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Abstract

The recent emergence of oxidation state selective probes of cellular iron has produced a more 

nuanced understanding of how cells utilize this crucial nutrient to empower enzyme function, and 

also how ‘labile’ ferrous iron contributes to iron-dependent cell death (ferroptosis) and other 

disease pathologies including cancer, bacterial infections, and neurodegeneration. These findings, 

viewed in light of the Fenton chemistry promoted by ferrous iron, suggest a new category of 

therapeutics exhibiting ferrous iron–dependent pharmacology. While still in its infancy, this 

nascent field draws inspiration from the remarkable activity and tremendous clinical impact of the 

antimalarial artemisinin. Here we review recent insights into the role of labile ferrous iron in 

biology and disease, and describe new therapeutic approaches designed to exploit this divalent 

transition metal.
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Iron homeostasis; ferroptosis; ferritinophagy; targeted prodrugs; reactivity-based probes; activity-
based probes

Iron Acquisition and Homeostasis

Around a third of all proteins are metalloproteins, with zinc, copper, and iron most 

prominent among the divalent metal ions that drive co-factor dependent enzyme function [1]. 

These activities include DNA & RNA synthesis and repair, epigenetic regulation, and 

cellular respiration, among many others. The ability to redox cycle between the ferrous 

(Fe2+) and ferric (Fe3+) states enables iron-dependent cofactors to fulfil their catalytic roles 
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in a wide range of biochemical processes. Homeostatic control of cellular iron is carried out 

via dynamic mechanisms that regulate its absorption, transport, storage and mobilization [2]. 

Because the ferric ion is essentially water-insoluble, it must be bound to protein chaperones 

such as transferrin for transport and ferritin for storage. While ferric iron storage and 

transport has been well understood for decades, the much less well characterized cellular 

pool of ferrous iron has historically been referred to, somewhat unhelpfully, as the 

‘chelateable’ or ‘labile’ iron pool (LIP) – the pool of iron subject to binding by exogenous 

reagents. Unlike enzyme-regulated iron co-factors or ferric iron stored in cellular ferritin, 

iron in the LIP undergoes spontaneous redox cycling, promoting Fenton-type reaction with 

oxygen and cellular hydroperoxides [2,3], producing oxidative stress and causing damage to 

cellular macromolecules and lipids [4]. Accordingly, the LIP and iron homeostasis generally 

must be carefully regulated, both at the level of the individual cell and the whole organism.

In mammals, total systemic iron is regulated through dietary uptake, with ferric iron 

absorbed at the apical membrane of the enterocyte through coordinated iron reduction by 

duodenal cytochrome B (DCYTB, encoded by the CYBRD1 gene) and imported via the 

divalent metal transporter (DMT1) [5]. At the basolateral membrane, an analogous process 

of export (via ferroportin) followed by oxidation (by hephaestin) enables loading of ferric 

iron ions onto transferrin for entry into systemic circulation. The distribution of iron between 

tissues and organs in mammals is primarily mediated by the cellular iron exporter 

ferroportin and its negative regulator hepcidin, a peptide hormone produced in the liver (or 

in autocrine fashion in some tissues) that binds to ferroportin and leads to its internalization 

and degradation [3]. Major sites of ferric iron storage include the liver and within plasma 

ferritin, while systemic iron is recycled from damaged and aged erythrocytes by splenic 

macrophages [6]. Thus, ferrous iron is produced transiently, as needed and “just in time”, 

while ferric iron in storage or transit comprises the major iron stores of the organism.

Iron handing at the cellular level involves analogous modes of iron uptake, recycling, 

storage, and export (Figure 1). Transferrin mediated iron uptake involves binding of holo-

transferrin to the transferrin receptor, followed by endocytosis and endosome-lysosome 

acidification to release the otherwise insoluble ferric ion; reduction of the liberated Fe3+ to 

Fe2+ by STEAP3 is then followed by export via endolysosomal DMT1. The lysosome is also 

involved in ferritin iron recycling through the process of ferritinophagy [7]. A recent 

CRISPR functional screen found that maintenance of adequate cellular iron was an 

indispensable function of lysosome acidity [8], consistent with an essential role for the 

lysosome in iron uptake and ferritin recycling. As the Fe2+ ion exits the lysosome it enters 

the cytosolic labile iron pool (LIP), where it can be utilized directly by essential enzymes 

like ribonucleotide reductase that utilize a mononuclear iron cofactor, oxidized and 

incorporated into ferritin for storage, or incorporated into heme or Fe/S prosthetic groups in 

the mitochondria. Until very recently, it was unknown whether iron in the LIP was truly 

‘labile’ (i.e., unbound) or whether cellular chaperones were involved in its trafficking. It has 

been proposed more recently that poly(rC)-binding protein (PCBP1) is an Fe2+ binding 

protein involved in the delivery of cytosolic iron to ferritin [9], and also to proteins involved 

in heme iron biosynthesis [10] and Fe/S cluster assembly [11]. Iron bound to PCBP1 is 

further ligated by a glutathione molecule, consistent with earlier work [12] suggesting 

glutathione-ligated Fe2+ as a component of the LIP. For the discussion that follows, it is 
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important to appreciate that the LIP comprises a small percentage of total cellular iron, the 

vast majority of iron being safely stored in ferritin, or actively utilized in metalloproteins to 

perform specific tasks.

With this understanding of iron metabolism, two principles for iron(II)-dependent 

pharmacology can be enunciated, 1) that redox-active ferrous iron is present at 

pharmacologically relevant concentrations within cells, but generally not in plasma or other 

extracellular compartments, and 2) that disease pathology is more likely to result from 

elevated ferrous iron levels (e.g., in the LIP, in mitochondria, in hypoxic cells) than from 

changes to total iron levels, which will be predominantly Fe3+ in storage. Unfortunately, 

traditional methods to measure total cellular iron, such as ICP-MS, are unable to distinguish 

ferrous from ferric states. Similarly, any approach that breaks the cell membrane prior to 

analysis will result in rapid oxidation of labile ferrous iron, unless special precautions are 

taken. PhenGreen SK, until recently the most widely utilized probe of ‘labile’ iron, is a 

chelation-based probe unable to reliably distinguish iron oxidation state and is furthermore 

susceptible to interference from other metal ions. Fortunately, the past five years have 

witnessed a revolution in the detection of the ferrous ion specifically, and this in turn has 

motivated new approaches and interest in iron(II)-dependent pharmacology.

First Selective Probes of Labile Ferrous Iron

The study of cellular ferrous iron has historically been hampered by a lack of chemical 

probes that could distinguish Fe2+ and Fe3+ ions [13]. Being relatively electron-poor, 

chelation of the ferric ion is characterized by sigma donation from electron-rich oxygen 

atoms of catechol or hydroxamate ligands. The more electron-rich ferrous iron can 

additionally engage in back-donation from metal d-orbitals to ligands capable of accepting 

such bonds – typically aromatic nitrogen heterocycles. This is why canonical (ferric) iron 

chelators like desferoxamine (DFO) employ hydroxamate ligands, while divalent metal ion 

probes like PhenGreen SK utilize a heteroaromatic 1,10-phenanthroline ligand. While some 

measure of selectivity can be achieved in this way, the key breakthrough in the detection of 

Fe2+ was a move from chelation-based to reactivity-based detection, as has been recently 

reviewed [14]. Thus, in 2014 Hirayama and Nagasawa described RhoNox-1 [15], the N-

oxide form of fluorescein that is selectively reduced by Fe2+, producing a turn-on response 

(Figure 2). Further improvements to the RhoNox scaffold in terms of sensitivity and 

organelle-selective staining were subsequently achieved, yielding probes such as ER-

SiRhoNox-1 [16], Mem-RhoNox [17], and Lyso-RhoNox [18], among others. 

Contemporaneously, our laboratory described 1,2,4-trioxolane (TRX) based scaffolds for 

Fe2+ detection [19,20], including a caged form of puromycin (TRX-PURO, Figure 2) able to 

detect Fe2+ in malaria parasites [21] and cancer cell lines [22] by immunofluorescence 

imaging with high specificity. Analogous to the reduction of the N–O bond in RhoNox 

probes, it is iron(II)-promoted reduction of a hindered O–O bond in TRX-bsed probes that 

promotes their activation. The TRX scaffold was subsequently utilized by us and others to 

produce FRET-based probes such as TRX-FRET [22] and FIP-1 [23] and the in vivo probes 

ICL-1 [24] and HNG [25], the later showing particular sensitivity to labile iron(II)heme. In 

2019, Evans and Renslo described 18F-TRX [26], a Fe2+ probe for positron emission 

tomography (PET) that revealed an avidity for Fe2+ in several tumor types.
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The availability of these new tools has enabled new insights into the role of ferrous iron in 

biology and disease pathology. Thus, RhoNox-class probes have confirmed iron reduction at 

the plasma and endolysosomal membranes [15,17] during cellular iron uptake, and revealed 

an elevation of lysosomal and ER-associated ferrous iron during ferroptotic cell death [18]. 

RhoNox probes have also linked hypoxia with elevated intracellular Fe2+ in tumor spheroids 

[16], and in cellular models of the blood-brain barrier [27] and the neural vascular barrier 

[28]. The trioxolane-based probes TRX-PURO and FIP-1 respectively revealed an elevation 

of the LIP in cancer cell lines [22] and in cells undergoing ferroptosis induced with the 

cystine/glutamate antiporter inhibitor erastin [23]. These probes have also revealed more 

unexpected roles for Fe2+ in the cell, such as a link between GPCR signaling and epigenetic 

regulation mediated by the LIP [29,30], and a possibly causative link between elevated Fe2+ 

and hepatic steatosis [31]. Among in vivo active TRX-type probes, ICL-1 has revealed 

elevated Fe2+ in mice infected with the bacterium Acinetobacter baumannii [24], while 

HNG detected heme(II)iron in the livers of mice following an acute hemolytic insult with 

phenylhydrazine [25]. Greater appreciation for the role of ferrous iron in disease will only 

increase as these new probes become more widely available and supplant the use of earlier, 

less selective probes.

Ferrous Iron-Dependent Pharmacology

The dysregulation of iron homeostasis has been associated with a wide range of disease 

states, from iron storage disorders [32], to cancer [33–35], neurodegenerative [36–38] and 

metabolic disease [39,40], and in infection by bacterial [41–43], viral [44], and eukaryotic 

[45–47] pathogens. Much as iron detection has historically relied on iron chelation, so have 

therapeutic strategies targeting iron been largely based on (ferric) iron chelation therapy 

[35,48,49] or on active drug uptake via conjugation to transferrin or bacterial iron 

siderophores [50–52]. While effective in certain disease contexts, chelation therapy can lead 

to anemia, and has been disappointing in the clinic as an approach to anti-infective or cancer 

therapy. However, the combination of natural chemical diversity and empiric traditional 

medicine has revealed an orthogonal approach to iron-based therapy exemplified today by 

standard-of-care antimalarial therapy with artemisinin-based agents. These endoperoxide-

bearing sesquiterpenes are activated by ferrous iron heme liberated during parasite 

catabolism of hemoglobin in the erythrocyte [46]. Clinical success of this agent has driven a 

search for new chemotypes with analogous pharmacology, leading most notably to the 1,2,4-

trioxolanes arterolane [53] and artefenomel [54,55] reported by Vennerstrom and co-

workers. These wholly synthetic agents, like the artemisinins, exhibit highly iron(II)-

selective reactivity (Box 1). Informed by careful mechanistic studies [56–59] detailing their 

iron(II)-dependent fragmentation, we and others have been inspired to expand the concept of 

ferrous iron-dependent pharmacology beyond its origins in antimalarial chemotherapy.

Ferrous Iron-Dependent Pharmacology in Bacterial Infection

The innate immune response to bacterial infection in mammals, known as nutritional 

immunity, comprises a diverse array of iron limiting and withholding strategies carried out 

via the ferroportin/hepcidin axis [43,60], the iron-binding protein lactoferrin [41], and the 

iron siderophore-scavenging protein lipocalin-2 [61]. In response, pathogenic bacteria 
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deploy diverse adaptive responses to overcome iron withholding, including uptake and 

degradation of host heme iron, and assimilation of iron from transferrin, ferritin and 

lactoferrin [41]. The latter is achieved through the expression of small molecule 

siderophores with exceptionally high binding affinity for the Fe3+ ion [42]. The reliance of 

bacteria on siderophore mediated iron uptake has motivated an impressive volume of work 

on antibiotic-siderophore conjugates as notional ‘Trojan Horse’ therapies [52,62–64], the 

agent cefiderocol [65] being the first to receive marketing approval from the FDA, in 2019.

While siderophore-antibiotic conjugates necessarily exploit binding and uptake of Fe3+, 

several recent studies provide evidence for Fe2+ utilization by bacterial pathogens, which in 

turn suggests the potential to develop reactivity-based, ferrous iron-targeted therapy. Thus, 

Nolan and co-workers recently showed that the mammalian protein calprotectin sequesters 

the Fe2+ ion in response to bacterial infection and induces an iron starvation response in the 

pathogen Pseudomonas aeruginosa [66,67]. Evolution of a host response around Fe2+ 

(analogous to Fe3+ binding by lactoferrin) suggests that bacterial pathogens are able to 

exploit Fe2+ during infection. Indeed, organisms that evolved on the anoxic earth (prior to 

the ‘great oxidation’ that accompanied early photosynthesis) would require the means to 

exploit forms iron that predominate under such conditions. The most widely distributed of 

these bacterial Fe2+ transporters are members of the Feo system [68,69] and are known to be 

exploited by pathogens such as P. aeruginosa that often colonize hypoxic niches, 

paradoxically including the lungs of cystic fibrosis (CF) patients [70]. Most provocatively, a 

recent study [71] of live Escherichia coli using Mössbauer and EPR spectroscopy paints a 

dramatically different picture of bacterial iron homeostasis in which labile Fe2+ is in fact the 

predominant iron species present during exponential stages of bacterial growth.

The in vivo probe ICL-1 was recently applied [24] to study mice infected with the Gram-

negative pathogen Acinetobacter baumannii (Figure 3A). Comprising the TRX-caged form 

of D-aminoluciferin, ICL-1 was shown in a series of cell free and cell-based experiments to 

luminesce (with luciferin and ATP), strictly contingent on its initial uncaging via reaction 

with Fe2+. Other metal ions (including Fe3+) and cellular reductants or oxidants were unable 

to uncage ICL-1, thereby confirming its utility as a selective probe of Fe2+. In luciferase-

expressing mice infected with A. baumannii, or mock-infected as a control, ICL-1 revealed a 

substantial increases in bioluminescent signal across a range of tissues that were 

subsequently shown by ex vivo analysis to also be major sites of infection. By contrast, 

mock infected controls showed only minimal bioluminescent signal that was focused around 

the site of ICL-1 injection in the peritoneum (Figure 3A). Further ex vivo analysis of organs/

tissues from both infected and mock-infected mice revealed that total iron in these tissues 

was not significantly elevated as a result of infection (the exception being in the liver, where 

ferritin iron accumulation in response to infection is to be expected). These findings with 

ICL-1 suggest that ferrous iron concentrations are elevated at sites of infection in a live 

animal, a perhaps surprising result given that nutritional immunity predicts iron limitation 

during infection. Further studies will be required to determine whether the observed effects 

derive from changes in host iron disposition, bacterial utilization or acquisition of iron, an 

emergent property of the infection microenvironment, or some combination of these factors. 

Whatever the case, the iron avidity of infected tissues revealed by ICL-1 clearly suggests the 
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possibility of targeting antibiotics to infected tissues with analogous TRX-based drug 

conjugates.

The bacterial deacetylase LpxC performs the first committed step in lipopolysaccharide 

biosynthesis and this, combined with an absence of the pathway in mammals, has made this 

metalloenzyme a promising antibacterial drug target. Inhibition of LpxC has most often been 

approached with hydroxamate-based ligation of the enzyme’s zinc center. While 

hydroxamates can be highly potent inhibitors, the susceptibility of this functional group to 

proteolytic or metabolic degradation, including the formation of genotoxic intermediates 

[72], has hampered their clinical development. Our laboratory explored the use of a known 

LpxC inhibitor (PF-5081090) as the hydroxamate-linked conjugate TRX-PF508, which we 

surmised would be inactive toward LpxC and other metalloenzyme off-targets in the absence 

of Fe2+. Activation by Fe2+ at infection sites would liberate the LpxC inhibitor in its parent 

form (Figure 3B), and the desired iron(II)-dependent reactivity was confirmed in control 

experiments [73]. The antimicrobial activity of the conjugate in Minimum Inhibitory 

Concentration (MIC) assays was modest however, which suggested inefficient activation 

and/or limited access to Fe2+ in the bacterial cytoplasm in this in vitro setting. In contrast, 

when administered to mice in an acute P. aeruginosa lung infection model, TRX-PF508 

produced significant reductions in bacterial load in the lung, and did so more robustly than 

in mice treated with the parent LpxC inhibitor at an equimolar dose. This implied a drug 

concentrating effect at sites of infection and was consistent with the compound’s predicted 

iron(II)-dependent pharmacology. Moreover, the observation with this compound of robust 

in vivo efficacy despite poor MICs, suggested that P. aeruginosa can utilize pools of Fe2+ in 
vivo that are not present in in vitro MIC assays. In fact, a microenvironment rich in Fe2+ has 

been demonstrated clinically in the case of chronic lung infection by P. aeruginosa in cystic 

fibrosis patients [74].

Ferrous Iron-Dependent Pharmacology in Cancer

It has been long been recognized that cancers exhibit an avidity for iron that seems to drive 

proliferation and metastasis [33,34]. Upregulation of the transferrin receptor is the canonical 

mechanism associated with this archetype but recent years have seen a striking array of 

novel mechanisms come to light. The appetite of the cancer cell for iron has been dubbed 

‘iron addiction’ [75] and indeed, appears to follow in lockstep with dependence upon 

ongoing signaling from commonly mutated oncogenes. Thus, the seminal finding [76] that 

c-Myc regulates iron storage (ferritin) and regulatory (IRP2) genes was further corroborated 

when the c-Myc driven cell line PC3 was found, using TRX-PURO, to be among the most 

avid for Fe2+ across a panel of lines from different tumor types [77]. In two important 

studies from 2008, the lipid hydroperoxidase glutathione peroxidase 4 (GPX4) was found to 

promote survival of neurons [78] and mutant Ras driven cancer cells [79], seminal work that 

would help position GPX4 at the center of a pro-survival pathway that protects cells from an 

iron-dependent, nonapoptotic form of cell death subsequently dubbed ferroptosis [80]. Drug-

tolerant ‘persister’ cells were similarly found to be highly dependent on GPX4 function for 

survival and therefore highly susceptible to GPX4 inhibition [81,82]. The hepcidin/

ferroportin axis (Figure 1) can also contribute to ‘ferroaddiction’ via systemic liver hepcidin, 

or via hepcidin produced by the tumor itself in autocrine fashion, retaining tumoral iron and 
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leading to more aggressive disease and poorer prognosis in breast [83], prostate [84], and 

pancreatic [85] cancers. In the case of gliomas, high-grade tumors of a mesenchymal 

subtype have been shown to possess significantly higher expression of transferrin receptor 

and lysosomal ferrireductase (STEAP3) as compared to low grade tumors [86]. How avidity 

for iron, and ferrous iron specifically, supports and promotes these aggressive and resistant 

cancer phenotypes remains largely unknown. One can speculate however, that ready access 

to soluble and metabolically active Fe2+ ion would be of significant benefit to rapidly 

proliferating cells, insofar as this would support the various iron-dependent enzyme 

functions required for cell growth and division. It appears a Faustian bargain is struck in 

which the benefits of elevated Fe2+ are exploited by managing (e.g., through greater reliance 

on GPX4) the dangerous levels of oxidative stress that result.

Given the avidity of cancer cells for iron, it is unsurprising that artemisinins and other 

antimalarial peroxides have been evaluated for their anticancer effects. In the most 

comprehensive of these studies, artesunate, dihydroartemisinin, arterolane, and artefenomel 

were profiled across 91 human cancer cell lines [87]. While these compounds showed 

measurable cytotoxicity in nearly all cell lines examined, their potencies landed squarely in 

the micromolar range, which compares unfavorably with the low-nanomolar effect of these 

same compounds in malaria parasites. Likely the difference stems from the presence in 

parasites of pathogenic free iron(II)heme, and a more robust cellular response to oxidative 

stress in cancer cells, many of which are likely pre-adapted to survive in a ferroaddicted 

state. Although these antimalarial compounds would appear to have limited clinical potential 

as single agents, they might yet find utility as adjuvant therapies, for example in combination 

with a GPX4 inhibitor as has been recently proposed [88]. Testing such hypotheses will 

however require the development of GPX4 inhibitors with suitable in vivo properties. It is 

also worth noting that the ferroptosis-inducing small molecule FINO2 [89,90] which bears 

an endoperoxide function, can be regarded as a starting point for the development of 

anticancer endoperoxides that exploit the ferroptosis pathway for therapeutic ends.

While arterolane itself has modest effects on cancer cells, we judged that TRX-based ferrous 

iron-targeting could be employed to direct much more potent therapeutics selectively to 

ferroaddicted cancer cells. To explore this notion, we employed a highly potent 

cyclobenzindoline (CBI) class DNA-alkylator and studied the resulting conjugate TRX-CBI 

in xenograft models of predicted high iron avidity [77]. Consistent with expectations, TRX-

CBI conferred a potent low-nM insult on cell lines like PC3 that are ferroaddicted as judged 

with TRX-PURO. Importantly, TRX controls lacking the CBI payload, or non-peroxidic 

conjugates unable to release the CBI payload were at least 1000-fold less potent than TRX-

CBI, confirming that the potent cell-killing effects of TRX-CBI derive from release of the 

free CBI payload. The effective caging of CBI toxicity by the TRX moiety allowed us to 

safely achieve >20-fold higher dose and in vivo exposure levels for TRX-CBI in mouse 

xenografts, which in turn produced dramatically superior cytocidal effect response when 

compared to CBI administered at its MTD. Moreover, the tumor-shrinking effects of TRX-

CBI were achieved while largely avoiding CBI-associated hepatotoxicity in the same mice. 

These encouraging findings suggest that selective targeting of cancer cells through ferrous 

iron-dependent pharmacology represents a promising new way to deliver cancer 

chemotherapeutics.
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In a recent preprint [bioRxiv 2020.05.12.088971] the Collisson and Renslo laboratories 

explored ferrous iron-dependent drug delivery in mutant KRAS-driven cancer cells and 

xenograft models. Several FDA-approved inhibitors of the KRAS effector MEK are 

currently available, but these agents uniformly exhibit dose-limiting toxicity resulting from 

chronic MEK1/2 inhibition in healthy tissues [91] at and below MTDs established in phase I 

trials. After establishing with both TRX-PURO and SiRhoNox [16] an elevated pool of Fe2+ 

in KRAS-driven pancreatic ductal adenocarcinoma (PDA) cells, we synthesized TRX-COBI, 

the ferrous iron-activated form of the approved MEK inhibitor cobimetinib. As hoped, TRX-

COBI behaved as a bona fide MEK inhibitor in PDA cells, and ablated MAPK signaling in 

tumors of patient derived xenograft (PDX) and syngeneic PDA mouse models, as judged by 

pERK staining. Most importantly, TRX-COBI achieved effective MAPK blockade in PDA 

models as well as in autochothanous KrasLSL_G12D-driven lung adenocarcinoma, while 

sparing MAPK signaling in normal, tumor-free tissues from the same animals. Moreover, 

thinning of the epidermal layer in mouse tail skin (a model of clinically relevant MEK-

related toxicity) was wholly avoided in TRX-COBI treated animals, while clearly evident in 

cobimetinib and binimetinib treated animals. Finally, we observed superior efficacy (Figure 

4) with reduced weigh loss when employing TRX-COBI (in place of cobimetinib) in SHP-2 

inhibitor (SHP2i) combination therapy of a KRASG12C-driven lung adenocarcinoma PDX 

model, consistent with improved systemic tolerability of TRX-COBI as compared to 

cobimetinib. Thus the significance of ferrous-iron dependent pharmacology in the context of 

mutant KRAS-driven malignancies could lie in the ability to achieve potent yet tolerable 

parallel and/or vertical pathway blockade, thus avoiding the inter- and intra-pathway 

signaling loops that enable tumor escape from single-agent blockade [92].

Concluding Remarks and Future Perspectives

Here we have detailed recent progress in the detection of iron with oxidation-state specificity 

and described some of the new biological findings and therapeutic approaches that have 

resulted from these advances. In science and in drug discovery, inquiry is often biased 

toward what is ‘easy’ to study (or to drug), rather than what is most important or relevant to 

study (or drug). The study of iron homeostasis has thus relied on (ferric) iron sequestration 

or supplementation experiments, and quantified iron load using experimental approaches 

that are blind to what is almost certainly the more relevant analyte – labile ferrous iron. 

Mirroring this state of affairs, iron-focused drug therapy is overwhelmingly focused on ferric 

iron chelation (e.g., in iron overload diseases), when it is labile ferrous iron that is associated 

with diseases of much greater burden to humankind – malaria most notably, but apparently 

also many of the most aggressive and untreatable cancers and, more tenuously, also in 

neurogenerative disease.

Much remains to be learned and understood about the role of ferrous iron under conditions 

of normal and aberrant homeostasis, and its relative distribution in normal and diseased 

tissues (see Outstanding Questions). Will these conditions be best treated with drugs 

designed to restore a normal homeostatic state, or through reactivity-based approaches that 

exploit elevated ferrous iron levels to achieve tissue selectivity, as detailed in some recent 

work highlighted herein. The unprecedented clinical impact of artemisinin therapy in 

malaria would seem to argue for the latter approach, and yet decades after its introduction, 
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artemisinin resides in a lonely niche of the pharmacopeia. This fact can be attributed in part 

to a reticence of drug discovery scientists to pursue reactivity-based pharmacology. 

However, a significant proportion of currently used drugs have been found – often well after 

their discovery and approval – to act unexpectedly via covalent, reactive mechanisms [93]. 

Increasing appreciation for this fact has seen a resurgence of work on drugs designed from 

the outset to exhibit reactivity-based pharmacology, with cysteine-reactive drugs and drug 

candidates becoming commonplace. Next-generation trioxolane antimalarials like 

artefenomel combine exquisitely selective iron(II)-dependent reactivity with excellent 

pharmacokinetic and safety profiles in human subjects [94]. The utility of this chemotype as 

applied to reactivity-based probes and in ferrous-iron dependent drug delivery, as reviewed 

here, suggests a bright future for the study of iron homeostasis and metabolism, and in the 

treatment of any disease state in which ferrous iron levels are dysregulated.
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Box. 1.

Antimalarial Endoperoxides

The sesquiterpene artemisinin (qinghaosu) was first isolated in China in the 1970s as part 

of an effort to identify the active components in traditional Chinese herbal remedies [95]. 

While there was initial skepticism about the drug on account of the peroxide bond, 

clinical development of artemisinin-derived agents was ultimately undertaken and their 

clinical utility confirmed [96]. This success bred keen interest in the molecular 

pharmacology of these agents. Seminal mechanistic work by Posner in the 1990s 

involving synthetic artemisinin analogs, and later work by Vennerstrom involving 

synthetic 1,2,4-trioxolanes, established the crucial role of the peroxide bond in mediating 

the Fe2+ reactivity and the antimalarial effects of the artemisinin, arterolane, and 

artefenomel [46,59]. Space-filling models (Box 1, Figure I) of these agents reveal a 

hindered steric environment surround the peroxide bond. Fenton-type reaction with iron 

requires close inner-sphere coordination by Fe2+ prior to single-electron transfer that 

leads to O–O bond scission. Thus, the various C–H bonds surrounding the peroxide likely 

preclude interaction with co-factor Fe2+ bound to metalloproteins, while the major 

ferritin iron stores of the cell are both physically inaccessible and in a mineralized ferric 

and redox-stable state. Hence, it is the loosely chelated Fe2+ of the LIP and labile, 

unbound iron(II)heme that are in the correct redox state, and also able to physically 

approach the peroxide bond for reaction. These features are retained and exploited in the 

TRX-based probes and drug conjugates described herein.

Box 1, Figure I. 
Structure-reactivity relationships of antimalarial peroxides. A. Structures of antimalarials 

artemisinin, arterolane, and artefenomel. B. Spacefilling representation of artemisinin 

showing approach (dashed line) of Fe2+ ion (orange sphere) to the more exposed of two 

peroxidic oxygen atoms. C. Spacefilling representation of arterolane pharmacophore in 

its major, unreactive conformer, with approach of the Fe2+ ion sterically blocked by 

Gonciarz et al. Page 14

Trends Pharmacol Sci. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proximal axial C–H bonds of the adamantane and cyclohexane rings. D. Spacefilling 

representation of the corresponding iron-reactive, peroxide equatorial conformer showing 

approach of the Fe2+ ion (orange sphere) to the exposed peroxidic oxygen atom. 

Artemisinin structure retrieved from the Cambridge Crystallographic Data Centrei and 

visualized using PyMol 2.4.0 (pymol.org). Arterolane pharmacophore structure 

minimized using MarvinSketch 6.3.0 (chemaxon.com) and visualized using PyMol 2.4.0 

(pymol.org).

i)www.ccdc.cam.ac.uk
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Outstanding Questions

• How precisely do elevated labile ferrous iron concentrations promote cell 

growth and proliferation in cancer?

• Is the labile iron pool necessarily elevated in cells that are sensitive to, or 

actively undergoing ferroptosis?

• What is the source and nature of the free ferrous iron that appears to be 

mobilized during bacterial infection?

• Which normal tissues and cells harbor elevated ferrous iron concentrations 

under conditions of normal iron homeostasis?

• Is there a link between ferroptotic cell death, aberrant accumulation of ferrous 

iron, and neurodegenerative disease?

• Which iron regulatory proteins might be targeted to limit the labile iron pool 

and what effect would such intervention have in proliferative or 

neurodegenerative disease?
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Highlights

• Iron cycles between the ferric and ferrous oxidation states to empower 

enzyme function but also during its uptake, export, and storage, with the 

ferrous state being generated transiently and in limited concentrations to 

prevent oxidative damage to the cell.

• Until very recently, it has not been possible to study the ferrous ion 

specifically, largely due to its much poorer ligation by small molecule or 

protein siderophores, as compared to the ferric ion.

• The emerging role of ferrous iron in a form of iron-dependent cell death 

(ferroptosis), and in supporting the proliferation of some of the most 

aggressive cancers has given new urgency to the study of cellular ferrous iron 

in biology and disease.

• The clinical success of the antimalarial artemisinin provides inspiration as 

well as a chemical and conceptual framework for the development of a new 

class of therapeutic agents exhibiting ferrous iron dependent pharmacology.
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Figure 1. 
Summary of iron homeostasis in mammalian cells with a focus on ferrous iron (orange 

spheres). Figure created in BioRender (biorender.com)
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Figure 2. 
The first oxidation-state selective probes of ferrous iron rely on reactivity-based sensing. 

Three important classes of reactivity-based probes are shown, along with schematic 

representations of their modes of activation. RhoNox-based probes undergo iron(II)-

promoted reduction of an N-oxide to produce a fluorescent signal. TRX-based probes 

include FRET-based turn-on and ratiometric probes, and caged reporter probes.
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Figure 3. 
Iron(II)-based detection and treatment of mice infected with Gram-negative pathogens. A. 

Scheme illustrating bioluminescence imaging of Fe2+ at sites of infection using ICL-1 in 

FVB-Luc+ mice infected with A. baumannii. B. Scheme illustrating Fe2+ targeted therapy 

using the caged LpxC inhibitor TRX-PF508 in BALB/c mice bearing an acute lung infection 

with the Gram-negative pathogen P. aeruginosa.
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Figure 4. 
Efficacy of iron(II)-targeted forms of FDA-approved MEK inhibitor cobimetinib. A. 

Structure of TRX-DRUG conjugates such as TRX-COBI, which releases free cobimetinib 

upon reaction with Fe2+. B. Tumor volume over time in mice bearing KRAS lung 

adenocarcinoma and treated with vehicle, SHP2 inhibitor + cobimetinib, or SHP2i + TRX-

COBI at equivalent, equimolar doses. C. Phospho-ERK staining of tumor in spleen from 

animals studied in panel B, indicating selective activation of TRX-COBI in tumor. 

Unpublished data reproduced from bioRxiv 2020.05.12.088971.
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