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What this study adds:
This study improves understanding of the relationship between 
greenspace exposure and metabolic risk biomarkers and 
builds evidence for the potential positive effects of increasing 
green spaces in urban environments. As metabolic syndrome is 
a growing public health concern in the United States, identi-
fying population-level strategies to reduce this risk is critical. 
G-computation, a flexible causal inference method, can be 
utilized to simulate potential targeted interventions on NDVI 
exposure and observe its possible health benefits. Additionally, 
effect modification can be assessed with g-computation to 
identify which subpopulations can benefit most from greening 
strategies. This has important implications on policy and inter-
ventions aimed at reducing the health burden of metabolic syn-
drome and promoting health equity.
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Simulating the impact of greenspace exposure 
on metabolic biomarkers in a diverse population 
living in San Diego, California
A g-computation application

Anaïs Teyton a,b,c,*, Nivedita Nukavarapud, Noémie Letellierc,e, Dorothy D. Searsf,g,h,i, Jiue-An Yangd, 
Marta M. Jankowskad, Tarik Benmarhniac,e

Introduction:  Growing evidence exists that greenspace exposure can reduce metabolic syndrome risk, a growing public health 
concern with well-documented inequities across population subgroups. We capitalize on the use of g-computation to simulate the 
influence of multiple possible interventions on residential greenspace on nine metabolic biomarkers and metabolic syndrome in adults 
(N = 555) from the 2014–2017 Community of Mine Study living in San Diego County, California.
Methods:  Normalized difference vegetation index (NDVI) exposure from 2017 was averaged across a 400-m buffer around 
the participants’ residential addresses. Participants’ fasting plasma glucose, total cholesterol, high-density lipoprotein cho-
lesterol, low-density lipoprotein cholesterol, and triglyceride concentrations, systolic and diastolic blood pressure, hemo-
globin A1c (%), waist circumference, and metabolic syndrome were assessed as outcomes of interest. Using parametric 
g-computation, we calculated risk differences for participants being exposed to each decile of the participant NDVI distri-
bution compared to minimum NDVI. Differential health impacts from NDVI exposure by sex, ethnicity, income, and age were 
examined.
Results:  We found that a hypothetical increase in NDVI exposure led to a decrease in hemoglobin A1c (%), glucose, and high-density 
lipoprotein cholesterol concentrations, an increase in fasting total cholesterol, low-density lipoprotein cholesterol, and triglyceride 
concentrations, and minimal changes to systolic and diastolic blood pressure, waist circumference, and metabolic syndrome. The 
impact of NDVI changes was greater in women, Hispanic individuals, and those under 65 years old.
Conclusions:  G-computation helps to simulate the potential health benefits of differential NDVI exposure and identifies which sub-
populations can benefit most from targeted interventions aimed at minimizing health disparities.

Keywords: G-formula; Causal inference; Greenspace; Normalized difference vegetation index; Social determinants of health; 
Intervention simulation; Cardiometabolic disease; Metabolic syndrome

Introduction
Metabolic syndrome is a prominent public health issue in the 
United States that affects one in three adults, and it is a grow-
ing concern as metabolic health has worsened over time.1–3 
Defining characteristics of metabolic syndrome include high 
blood pressure, abdominal obesity, high triglyceride levels, 
low high-density lipoprotein (HDL) cholesterol, and impaired 
fasting glucose.2,4,5 It is well-established that metabolic 
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syndrome increases the risk of cardiovascular disease, includ-
ing coronary heart disease, carotid artery disease, and isch-
emic stroke, diabetes, and premature cardiovascular-specific 
and all-cause mortality.1,6 Given these severe consequences to 
health, it is critical to identify who is most at risk and to pri-
oritize reducing this risk, especially as metabolic syndrome is 
largely preventable.

Certain individuals are at greater risk of metabolic syn-
drome. For example, older adults (compared to younger adults), 
Hispanic and non-Hispanic Black individuals (compared to 
non-Hispanic White individuals), men (compared to women), 
and those with lower socioeconomic status (compared to those 
with higher socioeconomic status) have been shown to be at 
increased risk of metabolic syndrome.7–9 The prevalence of met-
abolic syndrome has increased over time, especially among these 
subgroups, leading to an increase in avoidable health inequali-
ties.10 Thus, it is particularly important to focus on populations 
with elevated risk and identify potential interventions that may 
reduce these health inequities.

Assessing the influence of modifiable factors on metabolic 
syndrome is important to reduce the risk of metabolic syndrome 
and its health consequences. Certain risk factors for metabolic 
syndrome have been identified, including environmental expo-
sures such as noise and air pollution.11,12 A few studies have 
also assessed the role of greenspace exposure, often measured 
as normalized difference vegetation index (NDVI), on metabolic 
syndrome biomarkers, where a protective relationship has been 
identified.13–18 Yet, this literature has mostly focused on estimat-
ing a traditional dose–response and has not provided actionable 
evidence based on interventions that simulate the influence of 
modifying NDVI exposure on metabolic biomarkers. Simulating 
interventions on greenspace can be implemented to understand 
the potential implications regarding changes in health outcomes 
resulting from changes in residential greenspace.

One approach to simulate the health impacts of potential inter-
ventions on NDVI exposure is g-computation. G-computation 
is an estimation technique used to calculate the average causal 
effect through standardization.19,20 Though a less frequently 
used causal inference method, g-computation allows for the 
effects of an intervention to be evaluated by estimating potential 
outcomes contrasts.21,22 It can estimate outcomes under a range 
of different exposure scenarios and be used to identify heteroge-
neity in the effects of these exposure scenarios in subgroups.21,23 
This can help identify salient policies and interventions as the 
health benefits of multiple scenarios are quantifiable, and sub-
populations that stand the most to gain from such interventions 
can be prioritized.

In this study, capitalizing on the application of g-computation,  
we simulated the etiological impact of differential greens-
pace exposure on nine metabolic biomarkers and metabolic 
syndrome in a cohort of adults living in San Diego County, 
California. We also assessed the effect modification of modeled 
relationships by several demographic characteristics to identify 
which subgroups would benefit most from increasing exposure 
to greenspace around their home environments.

Methods

Study population

The cross-sectional Community of Mine study aimed to assess 
the influence of environmental exposures and lifestyle behav-
iors on cancer risk in an ethnically diverse population living 
in San Diego County from 2014 to 2017. Participants were 

randomly selected from 764 census block groups from the 1794 
total census block groups in San Diego County that varied with 
regard to the highest and lowest terciles of walkability and food 
access. The study ensured that no more than 10 participants 
were recruited from any given census block group. To be eligible 
for this study, participants had to be living for a minimum of 
6 months in their current residence, be able to move without 
human assistance, travel to a study visit, have a phone, read 
and write fluently in either English or Spanish, provide informed 
consent, comply with the protocol, and complete all assessments. 
A total of 602 individuals aged 35–80 years were included in 
the study. Participants were scheduled for a clinical visit when 
the eligibility criteria were confirmed, and consent was received. 
During this clinical visit, blood pressure and a 12-hour fasted 
blood draw were collected. Additional measurements, such as 
waist circumference, were taken. At the visit, participants com-
pleted a self-report survey providing their demographic infor-
mation. Further details on the study protocol and design can be 
found elsewhere.24 This study was approved by the University 
of California, San Diego Institutional Review Board (protocol 
#140510), and all participants provided signed informed con-
sent. In this study, a complete case analysis was utilized, where 
those with missing information related to the NDVI exposure, 
metabolic biomarker outcomes, and confounders were removed 
(see Table S1; http://links.lww.com/EE/A293 regarding descrip-
tive statistics on missingness), for a final sample size of 555 par-
ticipants (92.2% retention).

Greenspace exposure and metabolic biomarker outcomes

We calculated greenspace exposure by averaging 2017 NDVI 
for a 400-m buffer around the participants’ residences, which is 
a common and optimal buffer size that has been used in previ-
ous studies.25,26 NDVI was collected from Google Earth Engine 
using Landsat 7 Collection 1 Tier 1 data, which has a high spa-
tial resolution of 30 m.27

We assessed nine metabolic biomarkers that are related to 
the conditions associated with metabolic syndrome. These out-
comes were measured and collected during the clinical visit, 
which included fasting plasma glucose (mg/dl), total cholesterol 
(mg/dl), low-density lipoprotein (LDL) cholesterol (mg/dl), HDL 
cholesterol (mg/dl), triglycerides (mg/dl), hemoglobin A1c (%), 
systolic blood pressure (SBP) (mmHg), diastolic blood pressure 
(DBP) (mmHg), and waist circumference (cm). We additionally 
assessed metabolic syndrome (yes; no) as an outcome of interest, 
where having metabolic syndrome was defined as having at least 
three of the following criteria: an increased waist circumference 
(more than 102 cm for men and 88 cm for women), elevated tri-
glycerides (greater or equal to 150 mg/dl), low HDL cholesterol 
(less than 40 mg/dl in men and 50 mg/dl in women), hypertension 
(greater than or equal to 130 mmHg SBP or 80 mmHg DBP), 
and impaired fasting glucose (greater than or equal to 110 mg/dl).

Statistical analysis

G-computation was developed by Robins (1986) and can be 
used to identify an average causal effect through standardiza-
tion. Briefly, the mean outcome (Y) in the exposed (A = 1) and in 
the unexposed (A = 0) is estimated and standardized across the 
prevalence of covariates L, as shown in the following equation: 
Σ E[Y|A = a, L = l] × Pr[L = l].

A detailed visualization of the steps of g-computation derived 
from Hernán and Robins28 is provided in Figure S1; http://
links.lww.com/EE/A293. There are several key assumptions for 
g-computation that are typical under the potential outcomes 
framework, including exchangeability, positivity, and consistency, 
as well as no measurement error and no model misspecification.

Parametric g-computation was utilized to simulate hypo-
thetical interventions that would increase or decrease NDVI 
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exposure around the home and observe the impacts of these 
exposure changes on metabolic biomarkers in participants. 
Minimum, maximum, and decile values of NDVI were calcu-
lated from the exposure distribution in the participants. Ten 
interventions on NDVI exposure were simulated (e.g., 10th 
percentile through the maximum, considered the “exposed” 
groups) and compared to the minimum NDVI exposure (e.g., 
the “unexposed” group). Generalized linear models were utilized 
for the metabolic biomarkers (i.e., the nine continuous outcome 
variables) and a logistic regression model was utilized for met-
abolic syndrome (i.e., the one binary outcome variable), which 
adjusted for potential confounders including sex (male; female), 
income ($30,000 or less; $30,000–55,000; $55,000 or more), 
race (White; Black; Asian; Native Hawaiian, or other Pacific 
Islander; American Indian/Alaska Native; unknown/other), eth-
nicity (Hispanic; non-Hispanic), age, and education (less than 
high school; high school or more). Regression estimates were 
then used to predict the outcome values if all participants were 
exposed or unexposed to each of the ten intervention deciles. 
Risk differences (RDs) between each decile of NDVI exposure 
starting from 10th percentile and the reference group (minimum 
NDVI) were calculated from the average predicted outcomes. 
Bootstrapping was used to obtain the 95% confidence interval 
(CI) for the RDs using 1000 iterations. A sensitivity analysis was 
conducted to examine the model misspecification assumption. 
We utilized a super learner ensemble, which combined and took 
the weighted average of four machine learning algorithms: gen-
eralized linear model with main terms only (SL.glm), random 
forest (SL.randomForest), elastic net regression (SL.glmnet), and 
extreme gradient boosting (SL.xgboost) using 10-fold cross- 
validation.29,30 A binomial distribution was specified for the 
binary metabolic syndrome outcome, and 95% CIs were also 
obtained using bootstrapping with 1000 iterations. It is import-
ant to note that singly robust estimators (such as g-computation) 
used with machine learning underperform compared to doubly 
robust estimators with regard to bias, variance, and CI cover-
age;31 however, the purpose of this sensitivity analysis was to 
compare the model fit of the models used in the main analysis 
to those of the ensemble models and confirm whether the RD 
estimates and trends between NDVI exposure and metabolic 
biomarker outcomes were similar.

We assessed if certain subgroups had more substantial health 
benefits from NDVI exposure interventions. Effect modification 
by demographic characteristics including sex, ethnicity, income, 
and age (categorized as 65 years old or greater; under 65 years 
old) were examined. For each effect modifier, the stratum of 
interest (for instance, those 65 years or older) was simulated 
to be exposed to each of the NDVI exposure levels (e.g., 10th 
percentile through the maximum), while the other categories 
(in this case, less than 65 years old) remained exposed to their 
true residential NDVI exposure value (e.g., the actual average 
NDVI value within a 400-m buffer around the residence). An 
interaction term between the given effect modifier and NDVI 
exposure was added to each model. Cochran Q heterogeneity 
tests assessed if significant differences existed between the RDs 
for each effect modifier, where significance was defined with a 
conservative threshold using a P value for heterogeneity at 0.05.

Analysis was conducted using Stata 16.1 (StataCorp LLC, 
College Station, TX) and R 4.3.1 (R Core Team, Austria, Vienna), 
and the Super Learner package was used for the sensitivity anal-
ysis.29 The analytical code can be found on the following GitHub 
repository: https://github.com/hdscalecollab/G-computation.

Results
Table 1 provides a summary of the demographic characteristics 
of the study population (N = 555). A greater proportion of par-
ticipants were high school educated or higher (90.5%), had an 
annual income greater than $55,000 (49.2%), female (56.0%), 

White (70.8%), non-Hispanic (58.0%), and under the age of 
65 (68.7%). About 18.9% of participants met the criteria for 
metabolic syndrome. Additionally, fasting plasma total choles-
terol and glucose concentrations were above the normal range, 
whereas average LDL cholesterol, triglycerides, hemoglobin 
A1c, and SBP and DBP were within the normal range. Average 
waist circumference was also within the normal range for both 
male and female participants (average female waist circumfer-
ence: 86.8 cm; average male waist circumference: 96.9 cm).

Figures S2a–S2k; http://links.lww.com/EE/A293 provide 
maps depicting average NDVI exposure and health outcomes 
at the ZIP code level. NDVI exposure tended to be higher in 
northern San Diego County and lower in the southern region of 
the county. Higher fasting glucose concentrations seemed to be 
more concentrated in southern San Diego, compared to other 
regions, while triglyceride concentrations, waist circumference, 
and metabolic syndrome were higher in northern San Diego. 
HDL cholesterol concentrations were highest in both northern 
and southern San Diego, particularly inland. In contrast, greater 
spatial heterogeneity can be seen for LDL cholesterol, total cho-
lesterol, SBP and DBP, and hemoglobin A1c, where patterns are 
more difficult to identify.

The RDs for the relationship between NDVI exposure and 
metabolic health outcomes from the g-computation results for 
the entire population are provided in Figure 1, and Figures 2–4 

Table 1.

Summary of demographic characteristics of the study 
population (N = 558), distribution of NDVI exposure, and 
biomarker outcomes

Characteristics n (%)/mean (SD)

Demographic characteristics
 � Age 58.7 (11.0)
 � Sex
  �  Female 311 (56.0%)
  �  Male 244 (44.0%)
 � Income
  �  $30,000 or less 154 (27.7%)
  �  $30,000–55,000 128 (23.1%)
  �  $55,000 or more 273 (49.2%)
 � Race
  �  White 393 (70.8%)
  �  Black 18 (3.2%)
  �  Asian 21 (3.8%)
  �  American Indian/Alaska Native 24 (4.3%)
  �  Native Hawaiian or other Pacific Islander 7 (1.3%)
  �  Unknown/other 92 (16.6%)
 � Ethnicity
  �  Non-Hispanic 322 (58.0%)
  �  Hispanic 233 (42.0%)
 � Education
  �  Less than high school 53 (9.5%)
  �  High school or more 502 (90.5%)
Exposure
 � Normalized difference vegetation index (NDVI) 0.17 (0.1)
Fasting plasma biomarkers, waist circumference, and METS
 � Glucose (mg/dl) 103.7 (27.5)
 � Total cholesterol (mg/dl) 188.2 (35.1)
 � HDL cholesterol (mg/dl) 59.0 (17.4)
 � LDL cholesterol (mg/dl) 107.8 (30.4)
 � Triglycerides (mg/dl) 107.1 (51.6)
 � Systolic blood pressure (mmHg) 126.7 (17.6)
 � Diastolic blood pressure (mmHg) 72.7 (10.1)
 � Hemoglobin A1c (%) 5.6 (0.9)
 � Waist circumference (cm) 91.2 (20.9)
 � Metabolic syndrome
  �  Yes 105 (18.9%)
  �  No 450 (81.1%)

Frequencies and percentages are provided for categorical variables, while means and standard 
deviations are provided for continuous variables.

https://github.com/hdscalecollab/G-computation
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provide the significant effect modification results (tabulated 
results are provided in Tables S2–S5; http://links.lww.com/
EE/A293, and all effect modification results are displayed in 
Figures S3–S6; http://links.lww.com/EE/A293). The following 
NDVI exposure groups were used: the minimum (−0.082; used 
as the reference group), the 10th percentile (0.087), the 20th 
percentile (0.114), the 30th percentile (0.134), the 40th per-
centile (0.147), the 50th percentile (0.166), the 60th percentile 
(0.188), the 70th percentile (0.208), the 80th percentile (0.225), 
the 90th percentile (0.260), and the maximum (0.362). For the 
entire population, a simulated increase in NDVI exposure led 
to a decrease in glucose concentrations (maximum NDVI RD: 
−15.16 mg/dl; 95% CI: −28.44, −1.87), hemoglobin A1c (maxi-
mum NDVI RD: −0.39%; 95% CI: −0.81, 0.04), and HDL cho-
lesterol (maximum NDVI RD: −4.68 mg/dl; 95% CI: −13.35, 
4.00). In contrast, an increase in NDVI exposure increased total 
cholesterol (maximum NDVI RD: 13.61 mg/dl; 95% CI: −5.59, 
32.80), LDL cholesterol (maximum NDVI RD: 11.37 mg/dl; 
95% CI: −5.30, 28.04), and triglyceride concentrations (max-
imum NDVI RD: 35.07 mg/dl; 95% CI: 11.37, 58.77). With 
increasing NDVI exposure, SBP (maximum NDVI RD: −2.36 
mmHg; 95% CI: −11.75, 7.04), DBP (maximum NDVI RD: 
0.34 mmHg; 95% CI: −4.95, 5.62), waist circumference (max-
imum NDVI RD: 0.46 cm; 95% CI: −11.28 12.19), and meta-
bolic syndrome (maximum NDVI RD: 0.25; 95% CI: −1.24, 

1.74) changed minimally and remained close to the null. The 
sensitivity analysis using the super learner ensemble is depicted 
in Figure S7; http://links.lww.com/EE/A293 (tabulated results 
are provided in Table S6; http://links.lww.com/EE/A293). 
Overall, a slight attenuation in the strength of the RDs can be 
noted for most metabolic biomarkers, including LDL choles-
terol, HDL cholesterol, triglycerides, total cholesterol, glucose 
concentrations, hemoglobin A1c, and metabolic syndrome. The 
positive relationship between NDVI exposure and waist cir-
cumference and the negative relationship for SBP were stronger 
in the super learner model. The RDs for DBP went from slightly 
positive to slightly negative for the main model compared to 
the super learner model. With some slight but insignificant non-
linearities noted in the super learner models, most of the meta-
bolic biomarker trends with increasing NDVI exposure tended 
to remain the same as the main models.

We identified significant heterogeneous effects by sex, eth-
nicity, and age across certain health outcomes. Differences by 
sex were noted for fasting plasma glucose, hemoglobin A1c, 
and waist circumference. For these three metabolic health out-
comes, a positive, increasing relationship was identified for men 
with increasing NDVI exposure (glucose maximum NDVI RD: 
−1.40 mg/dl; 95% CI: −9.39, 6.59; hemoglobin A1c maximum 
NDVI RD: 0.01%; 95% CI: −0.25, 0.27; waist circumference 
maximum NDVI RD: 5.00; 95% CI: −1.79, 11.80), whereas 

Figure 1.  Risk differences (RDs) of average biomarker changes with simulated changes to NDVI exposure for the total population. RDs are shown as points and 
95% CIs as lines on the x-axis and simulated NDVI exposure on the y-axis as deciles compared to minimum NDVI exposure for the glycemic control indicators 
(A: fasting glucose levels and hemoglobin A1c), dyslipidemia (B: total cholesterol and triglycerides; C: HDL cholesterol and LDL cholesterol), blood pressure (D: 
diastolic blood pressure and systolic blood pressure), and waist circumference and METS (E) outcomes.

http://links.lww.com/EE/A293
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a negative, decreasing relationship was identified for women 
(glucose maximum NDVI RD: −15.63 mg/dl; 95% CI: −26/23, 
−5.04; hemoglobin A1c maximum NDVI RD: −0.46%; 95% 
CI: −0.84, −0.08; waist circumference maximum NDVI RD: 
−6.26; 95% CI: −14.95, 2.44). Hispanic and non-Hispanic par-
ticipants differed in their relationship between NDVI exposure 
and hemoglobin A1c, where a negative and decreasing relation-
ship was observed for Hispanic participants (maximum NDVI 
RD: −0.72%; 95% CI: −1.15, −0.30), and a positive and slightly 
increasing relationship was found for non-Hispanic participants 
(maximum NDVI RD: 0.11%; 95% CI: −0.12, 0.34). Moreover, 
HDL cholesterol was on the verge of being statistically signif-
icant (P values ranging from 0.0500 to 0.0505), where HDL 
concentrations increased with increasing NDVI for Hispanic 
individuals (maximum NDVI RD: 3.04 mg/dl; 95% CI: −2.96, 
9.04), and HDL concentrations decreased with increasing NDVI 
for non-Hispanic individuals (maximum NDVI RD: −5.68 mg/
dl; 95% CI: −12.02, 0.65). Finally, differences by age were noted 
by total cholesterol and triglyceride concentrations. Increasing 
NDVI exposure led to a negative and slightly decreasing choles-
terol as well as positive and increasing triglyceride concentra-
tions for those 65 and older (total cholesterol maximum NDVI 
RD: −0.91 mg/dl; 95% CI: −8.83, 7.02; triglyceride maximum 
NDVI RD: 6.14 mg/dl; 95% CI: −2.18, 14.46), while a positive 
and increasing relationship was identified for both biomarkers 
for those under 65 years old (total cholesterol maximum NDVI 
RD: 20.74 mg/dl; 95% CI: 3.27, 38.22; triglyceride maximum 
NDVI RD: 34.77 mg/dl; 95% CI: 11.18, 58.36). In comparison, 

no significant differences by income were observed for any of 
the health outcomes.

Discussion
We utilized g-computation to simulate increasing NDVI expo-
sure levels and modeled their effects on nine metabolic biomark-
ers and metabolic syndrome in a diverse cohort. We found that 
increasing NDVI exposure led to a reduction in fasting plasma 
glucose, HDL cholesterol, and hemoglobin A1c and an increase 
in total cholesterol, LDL cholesterol, and triglyceride concen-
trations across all participants. In contrast, increasing NDVI 
exposure minimally impacted SBP, DBP, waist circumference, 
and metabolic syndrome. Differences in the influence of NDVI 
exposure on certain biomarkers were identified by sex, ethnicity, 
and age.

We observed that indicators of glycemic control (e.g., fasting 
glucose and hemoglobin A1c levels) decreased with increasing 
NDVI exposure. Several studies support this finding, as they 
identified a decrease in hemoglobin A1c32–34 and a decrease in 
fasting glucose33,35,36 with an increase in NDVI exposure. In 
contrast, contrary to our hypotheses, biomarkers related to 
dyslipidemia (e.g., high total cholesterol, LDL cholesterol, and 
triglyceride levels as well as low HDL cholesterol) increased 
with increasing NDVI exposure. Mixed findings have been 
previously identified. Yang et al37 and Mei et al38 identified a 
negative relationship between NDVI exposure and these blood 
lipids. In contrast, a study found no association between NDVI 

Figure 1.  Continued
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exposure and total and LDL cholesterols in children.39 A sep-
arate study also found close to null effects of NDVI exposure 
on total cholesterol and triglycerides, specifically when they 
assessed NDVI exposure around a 500-m buffer.40 Another 
study found a decrease in total cholesterol and an increase in 
LDL cholesterol with increasing NDVI exposure.41 Given these 
mixed findings, additional studies are needed to better under-
stand the relationship between NDVI exposure and biomarkers 
related to dyslipidemia. Moreover, we found that SBP decreased 
with increasing NDVI exposure, while DBP was not strongly 
influenced by NDVI exposure. A systematic review identified 
a small protective influence of NDVI exposure on blood pres-
sure, where SBP decreased by −0.77 mmHg and DBP decreased 
by −0.32 mmHg with a 0.1 unit increase in NDVI exposure.42 
Several other studies found similar results as well.43–45 One study 
identified that greenspace exposure was protective of both high 
and low blood pressure.46 Moreover, contrary to our findings, a 
systematic review assessing the relationship between greenspace 
exposure and metabolic syndrome identified 18 papers exam-
ining this association, and they observed an odds ratio of 0.90 
(95% CI: 0.87, 0.93) for the influence of 500-m NDVI on the 
risk of metabolic syndrome.17 Therefore, while our findings tend 
to be consistent with previous studies, such as for biomarkers 

related to glycemic control, more studies are needed as mixed 
results have been identified. Patwary et al emphasized the fact 
that few studies have examined the overall association between 
greenspace exposure and metabolic syndrome risk, making this 
a critical relationship to examine. Few studies have investigated 
the underlying mechanisms through which a greener environ-
ment influences metabolic biomarkers. One such study found 
that physical activity mediated the relationship between NDVI 
and fasting glucose,33 and two other studies identified that both 
air pollution and body mass index mediated the relationship 
between NDVI and biomarkers related to dyslipidemia.37,41 
Another study identified physical activity, body mass index, and 
air pollution including PM2.5, PM10, nitrogen dioxide, and sulfur 
dioxide, as mediators in the relationship between exposure to 
greenness and metabolic syndrome risk.47 Additionally, it may be 
possible that increased green space improves social capital and 
reduces stress, which may in turn reduce the risk of metabolic 
syndrome.13,48–51 However, given the limited focus of previous 
literature on this topic, future work should improve under-
standing of the underlying mechanisms that result in greenspace 
impacts on these biomarkers and metabolic syndrome.

We also identified effect modification by sex, ethnicity, and 
age for the relationship between NDVI exposure and certain 

Figure 2.  Risk differences (RDs) of average biomarker changes with simulated changes to NDVI exposure, stratified by sex. RDs are shown as points and 95% 
CIs as lines on the x-axis and simulated NDVI exposure on the y-axis as deciles compared to minimum NDVI exposure for hemoglobin A1c (A), glucose (B), and 
waist circumference (C). Effect modification by sex is depicted, where males are shown in green and females are shown in orange.
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biomarkers. We found beneficial impacts of increasing NDVI 
exposure for women on their hemoglobin A1c, fasting glu-
cose concentrations, and waist circumference as well as for 
Hispanic individuals on their hemoglobin A1c. Additionally, 
counter to our hypotheses, increasing NDVI exposure contrib-
uted to higher total cholesterol and triglycerides for those less 
than 65 years old. A few studies have assessed the effect of 
modification on this relationship; however, mixed results have 
been identified. In contrast with our study, Li et al35 identified a 
stronger negative relationship in men and older adults between 
NDVI exposure and fasting glucose. While we did not iden-
tify significant effect modification by sex on the relationship 
between NDVI and dyslipidemia-related biomarkers, inconsis-
tent results exist, where one study identified a stronger negative 
relationship for men,41 while another identified a stronger neg-
ative relationship for women.40 A stronger negative relation-
ship was also found for those with a higher education level and 
older adults.37,40 We also did not identify effect modification in 
the relationship between NDVI exposure and blood pressure; 
however, studies found higher negative relationships for men, 
smokers, drinkers, those exposed to lower PM2.5, younger indi-
viduals, and those who are overweight or obese.43–46 Mixed 
findings have been previously identified regarding NDVI expo-
sure and dyslipidemia-related biomarkers by age. One study 
similarly identified an increase in NDVI led to lower HDL 
cholesterol and higher triglyceride levels in individuals living 
in London, United Kingdom, aged 45–69 years.13 In contrast, 
another study found that for every one standard deviation 
increase in NDVI, HDL cholesterol increased and triglycerides 
decreased in older adults living in Shenzhen, China.52 Given 
that few studies have assessed this relationship and mixed 
results have been identified, additional studies are needed to 
understand the impact of NDVI exposure on dyslipidemia- 
related biomarkers and the possible underlying mechanisms 
by which age plays a role in this relationship. Moreover, no 
studies to date have investigated the modification of this rela-
tionship between NDVI exposure and metabolic biomarkers 
by ethnicity. Improved understanding regarding the factors 
that contribute to differential associations by subgroups is 
necessary. It is possible that social and economic disadvan-
tage and discrimination may contribute to certain subgroups 
having a greater risk of metabolic syndrome or green space 

deprivation,53 making simulated increased green space more 
beneficial in these subgroups compared to their counterparts; 
however, more research is needed to better understand these 
differential subgroup associations. Additionally, further stud-
ies are needed to assess this relationship in other regions and to 
identify whether certain subpopulations benefit more greatly 
from increasing greenspace exposure. This has implications 
for potential targeted interventions, as policies may be able to 
prioritize subgroups that benefit most from greening strategies.

Our study illustrates the advantages of utilizing 
g-computation, as it flexibly estimates the difference in the 
outcomes if all participants were exposed to the intervention 
compared to all participants being unexposed to the inter-
vention. We assessed a diverse set of hypothetical changes in 
NDVI exposure on metabolic biomarkers, which can be useful 
for potential interventions and stakeholders. We selected these 
specific scenarios to have a wide range of simulated NDVI 
exposures to understand this etiological relationship; however, 
it should be noted that this approach can be used to reflect 
any type of intervention and can be applied to other poten-
tial policy interventions. Moreover, g-computation can be uti-
lized to simulate the differential impacts of an intervention on 
health outcomes in various subpopulations. A g-computation 
approach that considers effect modification can aid in identi-
fying potential inequities, where a targeted intervention can be 
simulated on a specific subpopulation. This has implications for 
tailored policies, as the most effective greening interventions 
can be identified, and the subpopulations that benefit most 
from these interventions can be prioritized. Several strengths 
exist for this study. This study was conducted in the ethnically 
diverse Community of Mine sample that includes a high pro-
portion of Hispanic individuals with several collected metabolic 
risk biomarkers. Furthermore, the sampling frame was specifi-
cally designed to ensure high environmental variability across 
the San Diego region. However, this study also has limitations. 
It is possible that residual or unmeasured confounding exists, 
which can potentially violate the exchangeability and positiv-
ity assumptions needed to causally interpret the g-computation 
findings. One such example of residual confounding is struc-
tural racism and discrimination targeted toward marginalized 
and underrepresented populations, which are not controlled 
for by solely adjusting on race and ethnicity.54–56 Moreover, we 

Figure 3.  Risk differences (RDs) of average biomarker changes with simulated changes to NDVI exposure, stratified by ethnicity. RDs are shown as points and 
95% CIs as lines on the x-axis and simulated NDVI exposure on the y-axis as deciles compared to minimum NDVI exposure for hemoglobin A1c. Effect modi-
fication by ethnicity is depicted, where Hispanic participants are shown in red and non-Hispanic participants are shown in blue.



Teyton et al.  •  Environmental Epidemiology (2024) 8:e326	 Environmental Epidemiology

8

used static NDVI exposure, where NDVI was averaged using a 
400-m buffer around the residence. First, a range of buffer sizes 
have been used in the literature, such as those within a 500-m 
buffer. It may be worthwhile to explore whether differences in 
the associations exist based on the utilized buffer size. Second, 
while this static metric using such a buffer has previously been 
shown to be important to examine, the risk of misclassifica-
tion and measurement error (another assumption needed for 
g-computation) is reduced when considering dynamic NDVI 
exposure that incorporates participants’ mobility and daily tra-
jectories. It is important to note, however, that violations to the 
other g-computation assumptions, including consistency, mea-
surement error (with regards to the outcomes), and model mis-
specification, are minimal, as a result of our use of well-defined 
NDVI exposures, the outcomes being measured and collected 
during a clinical visit, and our sensitivity analysis confirming 
similar results between our main models and our super learner 
ensemble models. This study was also performed in a relatively 
small and geographically specific sample, with limited diver-
sity with regard to race and education, which may impact the 
generalizability of these findings. This sample of participants 
was also older, more female, more educated, more ethnically 

diverse, had a different racial composition (e.g., a greater pro-
portion of American Indian/Alaska Native individuals and a 
lower proportion of non-Hispanic Black and non-Hispanic 
Asian individuals), and had a similar income composition com-
pared to San Diego County, which may also have consequences 
on the generalizability of these findings.57 Thus, future studies 
should continue to evaluate the public health implications of 
NDVI exposure, simulate the impact of dynamic NDVI expo-
sure on metabolic biomarkers using g-computation, and assess 
this relationship in other populations or regions, particularly in 
racially diverse groups.

Conclusions
In this study, we simulated the impact of greenspace inter-
ventions on several metabolic biomarkers and metabolic syn-
drome in a population living in San Diego County. Increasing 
NDVI exposure was found to lower hemoglobin A1c, fast-
ing plasma glucose, and HDL cholesterol concentrations 
and increase total cholesterol, LDL cholesterol, HDL choles-
terol, and triglyceride concentrations across all participants. 
Moreover, modification of this relationship by sex, ethnicity, 

Figure 4.  Risk differences (RDs) of average biomarker changes with simulated changes to NDVI exposure, stratified by age. RDs are shown as points and 95% 
CIs as lines on the x-axis and simulated NDVI exposure on the y-axis as deciles compared to minimum NDVI exposure for total cholesterol and triglycerides. 
Effect modification by age is depicted, where those 65 years or older are shown in purple and those under 65 years old are shown in green.
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and age was identified. Specifically, increasing NDVI exposure 
was found to reduce hemoglobin A1c and fasting plasma glu-
cose for women but not men, hemoglobin A1c for Hispanic 
but not non-Hispanic participants, and increasing NDVI 
exposure increased total cholesterol and triglycerides for par-
ticipants under 65 but not participants 65 years and older. By 
simulating these targeted interventions, the greening strategies 
with the most health benefits can be identified and the sub-
populations that benefit most from these interventions can be 
prioritized.
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