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Matter correlations induced by coupling to quantum light

Frank Schlawin and Shaul Mukamel
Department of Chemistry, University of California, Irvine, California 92697-2025, USA

(Received 22 July 2013; published 23 January 2014)

Correlations between uncoupled particles induced by the interaction with different types of light are investigated
using a superoperator formalism. We derive compact expressions for the doubly-excited-state distributions of
noninteracting multilevel atoms excited by classical laser light, classical stochastic light, and quantum light.
We find that the g2 function of the incoming light can be directly related to its ability to induce correlations in
the matter. Unlike coherent light, quantum light can induce entanglement between the atoms. The photon
coincidence signal created by classical fields may be factorized into a product of single photon counting rates.
This is not the case for quantum light.
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I. INTRODUCTION

The identification of genuine quantum effects that have
no classical counterparts in quantum systems has been a long-
standing issue in quantum physics, dating back to the Einstein-
Podolsky-Rosen (EPR) paradox, the Bell inequalities, and
the hidden-variables theory of Bohm [1,2]. Apart from the
very fundamental interest in nonclassical correlations and their
possible use as resources for quantum computers [3], methods
from quantum information theory have emerged as new tools
in nonlinear spectroscopy [4]. Moreover, the possible exploita-
tion of strong correlations in nonlinear spectroscopy with
quantum light promises new routes to probe complex quantum
systems [5–9]. Quantum spectroscopy offers increased signal
strength at low photon fluxes [10–12], new control parameters
to disentangle complex spectra [13–16], the control of exciton
distributions [17–20], and the suppression of exciton transport
[21] thanks to the unusual combination of high temporal
and spectral resolution. However, whether all of these effects
are genuine quantum effects in the sense that they may
not be mimicked—at least in principle—by properly shaped
pulses with classical correlations [22–24] remains an open
topic. Besides, the interpretation of nonlinear experiments on
photosynthetic complexes has ignited a vivid debate about the
possible role of quantum coherences in the biological function
of these systems [25–27]. Clearly, the induced density matrix
of such complex systems upon excitation by coherent laser
light or incoherent sunlight is a highly complicated object,
and coherence can be induced by other sources such as,
e.g., the environment or interactions. In both scenarios, the
huge number of free parameters renders a clean interpretation
of experiments and even simulations very challenging, and
makes it desirable to first discuss these issues in a simpler
context, where the influence of the light field can be clearly
identified. This study addresses both scenarios by investigating
the excited-state density matrices of noninteracting molecules
induced by the interaction with light fields.

We consider a collection of N noninteracting molecules
ν driven by common external optical fields. By formulating
the problem in terms of Liouville space superoperator corre-
lation functions [28], we obtain a compact treatment of the
many-body correlations induced by the coupling to the light
fields. Using a perturbative expansion in the radiation-matter
coupling, observables are given by convolutions of field and

matter correlation functions. These correlation functions can
be evaluated separately and combined at the end. It is not
necessary to solve coupled master equations in the joint
field + matter space. We shall use this formalism to calculate
the distributions of doubly excited states of noninteracting
multilevel atoms induced by the interaction with various kinds
of light: classical coherent light, Gaussian stochastic light,
separable quantum light, and entangled light. We show that it
is possible to excite coherences in the density matrix with
stochastic light, as reported in femtosecond measurements
with nanosecond pulses in the 1980s [29,30].

Suppose we perform one measurement on each of the
observables Aν , ν = 1, . . . ,n, each acting on the space of
molecule ν. We assume a field-matter coupling Hamiltonian of
the form H (t) = E(t)V (t), where E and V = ∑

ν Vν denote
the electric field and the dipole operators. In the interaction
picture, many-body correlation functions are then given by
[31]

〈Aν1 · · · Aνk
〉 =

〈
T Aν1+ · · · Aνk+ exp

[
− i

�

∫ t

dτ H−(τ )

]〉
,

(1)

where T denotes the superoperator time-ordering operator, H

is the interaction Hamiltonian, and the superoperators A± are
defined by their action on other ordinary operators as follows:
A±X ≡ AX ± XA, i.e., A− is a commutator and A+ is an
anticommutator. If the external laser fields are classical, we
can replace electric field operators by c numbers, which allows
us to factorize the many-particle correlation function

〈Aν1 · · · Aνk
〉 = 〈Aν1〉 · · · 〈Aνk

〉. (2)

This factorization reflects the lack of matter correlations in this
model; each 〈Aν〉 can be calculated separately in the space of
the νth particle. We shall show that quantum (e.g., entangled,
or squeezed) light in contrast can induce correlations in matter.
A typical term in the perturbative expansion of Eq. (1) in the
light-matter coupling is a convolution of field- and matter-
superoperator-correlation functions,∫

dτ1 . . .

∫
dτk

∏
j

〈T Aνj +Vνj ±(τ ′
1) · · ·Vνj ±(τ ′

k)〉

× 〈T E(τ ′
1) · · · E(τ ′

k)〉. (3)
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Here, the variables τ ′
1 · · · τ ′

k are some permutation of τ1 · · · τk .
Each matter factor can be calculated in the space of a
single molecule, and to arbitrary order in V−. Because of
the nested integrations, the factorization Eq. (2) no longer
holds, which implies some degree of correlation between
the atoms. Equation (1) represents path integrals in the joint
field + particle space, which can substantially affect optical
measurements:

It has been suggested in [32] that entangled light can induce
collective two-photon resonances between noninteracting two-
level atoms. It was argued that the nonseparability of the
entangled light wave function directly translates into the
nonseparability of the transition amplitude [24,33]. However, it
was later shown that these collective resonances are eliminated
in measurements performed on single particles such as pump-
probe by destructive interference [34]. Matter correlations are
nevertheless induced, and can be measured by observables
involving more than one atom, such as photon coincidence.
These will be studied here. We are interested in entanglement
between quasiparticles, i.e., the number of excitations present
in the system. Hence, we only consider the subspace composed
of one and two excitations. The total Hamiltonian of the system
is given by H = ⊗n

i=1C
m, where Cm

i is the Hilbert space of the
ith multilevel atom, and it can be decomposed into

H = S(1) ⊕ S(2) ⊕ · · · , (4)

where S(k) is the subspace containing k excitations. By
denoting the creation operator of an excitation at atom i by d̂i ,
this means we are interested in the properties of the two-exciton
density matrix,

� =
∑

i,j,i ′,j ′
d̂
†
i d̂

†
j |g〉〈g|d̂i ′ d̂j ′ . (5)

For two-level atoms, m = 2, the operators d̂ are fermionic
operators, and for m � 2 they show some bosonic behavior in
the subspaces S(1) and S(2). We consider the latter case.

II. TWO-EXCITON DENSITY MATRIX
AND PHOTON COINCIDENCE

Assuming that all molecules are initially in the ground state,
the density matrix of the interacting matter-field system at
time t is given in the interaction picture by the time-ordered
exponential

�(t) = T exp

[
− i

�

∫ t

dτH−(τ )

]
|g〉〈g| ⊗ �field, (6)

where |g〉 denotes the ground state of the matter system, and
�field denotes the initial state of the light field. To investigate

correlations in the matter induced by the interaction with the
field, we examine the reduced matter density matrix obtained
by tracing out the field degrees of freedom.

The singly excited density matrix is given by the expression

�i,i ′(t)

= tr

{
T d̂

†
i (t)|g〉〈g|d̂i ′(t) exp

[
− i

�

∫ t

t0

dτ H−(τ )

]
�(t0)

}
.

(7)

We shall further examine the doubly excited density matrix,
whose elements are given by

�ij,i ′j ′ (t) = tr
{
T d̂

†
i (t)d̂†

j (t)|g〉〈g|d̂i ′(t)d̂j ′(t)

× exp

[
− i

�

∫ t

t0

dτ H−(τ )

]
�(t0)

}
. (8)

In the following, we employ the rotating-wave approximation,
and we set H (t) = V (t)E†(t) + H.c., where E† is the negative-
frequency component of the electric field and V is the positive-
frequency part of the dipole operator,

V (t) =
∑

i

μigd̂ie
−iωig t . (9)

To lowest order in the number of field-matter interactions,
Eq. (7) yields

�i,i ′(t) =
(

− i

�

)2 ∫ t

dτ1

∫ t

dτ ′
1

×〈V (τ ′
1)d̂†

i (t)|g〉〈g|d̂i ′(t)V
†(τ1)〉

× 〈E†(τ ′
1)E(τ1)〉. (10)

Similarly, the leading-order contribution to Eq. (8) is given
by convolutions of four-point correlation functions. The
matter correlation in Eq. (10) factorizes into two transition
amplitudes,

〈g|d̂i ′ (t)V
†(τ1)〉 = μgi ′e

−iωi′g (t−τ1). (11)

We also introduce the frequency decomposition of the field
correlation function,

〈E†(τ ′
1)E(τ1)〉

=
∫

dωa

2π

∫
dωb

2π
e−i(ωbτ1−ωaτ

′
1)〈E†(ωa)E(ωb)〉, (12)

which allows us to carry out the time integrations, and we
obtain (see Fig. 1)

�i,i ′(t) =
(

− i

�

)2 ∫
dωa

2π

∫
dωb

2π
μgi ′μgi

〈E†(ωa)E(ωb)〉ei(ωa−ωb)t

(ωb − ωig + iε)(ωa − ωi ′g − iε)
(13)

�ij,i ′j ′ (t) =
(

− i

�

)4 ∫
dωa

2π

∫
dωb

2π

∫
dω′

a

2π

∫
dω′

b

2π
μgi ′μgj ′μgiμgj

∑
ωk={ωig,ωjg}

〈E†(ω′
a)E†(ω′

b)E(ωb)E(ωa)〉e−i(ωa+ωb)t

(ωa − ωk + iε)(ωa + ωb − ωig − ωjg + iε)

×
∑

ωl={ωi′g,ωj ′g}

ei(ω′
a+ω′

b)t

(ω′
a − ωl − iε)(ω′

a + ω′
b − ωi ′g − ωj ′g − iε)

, (14)

013830-2
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τ1 τ1

|g g|

d̂†i (t)|g d̂†i (t)d̂
†
j(t)|gg|d̂i (t) g|d̂i (t)d̂j (t)

ωb ωa

τ1 τ1

|g g|

ωb

ωa

ωb τ2 τ2

ωa

ωb

(i) (ii)

ωb ωa

FIG. 1. (Color online) The diagrams representing Eqs. (13) and
(14).

where we introduced the infinitesimal imaginary factor ε to
write the frequency domain Green’s function Ge(ω) = 1/(ω −
ωeg + iε). We use the relation

1

ω + iε
= P

(
1

ω

)
− i2πδ(ω), (15)

where the δ part yields resonant contributions, and the
Cauchy principal value P(1/ω) gives positive and negative
contributions outside the resonance. Due to cancellations, they
are typically small but not necessarily negligible (in the Lamb
shift calculation, they diverge [35]). Formally, this implies
that the numerators in Eqs. (13) and (14) are analytic, and
have no poles. Below, we shall neglect the principal value. In
Fig. 5 we will demonstrate that this is justified in the present
applications. Equation (14) then yields the Fourier transform
of the field correlation function,

�ii ′(t) =
(

− i

�

)2

μgi ′μgie
i(ωi′g−ωig)t

×〈E†(ωi ′g)E(ωig)〉, (16)

�ij,i ′j ′(t) =
(

− i

�

)4

μgi ′μgj ′μgiμgj e
−i(ωig+ωjg−ωi′g−ωj ′g )t

×〈E†(ωi ′g)E†(ωj ′g)E(ωig)E(ωjg)〉. (17)

Note also that the simple form of Eqs. (16) and (17) only
holds provided the free time evolution of the matter is unitary.
Dissipation would complicate the picture.

A good measure of these density matrices is provided by
the two-photon counting signal

Sij (	) = 〈Ai(t)Aj (t)〉
〈Ai(t)〉〈Aj (t)〉 , (18)

with Ai(t) = d̂†(t)|g〉〈g|d̂(t), and 	 denoting the set of control
parameters. We collect photons from the multilevel atoms,
which we assume to be distinguishable by their frequency.
A nonvanishing Sij implies that the multilevel atoms are
correlated; the probability of the system i and j being
excited differs from the product of probabilities. The photon

coincidence results can be obtained directly from Eq. (17),

Sij (	) = 〈E†(ωig)E†(ωjg)E(ωig)E(ωjg)〉
〈E†(ωig)E(ωig)〉〈E†(ωjg)E(ωjg)〉 . (19)

Equation (19) is similar—but not identical—to the Fourier
transform of the g2 function of the incoming fields [36],

g2(t,τ ) ≡ 〈E†(t)E†(t + τ )E(t + τ )E(t)〉
〈E†(t)E(t)〉2

. (20)

To see the difference between the two quantities, we just note
that the frequency decomposition of the nominator of Eq. (20)
is given by

〈E†(t)E†(t + τ )E(t + τ )E(t)〉

=
∫

dω′
a

2π

∫
dω′

b

2π

∫
dωa

2π

∫
dωb

2π

×〈E†(ω′
a)E†(ω′

b)E(ωb)E(ωa)〉
× ei(ω′

a+ω′
b−ωb−ωa )t ei(ω′

b−ωb)τ , (21)

and cannot be brought into the form of Eq. (19). Still, the
ability of the incoming light to induce correlation between
noninteracting multilevel atoms is closely connected to its g2

function. In the following, we will explore this relation for
various kinds of light.

III. CLASSICAL LIGHT

A. Coherent light

For classical coherent light, we can factorize the
electric-field operators of the four-point correlation func-
tion 〈E†(ωig)E†(ωjg)E(ωi ′g)E(ωj ′g)〉 into field amplitudes
F ∗(ωig)F ∗(ωjg)F (ωi ′g)F (ωj ′g). The density matrix then fac-
torizes into products of single-photon transition amplitudes

�ij,i ′j ′(t) = T ∗
i (t)T ∗

j (t)Tj ′(t)Ti ′(t), (22)

with

Ti(t) =
(

− i

�

)
μigF (ωig)e−iωig t . (23)

This is a product state, and all many-body observables will
factorize as in Eq. (2), signifying the absence of correlations.

We illustrate this for a simple system of six multilevel atoms
with energies between ωe1g = 1.47 eV and ωe6g = 1.543 eV.
All density matrices are normalized to tr[�] = 1. We start with
coherent light with a Gaussian envelope,

F (ω) = exp

(
− (ω − ω0)2

2σ 2
1

)
. (24)

The absolute value of the density matrices is shown in Fig. 2.
The excitation probability of any doubly excited state can
be directly traced back to the overlap of the pulse’s power
spectrum with the multilevel atom energies. For instance, state
|16〉 is always weakly excited in our current scheme, since the
two energies are far detuned from one another, and cannot be
efficiently excited by a single laser pulse.
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|

FIG. 2. (Color online) The top panels depict the power spectra of the light in arbitrary units; it has a bandwidth σ1 = 0.14 eV. The central
frequency of the light beam is varied between 1.47 eV (a), 1.516 eV (b), and 1.543 eV (c). The energies of the multilevel atoms are indicated
by black lines. The bottom plots show the absolute value of the density matrices induced by coherent light [Eq. (22)]. The states are indicated
as |1x〉 =̂ |12〉, . . . ,|16〉, |2x〉 =̂ |23〉, . . . ,|26〉, etc.

Due to the factorization (22), we obtain for the coincidence
rate

Sij (	) = 1. (25)

This reflects the absence of correlations between the multilevel
atoms; we obtain the identical result for the g2 function.

B. Stochastic light

For stochastic light, the expectation value in the four-point
correlation function 〈E∗(ωig)E∗(ωjg)E(ωi ′g)E(ωj ′g)〉 denotes
an average with respect to the realizations of the complex
random (classical) variable E(ω). In the following, we will
assume Gaussian stochastic light. This is a common model if
we take many degrees of freedom (i.e., modes) into account,
as it can be rationalized by the central limit theorem [35]. The

correlation function then factorizes into two-point functions
[37]

〈E∗(ωig)E∗(ωjg)E(ωi ′g)E(ωj ′g)〉
= 〈E∗(ωig)E(ωj ′g)〉〈E∗(ωjg)E(ωi ′g)〉

+ 〈E∗(ωig)E(ωi ′g)〉〈E∗(ωjg)E(ωj ′g)〉. (26)

We shall represent the two-point correlation function in the
form

〈E∗(ω′)E(ω)〉 = F ∗(ω′)F (ω)C(ω − ω′), (27)

where F (ω) denotes the field amplitude, and the correlation
term C(ω − ω′) = C(ω′ − ω) describes the degree of stochas-
ticity. By substituting Eqs. (26) and (27) into Eq. (17), we
obtain

�ij,i ′j ′ (t) = μgiμgjμgi ′μgj ′

(
− i

�

)4

F (ωe′
i g

)F (ωe′
j g

)F ∗(ωig)F ∗(ωjg)e
−i(ωe′

i
g+ωe′

j
g−ωig+ωjg )t

× [C(ωe′
i g

− ωig)C(ωe′
j g

− ωjg) + C(ωe′
i g

− ωjg)C(ωe′
j g

− ωig)]. (28)

For C(ω) → 1, we recover the fully coherent light result
of the previous section, which factorizes into the product of
single-photon transition amplitudes, as expected from the pre-
vious discussion. In the opposite, white noise, limit, C(ω) →
δ(ω), the off-diagonal density matrix elements vanish, and the
resulting state is an incoherent mixture of populations. This
is illustrated in Fig. 3 for the same model system described
in the previous section. We chose a Gaussian envelope for the
frequency correlation function in Eq. (28),

C(ω − ω′) =
(

− (ω − ω′)2

2σ 2
2

)
. (29)

The dependence on C is shown in Fig. 3 for different values
of σ2. For very large σ2, i.e., weak stochasticity, the density
matrix in Fig. 3(a) is almost identical to the density matrix
excited by coherent light with the same parameters in Fig. 2(b).
But with an increasing degree of stochasticity, the off-diagonal
elements are suppressed, and only the populations survive in
Fig. 3(c).

We next turn to the coincidence rate. According to Eq. (26),
it yields

Sij (	) = 1 + 〈E∗(ωig)E(ωjg)〉〈E∗(ωjg)E(ωig)〉
〈E∗(ωig)E(ωig)〉〈E∗(ωjg)E(ωjg)〉 . (30)
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MATTER CORRELATIONS INDUCED BY COUPLING TO . . . PHYSICAL REVIEW A 89, 013830 (2014)

|1x
|2x

|3x
|4x |55

55|
4x|

3x|
2x|

1x|

(a) (b)

|1x
|2x

|3x
|4x |55

55|
4x|

3x|
2x|

1x|
|1x

|2x
|3x

|4x |55

55|
4x|

3x|
2x|

1x|

| ij,i j | | ij,i j | | ij,i j |
(c)

FIG. 3. (Color online) The absolute value of the density matrix [Eq. (28)] is depicted for (a) σ1 = 0.14 eV and σ2 = 0.5 eV, (b) σ2 = 0.05 eV,
and (c) σ2 = 0.005 eV.

The first line of Eq. (26) yields the factor 1. The second line in
(26) gives rise to the second term, and can in principle yield
new information. Let us use the two-point correlation function
(27) to explore the limiting behavior of Eq. (30). For C(ω) →
δ(ω), the second term vanishes, and we obtain Sij (	) = 1. On
the other hand, when C(ω) → 1, the correlators factorize into
field amplitudes, and the second term becomes 1, such that
we end up with Sij (	) = 2. This behavior is reminiscent of
the behavior of the g2 function of stationary stochastic light,
which is given by g2(0) = 2 and g2(τ ) → 1 for τ 
 τc [36],
where τc denotes the correlation time.

IV. SUPERPOSITIONS OF TWO-PHOTON FOCK STATES

A general two-photon state of the radiation field can be
written as

|ψ〉 =
∫

dωa

∫
dωb�(ωa,ωb)a†(ωa)a†(ωb)|0〉. (31)

If the spectral two-photon amplitude �(ωa,ωb) can be factor-
ized, i.e., �(ωa,ωb) = �1(ωa)�2(ωb), the state is separable,
otherwise it is time-frequency entangled [38,39].

We use the following representation of the electric field:

E(t) = A(ωi)
∫

dω e−iωta(ω), (32)

where A(ωi) is the central frequency of the ith beam, which
does not depend strongly on this frequency, and the photon
annihilation operators satisfy [a(ω),a†(ω′)] = δ(ω − ω′). In
this case, the four-point field correlation function factorizes as

〈E†(ω′
a)E†(ω′

b)E(ωb)E(ωa)〉
= 〈E†(ω′

a)E†(ω′
b)〉〈E(ωb)E(ωa)〉 (33)

= A∗(ω′
a)A∗(ω′

b)A(ωb)A(ωa)�∗(ω′
a,ω

′
b)�(ωa,ωb). (34)

Equation (10) now factorizes into two-photon transition
amplitudes [40,41],

�ij,i ′j ′ (t) = T ∗
ij (t)Ti ′j ′ (t), (35)

with

Tij (t) = A(ω1)A(ω2)μgiμgj e−i(ωig+ωjg)t

× [�(ωig,ωjg) + �(ωjg,ωig)]. (36)

This means that two-photon states prepare pure doubly excited
states, just like classical coherent light, Eq. (22). How-
ever, even if the two-photon state is separable, �(ωa,ωb) =
�1(ωa)�2(ωb), we obtain

Tij (t) = A(ω1)A(ω2)μgiμgj e−i(ωig+ωjg)t

× [�1(ωig)�2(ωjg) + �1(ωjg)�2(ωig)]. (37)

If �1 = �2, i.e., the two photons are indistinguishable, the
two terms are identical, and the transition amplitude factorizes
into the product of single-photon transition amplitudes as in
Eq. (22). In general, however, we may not factorize (36) into
such a product, Tij �= TiTj . The absorption of a photon from
beam 1 by molecule i depletes this field, leaving only beam 2 to
excite molecule j . Thus, even though the photon wave function
is separable, it can create an entangled doubly excited state of
the matter. This argument can be straightforwardly extended
to general N -photon Fock states.

Figure 4 shows the density matrices created by twin photons
with the two-photon wave function [42–45]

�(ωa,ωb) = exp

(
− (ωa + ωb − ω1 − ω2)2

2σ 2

)

× sinc[(ωa − ω1)T1/2 + (ωb − ω2)T2/2]. (38)

Here, ω1 and ω2 are the central frequencies of the two beams,
σ denotes the pump pulse envelope, and T1 and T2 are time
scales that are given by group velocities inside the birefringent
crystal, where the entangled photons are created. In all three
cases, the power spectrum of the entangled beams is roughly
equal to that of the coherent pulses in Fig. 2. The pump band-
width σ , which controls the frequency entanglement between
the photons, is varied in Figs. 4(a)–4(c). As σ is decreased,
individual doubly excited states can be excited, even though
the bandwidth of the individual beams remains constant [17].

Equation (34) implies that the two-photon coincidence can
be written as the modulus square of a two-photon transition
amplitude,

〈Ai(t)Aj (t)〉

=
∣∣∣∣∣
(

− i

�

)2

μigμjg[�(ωig,ωjg) + �(ωjg,ωig)]

∣∣∣∣∣
2

, (39)
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FIG. 4. (Color online) The top panels depict exponentials with the entanglement time bandwidth (blue) and the pump bandwidth (red)
centered around the two central frequencies of the entangled photons. (a) The absolute value of the density matrix created by twin photons
[Eqs. (36) and (38)] with ω1 = 1.47 eV, ω2 = 1.516 eV, T2 − T1 = 0.07 1/eV, and σ = 0.014 eV. (b) Same as (a) for σ = 0.03 eV. (c) Same as
(a) for σ = 0.07 eV.

whereas the single-particle measurement is given by

〈Ai(t)〉 =
(

− i

�

)2

μ2
ig

∫
dω|�(ωig,ω) + �(ω,ωig)|2. (40)

Two-photon coincidence depends on the full two-photon wave
function, whereas the single-particle measurement only de-
pends on the marginal, where one frequency is integrated out.
Energy entanglement can create strong correlations between
the two frequencies ωig and ωjg , which are destroyed by the
integration in Eq. (40). Thus, Eq. (19) can be manipulated by
the control parameters of the twin state (38).

It is also well known that this state can exhibit photon
antibunching [35], i.e., g2(τ ) � g2(0), which is impossible
with classical light.

A. Numerical integration

The convergence of the integral of Eqs. (14)–(17) is
demonstrated in Fig. 5. As ε is decreased, the density matrix

converges to the approximate solution given by Eqs. (16)
and (17). For a finite dephasing rate ε, the Lorentzians in
Eq. (14) cannot be replaced by δ functions. As a measure of
the difference between the two matrices, we employ the trace
distance [46]

D(�,�′) ≡ 1
2 |

√
(� − �′)2|, (41)

where the trace norm |�| = tr{�} is used, and the two matrices
are given by Eqs. (14) and (17), respectively. This is plotted
in Fig. 6, and it can be clearly seen that the trace distance
approaches zero as ε is decreased.

V. MIXED STATE OF THE RADIATION FIELD;
THERMAL LIGHT

We have seen that quantum light can entangle different
TLAs. Even though state (31) itself is not entangled, the
lack of information about which TLA absorbs which photon
causes the entanglement of the two atoms. To establish that
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FIG. 5. (Color online) (a) The absolute value of the density matrix created by entangled light according to Eq. (14) with ε = 0.1 eV. (b)
Same as (a) for ε = 0.01 eV. (c) Same as (a) for ε = 0.0001 eV. (d) The absolute value according to Eq. (17).
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FIG. 6. (Color online) The trace distance (41) between the dou-
bly excited density matrices (14) and (17) is plotted vs the imaginary
factor ε.

the quantum coherence of the pure state (31) is essential for
the entanglement, we now consider an incoherent mixture of
two-photon states, described by the density matrix

�field =
∫

dωa

∫
dωb|�1(ωa)|2|�2(ωb)|2

× a†(ωa)a†(ωb)|0〉〈0|a(ωa)a(ωb) (42)

with frequency distributions |�1|2 and |�2|2. Using Eqs.
(17) and (42), this yields for the doubly excited density

matrix

�ij,i ′j ′(t) = |�1(ωi ′g)|2|�2(ωj ′g)|2|A(ω1)|2|A(ω2)|2
× [δ(ωig − ωi ′g)δ(ωjg − ωj ′g)

+ δ(ωig − ωj ′g)δ(ωjg − ωi ′g)]. (43)

Off-diagonal elements vanish, and the final density matrix
consists of a classical mixture of uncorrelated doubly excited
states. Photon coincidence measurements then yield

Sij (	) = 1 + δ(ωig − ωjg), (44)

which is identical to the white noise limit in Eq. (30).

A. Thermal light

The density matrix of thermal light is given by [37]

�th =
∫

dω

∞∑
n(ω)=0

fn(ω)|n(ω)〉〈n(ω)|, (45)

fn(ω) = e−�ωn/(kBT )[1 − e−�ω/(kBT )]. (46)

The four-point correlation function is then given by

〈E†(ω′
a)E†(ω′

b)E(ωb)E(ωa)〉
= {[1 − δ(ωa − ωb)]δ(ω′

a − ωa)δ(ω′
b − ωb) + [1 − δ(ωa − ωb)]δ(ω′

a − ωb)δ(ω′
b − ωa)}

× |A(ωa)|2
∞∑

n(ωa )=0

fn(ωa)n(ωa) |A(ωb)|2
∞∑

n(ωb)=0

fn(ωb)n(ωb)

+ δ(ωa − ωb)δ(ω′
a − ωa)δ(ω′

b − ωb)|A(ωa)|4
∞∑

n(ωa )=0

fn(ωa)n(ωa)[n(ωa) − 1] (47)

= {[1 − δ(ωa − ωb)]δ(ω′
a − ωa)δ(ω′

b − ωb) + [1 − δ(ωa − ωb)]δ(ω′
a − ωb)δ(ω′

b − ωa)} |A(ωa)|2
exa − 1

|A(ωb)|2
exb − 1

+ δ(ωa − ωb)δ(ω′
a − ωa)δ(ω′

b − ωb)|A(ωa)|4
[

1

4

cosh(xa/2)

sinh2(xa/2)
− 1

exa − 1

]
, (48)

where we defined xi = �ωa/(kBT ). Just as in the two-photon
case, the density matrix induced by thermal light shows no co-
herences either. We obtain for the coincidence measurements

Sij (	) = [1 − δ(ωig − ωjg)] + δ(ωig − ωjg)

× [cosh(xi/2)exi/4 − (exi − 1)]. (49)

For our system, ωig �= ωjg , and therefore the second term
vanishes, and we obtain the same result as with stochastic
light in the white noise limit. But in general, the second term
exists and has to be taken into account.

VI. SQUEEZED LIGHT

Two-photon Fock states as discussed in Sec. V represent
an idealized case in the limit of a weak pump pulse. When
the pump intensity is increased, photon pairs from different

downconversion events overlap in time. These quantum states
are squeezed in their collective quadrature fluctuations [47,48].
We employ the theory developed in [49–51] to derive the
density matrices created by these states. The field correlation
function in Eq. (17) is given by three terms,

〈E†(ωig)E†(ωjg)E(ωi ′g)E(ωj ′g)〉
= 〈E†(ωig)E†(ωjg)〉〈E(ωi ′g)E(ωj ′g)〉
+ 〈E†(ωig)E(ωi ′g)〉〈E†(ωjg)E(ωj ′g)〉
+ 〈E†(ωig)E(ωj ′g)〉〈E†(ωjg)E(ωi ′g)〉. (50)

The first line in Eq. (50) has the same structure as Eq. (34),
〈E†E†EE〉 = 〈E†E†〉〈EE〉. It correlates the two absorption
events and shows the same kind of physics as discussed in
the previous sections. The second and third lines, on the other
hand, have the same structure as the correlation function of
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FIG. 7. (Color online) (a) The absolute value of the density matrix created by squeezed light [Eq. (50)] with ω1 = 1.47 eV, ω2 = 1.516 eV,
T2 − T1 = 0.07 1/eV, and σ = 0.014 eV. The pump intensity (in units of �) is set to |α|2 = 1. (b) Same as (a) for |α|2 = 2500. (c) Same as (a)
for |α|2 = 10 000. (d) Same for |α|2 = 90 000. We also show the purity of each matrix, defined by P(�) = tr{�2}.

Gaussian stochastic light, 〈E†E〉〈E†E〉. As shown in [51],
the first line dominates for low pump intensities, and with
increasing intensity we can observe a crossover between the
two contributions.

Figure 7 shows the density matrices for different pump
intensities. For low pump intensities, the matrix in Fig. 7(a)
looks very similar to the one induced by the two-photon
Fock state in Fig. 4(c). Just like in the two-photon case, the
pump bandwidth determines the selectivity of doubly excited
states. But when the intensity is increased, the autocorrelation
contributions become stronger. They are controlled by the
much larger bandwidth of the individual beams. Hence, the
selectivity is lost, and all the states get excited.

We also note that, whereas the two-photon state excites pure
doubly excited states, the autocorrelation contribution leads to
the excitation of mixed states. Figure 7 reveals that the purity
changes nonmonotonically with increasing pump intensity. To
further explore this behavior, we plot the purity versus the
pump intensity in Fig. 8(a) for different entanglement times
(i.e., different bandwidths of the individual beams). The can
distinguish two different kinds of behavior: the green and the
blue plots are created by broadband squeezed light, where the
sum of the individual beams is much larger than the pump
bandwidth. They show a pronounced minimum of the purity
at P ≈ 0.3 and 0.4, respectively, and an increase to P ≈ 0.6
for higher intensities. The red and the gray plots correspond
to beams with weak frequency entanglement, where the

bandwidth of the individual beams is of a similar size to
the pump bandwidth. These states do not show a pronounced
minimum, instead their purity decreases monotonically with
increasing pump intensity. To explain these differences, we
define the relative weight of the coherent contribution [i.e., the
first line of Eq. (50)] and of the incoherent contribution (the
second and third lines) by the ratio w(|α|2) = tr{�coh}/tr{�},
where �coh is created by the coherent contribution of Eq. (50),

�coh, ij,i ′j ′ =
(

− i

�

)4

μgi ′μgj ′μgiμgj e
i(ωig+ωjg−ωi′g−ωj ′g)t

×〈E†(ωig)E†(ωjg)〉〈E(ωi ′g)E(ωj ′g)〉, (51)

and accordingly �incoh is created by the incoherent contri-
bution. These quantities are plotted in Figs. 8(b) and 8(c)
together with the purity of the full state versus the pump
intensity. With increasing intensity, the incoherent contribution
becomes stronger, and eventually dominates. Clearly, the
crossover happens for much smaller intensity in the broadband
case [Fig. 8(b)]. The broad bandwidth allows the incoherent
contribution to access all the doubly excited states, whereas
the coherent part is restricted to a subset due to the frequency
entanglement [see Fig. 7(a)]. The inset in Fig. 8(b) depicts
the purity of �incoh versus the pump intensity. Its increase
with the pump intensity in combination with the crossover
between coherent and incoherent contribution accounts for the
nonmonotonic behavior of the purity of the full density matrix.
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FIG. 8. (Color online) (a) The purity P(�) = tr{�2} of the density matrix created by squeezed light [Eq. (50)] with ω1 = 1.47 eV, ω2 =
1.516 eV, and σ = 0.014 eV vs the pump intensity (in units of �). The different plots correspond to entanglement times T2 − T1 = 1.452 �/eV
(green), 14. 519 �/eV (blue), 145.19 �/eV (red), and 290.38 �/eV (gray). (b) The plot with entanglement time T2 − T1 = 14. 519 �/eV of
(a) is plotted together with the contribution of the coherent part (dashed), and the incoherent part (dot-dashed) to the entire density matrix. (c)
Same as (b) but for T2 − T1 = 290.38 �/eV.
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Using Eqs. (19) and (50), we obtain for the coincidence rate

Sij (	) = 1 + 〈E†(ωig)E†(ωjg)〉〈E(ωig)E(ωjg)〉
〈E†(ωig)E(ωig)〉〈E†(ωjg)E(ωjg)〉

+ 〈E†(ωig)E(ωjg)〉〈E†(ωjg)E(ωig)〉
〈E†(ωig)E(ωig)〉〈E†(ωjg)E(ωjg)〉 . (52)

The first line is again the coherent contribution as discussed
in the previous subsection; the second line is analogous to the
signal of stochastic light, Eq. (30).

VII. DISCUSSION

We have investigated how properties of light are im-
printed in the doubly-excited-state density matrices of mul-
tilevel atoms induced by the absorption of classical coherent
light, Gaussian stochastic light, two-photon Fock states, and
squeezed light. Two-photon states create entangled, pure
states, whereas classical coherent light produces product
states, and stochastic light yields incoherent mixtures. The
differences between the effects of the various fields of the
field can be rationalized by the way the interaction with matter
affects the quantum fields. After the first interaction with the
atoms, the field (31) has evolved into the single-photon state
|ψ ′〉 ∝ E|ψ〉. Even for a separable state, this can create a
coherent superposition state, ∝ ∫

dω[�1(ω) + �2(ω)]a†|0〉.
For a classical light, the interaction with matter does not
affect the state of light. Tracing out the matter in Eq. (6),
we have �field(t) = �field(t0). It will be interesting to test

this hypothesis in the future using methods from quantum
information theory [52]. Our results suggest that classical
light cannot induce nonclassical correlations in the matter
system, but this remains to be proved. Most importantly, it
will be necessary to identify signatures of classical frequency
correlations of light [22] on the created matter density matrices,
and whether they can create matrices with nonzero quantum
discord. Furthermore, introducing interactions between the
atoms opens up the possibility to discuss the entanglement
of delocalized quasiparticles, since the excitations can be
regarded as interacting bosons [53–55].

We showed that the g2 function of the incoming light
fields can serve as an indicator of the ability of the light to
induce correlations between the atoms. Equation (19) reveals
that differences between single- and two-photon coincidence
measurements result from differences between the two-point
and the four-point correlation function of the light. Many
photon correlation effects such as the Hong-Ou-Mandel effect
may also be traced back to this difference. This suggests an
intimate connection between the ability of quantum light to
show nonclassical photon correlations, and its ability to excite
nonclassical doubly excited states.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the National
Science Foundation through Grant No. CHE-1058791, and the
Chemical Sciences, Geosciences and Biosciences Division,
Office of Basic Energy Sciences, Office of Science, U.S.
Department of Energy.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[2] K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, Rev.
Mod. Phys. 84, 1655 (2012).

[3] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information, Cambridge Series on Information and the Natural
Sciences (Cambridge University Press, Cambridge, UK, 2000).

[4] J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik,
Proc. Natl. Acad. Sci. (U.S.A.) 108, 17615 (2011).

[5] O. Roslyak, C. A. Marx, and S. Mukamel, Phys. Rev. A 79,
033832 (2009).

[6] O. Roslyak and S. Mukamel, Phys. Rev. A 79, 063409
(2009).

[7] M. Richter and S. Mukamel, Phys. Rev. A 82, 013820
(2010).

[8] S. Mukamel and M. Richter, Phys. Rev. A 83, 013815 (2011).
[9] M. Kira, S. W. Koch, R. Smith, A. E. Hunter, and S. Cundiff,

Nat. Phys. 7, 799 (2011).
[10] J. Javanainen and P. L. Gould, Phys. Rev. A 41, 5088 (1990).
[11] D.-I. Lee and T. Goodson, J. Phys. Chem. B 110, 25582

(2006).
[12] A. R. Guzman, M. R. Harpham, O. Suzer, M. M. Haley, and

T. G. Goodson, J. Am. Chem. Soc. 132, 7840 (2010).
[13] H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C.

Teich, Phys. Rev. Lett. 78, 1679 (1997).

[14] J. Peřina, Jr., B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 57,
3972 (1998).

[15] B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, Phys.
Rev. Lett. 80, 3483 (1998).

[16] L. Upton, M. Harpham, O. Suzer, M. Richter, S. Mukamel, and
T. Goodson, J. Phys. Chem. Lett. 4, 2046 (2013).

[17] F. Schlawin, K. E. Dorfman, B. P. Fingerhut, and S. Mukamel,
Phys. Rev. A 86, 023851 (2012).

[18] H. Oka, J. Chem. Phys. 134, 124313 (2011).
[19] H. Oka, J. Chem. Phys. 135, 164304 (2011).
[20] M. G. Raymer, A. H. Marcus, J. R. Widom, and D. L. P. Vitullo,

J. Phys. Chem. B 117, 15559 (2013).
[21] F. Schlawin, K. E. Dorfman, B. P. Fingerhut, and S. Mukamel,

Nat. Commun. 4, 1782 (2013).
[22] R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch,

Nat. Phys. 4, 864 (2008).
[23] K. J. Resch, R. Kaltenbaek, J. Lavoie, and D. N. Biggerstaff,

Proc. SPIE 7465, 74650N (2009).
[24] R. de J León-Montiel, J. Svozilı́k, L. J. Salazar-Serrano, and

J. P. Torres, New J. Phys. 15, 053023 (2013).
[25] A. Ishizaki and G. R. Fleming, Annu. Rev. Condens. Matter 3,

333 (2012).
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