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REV I EW ART ICLE Open Ac ce s s

Deep learning-enabled virtual histological staining
of biological samples
Bijie Bai1,2,3, Xilin Yang1,2,3, Yuzhu Li1,2,3, Yijie Zhang1,2,3, Nir Pillar 1,2,3 and Aydogan Ozcan 1,2,3✉

Abstract
Histological staining is the gold standard for tissue examination in clinical pathology and life-science research, which
visualizes the tissue and cellular structures using chromatic dyes or fluorescence labels to aid the microscopic
assessment of tissue. However, the current histological staining workflow requires tedious sample preparation steps,
specialized laboratory infrastructure, and trained histotechnologists, making it expensive, time-consuming, and not
accessible in resource-limited settings. Deep learning techniques created new opportunities to revolutionize staining
methods by digitally generating histological stains using trained neural networks, providing rapid, cost-effective, and
accurate alternatives to standard chemical staining methods. These techniques, broadly referred to as virtual staining,
were extensively explored by multiple research groups and demonstrated to be successful in generating various types
of histological stains from label-free microscopic images of unstained samples; similar approaches were also used for
transforming images of an already stained tissue sample into another type of stain, performing virtual stain-to-stain
transformations. In this Review, we provide a comprehensive overview of the recent research advances in deep
learning-enabled virtual histological staining techniques. The basic concepts and the typical workflow of virtual
staining are introduced, followed by a discussion of representative works and their technical innovations. We also
share our perspectives on the future of this emerging field, aiming to inspire readers from diverse scientific fields to
further expand the scope of deep learning-enabled virtual histological staining techniques and their applications.

Introduction
Over the past century, histological staining has been

established as a principal tool for tissue examination in
disease diagnostics and life-science research1,2. By
labeling different biological elements with specific mar-
kers based on their biochemical properties, histological
staining enables the visualization of tissue and cellular
structures and allows the assessment of pathophysiology
and disease development when the stained samples are
observed under a light microscope3–5. Various stain
types have been developed and routinely performed in
histology labs, corresponding to the different biological
features to be highlighted. For example, hematoxylin and

eosin (H&E) stain creates a contrast between the nuclei
and the extracellular tissue matrix and is the most fre-
quently used stain in histopathology6; Masson’s tri-
chrome (MT)7 and Periodic acid–Schiff (PAS) stains8,
two examples of special stains, highlight collagen fibers
and glycoproteins, respectively, and are commonly used
in cardiac and kidney pathology4. Immunohistochemical
(IHC) staining, a more advanced molecular staining
technique, highlights the presence of specific epitopes
based on antigen-antibody binding and is extensively
utilized in pathology9,10.
These standard histological staining procedures are

routinely carried out in pathology laboratories following a
decades-old workflow in which time-consuming sample
preparation (e.g., tissue fixation, embedding, and sec-
tioning) and laborious histological staining steps are
performed before the samples can be inspected under a
light microscope (Fig. 1a). Such chemical-based staining
procedures require designated laboratory infrastructure
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and manual supervision from trained histotechnologists,
making them expensive and not accessible in resource-
limited settings. The multi-step staining protocols
accompanied by laborious manual supervision by experts
result in long turnaround times (e.g., days to weeks) and
consequently delay the disease diagnosis and treatment.
Moreover, the destructive nature of the chemical staining
process prohibits additional staining and further mole-
cular analysis on the same section. As another dis-
advantage, the toxic chemical compounds involved in the
staining process generate significant amounts of waste
and consume >1 million liters of water globally per year.
All in all, there is a strong demand for alternative staining

methods that can provide rapid, cost-effective, and accu-
rate solutions to overcome these limitations.
In recent years, the practice of digital pathology11,12 using

automated high-throughput slide scanners and digital image
viewers has attracted wide adoption. Combined with the
ever-growing deep learning techniques, new opportunities
have been created to revolutionize these decade-old staining
methods. Deep learning-based image transformations from
faster, simpler, and easier-to-access microscopy modalities
to more advanced but difficult-to-obtain ones, have been
extensively studied for various biological samples13–17. As an
extension of this line of research in the domain of histo-
pathology, deep learning-based methods have been

b Deep learning-based virtual staining

Tissue extraction
(surgery/biopsy)

Fixation, embedding,
sectioning, mounting

Label-free imaging Neural network Virtual histology image

In vivo imaging Neural network Virtual histology image

Histologically
stained slides

Bright-field imaging Neural network Virtual histology image
(other types of stain)

Microscopic examination

a The standard histological staining

Histological stainingTissue extraction
(surgery/biopsy)

Fixation, embedding,
sectioning, mounting

Histologically
stained slides

Label-free
virtual staining

Stain-to-stain
transformation

Fig. 1 Schematic of the standard histological staining and deep learning-based virtual staining. a Standard histological staining relies on
laborious chemical-based tissue processing and labeling steps. b Pre-trained deep neural networks enable the virtual histological staining of label-
free samples as well as the transformation from one stain type to another, without requiring any additional chemical staining procedures
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developed to virtually replicate the images of chemically
stained slides using only the microscopic images of unla-
beled samples18,19, eliminating the need for chemical stain-
ing procedures (Fig. 1b). These virtual staining methods
were demonstrated to successfully generate different types of
histological stains using various label-free imaging mod-
alities, such as autofluorescence imaging and quantitative
phase imaging (QPI)18,20. The principal idea of using deep
learning-based image transformation to bypass the tradi-
tional histological staining process also enables the trans-
formation from one existing stain type into another19,21

(Fig. 1b). Stain-to-stain transformation methods can provide
pathologists with additional types of stains in an instant
manner, without changing their current workflow. The vir-
tual staining techniques inherently generate digital pathol-
ogy images, and therefore belong to and further expand the
scope of digital pathology, also empowering algorithmic
downstream analysis methods. These new technologies not
only reduce costs, labor, and delays in diagnosis, but also
open up new possibilities for stain multiplexing and in-vivo
staining22,23, greatly expanding the field of histopathology
beyond what is possible within the traditional chemical
staining paradigm currently in use.
In this Review, we provide a comprehensive overview of

recent advances in deep learning-enabled virtual histological
staining techniques. Throughout this Review, the term
“virtual staining” is broadly used to refer to methods that
digitally generate histological stains using trained deep
neural networks, including both label-free staining and
stain-to-stain transformations (Fig. 1b). We will first intro-
duce the basic concepts and typical workflow of virtual
staining via deep learning. Next, we will highlight some key
results from representative works in this field and dive into
their technical details, including the innovative aspects of
their data preparation and network training methods. We
group these approaches into (i) label-free virtual staining
(Table 1) and (ii) stain-to-stain transformations (Table 2),
where the former computationally generates the virtual
histological images from label-free images captured using
unstained samples, and the latter digitally transforms the
images of already stained tissue samples (e.g., H&E-stained)
into other types of stains (e.g., MT and IHC). Finally, we will
share our perspectives on the future directions in this rapidly
evolving virtual staining field, also shedding light on areas
that need further research effort. We believe this Review will
serve as an atlas of the technical developments in this
research area, which can introduce the top-level concepts
and the up-to-date research progress to scholars who are
relatively new to this field. We also hope this Review will be
of broad interest to optical engineers, microscopists, com-
puter scientists, biologists, histologists, and pathologists,
providing an introduction to virtual staining technologies
and the transformative opportunities these approaches can
create in histopathology.

Development of a virtual staining model
The workflow needed to develop a label-free virtual

staining or a stain-to-stain transformation model typically
consists of image data collection, image pre-processing, as
well as network training and validation, as shown in
Figs. 2–3. Depending on the learning schemes used for
creating the virtual staining models (e.g., supervised or
unsupervised), the corresponding upstream data collection
and pre-processing methods will differ. In supervised
training settings, perfectly cross-registered input and ground
truth image pairs are needed for training an image trans-
formation virtual staining network. Therefore, multi-stage
image registration (Fig. 2a) or pre-trained data generation
models (Fig. 3a) are usually required to generate well-
matched training images. On the other hand, in the unsu-
pervised training settings, the images from the input and
ground truth domains are not necessarily paired (see Fig. 2b
and Fig. 3b). This saves effort in data pre-processing, how-
ever, increases the complexity of the network architecture
and the training schedule. Cycle-consistency-based learning
frameworks (e.g., CycleGANs24), are commonly used in
unsupervised training scenarios, which learn to map the
distribution of the input images to the ground truth domain,
matching the color and contrast.
For both learning schemes, developing a reliable virtual

staining model often involves acquiring and processing a
large volume of data and carefully designing and training the
neural networks (see Fig. 2a, b and Fig. 3a, b), which could
take a substantial amount of time. However, this model
development stage is a one-time process; this is, in principle,
very similar to the development and fine-tuning of the pro-
tocols of a histochemical staining workflow that involves
various chemical optimization steps, all of which also con-
stitute a one-time development effort. Once a satisfactory
virtual staining model is obtained and validated, its blind
inference is rapid and repeatable (Fig. 2c and 3c), which only
takes a few minutes to create a whole-slide virtual histolo-
gical image of a tissue section using a standard computer,
without waiting for any chemical staining procedures to be
completed. This virtual staining process not only saves time
and labor, but also eliminates the use of toxic staining
compounds, and is, therefore, environmentally more friendly.

Label-free virtual staining
The use of deep learning to successfully achieve virtual

staining of label-free tissue samples using autofluorescence
images was demonstrated by Rivenson et al.18,25, in which
deep neural networks were trained to transform the images
of various unstained tissue sections, e.g., salivary gland,
thyroid, liver, and lung, into multiple histological stains
including H&E, MT, and Jones silver stain, closely matching
the bright-field images of the same tissue sections after the
standard histochemical staining (Fig. 4a). Over the last few
years, several studies have been carried out to further expand
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this label-free virtual staining technique26–28. As summarized
in Table 1 and Fig. 4, multiple types of histological stains
were successfully replicated using different image contrast
mechanisms on various types of samples, which greatly
enriched the application areas of virtual staining methods.
Furthermore, by adding customized digital staining matrices
to the autofluorescence images and using their combination
as the neural network input, Zhang et al. achieved micro-
structured and multiplexed histological stains on the same

tissue section with a single network, which is not feasible
with the traditional histochemical staining workflow22

(Fig. 4b). In fact, the autofluorescence emission signatures of
biological tissue carry convoluted spatial-spectral information
of its metabolic state and pathological condition29,30.
Therefore, in addition to the standard histochemical stains
such as H&E and MT, the autofluorescence images of label-
free tissue can be utilized to generate more complex mole-
cular stains, e.g., highlighting a specific protein expression, as

Table 1 Label-free virtual staining studies using deep learning

Authors Input
(Label-free imaging

modalities)

Output
(Stain types)

Organs Paired/
Unpaired

Model evaluations

Standard
quantitative

metrics

Algorithm-based
feature analysis

Learning-based
downstream

analysis

Pathologists’
assessments

Rivenson
et al.18,25 (2018)

Autofluorescence H&E Salivary
gland,
thyroid

P

✓Jones Liver,
lung, kidney

P

MT Liver,
lung, kidney

P

Rivenson
et al.20,103 (2018)

Quantitative phase H&E Skin P ✓

Jones Kidney P

MT Liver P

Borhani
et al.34 (2019)

TPEF+ FLIM H&E Rat liver P ✓

Nygate
et al.32 (2020)

Quantitative phase QuickStain Sperm cells P ✓ ✓

Zhang
et al.22 (2020)

Autofluorescence +
Stain matrix

H&E/MT/
Jones

Kidney P ✓

Li et al.36 (2020) Bright-field H&E/PSR/
Orcein

Rat
carotid artery

P ✓

Pradhan
et al.35 (2021)

Nonlinear multi-modal
(CARS+ TPEF+ SHG)

H&E Colon P, U ✓

Li et al.26 (2021) Autofluorescence H&E Colon U ✓ ✓ ✓

Picon
et al.27 (2021)

Autofluorescence
(Lissajous-subsampled)

H&E Colon,
breast, lung

P ✓ ✓

Meng
et al.28 (2021)

Autofluorescence H&E Ovarian U ✓ ✓

Li et al.23 (2021) Reflectance confocal
microscopy

Acetic acid
stain/H&E

Skin P ✓ ✓

Bai
et al.31,104 (2021)

Autofluorescence HER2 IHC Breast P ✓ ✓ ✓

Kang
et al.42 (2022)

Ultraviolet photoacoustic
microscopy

H&E Mouse brain U ✓ ✓

Zhang
et al.37 (2022)

Bright-field H&E/PSR/EVG Carotid artery P ✓ ✓

Kaza
et al.39 (2022)

UV imaging Giemsa
staining

Blood Smears P ✓ ✓

Boktor
et al.38 (2022)

Total-absorption
photoacoustic remote

sensing

H&E Skin P ✓ ✓

Abraham
et al.33 (2022)

Quantitative oblique back-
illumination microscopy

H&E Rat brain U

Cao
et al.43 (2022)

Ultraviolet photoacoustic
microscopy

H&E Bone U ✓ ✓

Staining abbreviations: EVG Verhoeff’s Van Gieson
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currently done by conventional IHC staining protocols
commonly employed in histology labs. For example, Bai et al.
successfully demonstrated virtual IHC staining of human
epidermal growth factor receptor 2 (HER2) protein using the
autofluorescence images of unlabeled breast tissue sections31

(Fig. 4c), significantly extending the reach of virtual tissue
staining via label-free autofluorescence imaging.
Though powerful, autofluorescence microscopy is not

the only imaging modality that enables label-free virtual
staining. Several different imaging modalities that bring
contrast for unlabeled biological samples have been

explored for virtual staining. For example, QPI, which is
based on the refractive index distribution of unstained
biological samples, was also utilized for virtual staining.
Rivenson et al. used the quantitative phase images of
various label-free tissue sections and transformed them
into virtual H&E, Jones, and MT stains using convolu-
tional neural networks, matching their histochemically-
stained counterparts in terms of staining quality20

(Fig. 4d). In another work, Nygate et al. demonstrated the
virtual staining of human sperm cells using QPI, allowing
fertility evaluation in real-time32. QPI using oblique

Table 2 Stain-to-stain transformation studies using deep learning

Authors Input
(Stain types)

Output
(Stain types)

Organs Paired/
Unpaired

Model evaluations

Standard
quantitative

metrics

Algorithm-based
feature analysis

Learning-based
downstream analysis

Pathologists’
assessments

Gadermayr
et al.46(2018)

PAS AFOG/Col3/CD31 Kidney U

AFOG/Col3/
CD31

PAS

Levy
et al.54(2020)

H&E Trichrome Liver U ✓

SOX10 IHC Skin, lymph node 5P, U ✓

Mercan
et al.53 (2020)

H&E PHH3 IHC Breast U ✓

PHH3 IHC H&E

de Haan
et al.21,105 (2020)

H&E Jones/MT/PAS Kidney P ✓

Burlingame
et al.59 (2020)

H&E PanCK IF Pancreas P ✓ ✓

Lahiani
et al.55 (2021)

H&E FAP-CK IHC Liver U ✓ ✓

Liu
et al.49 (2021)

H&E Ki-67 IHC Neuroendocrine
tumor, breast

U ✓ ✓

Hong
et al.56 (2021)

H&E Cytokeratin IHC Stomach P ✓ ✓

Chen
et al.60 (2021)

Hoechst
stained

MUSE images

H&E Mouse brain,
mouse liver

U ✓ ✓

Ghahremani
et al.58 (2022)

IHC Multiplex IF Lung, bladder,
breast,

colon, prostate

P ✓ ✓ ✓ ✓

Xie
et al.50 (2022)

H&E CK8 IHC Prostate P ✓ ✓ ✓

Zhang
et al.52 (2022)

H&E Ki67/CC10/
proSPC IHC

Mouse lung U ✓ ✓ ✓

H&E ER/PR/HER2 IHC Breast

H&E Oil red O/a-SMA
IHC/macrophages

Rabbit
cardiovascular

Bouteldja
et al.106 (2022)

IHC: CD31/
Col3 /

NGAL/a-SMA

PAS Kidney U ✓

Lin
et al.48 (2022)

H&E MT/PAS/PASM Kidney U ✓

Yang
et al.79 (2022)

H&E PAS Kidney P ✓ ✓

Liu
et al.51 (2022)

H&E HER2 IHC Breast P ✓ ✓

Staining abbreviations: FAP-CK Fibroblast Activation Protein and Cytokeratin, CC10 Clara cell 10, proSPC Anti-Prosurfactant Protein C, ER Estrogen receptor, PR
Progesterone receptor, PASM Periodic Schiff-Methenamine
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back-illumination microscopy was also utilized by
Abraham et al. to generate virtual H&E staining of thick
and intact mouse brain samples33.
Other microscopy methods, such as nonlinear optical

imaging, have also been adopted for label-free virtual
staining. Borhani et al. used two-photon excitation
fluorescence (TPEF) alongside fluorescence lifetime ima-
ging (FLIM) as the network input to virtually stain rat
liver samples with H&E34. Pradhan et al. combined
coherent anti-Stokes Raman scattering (CARS), second-
harmonic generation (SHG) microscopy and TPEF to

create virtual H&E staining on human colon samples
(Fig. 4e)35. Some additional label-free imaging methods
were also applied for deep learning-based virtual staining
tasks. To list some examples, bright-field imaging of
unstained carotid artery sections was used to generate
multiple types of stains, such as H&E and picrosirius red
(PSR) (Fig. 4f)36,37; multichannel total absorption photo-
acoustic remote sensing (TA-PARS) was utilized to create
virtual H&E staining of human skin tissue (Fig. 4g)38;
images acquired with UV microscopy were computa-
tionally transformed into Giemsa staining of whole blood

c Blind inference stage

Unstained
samples

Label-free
imaging

Label-free
images

Virtual histology
images

Trained network
model

a Network training stage–supervised

Label-free virtual staining

b Network training stage–unsupervised

Histologically
stained slides

Unstained
samples

Label-free
imaging

Bright-field
imaging

Label-free
images

Histologically
stained images

Image registration
and cropping

Roughly matched
image pairs

Pixel-level
registration

Precisely matched
image pairs

Network
training

Network input

Ground truth

lo
ss

epoch #

Histologically
stained slides

Unstained
samples

Label-free
imaging

Bright-field
imaging

Label-free
images

Histologically
stained images

Image cropping

Unpaired images

Network input

Ground truthImage cropping

lo
ss

epoch #

Cycle
learning

lo
ss

epoch #Cycle
learning

Network training

Fig. 2 Training and inference of label-free virtual staining networks. a Training of a label-free virtual staining network using the supervised
scheme. Precisely matched input and ground truth image pairs are required, which can be obtained through a multi-stage image registration
process. b Training of a label-free virtual staining network using the unsupervised scheme, in which input and ground truth images are not
necessarily paired. Cycle-consistency-based learning frameworks are typically used. c Blind inference of a trained virtual staining model. The virtual
histology images are rapidly generated from label-free images using a digital computer
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smears39, as well as H&E40 and IHC41 staining on prostate
tissue sections; photoacoustic microscopy was also
demonstrated to achieve virtual H&E staining of mouse
brain42 and frozen sections of bone tissue43. As another
example, Mayerich. et al., developed a shallow artificial
neural network (ANN) model, without any hidden layers,
to learn a pixel-to-pixel mapping from Fourier transform
infrared (FT-IR) spectroscopy to bright-field imaging,
targeting multiple stains on human breast tissue44; in this
approach, however, the 2D spatial information of the
label-free image is ignored, and the virtual staining is

performed using the spectrum at each pixel individually,
i.e., separate from other pixels. Due to the lack of deeper
convolutional layers that process the 2D texture infor-
mation of tissue structure, such a one-dimensional
approach presents limited staining performance and
generalization44. In another attempt, hyperspectral
reflection imaging with >130 spectral bands was used as
input to a trained neural network, aiming virtual H&E
staining; this approach, however, could not result in
pathologically interpretable images, achieving a limited
SSIM (Structural Similarity Index Measure) of ~0.38745.

Stain-to-stain transformation

b Network training stage–unsupervised

a Network training stage–supervised

Histological
images type B
(Ground truth)

c Blind inference stage

Histological
images type A
(Network input)

Histological
stain type B

Histological
stain type A

Bright-field
imaging

Bright-field
imaging

Histological 
images type B

Image cropping

Unpaired images

Network training
Image cropping

Histological
images type A

lo
ss

epoch #

Cycle
learning

lo
ss

epoch #Cycle
learning

Histological
stain type A

Unstained
samples

Precisely matched
image pairs

Network
training

Histological
stain type B

Unstained
samples

Training of virtual
staining network A

Training of virtual
staining network B

Label-free
images

Trained virtual
staining network A

Trained virtual 
staining network B

Virtually stained 
images type A
(Network input)

Virtually stained
images type B
(Ground truth)

Unstained
samples

lo
ss

epoch #

Histological stain
type A

Bright-field
imaging

Histological images
type A

Virtual histology
image of stain type B

Trained network
model

Fig. 3 Training and inference of stain-to-stain transformation networks. a Training of a stain-to-stain transformation network using the
supervised scheme. b Training of a stain-to-stain transformation network using the unsupervised scheme, in which input and ground truth images
are not necessarily paired. c Blind inference of a trained stain-to-stain transformation model. Additional histological stain types can be generated from
the existing stain, providing additional diagnostic information without altering the current histopathology workflow
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Network input Network output Ground truth

Label-free virtual staining

a

H&E virtual
stain network

Unstained bright-field Virtual H&E Histochemical H&E

H&E virtual
stain network

Non-linear 
multimodal image Virtual H&E Histochemical H&E

e

Multichannel TA-PARS

H&E virtual
stain network

Virtual H&E Histochemical H&E

c Network input Network output Ground truth

HER2
stain network

Virtual HER2 IHC HER2Autofluorescence

d

Jones virtual 
stain network

Quantitative phase Virtual Jones Histochemical Jones

H&E virtual 
stain network

Quantitative phase Virtual H&E Histochemical H&E
Network input Network output Ground truth

MT virtual 
stain network

Quantitative phase Virtual MT Histochemical MT

h

Acetic acid
stain network

In vivo RCM image Virtual acetic acid
Network input Network output

Pseudo-H&E
stain network

Virtual H&E
Network output

Digital staining matrix

Autofluorescence

Digital staining
network

Virtual H&E
(input DSM1)

Virtual Jones
(input DSM3)

Virtual MT
(input DSM2)

Histochemical Jones

Network input Network output Ground truth

N/A

N/A

b

H&E virtual 
stain network

Autofluorescence Virtual H&E Histochemical H&E
Network input Network output Ground truth
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Autofluorescence Virtual Jones Histochemical Jones

MT virtual
stain network

Autofluorescence Virtual MT Histochemical MT

Network input Network output Ground truthf

Network input Network output Ground truthg

M M
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Fig. 4 Examples of label-free virtual staining using different input imaging modalities. a Virtual H&E, Jones silver, and MT staining using
autofluorescence images18. b Multiplexed H&E, Jones silver, and MT staining using a single network with autofluorescence images and digital
staining matrix as input22. c Virtual IHC HER2 staining using autofluorescence images31. d Virtual H&E, Jones silver, and MT staining using quantitative
phase images (QPI)20. e Virtual H&E staining using nonlinear multi-modal images35. f Virtual H&E staining using bright-field images36. g Virtual H&E
staining using TA-PARS images38. h Virtual acetic acid and H&E staining using in vivo RCM images38. All the scale bars represent 100 μm
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Virtual staining techniques can also be integrated with
noninvasive microscopic imaging modalities, achieving
in vivo virtual staining without a biopsy (i.e., “virtual
biopsy”). As demonstrated by Li et al.23, an in vivo virtual
staining method using reflectance confocal microscopy
(RCM) can be used to create virtual H&E staining of
human skin tissue (Fig. 4h), which can potentially be used
for rapid diagnosis of malignant skin neoplasms while
eliminating unnecessary biopsies and scars as well as
cumbersome sample preparation steps.

Stain-to-stain transformations
Deep learning also enables the transformation of the

microscopic images of an already stained tissue into other
types of stains, providing additional contrast information
for differentiating, e.g., various cellular structures and
helping improve the diagnosis. For example, Gadermayr
et al. demonstrated stain-to-stain transformations using
deep learning, achieving image transformations from PAS

stain into Acid Fuchsin Orange G (AFOG), CD31 IHC,
and Collagen III (Col3) stains46. These stain-to-stain
transformations allowed them to compare the segmenta-
tion accuracy of glomeruli under different stain types
within the same field-of-view (FOV), which is not possible
with standard histology since a given tissue section can, in
general, be stained with only one type of stain. Additional
applications of deep learning-based stain-to-stain trans-
formations were demonstrated over the last several years,
as summarized in Table 2 and Fig. 5.
Stain-to-stain transformations offer a highly convenient

and rapid approach to generating stain types that are
more difficult to obtain using more prevalent and cheaper
stains (such as H&E). For instance, a default choice of the
“source” stain used as the input for stain-to-stain trans-
formations is the H&E stain due to its wide accessibility
and cost-effectiveness6. The transformation of the H&E
stain into special stains that are used to visualize parti-
cular tissue structures not revealed by H&E staining4, was
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network
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Fig. 5 Examples of virtual stain-to-stain transformations. a Transformation from H&E staining into virtual Jones silver, MT, and PAS staining21.
b Transformation from H&E staining into virtual IHC Ki-67 staining49. c Transformation from Ki-67 IHC staining into multiplexed virtual IF staining58.
d Transformation from H&E staining into virtual panCK IF staining59. e Virtual H&E staining using Hoechst-stained MUSE images60. Adapted with
permission from ref. 60 © The Optical Society
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demonstrated by several research groups21,47–56. In the
work of de Haan et al. (Fig. 5a)21, deep neural networks
were trained to transform H&E-stained human kidney
samples into special stains, including Jones silver, MT,
and PAS stains. The stain-to-stain transformation
improved the diagnostic accuracy in a blinded study and
will be transformative in reducing the turnaround time of
the inspection of non-neoplastic kidney biopsies. As
another example, Levy et al. generated virtual trichrome
stain from H&E staining of human liver samples to study
the staging of liver fibrosis47. Furthermore, Lin et al.
demonstrated multiplexed stain transfer from H&E to
PAS, MT, and Periodic Schiff-Methenamine (PASM)
stains on human kidney samples48.
Other than special stains, different IHC-based stains

were also successfully generated using H&E images as
input. Liu et al. demonstrated the transformation from
H&E into IHC staining of Ki-67 on neuroendocrine and
breast tissue samples (Fig. 5b)49. Their virtually generated
IHC images showed a high degree of agreement with the
ground truth IHC images on both Ki-67 positive and Ki-
67 negative cells. Xie et al. achieved virtual IHC staining
of cytokeratin 8 (CK8) from H&E-stained 3D whole
prostate biopsy samples, potentially improving the risk
stratification of prostate cancers50. Other virtual IHC
stains generated/transformed from H&E include
HER251,52 and Phosphohistone H3 (PHH3)53 on breast
samples, SOX10 on liver samples54, and Cytokeratin (CK)
on liver55 and stomach56 samples.
Compared with colorimetric IHC staining that uses

chromatic markers to highlight specific antibodies attached
to their target ligands, immunofluorescence (IF) staining,
also based on antigen recognition elements, allows for
improved sensitivity and signal amplification57 by using
fluorescent labels. The generation of virtual IF staining from
other stain types was also reported: Ghahremani et al. used
Ki-67 IHC stained images to generate multiplexed virtual IF
staining of various biomarkers on human lung and bladder
samples (Fig. 5c)58. Burlingame et al. achieved the trans-
formation of H&E-stained images into virtual IF-stained
images of pan-cytokeratin (panCK) biomarker on human
pancreatic cancer samples59 (Fig. 5d).
Besides performing stain-to-stain transformations using

the formalin-fixed, paraffin-embedded (FFPE) tissue sec-
tions, the generation of H&E staining from ultraviolet
surface excitation microscopy (MUSE) images of the
Hoechst stained fresh mouse brain was also reported
(Fig. 5e)60 as another form of stain-to-stain transforma-
tion, with the additional advantage that Hoechst staining
is very fast and relatively simple.

Training data preparation
The training of the aforementioned virtual staining

models usually requires image data collected from both

the input and the target (ground truth) domains so that
the model can be trained to exploit and translate the
information from the input domain to the target domain.
Between the collection of raw image data and the training
of the virtual staining models, image pre-processing steps
are necessary to prepare the datasets for successfully
learning the image transformation. These data pre-
processing steps mainly focus on cross-registering the
input and target image pairs, which is essential for
supervised learning frameworks and eliminating unex-
pected outliers, such as misaligned image pairs and
staining artifacts18. Another aim of data pre-processing is
to address the domain shift problem61, which refers to the
statistical distribution deviation within a model’s training
dataset or between the training dataset and a dataset it
encounters during testing. Such a deviation might origi-
nate from several sources, e.g., the variations in the image
acquisition set-up and/or the staining variations due to
the nature of the chemical-based tissue staining workflow.
Using proper data normalization methods, such devia-
tions among the images could be minimized, so that the
statistical distribution of the image data is confined within
a certain range/domain to promote the learnability of the
virtual staining tasks62,63.
The cross-registration of the input and target image pairs

is commonly adopted in supervised learning-based frame-
works. An example of such a registration process was
reported in the work of Rivenson et al. on virtual staining
of autofluorescence images, where a multi-model image
registration algorithm was implemented, as illustrated in
Fig. 6. This algorithm starts with a coarse registration of the
autofluorescence images of the label-free tissue section with
respect to the bright-field images of the same tissue sections
after the corresponding histochemical staining process was
completed, where the roughly matched FOVs of both
imaging modalities were extracted by searching for the
highest cross-correlation score18. Then an affine transfor-
mation was estimated by matching the feature vectors
(descriptors) between the extracted histologically stained
images and the autofluorescence images, which was then
applied to the stained images to correct any changes in scale
or rotation. In the last, finer image registration step, a virtual
staining network was first trained through a low number of
iterations with the roughly matched images to learn the
color mapping. Then the trained pseudo model was applied
to the autofluorescence images to assist the local feature
registration using an elastic pyramidal registration algo-
rithm13,64, which helped to achieve pixel-level co-registra-
tion accuracy between the autofluorescence images of label-
free tissue sections (input images) and their corresponding
histochemically stained ground truth images. Similar
multiple-stage image registration algorithms were also uti-
lized in several other supervised learning-based virtual
staining methods20–23,31.
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As an alternative approach, Borhani et al.34 aligned the
input and target images by using a combination of scale-
invariant feature transform (SIFT)65 keypoints and ran-
dom sample consensus (RANSAC) function fitting66 at
two stages that were at different length scales. After both
the input and the target images were converted to com-
parable grayscale images, SIFT algorithm was first applied
to locate the characteristic structural keypoints, each of
which was described by a feature vector that characterized
its neighboring profile. The detected keypoints between
each image pair were then matched by employing the
nearest neighbor search between their feature descriptor
vectors, which is used to form a warping function between
the image pairs. Next, the RANSAC algorithm was used to
remove any outlying and erroneous matches, determining
a specific affine transform, which was applied to the his-
tologically stained images to co-register them to the label-
free input images. Similar to this feature detection and
matching method, Burlingame et al.59 registered the H&E
and IF whole-slide images (WSIs) using an affine trans-
formation estimated from matched speeded-up robust
features (SURF)67, which were extracted from hematox-
ylin and DAPI binary masks of cell nuclei generated by a
thresholding method68.
For the label-free microscopic images, the domain shift

problem is usually observed as imaging variations that
occur under different experimental conditions. This

might be caused by, e.g., different imaging hardware/
settings, inconsistent image acquisition environments,
and variations of the specimen characteristics or sample
preparation protocols. To address this domain shift pro-
blem, image normalization is often applied to the input
label-free images before feeding them into a virtual
staining neural network. For instance, to avoid intensity
variations caused by potential photobleaching in auto-
fluorescence imaging, Rivenson et al. normalized the
input autofluorescence images by subtracting the mean
value across the entire tissue slide and dividing it by the
standard deviation of the pixel values18. Alternatively, to
mitigate these variations and enhance the image contrast,
some works saturated the top 1% and the bottom 1% of
the pixels38,39. Pradhan et al. also reported that normal-
izing label-free nonlinear multi-modal (NLM) images in a
pixel value range from -1 to 1 could avoid large number
multiplications during the training process, helping with
better network convergence35. Besides these variations
that can be mitigated by proper normalization, sometimes
the captured microscopic images might be corrupted
with, e.g., defocusing, motion blur, and readout errors. For
example, Zhang et al. presented a virtual staining frame-
work using defocused autofluorescence images as input,
in which an autofocusing network was first trained to
bring the randomly defocused (non-ideal) images into
focus, followed by a virtual staining network (that is
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jointly trained) to generate in-focus virtually stained
tissue images69; this was used to significantly speed up the
whole slide imaging since fine autofocusing during the
tissue scanning process is not needed in this case. Similarly,
other non-ideal imaging conditions at the input end can
also be mitigated using pre-trained neural networks70,71.
Domain shift problems also exist in the histologically

stained images, typically observed as immensely incon-
sistent color and contrast due to chemical staining
variations (from lab-to-lab or histotechnologist-to-his-
totechnologist). One common method to eliminate such
variations in the training dataset is to use stain-separation
and color-normalization algorithms. Traditionally, these
methods are implemented through color deconvolution
and optical density mapping72–74. For instance,
Burlingame et al. normalized the H&E images using the
Macenko method to mitigate the inter-sample staining
variations59. Recently, deep learning-based stain nor-
malization has also been used because of its ability to take
the spatial features of the tissue structure into account,
avoiding improper staining that can be generated in the
traditional algorithmic stain normalization methods75,76.
Besides using normalization methods to unify the color
and contrast of the chemically stained images, another
direction to mitigate such domain shift problems in the
ground truth is to incorporate these variations into the
training dataset. For example, de Haan et al. used a pre-
trained style transfer network to transform the H&E
stained images into different styles for the training of a
stain-to-stain transformation network21, ensuring that
the method is effective when applied to various styles of
H&E-stained tissue samples regardless of the inter-
technician, inter-lab or inter-equipment variations. In
addition to these image registration and normalization
processes, an algorithmic or manual data cleanup is also
commonly performed to remove the undesirable data
that may mislead the network training, such as deformed
tissue sections or images with non-tissue contaminants
(e.g., dust or air bubbles).

Network architecture and training strategies
Various network structures have been reported for

virtual staining, among which the generative adversarial
network77 (GAN) is one of the most commonly and
widely used frameworks due to its strong representation
capability18,20–23,31,32,36–38,48,51,56,59,78,79. Compared to
non-GAN-based inference models, GANs can generate
relatively higher resolution and perceptually more realistic
images13,14,59. Due to the dominant and wide adoption of
GANs in the existing virtual staining studies, we mainly
focus our discussion of network architectures on GAN-
based frameworks.
In a GAN framework, two deep neural networks, the

Generator, and the Discriminator, are optimized in a

simultaneous and competitive manner80. The Generator
network learns to perform the image transformation from
the input domain to the target domain, which typically
utilizes the U-Net architecture81 or its variants. On the
other hand, the Discriminator network is a classifier that
learns to distinguish between the virtually-stained images
generated by the Generator and the target histologically
stained images. During the training, the Discriminator
looks at the virtually stained images and returns an
adversarial loss to the Generator, helping it to generate
images that cannot be distinguished by the Discriminator.
When the training enters an equilibrium state, the Gen-
erator is able to create virtually stained images that cannot
be differentiated from the histologically stained images by
the Discriminator. However, in the standard GAN fra-
mework where the Generator is solely optimized by an
adversarial loss, the resulting Generator only mimics the
colors and patterns of the target images without learning
the underlying correspondence between the input and the
target images, resulting in severe hallucinations at the
micro-scale19. To overcome this hallucination problem,
various other pixel-wise loss functions, such as mean
absolute error (MAE)18,21,22,32,36,37,51,56,59, mean square
error (MSE)18,79, SSIM31,82, Huber loss31, reversed Huber
loss23, and color distance metrics56 are incorporated into
the Generator loss terms (in addition to the Discriminator
loss) to regularize the GAN training; these additional loss
terms are calculated using the virtually generated images
and their corresponding ground truth (histochemically
stained images). Moreover, image regularization terms
such as total variation83 were also exploited in some
works to eliminate or suppress different types of image
artifacts created by the Generator18,20–22,31.
When precisely registered input and target image pairs

are available, it is often the best strategy to train a virtual
staining network using a supervised learning scheme since
the pixel-wise loss functions listed earlier can be accu-
rately evaluated for the optimization of the Generator.
With a well-registered training dataset, a typical virtual
staining network architecture that uses supervised learn-
ing is summarized in Fig. 7a. This GAN-based virtual
staining framework demonstrated success for various
tissue-stain combinations; however, it falls short in
applications where paired images of the same tissue FOVs
are hard (or even impossible) to acquire, such as the stain-
to-stain transformation tasks where a given tissue section
is typically stained only once, making it practically
impossible to create pairs of histochemically stained
images of the same sections with different types of stain.
One approach used to mitigate this limitation and gen-
erate paired images with different stain types involved
multiple pre-trained virtual staining networks21, which,
however, may also induce an unavoidable distribution
shift between the target histological images and the
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output from the pre-trained networks. To overcome this
dilemma, Yang et al. demonstrated a cascaded neural
network (C-DNN)79 architecture, where a virtual staining
network A was followed by a jointly optimized stain
transfer network B as shown in Fig. 7b. By using two

groups of paired label-free, histochemically stained, and
virtually stained images, the C-DNN used structural loss
terms like MAE directly on histochemically stained ima-
ges from both the input and output domains to improve
the quality of virtual stain-to-stain transformations79.

a Supervised training with paired data

b Unsupervised training with unpaired data
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Unlike supervised learning, the training of virtual stain-
ing networks using unsupervised learning schemes does
not require cross-registered image pairs. One of the most
frequently used unsupervised learning frameworks for
virtual staining is the CycleGAN24 architecture (Fig. 7c)
and its variants, which consist of two cascaded Generators
trained jointly to perform the image transformations
between the domain X(x) and the domain Y(y) in a cyclic
manner. In one cyclic loop, the Generator G first performs
the transformation from domain X(x) to domain Y(G(x)),
followed by the Generator F performing the transforma-
tion from domain Y(G(x)) back to domain X(x* = F(G(x))).
Similarly, a symmetric transformation from domain Y(y) to
domain X(F(y)) and then back to domain Y(y* = G(F(y))) is
accomplished in another cyclic loop. Cycle-consistency
losses such as MAE26,47,49,60, MSE35,55, and SSIM49,60 are
typically used in such a CycleGAN training framework to
measure the differences between x ↔ x* and y ↔ y*.
Moreover, an adversarial loss is also applied on x ↔ F(y)
and y ↔ G(x) to ensure the generation of realistic images.
In addition to the cycle-consistency losses and the adver-
sarial loss terms, the perceptual embedding consistency
(PCE) loss between the latent features extracted by the
encoders of the two Generators was used by Lahiani et al.55

and Liu et al.49 to improve the virtual staining performance
further. When the training of CycleGAN converges, the
Generator G is able to transfer the images from domain X
to domain Y while the Generator F can inversely perform
the transformation from domain Y to domain X. Either of
these Generators can be taken out and used in the infer-
ence phase depending on the desired virtual staining task.
One notable issue of using CycleGANs to perform virtual
staining tasks is the intensity mismatch; for example, label-
free input images usually have dark background as
opposed to the bright-field histologically stained images
with white background, which can cause a challenge for
image transformations due to the lack of pixel-level
supervision. To overcome this problem, in addition to
inverting the intensities of label-free input images33,60,
other loss terms such as saliency constraint loss26, and
multiscale structural similarity index measure (MS-SSIM)
loss42 were adopted. Although the performance of unsu-
pervised learning is in general inferior to supervised
learning31,35,37,51,60, it still provides a valuable solution in
the cases where paired image datasets are not accessible/
available for training.
In addition to these mainstream efforts, other novel

network architectures and customized loss functions have
been recently reported for virtual staining. For example,
Liu et al. used pathology consistency loss extracted from
an additional downstream neural network to guide the
training of CycleGANs49, which achieved staining quality
improvements from H&E to Ki-67 stain. As another
example, Meng et al. demonstrated a parallel feature

fusion network (PFFN) that extracts and synthesizes the
features from multiscale dimensions to enhance the
quality of the virtual H&E images generated from auto-
fluorescence images28. In addition, a pyramid pix2pix
architecture was exploited by Liu et al. to calculate feature
losses at multiple spatial scales, which enabled a better
transformation from H&E to IHC compared with some of
the other popular algorithms51. It is anticipated that fur-
ther improvements in virtual staining quality can be
achieved with additional advances in the training of deep
learning-based image-to-image transformations.

Virtual staining model evaluation
After the training of a virtual staining model, its validity

needs to be thoroughly assessed with qualitative and
quantitative analysis (Fig. 8). A basic and straightforward
assessment method is to directly measure the degree of
agreement between the virtually generated histological
images and their chemically stained counterparts (ground
truth) using standard quantitative metrics (Fig. 8a). When
paired input and ground truth images are available, pixel-
wise evaluation metrics, such as SSIM82, peak signal-to-
noise ratio (PSNR)84, MS-SSIM85, MSE, are MAE are
commonly used. When paired input and ground truth
images are not available, reference-free metrics can be
applied, such as Fréchet inception distance (FID)86 and
inception score (IS)87, which evaluate the performance of
a generative model by measuring the statistical similarity
of its output and target images by comparing the high-
level features extracted using a trained network28. Most of
the virtual staining networks developed in the literature
used one or more of these standard quantitative metrics
to evaluate the image quality of the network inference (see
Tables 1 and 2).
To better assess the model performance within the

context of histology, a further step ahead is to extract the
critical cellular features from both the virtually stained
images and their ground truth images, followed by eval-
uating the correlations between these extracted features
to statistically reveal the level of histology equivalence
(Fig. 8b). For example, Bai et al. performed color
deconvolution and separated different HER2 stain chan-
nels88 to extract the nuclear and membrane features,
based on which a good agreement of the statistical sig-
natures between the virtual staining output and ground
truth images was found31. Likewise, feature-based quan-
titative analyses performed on segmented Ki-67 positive
and negative stained areas49, segmented cytoplasm and
nucleus54, segmented epithelium, and lumen50, and seg-
mented tumor and stroma regions56 were reported to
validate the virtual staining efficacy of trained network
models.
Despite using various image quality metrics and feature

analysis tools, algorithmic scores cannot always accurately
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reflect the diagnostic value of the virtual histology images
since the pathologically meaningful features are complex
and cannot always be explicitly described through simple
numerical rules. Before deployment, it is crucial to vali-
date that the virtually stained images convey the same
diagnostically relevant information as the conventional
histologically stained slides have. Therefore, including
certified pathologists in case studies to assess the impor-
tant pathological features and make diagnostic decisions
from virtually generated images is an important part of
the evaluation process (Fig. 8c). For example, in the work
of de Haan et al.21, three nephropathologists confirmed
that the generation of the additional virtual special stains
from existing H&E images improved the diagnosis of
kidney diseases; similarly, Bai et al.31 involved three
board-certified breast pathologists in validating the diag-
nosis accuracy and the staining quality of the virtually
generated HER2 images. As another example, Lahiani
et al.55 included two pathologists in their study to validate
the high degree of agreement between the virtually
stained images and the corresponding histologically
stained ones.
Similar to carrying out a case study with human

pathologists evaluating virtually stained images, a digital
pathology deep neural network (DNN) model can also be

trained to perform multiple types of downstream diag-
nostic analyses such as cancer stage grading89 (Fig. 8d).
These digital pathology models can create effective eva-
luation tools in case studies where the clinically relevant
features of virtually and histologically stained images are
compared against each other. More importantly, these
automated image comparison and evaluation tools are
fully scalable to be used in large-scale studies, potentially
eliminating a bottleneck due to the limited availability of
pathologists. For example, Kaza et al.39 trained a classifi-
cation model to distinguish the dead and viable cells and
their subtypes, which was used to validate the perfor-
mance of a virtual staining model. Similarly, Li et al.26

trained a downstream CNN for colonic gland segmenta-
tion to demonstrate that the virtually stained images
preserve the same rich histopathological information as
the histochemically stained ones.

Discussion and future perspectives
Deep learning-based virtual staining techniques have

enabled rapid, cost-effective, and chemical-free histo-
pathology, providing a powerful alternative to the tradi-
tional histological staining methods developed over a
century. Most virtual staining techniques only eliminate
the staining steps of the complete histology procedure,
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while leaving the sample pre-processing and preparation
steps unchanged, making them compatible with the
existing clinical workflow. The sample turnaround time
(TAT) in pathology is defined by the Collage of American
Pathologists as “the day the specimen is accessioned in the
lab to the day the final report is signed out”90. Even a
modest shortening in the specimen preparation time by
virtual staining (before the microscopic examination by
pathologists) can make the difference between its exam-
ination before the end of the working day and the fol-
lowing day (resulting in at least a full-day difference in the
TAT). In addition, since virtual staining exhibits reduced
variability in the staining quality from slide to slide, it can
result in a reduction of the number of technically failed
stained slides, which will also benefit reducing the TAT.
Furthermore, it is important to emphasize that the che-
mical staining process often makes up the major burden
for histology labs, which requires the use, storage, and
waste-processing of multiple types of reagents and anti-
bodies, some of which are highly costly or toxic. Another
major complication with various chemical stains is the
quality assurance of the underlying chemicals, which are
prone to supply-chain issues, as most histology labs
experienced during the recent COVID pandemic. The
staining procedures that involve trained histotechnicians
to perform multiple staining protocols also form one of
the most labor-intensive and time-consuming steps in
histology. Therefore, eliminating the chemical staining
process will greatly release the demanding requirements
for lab infrastructure and personnel training, save valuable
lab resources, and allow more samples to be processed
under the same lab capacity.
Furthermore, as a general framework, virtual staining

methods can be widely adapted to various sample prepara-
tion procedures, such as frozen sections, freshly cut tissue
blocks, or in vivo imaging of human organs. Along with the
advancement of label-free imaging/microscopy techniques,
the traditional sample preparation process can potentially be
replaced so that the whole histology workflow can be further
accelerated. Besides time, cost, and labor savings, virtual
staining also inherently carries the capability of stain multi-
plexing. Different types of stains can be simultaneously
generated at the same tissue cross-section using a single (or
multiple) virtual staining model(s) to provide additional his-
tological information that aids the diagnostic evaluation21.
This additional histological information was also proven to
improve the performance of other downstream machine
vision tasks in digital pathology, such as the detection or
segmentation of pathological signatures27,50,53,55,58 and clas-
sification of malignancies32,39,91. By allowing different stains
to be performed on the same tissue section, more tissue will
be preserved and be available in diagnostically challenging
cases for ancillary tests (e.g., DNA/RNA sequencing) that
may be required to reach a diagnosis.

Along with the advancement of this emerging technol-
ogy, further contributions will be needed to accelerate the
development and adoption of virtual staining applications.
Such efforts will include the promotion of data con-
sistency, improvement of the staining throughput, incor-
poration of the latest deep learning advances to improve
the generalization of virtual staining networks, and the
establishment/validation of better model characterization
methods, which are further discussed below.
Like most deep learning-based data-driven techniques,

the accessibility of large amounts of high-quality data is
the key to successfully training the virtual staining models.
However, creating a virtual staining dataset poses unique
challenges due to the technical limitations of generating
consistent histological ground truth images. The staining
results suffer from lab-to-lab and histotechnologist-to-
histotechnologist variations, which can be partially
attributed to the variations in the protocols and practices
in histology labs92. During the WSI digitization, the use of
different image sensors, objective-lenses, and image pre-
processing pipelines (e.g., image sharpening, autofocusing,
and color correction) among whole slide scanners of
different brands makes such variations even worse. Fur-
thermore, the standard histochemical staining procedures
also introduce severe mechanical distortions and even
damage to the tissue sections, resulting in difficulties in
image registration for supervised learning. For example, in
Bai et al.’s virtual HER2 staining work, approximately 30%
of the histochemically stained samples were discarded due
to the physical loss of tissue or histochemical stain fail-
ures31. All factors considered, obtaining high-quality
ground truth images can be excessively slow and costly.
Besides difficulties in acquiring high-quality histological
images, obtaining large-scale label-free images also face
sample-to-sample variation-related challenges. The dif-
ferences in sample preparation protocols, label-free ima-
ging hardware (e.g., light sources, objective lenses, and
image sensors), image acquisition configurations (e.g.,
integration time and autofocusing), and image pre-
processing pipelines all contribute to the variations
observed in the input images, which can possibly create
major challenges for label-free virtual staining models
even with proper image normalization methods. There-
fore, it would be especially beneficial to create large-scale,
standardized, and publicly available datasets for the
researchers in this field to work with, which will provide a
standard testbed for various new methods that are
emerging. One related effort is The Cancer Genome Atlas
(TCGA)93, which includes a collection of more than
30,000 whole pathology slide images from more than 9000
cases for cancer studies. Furthermore, in recent years,
there has been a growing number of datasets published
for pathological image analysis, such as the CAMEL-
YON17 Challenge94, the Prostate cANcer graDe
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Assessment (PANDA) Challenge95, MItosis DOmain
Generalization (MIDOG) Challenge96, among others.
However, even though these datasets are valuable for
pretraining virtual staining models and developing
downstream analysis tools, a comprehensive database
specifically designed for virtual tissue staining is still
lacking. Creating such a virtual staining dataset will
require sample collection from diverse anatomical loca-
tions and multiple patients with different conditions,
along with the preparation, staining, and digitization of
these tissue samples from different medical centers/labs,
accomplished with standardized and widely available
image acquisition and processing pipelines.
Another direction of future research can be on the

improvement of the throughput of the virtual staining
methods. After several decades of industrial development,
the standard histological staining and image digitization
process was largely accelerated by automated batch
staining and scanning WSI equipment, reaching a high
throughput that is necessary to catch up with the clinical
needs. On the other hand, some label-free virtual staining
methods, though bypassing the chemical staining proce-
dures, employ relatively slow imaging modalities, such as
FLIM34. Dedicated engineering efforts need to be made
for optimized imaging hardware and protocols to enable
high-throughput virtual staining methods that can widely
replace their standard histological counterparts; for this
goal, label-free imaging modalities need to be able to
routinely scan/digitize a whole slide image (with a tissue
area spanning several cm2) within a few minutes.
Further efforts can boost this virtual staining technology

even to surpass the performance of the standard histolo-
gical staining, and it can potentially be used to virtually
stain cellular elements that current methods fail to high-
light, such as heavily masked antigens, proteins with low
expression levels, and possibly assist in the detection of
genomic aberrations (e.g., oncogene amplifications, dele-
tions, and fusions) that require expensive ancillary tests
not available in many pathology labs. Moreover, devel-
oping fast and stable label-free imaging systems for non-
fixed fresh tissue samples and implementing virtual
staining on them will be an impactful direction to inves-
tigate, which could eliminate the need for biopsies in
some anatomical locations and greatly benefit intrao-
perative consultation during surgical operations.
We anticipate that virtual staining technology will

continue to be improved by utilizing state-of-the-art deep
learning technologies that are rapidly evolving with more
versatile network architectures, new task-specific loss
functions, and more efficient training strategies. For
example, transformers as an emerging backbone for deep
learning tasks have shown superior performance com-
pared to convolution neural networks on various
computer-vision tasks97–99, which might also provide

promising improvements for virtual staining networks,
potentially offering higher image resolution and staining
accuracy. Additionally, loss functions specifically designed
for pathological images using handcrafted expert features
or pre-trained feature extractors could be introduced
during the training phase to act as domain-specific pen-
alty terms that might improve the generalization of virtual
staining networks. Other emerging training strategies,
such as learning rate scheduling, large-scale parallel
training, and different normalization schemes, will also be
important to further advance the capabilities of virtual
staining networks.
Despite the promising technical feasibility and proof-of-

concept demonstrations summarized in this Review, the
implementation of virtual staining technology for primary
diagnostic use in clinical settings is yet to arrive (which
will need to go through a Class III approval process
through the FDA). For this, the accuracy and reliability of
the virtual staining technology need to be fully char-
acterized/validated by different medical institutions using
a broad distribution of tissue samples from a large num-
ber of patients with diverse pathologies. To relieve
potential concerns regarding virtual staining network
hallucinations, various quantitative metrics were devel-
oped (see the Model Evaluation section discussed earlier),
which can be used to assess the model efficacy and the
image quality of the virtual staining outcomes. Based on
these existing metrics, a quantitative benchmark for the
clinical success of virtual staining technology needs to be
established to reflect the level of diagnostic errors or
uncertainties due to the chemical staining and inter-
observer variabilities, which will provide a reference for all
the virtual staining studies to compare with and guide the
proper design of case studies. In addition, the virtual
staining technology development and advancement phase
will need fast and quantitative feedback during the itera-
tive development procedures to converge on competitive
models that can be tested in clinical settings. Researchers
in this field have already developed user-friendly evalua-
tion software/tools to test different models and assess
histological signatures; examples of such efforts include
DeepImageJ100, CellProfiler101, QuPath102, among others.
Additional efforts could be made to develop automated
and reliable evaluation tools (such as a set of task-specific
neural networks) that can partially replace human diag-
nosticians or pathologists during this research and
development phase, which will greatly accelerate the vir-
tual staining research progress since the availability of
well-trained pathologists for large-scale, multi-institution
validation efforts might introduce challenges. The rapidly
developing and expanding computational pathological
diagnostic frameworks can also provide powerful tools to
benchmark and compare the performances of virtual
staining models against their standard histochemical
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counterparts. Such automated and repeatable image
quality evaluation tools will also be valuable in fostering
the design of large-scale case validation studies at a global
scale and help accelerate the clinical acceptance of virtual
staining techniques.
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