allows run-time

register allocation and guarantees the execution with linear time complexity.

5 Results

Our results revolve around four benchmarks; Neighbor, which performs a nearest-neighbor averaging across

all elements of a two-dimensional array; EH3D, a code that creates a graph and then performs a 3D elec

tromagnetic simulation [9]; Huffman, a character string compression and decompression application; and

Bitonic Sort, which builds a binary tree and then performs bitonic sorting (recursively) [3]. To measure

the impact of our AJIT system, we collected results using the JVMs available on SPARC machines: Sun's

JDK version 1.1.1 [17] and Kaffe JVM version 0.9.2 [24]. The execution time results are shown in Table 1.

17

Note that the timings do not include translation nor compile time and they only represent the quality of the
generated code. All codes were compiled using our annotation-generating Java Bytecode compiler and then
executed using Sun's interpreter, Kaffe JIT compiler and our AJIT system.

Benchmarks SUN Interpreter
(in sees)

kaffe JIT

(in sees)
AJIT

(in sees)
SpeedUp

AJIT/SUN
SpeedUp

AJIT/Kaffe
Deighbor
Array Size = 256x256

Iterations = 1500

553.03 162.73 115.31 4.80 1.41

EH3D

Tree Size := 1250 nodes

Iterations =: 200

359.84 149.86 74.51 4.83 2.01

Bitonic Sort

Tree Size = 1024 nodes

Iterations = 512

167.05 141.23 120.96 1.38 1.17

Huffman

Array Size = 30000 nodes
Iterations = 288

4690.00 1856.00 1487.00 3.15 1.25

Table 1: Benchmarks execution times (in seconds) and speedups

The results presented onTable 1reflect thesole effect ofourVRA annotations scheme. Prom the last two

columns of Table 1we can see that our annotation-based approach offers speedups varying from 1.38 to 4.83
over direct interpretation and it is 17% to 100% faster than Kaffe JIT technology. We can notice that the
best speedups were achieved for codes consisting of basic loops iterating over array-based or pointer-based
data (Neighbor, EM3D and Huffman). For such codes, the VRA annotations helped to identify common
subexpressions and eliminate them and allowed propagation of values avoiding move operations. These
correspond to optimizations that could not be expressed in the Java Bytecodes language. It also guaranteed
that the most important variables, such as loop index variables, were permanently assigned to machine
registers throughout the method execution. The smallest performance gain was observed for the code with

high number of subroutine calls - Bitonic Sort is a recursive algorithm. This behavior is explained by
the way our AJIT system, and Kaffe system as well, handle call costs in their dynamic register allocation
algorithms. Both JIT compilers do not take advantage of SPARC register windows. All active registers are
saved across method calls introducing high overhead. The call overhead is not an intrinsic limitation ofthe

algorithms, it is just a limitation in the current implementations of the compilers. Both implementations
can be modified to better exploit the machine architecture features.

The encouraging observation we obtained from these preliminary results is that, despite the limitations
of the first implementation, our AJIT system was capable of producing machine code that executes up to
twice as fast as JIT technology. By extending our VRA annotations scheme with extra information, such
as registers to be saved across subroutine calls and information for basic code scheduling optimizations, and
improving on the parts of the coding of the dynamic register allocator that are machine specific, we believe
the impact of our run-time register allocation will be more noticeable.

18

6 Conclusions and Future Work

Most approaches for speeding up Java execution resort to dynamic compilation (and even dynamic code
re-optimization [13]). In this scenario, run-time costs must be kept down and it is desirable that the bulk of
the compilation process be done at static compile time. Having a rich program representation conveying, for
example, dependence information to allow instruction scheduling and support for dynamic register allocation,

decreases the timespent on run-time code generation, by cutting down the time spent on program analysis

and transformation. In this paper we discussed how the Java Bytecodes language is poor as a program

representation, demanding a more time consuming run-time code generation process in order to produce

high quality native code. We presented an approach based on code annotations that helps to overcome this

limitation. We showed the details of the implementation of our annotation-generating compilation system

and our annotation-awa,re JIT system.

Ourfirst prototypeimplements the VRA annotation scheme that conveys information fordynamic register

allocationand somebasic codescheduling by identifying and eliminatingredundant computation and allowing

propagation of values. Preliminary results show that we outperform JIT technology, producing code that

runs up to twice as fast. We plan to extend our VRA annotation scheme by incorporating information that

helps miuimi7ing call costs (e.g., values to be saved across procedure calls and values passed as subroutine

parameters). We startedwiththe implementation ofthe VRA annotations scheme because register allocation

is the most important compiler optimization to exploit today's CPUs. We also initially selected scientific

benchmarks to test our approach for their higher sensitivity to such optimization. In Figure 2 we showed

planned extensions of annotations types. These other annotations types aim at moresophisticated compiler

optimizations, such as instruction scheduling, and garbage collection optimizations. To help devising these

other annotations we will be studying non-numeric Java applications as well.

References

[1] R. Grafl A. Krall. EfiBcient javavm just-in-time compilation. In Proceedings of International Conference
on Parallel Architectures and Compilation Techniques, PACT'98, 1998.

[2] A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. M. Parikh, and J. M. Stichnoth. Fast, effective code
generation in a just-in-time Java compiler. Proceedings of ACM Programming Languages Design and
Implementation, pages 280-290, 1998.

[3] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: An optimal parallel algorithm for shared memory
machines. Technical Report TR86-769, Cornell University, 1986.

[4] G. J. Chaitin. Register allocation and spilling via graph coloring. SIGPLANNotices, 17(6):201-107,
June 1982.

[5] G. J. Chaitin, M.A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein. Register
allocation via coloring. Computer Languages, 6:47-57, January 1981.

[6] F. C. Chow and J. L. Hennessy. A priority-based coloring approach to register allocation. ACM
rOPLAS', 12(4):501-536, October 1990.

19

[7] M. Cierniak and W. Li. Optimizing Java bytecodes. Concurrency: Practice and Experience, 9(11),
November 1997.

[8] L. R. Clausen. A Java bytecode optimizer using side-effect analysis. Concurrency: Practice and Expe
rience, 9(11), November 1997.

[9] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.
Parallel programming in Split-C. In Proceedings of Supercomputing 1993, pages 262-273, November
1993.

[10] M. Franz and T. Kistler. Slim binaries. Communications of the ACM, 40(12):87-94, December 1997.

[11] J. Gosling, Bill joy, and G. Steele. The Java language specification. Addison-Wesley, 1996.

[12] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers. Annotation-directed run-time
specialization in c. In Proc. of PEPM, June 1997.

[13] David Griswold. The Java hotspot virtual machine architecture, March 1998.
See http://www.javasoft.com/products/hotspot/whitepaper.html.

[14] C. Hsieh, J. Gyllenhaal, and W. Hwu. Javabytecode to native code translation: The caffeine prototype
and preliminary results. Proceedings of the 29th Annual Workshop on Microprogramming, December
1996.

[15] J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau. Annotating the java bytecodes in support of
optimization. •Concurrency; Practice and Experience, 9(11):1003-1016, November 1997.

[16] Microsoft Inc. The microsoft virtual machine for java.
See www.microsoft. com/java/sdk/default.htm.

[17] SUN Inc. Sun interpreter.
See http://www.javasoft.com.

[18] SymantecInc. Just in time compiler for windows 95/NT.
See http://www.symantec.com/region/can/eng/product/jit/jitreadme.html.

[19] T. Kistler and M. Franz. Dynamic runtime optimization. In Proceedings ofthe Joint Modular Languages
Conference, JMLC'97, pages 53-66, March 1997.

[20] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A system for fast, flexible and high-level dynamic
code generation. Proceedings ofACM Programming Languages Design and Implementation, 1997.

[21] T. Proebsting, J. Hartman, G. Townsend, P. Bridges, T. Newsham, and S. Watterson. Toba: Ajava-to-c
translator.

See http://www.cs.arizona.edu/sumatra/toba.

[22] Effective Edge Technologies, guavac. See summit.stanford.edu:/pub/guavac/.

[23] D. W. Wall. Global register allocation at link-time. In Proc. ACM SIGPLAN'86 Symp. on Compiler
Construction, pages 264-275, June 1986.

[24] Tim Wilkinson. Kaffe: A free JIT virtual machine to run java code.
See http://www.transvirtual.com.

20

