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Abstract

Sequencing-based approaches for the analysis of microbial communities are susceptible to 

contamination, which could mask biological signals or generate artifactual ones. Methods for 

in silico decontamination using controls are routinely used, but do not make optimal use 

of information shared across samples and cannot handle taxa that only partially originate in 

contamination or leakage of biological material into controls. Here we present SCRuB (Source-

tracking for Contamination Removal in microBiomes), a probabilistic in silico decontamination 

method that incorporates shared information across multiple samples and controls to precisely 

identify and remove contamination. We validate the accuracy of SCRuB in multiple data-

driven simulations and experiments, including induced contamination, and demonstrate that it 

outperforms state-of-the-art methods by an average of 15–20x. We showcase the robustness 

of SCRuB across multiple ecosystems, data types and sequencing depths. Demonstrating its 

applicability to microbiome research, SCRuB facilitates improved predictions of host phenotypes, 

most notably the prediction of treatment response in melanoma patients using decontaminated 

tumor microbiome data.

Introduction

DNA sequencing, either marker-gene based or metagenomics, has facilitated intensive 

analyses of microbial communities. However, current approaches cannot fully distinguish 

between DNA originating in the ecosystem of interest (such as skin or soil), and DNA 

originating from irrelevant sources, such as the DNA extraction kit itself - broadly termed 

“contamination”1–5. As a result, microbes might be wrongly identified or quantified in 

microbiome samples, which may obscure biological signals or even lead to erroneous 

results. For example, microbial contamination is at the center of an ongoing debate 

surrounding the human placenta, with some studies suggesting that it harbors a microbial 

community6–8, and others arguing these conclusions are the result of contamination9–11.

To detect and quantify contamination, it is recommended that researchers collect process 

control samples representing different contamination sources2,3,12–14. These typically 

represent sources related to sample collection and processing, such as empty collection 

kits15–17, fixation media and buffers18,19, or blank extraction controls9,20,21, but may also 

represent contamination sources that are of a more biological nature, such as an adjacent 

tissue18,22,23 or surface24,25. As even the best experimental procedures cannot eliminate 

contamination, there is a clear need for designated computational methods to detect, 

quantify and accurately remove it.
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Several methods have been described to detect and remove contamination in microbial 

sequencing data. In most cases they completely remove all taxa classified as contaminants 

according to a certain set of rules. Such rules include previous classification of taxa as 

contaminants2, presence below a certain abundance threshold in the samples of interest (i.e., 

not controls)18,26,27, or any presence in control samples9,17,18. A prominent example of such 

a method is decontam28, the current state-of-the-art for in silico contamination detection 

and removal. Decontam uses two rules for identifying contaminants: (1) taxa that are more 

prevalent in controls than in the samples of interest; and (2) taxa that are more frequent 

in samples with lower DNA concentration. These methods can at times be effective, yet 

the binary definition of contamination fails to account for scenarios in which a taxon is 

both a contaminant and genuinely present in the ecosystem of study. For example, in a skin 

microbiome study, bacteria can be both a contamination from the skin of a researcher and 

present in the ecosystem of interest.

To address the issue of complete removal of taxa classified as contaminants, a different 

method, microDecon29, uses the ratio between taxa observed in control samples to an anchor 

contaminant to perform partial removal of potential contaminants29. However, microDecon 

operates one sample at a time, ignoring information shared across samples. We introduce 

a broader conceptual framework, inspired by source-tracking methods30,31, which posits a 

latent contamination source which affects multiple samples of interest and is realized in 

controls. We assume that taxa present together in a contamination source will be introduced 

together to other samples, and in similar proportions as in the contamination source. 

Therefore, if a control sample contains multiple taxa, and a sample of interest contains only 

one of them and at high counts, that one taxon is likely not a contaminant. Our framework 

facilitates a more nuanced decontamination by enabling partial removal of taxa that are both 

contaminants and present in the ecosystem of interest.

A key strength of our framework is that by jointly modeling the effect of a single 

contamination source on multiple samples of interest, we can leverage the information 

across all of them to accurately infer the latent composition of this source. Our 

framework further provides a principled way to use multiple controls sampled from 

the same contamination source to further increase this accuracy. It further allows to 

account for multiple contamination sources, both in general and across different processing 

batches, facilitating better detection of variation in contaminants, contrary to the common 

practice of jointly decontaminating samples and controls across multiple batches18,20,28. 

Importantly, our framework handles the important and common phenomenon of well-

to-well leakage, in which material from biological samples leaks into controls during 

experimental procedures17,32,33. Current decontamination methods do not account for well-

to-well leakage, which in turn violates their assumptions and may result in removal of 

non-contaminating taxa, potentially hindering key biological insights.

Here we present Source-tracking for Contamination Removal in microBiomes (SCRuB), 

a method for high-precision decontamination of count-based microbial data using control 

samples. SCRuB models each sample of interest as a mixture of contamination and 

non-contamination sources, and each control sample as a noisy realization of a latent 

contamination source. It further utilizes the spatial location of a sample during processing 
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(e.g., location on a 96-well plate) to account for leakage of non-control samples into 

controls. We demonstrate the accuracy and robustness of SCRuB in comparison to other 

decontamination methods using data-driven simulations across multiple ecosystems, data 

types and sequencing depths, as well as in multiple experiments of in vitro and human-

derived samples. Notably, using real data we demonstrate improved identification of 

microbiome signatures diagnosing melanoma and predicting treatment response. Overall, 

we demonstrate that SCRuB outperforms current state-of-the-art methods by an average of 

15–20x and showcase how it can enhance detection of biological signals by minimizing the 

impact of contamination.

Results

Description of SCRuB

SCRuB is a highly efficient method for in silico removal of contamination from count-

based data (Methods). It takes as input counts measured across multiple samples from 

ecosystems of interest, as well as from control samples representing potential contamination 

sources. Based on the source-tracking assumption30,31,34, which we also empirically validate 

(Extended Data Fig. 1), SCRuB models each observed sample of interest as a mixture of 

“true”, unobserved counts originating from the ecosystem, and contamination sources shared 

across all samples in a given study (Fig. 1a). Each control is modeled as a mixture of an 

unobserved shared contamination source, and samples adjacent to it during experimental 

procedures (e.g., adjacent wells during DNA extraction17,32,33; Fig. 1a). Through this 

probabilistic model, SCRuB optimizes the likelihood of an observed dataset by estimating 

the underlying composition of the samples of interest and the shared contamination sources, 

as well as the proportion of each sample of interest that originated in contamination (Fig. 

1b, Methods). SCRuB is available from https://github.com/Shenhav-and-Korem-labs/SCRuB 

and as a QIIME2 (ref. 35) plugin at https://github.com/Shenhav-and-Korem-labs/q2-SCRuB.

SCRuB outperforms alternatives in data-driven simulations

To evaluate SCRuB against a known ground truth, we created simulations of multiple 

contaminated microbiome datasets with varying levels of contamination and well-to-well 

leakage. Our simulations were data-driven and based on a collection of diverse samples from 

a domestic environment25, as well as a different dataset of blank controls (Extended Data 

Fig. 2; see Methods for an in-depth description of the simulation scheme). We compared 

the performance of four methods: a restrictive approach removing any taxa present in the 

controls36–38, microDecon29, decontam28 and SCRuB, as well as the performance of no 

decontamination. For decontam, we used the ‘prevalence’ test with both default and “low 

biomass” (LB) settings (Methods). We evaluated performance by comparing the outputs’ 

similarity to the ground truth using the Jensen-Shannon divergence.

While microDecon, restrictive, and decontam (LB) performed better than no 

decontamination in the absence of well-to-well leakage (Wilcoxon signed-rank p<0.05 

for all comparisons to no decontamination, except restrictive and decontam (LB) with 

5% contamination, and decontam with 50% contamination; Fig. 1c), even low levels of 

well-to-well leakage caused all three methods to perform worse than no decontamination 
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(p<0.01 for all methods except microDecon with 5% well-to-well leakage (p=0.99), p<10−4 

for all other comparisons; Fig. 1d). Decontam, with default settings, performed similarly 

or worse than no decontamination in all scenarios (Fig. 1c,d). These results demonstrate 

the sensitivity of the decontamination methods tested to even small levels of well-to-well 

leakage, which are likely to occur in standard microbiome experiments17,32,33.

In contrast, SCRuB consistently outperformed the alternative decontamination methods in 

all simulations, with or without well-to-well leakage (Wilcoxon signed-rank p<10−4 for 

all pairwise comparisons; Fig. 1c,d). SCRuB was also superior to no decontamination 

in all scenarios (p<10−4) except with very high levels of well-to-well leakage (50%), 

where it performed similarly (p=0.61). Notably, in the reasonable scenario of 5–25% 

contamination and 5–25% well-to-well leakage, the average improvement of SCRuB over 

decontam, decontam (LB), microDecon, and the restrictive approach was 15.3–19.2x (ratio 

of improvement in Jensen-Shannon divergence from ground truth; Methods).

SCRuB similarly outperformed alternative methods and no decontamination when 

simulations were based on different environments (marine, fish, soil and gut), as well as 

when using different data types (18S rRNA amplicon sequencing, ITS sequencing, and 

metagenomic sequencing; Methods; Extended Data Fig. 3). These results also remained 

consistent when evaluated with a different summary metric (Extended Data Fig. 4a–d); when 

controls were placed using a different strategy (Extended Data Fig. 4e,f); and for a varying 

number of negative controls (Extended Data Fig. 4g). SCRuB can also operate without 

sample locations, in which case it does not account for well-to-well leakage. In this scenario, 

SCRuB had reduced performance under simulations with well-to-well leakage, yet it still 

outperformed alternative methods in most scenarios (Extended Data Fig. 4h).

SCRuB is robust to sequencing depth and spurious controls

SCRuB accounts for sequencing depth by incorporating it as a parameter within the model 

(Methods). To empirically evaluate SCRuB’s robustness to read-depth across experiments, 

we applied the same simulation framework as above (Extended Data Fig. 2; Methods), with 

contamination and well-to-well leakage levels of 5%, and generated a set level of read depth 

across every experiment. SCRuB significantly outperformed all alternative approaches under 

sequencing depths of 1,000–25,000 (Wilcoxon signed-rank p<10−3 for all, decontam (LB) at 

depth=1,000 p=0.002), except a comparable performance to decontam with depth of 1,000 

reads (p=0.19; Extended Data Fig. 5a). Similarly, SCRuB outperformed all alternatives 

when simulating experiments with a mean coverage of 10,000 reads and a standard deviation 

of 2,500 (p<10−3 for all; Extended Data Fig. 5b). Furthermore, SCRuB maintained its 

performance when comparing experiments with different read-depth variability, and again 

significantly outperformed all alternative methods (p<10−3 for all, Extended Data Fig. 5c). 

Altogether, our results demonstrate that SCRuB is highly robust to read depth.

We next evaluated the robustness of SCRuB to spurious controls which, due to noise or 

independent contamination, are not representative of the underlying contamination source. 

We therefore repeated the same simulation scheme, while setting the levels of contamination 

and well-to-well leakage to zero. In this case removal of any taxa during decontamination 

is incorrect. SCRuB removed far fewer taxa than decontam and microDecon (441 versus 
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3,276–10,626; Extended Data Fig. 6a). Its “decontaminated” compositions were very similar 

to those of the input samples (median Jensen-Shannon divergence of 0; Extended Data 

Fig. 6b), and significantly more similar than the outputs of microDecon, decontam, and 

decontam (LB) (Wilcoxon signed-rank p<10−9 for all three; Extended Data Fig. 6b). 

Altogether, our results demonstrate that SCRuB is precise, supporting a recommendation 

to use it routinely, and not only when contamination is suspected.

SCRuB correctly accounts for well-to-well leakage

To further evaluate the ability of SCRuB to handle well-to-well leakage on non-simulated 

experimental data, we analyzed data from Minich et al., who directly quantified this 

phenomenon32. Minich et al. performed 16S rRNA sequencing of two 96-well plates, 

each containing 16 separate monocultures of distinct bacteria at 10,000,000 cells per well 

(denoted ‘low-prevalence’), 48 wells containing Aliivibrio fischeri at 100,000 cells per well 

(‘high-prevalence’), and 32 blank wells. The original analyses described abundant leakage 

from samples into controls32.

We defined the monocultures used by Minich et al. as the true positive content of 64 

of the wells, and all other taxa with sufficient prevalence as contaminants (Methods). 

We then compared the performance of SCRuB to the same four methods (Methods). As 

a representative example, Minich et al. placed Escherichia coli in well G10 (Fig. 2a), 

which generated well-to-well leakage, resulting in the presence of E. coli in nearby wells, 

some of which were designated as controls (Fig. 2b). This presence in several controls led 

microDecon, decontam, and the restrictive approach to classify E. coli as a contaminant and 

remove it from all samples, including the one which truly contained it (Fig. 2c). SCRuB, 

however, successfully inferred that E. Coli is not a contaminant in this experiment, and 

has not removed it (Fig. 2d). This was a common occurrence in this dataset, and SCRuB 

indeed had a much higher accuracy in correctly classifying contaminants compared to 

alternative approaches (area under the receiver operating characteristic curve [auROC] of 

0.67 for SCRuB, compared to 0.06, 0.18, 0.5, and 0.12 for decontam, decontam (LB), 

a restrictive approach, and microDecon, respectively; Fig. 2e). We note that the auROCs 

for decontam and microDecon were substantially lower than 0.5, as this experiment is 

specifically designed to capture well-to-well leakage, a phenomenon that violates the basic 

assumptions of these methods and biases them towards misclassification of contaminants.

As a result, alternative decontamination methods removed many of the true positive taxa, 

resulting in compositions that were significantly worse than no decontamination (Wilcoxon 

signed-rank p<0.01; Fig. 2f and Extended Data Fig. 7a). SCRuB, however, successfully 

accounted for well-to-well leakage in this experiment, retaining all true positive taxa 

(Fig. 2f). This analysis once again highlights the sensitivity of alternative methods to 

well-to-well leakage. These results were also consistent when we used this data to simulate 

more complicated patterns of well-to-well leakage (Methods; Extended Data Fig. 7b–f). 

Altogether, our results demonstrate that by using information regarding sample locations 

(Fig. 1b; Methods), SCRuB correctly identifies which taxa present in the controls originated 

from well-to-well leakage and appropriately retains rare taxa.
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SCRuB handles well-to-well leakage in human-derived samples

To evaluate the ability of SCRuB to identify and handle well-to-well leakage in realistic 

human-derived samples, we analyzed seven samples from four different sites (stool, skin, 

saliva, and vagina; Methods). We processed these samples along with 10 extraction controls, 

whereas four pairs of controls were each surrounded by samples from a different body site, 

and the fifth pair was placed on the edge of the plate, far from any other sample (Fig. 3a, 

experiment 1). Visualizing the data without any decontamination (t-SNE) revealed that while 

most extraction controls were highly similar to one another, the two extraction controls 

placed among skin samples clustered with them, and, similarly, one of the extraction 

controls placed among stool samples clustered closely with one of them (Fig. 3b). This high 

similarity between three extraction controls and nearby samples demonstrates substantial 

levels of well-to-well leakage. When visualizing the same data decontaminated with SCRuB 

(Fig. 3c), the inferred contamination source did not cluster with neither stool nor skin 

samples, and instead clustered with the extraction controls that were placed far from all 

other samples (Fig. 3a,c).

We then performed another benchmark using fecal metagenomic data from infants and their 

mothers analyzed by Lou et al.33,39. Lou et al. used this metagenomic sequencing data to 

conduct a strain-level analysis, which allowed for an independent evaluation of well-to-well 

leakage. We reanalyzed their data based on the counts of metagenomic assembled genomes 

(MAGs), focusing on well-to-well leakage into negative controls (Extended Data Fig. 8a). 

SCRuB’s estimates of well-to-well leakage levels (0, 13.3, 65.3 and 0% for plates 2–5) 

were consistent with independent strain-level estimates based on Lou et al.’s analysis (0, 

11.2, 52.3 and 0%, respectively; Methods; Extended Data Fig. 8b,c). Altogether, our results 

demonstrate that SCRuB can correctly infer and handle well-to-well leakage in multiple 

experiments with complex human-derived samples.

SCRuB correctly identifies contamination introduced in vitro

We next wished to evaluate the decontamination performance of SCRuB on human-derived 

samples, using the identity of known contaminants. We therefore performed a second 

experiment and processed duplicate aliquots of the same 28 human derived samples, along 

with 10 extraction controls, and used lysis buffer which we intentionally contaminated 

with a defined mock community of 8 bacteria (Fig. 3a, experiment 2; Methods). SCRuB 

accurately identified these 8 contaminants (auROC=1.0), significantly outperforming 

alternative decontamination methods (auROCs of 0.79–0.84; Fig. 3d; Methods; two-sided 

Delong p<0.01 for all comparisons with SCRuB).

We further performed another benchmark which integrates all the different challenges of our 

experiments (Fig. 3a). Since the two experiments were performed on replicates of the same 

human-derived samples, we posit that a more accurate decontamination performance would 

lead to higher similarity (lower Jensen-Shannon divergence) between the two replicates 

of each sample. Indeed, sample pairs decontaminated with SCRuB were significantly 

more similar compared to alternative methods (two-sided Wilcoxon signed rank p<0.01 

for all comparisons with other methods; Fig. 3e). These experiments also demonstrated 

that well-to-well leakage is more prominent during DNA extraction rather than PCR 
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amplification or library preparation (Supplementary Note 1, Extended Data Fig. 9). Overall, 

our results demonstrate that SCRuB’s ability to account for shared information across a 

plate, handle well-to-well leakage, and identify contaminants, lead to an overall improved 

decontamination performance.

SCRuB improves melanoma classification from plasma DNA

We next wished to evaluate the utility of SCRuB in realistic research settings, by examining 

the phenotypic prediction ability of microbial data decontaminated with different methods 

(Methods). We first analyzed data by Poore et al., who performed metagenomic sequencing 

of circulating cell-free microbial DNA extracted from plasma samples, which they then used 

to classify patients with and without melanoma, lung cancer, and prostate cancer20. We used 

the multiple extraction and library preparation controls included with the original dataset20 

and decontaminated the data sequentially, each time using controls representing a different 

contamination source (Fig. 4a). Following Poore et al.20, we also evaluated the ‘combined’ 

method of decontam with a decision boundary of 0.5 (Methods). While all decontamination 

methods reduced the detected α diversity (Shannon; Wilcoxon signed-rank p<0.05 for all 

compared to no decontamination; Fig. 4b), the restrictive approach reduced it significantly 

more than others (p<10−10 for all; Fig. 4b). This is indicative of a large proportion of 

taxa that were detected in both the plasma samples and the negative controls but were not 

identified as contaminants by either decontam or SCRuB.

To evaluate the predictive performance of data decontaminated by each method, we applied 

the prediction pipeline used by Poore et al.20 This pipeline trains gradient-boosted decision 

trees to classify between patients with lung cancer (N=25), prostate cancer (N=59), and 

melanoma (N=16), as well as between them and healthy controls (N=69). Following Poore 

et al.20, we evaluated prediction accuracy using held-out samples unused during training 

(Methods). As in the original analysis, data processed by decontam (with the Poore et al. 

settings) exhibited high classification accuracy for lung and prostate cancer but performed 

poorly for melanoma (auROCs of 0.95, 0.92 and 0.65 for lung cancer, prostate cancer, 

and melanoma vs. control; Extended Data Fig. 10a,b, Fig. 4c). The same was generally 

true for other decontamination methods, except for microDecon (Extended Data Fig. 10a–f; 

microDecon auROC=0.85 for melanoma vs. control). Conversely, data processed by SCRuB 

displayed the strongest predictive performance for melanoma, significantly higher than 

alternative methods (auROC=0.92, p<0.01 for SCRuB vs. all alternative decontamination 

methods; Methods; Fig. 4c). For other cancer types, SCRuB performed comparably to 

other methods (Extended Data Fig. 10a–f). We suggest that SCRuB’s high performance 

for melanoma is due to an overlap between contaminating and predictive taxa, as reflected 

by the poor performance of the restrictive approach (auROC=0.65; Fig. 4c). Our results 

demonstrate the importance of decontamination in revealing biological signals that may 

be masked by contamination, as well as that SCRuB is superior to alternative methods in 

certain scenarios.

SCRuB enables prediction of melanoma treatment response

We analyzed an additional dataset of 16S rRNA sequencing data from Nejman et al.18 In this 

rigorous study of the human tumor microbiome, multiple negative and process controls were 
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included, and a custom decontamination pipeline was implemented18 (“custom” hereafter). 

We reanalyzed this data, focusing on predicting the response of melanoma patients to 

immune checkpoint inhibitor therapy using microbial sequencing of tumor samples (N=91 

samples from 62 patients). Nejman et al. included three types of controls - paraffin controls 

per collection center, blank controls per PCR batch, and blank controls per extraction 

batch - which we used for sequential decontamination with either SCRuB or decontam (as 

in Fig. 4a). SCRuB removed less taxa during contamination and maintained a higher α 
diversity compared to decontam (LB), microDecon, and the custom approach (one-sided 

Wilcoxon signed-rank p<10−9 for all; Fig. 4d and Extended Data Fig. 10g), similar to the 

non-decontaminated data (p=0.42).

We next evaluated the predictive power of data decontaminated with each of the approaches. 

As melanoma samples were collected from two centers18, we designed a challenging 

prediction task, in which we trained gradient boosted decision tree classifiers on melanoma 

primary tumor samples from one center (MD Anderson Cancer Center, N=73), and 

evaluated them, without additional training or adaptation, on a held-out set from a 

different center on a different continent (Netherlands Cancer Institute, N=18; Methods). 

Notably, SCRuB showed high prediction accuracy even in this challenging cross-cohort 

generalization setting (auROC=0.84), compared to little or no predictive strength by other 

methods (auROCs of 0.50–0.64; p<10−4 for each method vs. SCRuB; Methods; Fig. 4e). 

Importantly, while SCRuB offers a more nuanced decontamination that is able to retain 

taxa that originate in both a contamination source and a sample of interest, predictions 

are unlikely to be driven by confounding contamination patterns, as they generalize across 

different centers and extraction kits. Our results demonstrate that decontamination using 

SCRuB reveals key biological signals, with important implications for clinical practice.

Discussion

Contamination is a prevalent issue across the biological sciences. As even the most 

rigorous experimental procedures might not be enough to completely prevent contamination, 

computational methods which use controls to identify, quantify and remove contaminants 

are needed to alleviate its effects. To address this, we presented SCRuB (Source-tracking for 

Contamination Removal in microBiomes), a decontamination method which directly models 

each contamination source and uses it to remove contaminants from samples of interest 

while accounting for well-to-well leakage. We established SCRuB’s high decontamination 

performance using extensive in vitro and human-derived benchmarks and demonstrated that 

it is on average 15–20x more accurate than alternative decontamination methods using 

extensive in silico simulations. We further demonstrated that SCRuB is the only method 

retaining good performance under high levels of well-to-well leakage. Notably, by using 

data from clinical settings we further showed that SCRuB facilitates improved microbiome-

based prediction of cancer phenotypes in two challenging tasks: (1) classifying melanoma 

patients based on plasma microbial DNA; and (2) identifying treatment responders to 

immunotherapy using tumor microbiome measurements. SCRuB is available as an R 

package (https://github.com/Shenhav-and-Korem-Labs/SCRuB) and as a QIIME2 plugin 

(https://github.com/Shenhav-and-Korem-Labs/q2-SCRuB).
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Decontam28 and microDecon29 perform well in many of our simulations, and are effective 

decontamination strategies in some scenarios (e.g., Figs. 1c, 4c and Extended Data Fig. 

10a–f). We do note, however, that they are highly susceptible to well-to-well leakage (Figs. 

1d, 2e,f). Additionally, the optimal threshold parameter for decontam varies between studies 

(c.f. Figs. 1c,d, 2e,f, 4e, and Extended Data Fig. 10a–f), which is a substantial limitation 

in scenarios without a gold standard or predictive benchmark informing optimal parameter 

selection. While SCRuB and microDecon share the assumption that the ratio between 

contaminating taxa should be maintained in the samples of interest, microDecon does not 

model a shared contamination source, but rather treats the contamination of each sample as 

an independent event. Thus, microDecon does not incorporate the shared information across 

all samples, but decontaminates one sample at a time. In contrast, SCRuB jointly models all 

samples in an experiment, which facilitates increased accuracy.

To our knowledge, no other decontamination method directly accounts for well-to-well 

leakage17,32,33, a feat achieved by incorporating the spatial position of samples during 

processing. We demonstrate the importance of this feature through multiple experiments, 

in which alternative decontamination methods were heavily affected by even low levels 

of well-to-well leakage. The ability to detect well-to-well leakage, however, is dependent 

on the availability of detailed technical metadata which includes the well location of each 

sample during various processing stages. Our results emphasize that sharing such metadata 

should become a standard practice in the field.

An important assumption underlying SCRuB is that contamination sources (e.g., kit 

contamination) will maintain their composition when contaminating any given sample. 

This assumption allows for improved performance during decontamination, driven by 

the ability to partially retain taxa that originate in both a contamination source and a 

sample of interest. SCRuB is therefore expected to perform particularly well in scenarios 

involving contaminants that share some similarity to the samples. For example, we posit 

that contaminants share greater similarity with taxa associated with melanomas than lung or 

prostate cancers, as there are many taxa which are both known contaminants and inhabitants 

of the skin. Therefore, the decontamination task involving melanomas is more nuanced, 

requiring a method that accounts for the entire composition of contamination sources, and 

SCRuB indeed showed the greatest benefit in these tasks (Fig. 4c,e and Extended Data 

Fig. 10a–f). Of note, our results demonstrate the utility of benchmarks evaluating predictive 

accuracy in clinical settings as a proxy for decontamination performance. We therefore argue 

that such benchmarks should be a key component in the evaluation of decontamination 

methods. Contamination is primarily a layer of noise masking true biological signals, which 

effective decontamination methods will help expose.

We offer a few additional insights and considerations for the use of SCRuB. First, 

the decontamination performance of SCRuB will be optimal when controls represent 

multiple distinct contamination sources that could affect the samples of interest, already 

recommended as best practice for microbiome studies1,4,40. Second, one of the key 

advantages of SCRuB is that it uses the shared information across all samples affected 

by a certain contamination source (e.g., an extraction batch). We therefore recommend that 

all relevant samples be supplied to SCRuB, and not just a subset from a specific study 
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or downstream analysis. Third, to best capture potential differences between contaminant 

and non-contaminant taxa, we recommend that SCRuB be applied to the most granular 

phylogenetic level (i.e., MAG, OTU or ASV level), and that aggregation to a higher 

phylogenetic level (e.g., genus level) be performed after decontamination. Last, in scenarios 

in which multiple types of controls are collected, we recommend applying SCRuB 

sequentially and separately for each type of control, using sample locations that are relevant 

to a particular experimental step. Investigators should also consider the order in which the 

contamination sources are introduced to the data.

Methods

SCRuB: model description

Consider a matrix X ∈ ℝn × m representing the number of reads originating in one of m 
taxa for each of n samples. Every observed sample xi is drawn from a mixture of two 

multinomial sources: the “true” microbial source of interest (e.g., a vaginal microbiome) 

Γ i ∈ ℝm , unique to each sample, and a shared contamination source γ ∈ ℝm, which is shared 

amongst a relevant set of samples. For example, blank process controls are relevant to all 

samples from the same processing batch, while samples from unused collection kits are 

relevant to all samples collected with that kit. For simplicity, we describe a single shared 

contamination source, but as we show in Fig. 4a, SCRuB can be applied sequentially 

to account for multiple sources. A read sequenced from the sample Xi has a probability 

pi of being drawn from the sample of interest, and of 1 − pi of being drawn from the 

contamination source. Additionally, consider a matrix Y ∈ ℝi × m of l control samples drawn 

from the same contamination source γ .

For all i ∈ [1, … , n], k ∈ [1, … , l]:

Ci = ∑
j = 1

m
xij, Ck

′ = ∑
j = 1

m
ykj

Xi Multinomial Ci, piΓ i + 1 − pi γ
Y k Multinomial Ck

′ , γ

Where γ and Γi are length m vectors representing the multinomial distributions of the 

contamination source and of the non-contaminant component of sample Xi , respectively. 

Thus, under our model, each observed sample is a mixture of two multinomial components, 

determined by the pi parameter: the sample of interest Γi and the contaminant γ . Note 

that while the Γi distribution varies across samples, the γ component is the same across 

all samples Xi and negative controls Yk , as a contamination source is consistent across an 

entire batch. The parameters in this model are p, Γ, and , which we infer using Expectation-

Maximization.

SCRuB: expectation

Given p, Γ, and γ, the likelihood of observing a specific sample xi and control sample yk 

are:
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P xi ∣ p, Γ, γ =
Ci

xi
∏

j = 1

m
piΓ i + 1 − pi γ xij

P yk ∣ p, Γ, γ = Ck
′

yk
∏

j = 1

m
[γ]ykj

Expanding this, the conditional likelihood of observing a dataset of samples X and controls 

Y is:

P(X, Y ∣ p, Γ, γ) = ∏
i = 1

n Ci

xi
∏

j = 1

m
piΓ i + 1 − pi γ xij ⋅ ∏

k = 1

l Ck
′

yk
∏

j = 1

m
[γ]ykj

The log-likelihood is therefore:

logP(X, y ∣ p, Γ, γ) = ∑
i = 1

n
log

Ci

xi
+ ∑

j = 1

m
xij log piΓ i + 1 − pi γ + ∑

k = 1

l
log Ck

′

yk
+ ∑

j = 1

m
ykj log(γ)

And the expected complete log-likelihood is:

Q = ∑
i = 1

n
∑

j = 1

m xij
piΓ ij + 1 − pi γj

piΓ ij log piΓ ij + 1 − pi γj log 1 − pi γj + ∑
k = 1

l
∑

j = 1

m
ykj log γj

SCRuB: maximization

We have a few constraints in this optimization: all Γi and γ must sum to 1, and pi ∈ [0, 1]. 

Following , this corresponds to a Lagrangian ℒ of:

ℒ = ∑
i = 1

n
∑

j = 1

m xij
piΓ ij + 1 − pi γj

piΓ ij log piΓ ij + 1 − pi γj log 1 − pi γj + ∑
k = 1

l
∑

j = 1

m
ykj log γj

− ∑
i = 1

n
δi ∑

j = 1

m
Γ ij − 1 − δn + 1 ∑

j = 1

m
γj − 1

The corresponding updates for the parameters are:

Γ ij
t + 1 = xijr(i ∣ j)

∑o = 1
m xior(i ∣ o)

γj
t + 1 =

∑i = 1
n xij[1 − r(i ∣ j)] + ∑k = 1

l ykj

∑o = 1
m ∑i = 1

n xio[1 − r(i ∣ o)] + ∑k = 1
l yko

pi
t + 1 = ∑

j = 1

m xijr(i ∣ j)
∑o = 1

m xio

where r(i ∣ j) = piΓ ij
piΓ ij + 1 − pi γj

Expressing the updates for entire matrices and arrays, we get:
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R = p * Γ
p * Γ + (1 − p)γT

Γt + 1 = X * R
(X * R) ⋅ sum axis = 0

γt + 1 = (X * (1 − R) + Y ) . sum axis = 1
sum(X * (1 − R) + Y )

pt + 1 = X * R
X . sum axis = 0 . sum axis = 0

SCRuB: initialization

The initialization for the parameters p, α, γ and Γ of SCRuB is based on STENSL34. 

We initialize the contamination source γ as a weighted average of the controls Y , with 

weights based on the associations with the samples X , as measured based on the coefficients 

of a fitted linear model. We first calculate xi
′, representing the relative abundance of each 

sample xi , normalized to a coverage of 10,000. This is done both to ensure that all samples 

are weighted equally in the initialization process, and to ensure the penalty terms in the 

downstream linear regression models have the same impact on each sample.

For a sample xi
′, the logistic regression model corresponds to the following minimization 

problem:

βi = min
βi

xi
′ − 1, Y T βi + λ βi ∈ ℝl + 1

Where λ is set to 10−6. Dropping the constant terms produces an ℝn × l matrix, where each 

βi represents the probability that reads from sample i originate in a particular contamination 

source. After dropping the β constant terms and rescaling the matrix so that each row sums 

to 1, thus obtaining a metric for how strongly each sample is associated to each control, we 

initialize the (non-normalized) γ1′ by summing the average products of the βs with each k 

control sample.

ω = β[: , 1: ]
β[: , 1: ] ⋅ sum axis = 1 .mean  axis = 0

γ1′ = ωY
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γ1 = γ1
∑γ1

All pi
1’s are initialized as 0.005, and every Γi is obtained by subtracting the estimated 

background contamination from the normalized sample.

Γ i
1 = max xi

′ − γ1′, 0

Γ i
1 = Γ i

1

∑Γ i
1

Addressing well-to-well leakage

Well-to-well leakage is a known phenomenon in which biological samples leak into 

controls32,33. SCRuB addresses this with an optional term, under the assumption that 

samples are located on a two-dimensional plate, as is commonly done.

Define S Xi ∈ ℕ2, S′ Y k ∈ ℕ2 as the row and column numbers on the plate in which the 

corresponding sample was positioned. Denote well À11’ as (1, 11), `B11’ as (2, 11), and so 

on. Additionally, we define Nd Y k = i S Xi − S′ Y k 2 ≤ d  as the indexes comprising the 

neighborhood of samples within a radius d of control Yk.

Also consider an extra mixing parameter α ∈ ℝl × n + 1 , with αk,i representing the probability 

that a read from Yk was drawn from a sample of interest Γi , and αk,n+1 indicating the 

probability that a read from Yk belongs to the shared contamination source γ . We fix αk,i = 

0 for all i ∉ d (Yk), for some specified d (default d = 2), and set αk,n+1 to be non-zero.

For all i ∈ [1, … , n], k ∈ [1, … , l], the samples can now be represented as:

Ci = ∑
j = 1

m
xij, Ck

′ = ∑
j = 1

m
ykj

Xi Multinomial Ci, piΓ i + 1 − pi γ

Y k Multinomial Ck
′ , αk, n + 1γ + ∑

i ∈ Nd Y k

αk, iΓ i

The log-likelihood of a plate following this model is:

log P X, Y p, Γ, γ

= ∑
i = 1

n
log

Ci

xi
+ ∑

j

m
xij log piΓ i + 1 − pi γ + ∑

k = 1

l
log Ck

′

yk
+ ∑

j = 1

m
ykj log αk, n + 1γ + ∑

i ∈ Nd Y k

αk, iΓ ij

The corresponding Lagrangian is now:
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ℒ = ∑
i = 1

n
∑

j = 1

m xij
piΓ ij + 1 − pi γj

piΓ ij log piΓ ij + 1 − pi γj log 1 − pi γj

+ ∑
k = 1

l
∑

j = 1

m ykj
αk, n + 1γj + ∑i ∈ Nd Yk αk, iΓ ij

αk, n + 1γj log αk, n + 1γj + ∑
i ∈ Nd Y k

αk, iΓ ij log αk, iΓ ij

− ∑
i = 1

n
δi ∑

j = 1

m
Γ ij − 1 − δn + 1 ∑

j = 1

m
γj − 1

The parameter updates are then:

Γ ij
t + 1 = xijr(i ∣ j) + ∑k = 1

l ykjq(k, i ∣ j)
∑o = 1

m xior(i ∣ o) + ∑k = 1
l ykoq(k, i ∣ o)

γj
t + 1 =

∑i = 1
n xij[1 − r(i ∣ j)] + ∑k = 1

l ykjq(k, n + 1 ∣ j)
∑o = 1

m ∑i = 1
n xio[1 − r(i ∣ o)] + ∑k = 1

l ykoq(k, n + 1 ∣ o)

pi
t + 1 = ∑

j = 1

m xijr(i ∣ j)
∑o = 1

m xio

αk, i
t + 1 = ∑

j = 1

m ykjq(k, i ∣ j)
∑o = 1

m yko

where:

r(i ∣ j) = piΓ ij
piΓ ij + 1 − pi γj

q(k, i ∣ j) =

αk, iγj
αk, n + 1γ + ∑i ∈ Nd Yk αk, iΓ ij

i ≡ n + 1

αk, iΓ i, j
αk, n + 1γ + ∑i ∈ Nd Yk αk, iΓ ij

otℎerwise 

Expressing the updates for the full plate in tensor notation (denote W*,i,* as inserting an 

extra dimension in a 2-d array W):

R = p * Γ
p * Γ + (1 − p)γT
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Q =

α* , * , 1 * Γ
γ

1, * , *

α* , * , 1 * Γ
γ

1, * , *

. sum axis = 1

Γt + 1 = X * R + Y * , 1, * * Q * , 1:n, * . sum axis = 0
X * R + Y * , 1, * * Q * , 1:n, * . sum(axis = 0) . sum axis = 1

γt + 1 = X * (1 − R) + Y * Q * , n + 1, * . sum axis = 0
sum X * (1 − R) + Y * Q* , n + 1, *

pt + 1 = X * R
X . sum axis = 1 . sum axis = 1

αt + 1 = Y * , 1, * * Q
Y . sum axis = 1 . sum axis = 2

Note that in the limit of all α*,i<(n+1) = 0, we have the same update scheme as without 

well-to-well leakage.

Initialization of well-to-well leakage parameters

Our initialization of the well-to-well leakage parameters is based on a regularized linear 

model similar to what was described above, although in this case we analyze the linear 

model’s components to determine the α parameters by identifying which samples within a 

control’s neighborhood are most predictive of the control. We train a linear model using the 

features of non-control samples within the neighborhood of to yk to predict its features.

βk = min
βk

yk
′ − 1 − XT βk + λ βk ∈ ℝn + 1

αk = β[: , 1: ]
β[: , 1: ] . sum axis = 1 . mean axis = 0

With these αs, we have an initialization of the estimated contribution from nearby samples 

into each control. We next add in a component of the αs that correspond to the background 

contamination mixture. To ensure our model is likely to identify well-to-well leakage, we 

initialize this to 1%.
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Next, we use the estimated leakage parameters to `de-leak’ our initial estimates of the 

controls, which we will then input into the previously described initialization scheme that 

does not account for well-to-well leakage. In the same way that we subtracted the estimated 

contamination from each sample in the earlier initialization, we subtract the estimated “leak” 

from the controls.

yk
′ = yk

∑yk

ρk = argmax
i

βki

yk
′ = max Y k

′ − Xρ
∑Xρ

, 0

yk
′ = yk

′

∑yk
′

From our scheme, we have an initialization of yk
′  whose well-to-well leakage components 

have been accounted for. We then use these yk
′  estimates as the control samples during the 

contamination initialization described above. Note that while we use these modified control 

terms during the linear initialization, we still use the raw Y samples during the expectation 

maximization, as this approach accounts for the well-to-well leakage and the contamination 

sources simultaneously.

Simulation of synthetic contaminated samples

We constructed a simulation scheme to evaluate how well different decontamination 

methods can recover a known ground truth. Each simulated dataset is generated from 

taxonomic distributions of samples of interest and contamination sources (described below 

for each analysis), and consists of a total of 96 samples, assigned to specific (Extended Data 

Fig. 4e,f) or random (elsewhere) positions on an 8×12 grid.

We simulated contaminated samples by sampling reads from the maximum likelihood 

estimate (MLE) of the multinomial distribution from a sample of interest, and then adding 

reads sampled from the MLE multinomial distribution of a contamination source. The 

number of reads drawn from the sample:contamination sources followed a sample-specific 1 

– p : p ratio, where p denotes the level of contamination in the sample. For each sample, p is 

drawn from a normal distribution truncated in [0,1] with a preset mean (the “contamination 

level”: either 5%, 25%, or 50%) and a variance of 0.04. Synthetic negative controls were 

likewise drawn from a mixture with ratio of 1 − c : c, where c, the percent of reads 

originating in well-to-well leakage, is drawn from a normal distribution truncated in [0,1] 

with a preset mean (the “well-to-well leakage level”: 5, 25, or 50%) and a variance of 0.02. 
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For the 1 − c reads that represent the contamination source, we drew reads from the MLE 

multinomial distribution of the contamination source, which generates sampling noise. The c 
reads representing the well-to-well leakage into the synthetic negative control are simulated 

by drawing from a Dirichlet distribution (with uniform parameters) over a set of “leaking” 

samples that is assigned for each control. This set is determined based on a Bernoulli trial 

for each sample-control pair, weighted by W = 1
2d3  for most samples and by W Poisson 8

2d3

(bounded at 0.75) for a predetermined set of samples, where d is the euclidean distance (on 

the processing plate) between a sample and a control. The predetermined set of samples with 

high leakage probability is meant to simulate the phenomenon of a few samples accounting 

for most of the leakage (observed in the data by Minich et al.32); we determine the size of 

this set by drawing from a Poisson distribution with parameter λ = 3.5.

We added additional noise to all synthetic samples using the following scheme: (1) 

create general noise by drawing from a multinomial distribution, following a probability 

distribution weighted by draws from a pareto distribution with observations equal to the 

number of taxa, and with thresholds and alphas equal to one. (2) a higher level of noise 

was added to three randomly selected taxa, by running the same weighted draw scheme in 

step (1), but only considering the three taxa instead of the full feature space. (3) adding the 

results from (1) and (2) weighted by 1–5% and adding it to the taxonomic composition of 

the sample. (4) reweighting the relative abundances of the sample while incorporating the 

noise.

Simulation of synthetic contaminated samples

We have used multiple different datasets for simulations: (1) for the simulations in Fig. 1 

and Extended Data Fig. 4,5,6, we used a dataset of 16S rRNA amplicon sequencing of skin 

and surface samples from a college dormitory (Qiita41 study ID 12470, ref. 25); (2) for 

Extended Data Fig. 3a,b, a dataset of 16S rRNA amplicon sequencing of tropical marine 

sediments (Qiita41 study ID 11922); (3) for Extended Data Fig. 3c,d, a dataset of 16S rRNA 

amplicon sequencing of multiple California fish body sites (Qiita41 study ID 13414, ref. 

42); (4) for Extended Data Fig. 3e,f, a dataset of 16S rRNA amplicon sequencing of soil 

from the Earth Microbiome Project (Qiita41 study ID 13114, ref. 43); (5) for Extended Data 

Fig. 3g,h, a dataset of ITS sequencing of office samples (Qiita41 study ID 10423, ref. 44); 

(6) for Extended Data Fig. 3i,j, a dataset of 18S amplicon sequencing of soil from Central 

Park, New York (Qiita41 study ID 2104, ref. 45); and (7) for Extended Data Fig. 3k,l, a 

dataset of human gut metagenomic sequencing (Qiita41 study ID 13692, ref. 46). Controls 

were drawn from a separate dataset: for (1)-(4), we used a 16S rRNA amplicon sequencing 

dataset of blank controls (Qiita41 study ID 12019, table ID 5697); for (5) and (7), ITS and 

metagenomic sequencing of controls (Qiita41 study ID 12201, ref. 47); and for (6), 18S 

sequencing of controls (Qiita41 study ID 10333, ref. 48).

All files downloaded were downloaded from Qiita41 already preprocessed. The ASV counts 

from the non-control samples were used as the samples of interest, assuming, for the sake 

of the simulation, no contamination. The controls were considered as contamination sources, 

with a single source randomly selected for each simulation. Across these simulations, we 

used different contamination levels (5, 25 and 50%), well-to-well leakage levels (0, 5, 25 
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and 50%), and number of negative controls (1, 2, 4 and 8), using at least 10 synthetic 

datasets for each parameter set. This resulted in 480 simulated datasets for Fig. 1 and 

Extended Data Fig. 4a–d,h, of which 40 were used in Extended Data Fig. 4g; 240 for 

Extended Data Fig. 4e,f; 240 for each analysis in Extended Data Fig. 3; 40 for the analysis 

in Extended Data Fig. 5a,c; and 10 for Extended Data Fig. 5b. For Extended Data Fig. 6, we 

simulated 50 datasets with 88 samples and 8 controls, in which no contamination was added 

to any sample, such that the ground truth is the observed samples by definition.

Benchmarking of decontamination methods

We tested four different decontamination approaches: decontam28 (version 1.6.0), 

microDecon29 (version 1.0.2), SCRuB, and a method denoted ‘restrictive’. In the restrictive 

method, we removed any taxa observed in the negative controls. In our analysis of 

melanoma treatment response (Fig. 4d,e and Extended Data Fig. 10g), we also used 

the decontamination pipeline implemented by Nejman et al.18. Except in the analysis of 

Poore et al.20 (Fig. 4b,c), we ran decontam using the “prevalence-based” method with 

the isContaminant and isNotContaminant (denoted as “low biomass” or LB) functions and 

their default decision boundaries of 0.1 and 0.5, respectively; we set all taxa predicted 

as contaminants to zero. microDecon was run with default parameters of the ‘decon’ 

function. In cases where the plate metadata was not available (Nejman et al.18, Fig. 4d,e 

and Extended Data Fig. 10g), we ran SCRuB without incorporating the spatial well-to-well 

mixture component.

To evaluate accuracy against the ground truth in simulations, we used the Jensen-Shannon 

divergence (JSD) between the decontaminated abundance profile and that of the ground 

truth (Extended Data Fig. 2), and used the median JSD when comparing between simulated 

experiments (Fig. 1 and Extended Data Fig. 3–6). In cases where the entire content of a 

sample was removed by decontamination (observed in Extended Data Fig. 7), we set its JSD 

with other samples to 1. The performance of SCRuB was assessed by dividing the JSD from 

decontam, decontam (LB), microDecon, and restrictive, against the corresponding batch JSD 

outputted by SCRuB. In the case of 25% contamination and 25% well leakage, the average 

of competing JSDs divided by SCRuB was 15.3, while the average was 19.2 under 25% 

contamination and 5% well-to-well leakage. For comparisons of classification accuracy, we 

used Wilcoxon signed-rank test between results from repeated bootstrap runs, following ref. 

49.

When comparing the ability of different decontamination methods to classify taxa as 

contaminants (Figs. 2e, 3d), we used: 1) For decontam, its predicted probability a taxa 

is a contaminant; 2) For the restrictive approach, a boolean indicating whether a taxa was 

present in any negative control; 3) For microDecon, we compared its decontaminated output 

to the input raw samples, and calculated, for each taxa, one minus the average fraction of 

reads remaining after decontamination. The classification for each taxa was then determined 

by averaging this number across all samples that included the taxa in the raw input; 4) For 

SCRuB, its fitted γ parameter, which estimates the taxonomic composition of the shared 

contamination source.
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Benchmarking of well-to-well leakage in monocultures

We processed data from Minich et al.32 using DADA2 (ref. 50), and decontaminated all 

samples with >500 counts after DADA2 processing. We processed each plate sequenced 

by Minich et al. separately, for a total of 160 samples in two plates (results in Fig. 2a–d 

and Extended Data Fig. 7c–f are from the plate designated “P1”). We defined a ground 

truth classification of contaminants based on the study design, which outlined 17 unique 

species that were used in the experiment. Every other taxon with a relative abundance >15% 

in at least one sample was considered a contaminant, and the rest were discarded. Using 

100% abundance of the monocultures described by Minich et al. as the ground truth for 

each sample, we compared the decontaminated samples to the ground truth to estimate the 

abundance of the true sample resulting from each decontamination (Fig. 2f), and the Jensen-

Shannon divergence between the decontaminated samples and the ground truth (Extended 

Data Fig. 7a).

To simulate a more complicated well-to-well leakage scenario in which Minich et al.32 put 

one of the low-prevalence monocultures in two wells instead of one (Extended Data Fig. 

7b), we picked a random pair of wells (focal and secondary), and then replaced all read 

assignments, across the entire plate, of the taxa from the secondary well with the taxa of the 

focal well. An illustration of this process is provided in Extended Data Fig. 7c–f. We then 

calculated the relative abundance of the ground-truth taxon remaining in the focal well after 

decontamination, and repeated this analysis 100 times.

Processing and sequencing of human-derived samples

We used 28 samples collected from 28 participants of different studies. All procedures were 

performed under institutional review board–approved protocols at Columbia University. 

Informed consent was received from all participants. All samples were received deidentified.

Samples from stool51 (n=7), vagina (n=7) and skin (n=7) were prepared in two sets, and 

samples from saliva51 (n=7), were prepared in three sets, with each sample divided to 

equal volumes. For the first experiment (experiment 1, Fig. 3a, Supplementary Table 2), 

which included 7 samples from each body site and 10 extraction controls , DNA was 

manually extracted using the ZymoBIOMICS Magbead DNA/RNA Kit (Zymo Research, 

CA). The samples were homogenized with glass beads in 800 μl of DNA/RNA shield 

(Zymo Research, CA) and centrifuged. For the second experiment (experiment 2, Fig. 3a, 

Supplementary Table 2), including 7 samples each of stool, vagina and skin, 14 saliva 

samples, and 10 extraction controls, DNA extraction was performed on a different day, 

by different lab personnel, using DNeasy 96 PowerSoil Pro QIAcube HT Kit (Qiagen, 

Germany). To simulate contamination, we added 75 μl (~1.4×107 cells/μl) of a defined mock 

community (Zymo Microbial Community Standard D6300) to 28.8 ml of the CD1 buffer, 

resulting in ~3.6×104 cells/μl. A sample of the mock community was processed separately 

(with a non-contaminated CD1 buffer), and added to this experiment. For both experiments, 

DNA was extracted following the manufacturer’s protocol. Extracted DNA in elution buffer 

was quantified using Quant-it with Tecan plate reader Infinite 200 (Tecan, Switzerland), and 

stored at −80°C.
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Following extraction, predefined empty wells on each plate were filled with PCR master 

mix and clean water to serve as library controls. For 7 saliva samples from each 

experiment (Fig. 3a) amplification was performed using primers for the V1–V2 region52 

(27 F: 5′- AGAGTTTGATCCTGGCTCAG / 338R : 5′- TGCTGCCTCCCGTAGGAGT). 

For the rest of the samples, including all controls, amplification was performed using 

primers for the V3–V4 region53 (319 F: 5′- CCTACGGGNGGCWGCAG −3′ / 806 R: 

5′-GACTACHVGGGTATCTAATCC-3′). Both primer sets were designed with Illumina 

adapters and amplified with 2.5 μl (5 ng) DNA template in a total reaction volume of 25 

μl (12.5 μl KAPA HiFi HotStart ReadyMix, 5 μl each of forward and reverse primers) with 

the following cycling protocol: 95°C for 3 min, 25 cycles of 95°C for 30s, 55°C for 30s, 

and 72°C for 30s, and 72°C for 5 min. Both experiments were then rearranged on the same 

plate (Supplementary Table 2). Illumina Nextera XT v2 indices were used to barcode the 

sequencing libraries. Libraries were sequenced on an Illumina MiSeq using the v3 reagent 

kit (600 cycles) and a loading concentration of 9 pM with 20% phiX spike-in.

Analysis of experiments with human-derived samples

We processed all samples using DADA2 (ref. 50), and decontaminated all non-control 

samples with >5,000 counts after DADA2 processing, and all controls with >1,000 counts. 

We first ran SCRuB using the layout of the library preparation plate (Supplementary Table 

2) using library controls (one run for both experiments), and then ran it separately for each 

experiment using the layout of the DNA extraction plates (Fig. 3a). In Fig. 3c, we show 

the estimated contamination source based on SCRuB’s fitted γ parameter. To assess the 

ability of decontamination methods to correctly identify the contaminating mock community 

(Fig. 3d), we used them to decontaminate only the contaminated samples and controls from 

experiment 2 (Fig. 3a). We defined the ground truth classification as a contaminant for each 

genus based on the manufacturer’s reference for the zymoBIOMICS Microbial Community 

Standard D6300. We then aggregated the classification of each decontamination method to 

the genus level to make sure it matches this reference. For SCRuB, we aggregated the γ 
output via summation. For other methods, we averaged the predicted probabilities among 

corresponding ASVs. To assess their global decontamination performance (Fig. 3e), we ran 

the decontamination methods on all samples and controls jointly. To evaluate well-to-well 

leakage by amplifying the V1V2 primer for 14 of the saliva samples, we classified ASVs as 

part of the V1V2 primers if they accounted for over 50 reads from the corresponding saliva 

samples.

Strain-level metagenomic analysis of well-to-well leakage

For the analysis in Extended Data Fig. 8, we ran SCRuB on counts of metagenomic 

assembled genomes (MAGs) generated by Lou et al.33 by read mapping following assembly 

and binning. SCRuB was run separately on each plate that included negative controls, 

accounting for their layout and experimental protocol. To obtain estimates of well-to-well 

leakage based on SCRuB (Extended Data Fig. 8c, top row), we used its inferred α 
parameter, and calculated the estimated percent of each control that originated from nearby 

samples. To obtain an estimate of well-to-well leakage based on Lou et al.’s strain-level 

analysis (Extended Data Fig. 8c, bottom row), we used the fraction of reads that mapped 
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to strains that were clonal to strains found in a nearby sample, and reported the control’s 

percent overlap with the most similar sample.

Classification of cancer patients based on plasma samples

We obtained microbial data from plasma samples, preprocessed by Poore et al.20, from 

Qiita41 studies ERP119598, ERP119596, and ERP119597. We ran all decontaminations 

using all 381 distinct samples, of which there were 323 plasma samples, 28 bacteria 

monocultures, 14 control blank library preps, and 16 control blank DNA extractions. 

Following the analysis by Poore et al., we used 169 of the 323 plasma samples in our 

analysis: 69 controls, 59 prostate cancer, 25 lung cancer, and 16 skin cutaneous melanoma 

samples.

SCRuB and microDecon were applied twice in a sequential manner, first running 

decontamination using the 16 extraction controls, and then applying additional 

decontamination with the 14 library preparation controls. To match the implementation 

by Poore et al., Decontam and Decontam (LB) were applied by pooling all 30 

negative control samples together. For this dataset, we also ran decontam’s combined 

prevalence and frequency function with a decision boundary of 0.5, used by Poore et 

al.20. All decontaminations were implemented on data at the most granular phylogeny, 

allowing for the greatest precision during the decontamination process. For prediction, 

we filtered to features with a minimum of 500 counts across all 169 samples, and 

ran the Voom-SNM20,54 transformation and leave-one-out prediction pipeline previously 

described20, using the code provided by the authors (https://github.com/biocore/tcga/

commit/c4edac411182c88566df03f18bd78cac151c5059). To account for variability due to 

sample size, we repeated this process with 10 different random seeds, and presented the 95% 

confidence intervals as shaded areas in the ROC curves, along with the median auROC.

Classification of treatment response in melanoma patients

We used ASV count matrices and metadata made available by Nejman et al.18 For the 

“custom” approach in analyzing this dataset, we used the decontamination scheme of 

Nejman et al.18, but without the filter for ASVs appearing across centers, in order to focus 

on comparing batch-specific decontamination methods, and as it would violate the validation 

test performed in Fig. 4e. SCRuB, microDecon, and decontam were applied three times in a 

sequential manner, with each iteration applied to the output of the previous one (Fig. 4a): (1) 

decontamination of samples from each PCR batch using the relevant no template controls; 

(2) decontamination of samples from each DNA extraction batch using the relevant DNA 

extraction controls; and (3) decontamination of samples from each of the 9 centers, using 3 

randomly selected paraffin controls from the same center.

We then used primary tumor melanoma samples processed by the different decontamination 

methods to predict which patients responded to immune checkpoint inhibitors (ICI). 

For each of these, we used all samples collected from MD Anderson Cancer Center 

(MDACC), aggregated to the genus level, as training data. We used 5-fold cross-validation 

to optimize the following hyperparameters: (1) for XGBoostClassifier: max_depth of 3 

or 10, n_estimators of 100 or 500, learning_rate of 0.1 or 1, and subsample of 0.5 or 
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0.75; and (2) utilizing the relative abundance of the top 5, 10, 25 or 100 taxa, with 

prevalence determined based on the number of nonzero samples in the training set. Each 

hyperparameter set was run on 15 different 5-fold iterations using a 95% sub-sample of 

the data. The hyperparameter set that yielded the highest average AUC on the aggregated 

MDACC validation folds was used for the final test. We retrained a similar classifier with the 

selected hyperparameter set on all the MDACC samples, and validated its performance on 

18 held-out samples, each collected from a different patient, collected from the Netherlands 

Cancer Institute. To obtain a measure of uncertainty, this process was repeated 15 times, 

with the aggregated ROC curves shown in Fig. 4e.

Extended Data

Extended Data Figure 1 |. Empirical validation of the source-tracking assumption in data from 
Nejman et al18.
The source-tracking assumption30,31,34 in the context of contamination stipulates that taxa 

present together in a contamination source will be introduced together to other samples, 
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and in similar proportions as in the contamination source. We demonstrate this empirically 

using data from Nejamn et al.18 a, The average relative abundance of each ASV (y-axis) 

across samples from the Netherlands Cancer Institute, plotted against the abundance of the 

same ASV across negative controls from the same batch (x-axis; “No Template Controls” in 

Nejman et al.18), separated to “high” and “low” contamination based on SCRuB’s prediction 

(contamination parameter p>0.5 and p≤0.5 respectively). Consistent with the source-tracking 

assumption, taxa present together in a contamination source are introduced together to 

the samples, and in similar proportions, resulting in a clear positive correlation between 

the relative abundance of the taxa that are shared between samples and controls (Pearson 

R=0.99, p<10−20 and R=0.082, p=0.037 for high and low contamination, respectively). 

As expected, this correlation varies with respect to SCRuB’s predicted contamination in 

the samples: samples predicted to have high-contamination (blue) have a slope of 0.97, 

while those predicted to have low-contamination have a slope of 0.057. b,c, Same as (a) 

for samples predicted to have the highest (b) and lowest (c) contamination. Pearson R is 

displayed for panels with >3 shared taxa. Correlation was very high for highly contaminated 

samples (Pearson R>0.9, p<10−4 for all).

Extended Data Figure 2 |. Description of our simulation framework.
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A visualization of the simulation framework used to benchmark different decontamination 

methods. We implemented our simulation with the 3 outlined steps: a, We generate a dataset 

with 88–94 samples, 2, 4 or 8 controls, and a contamination source from an unrelated 

study, assumed to be biologically distinct from the samples of interest. All samples are 

then assigned locations across the plate. b, We add well-to-well leakage to the controls, 

and contamination from the shared source to the samples of interest (Methods). c, We 

run decontamination using one of several methods (Methods). The decontaminated dataset 

is evaluated against the ground-truth non-contaminated taxonomic compositions using the 

Jensen-Shannon divergence.

Extended Data Figure 3 |. SCRuB outperforms alternative decontamination methods under in 
silico simulations of diverse environments and data types.
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a-l, Same as Fig. 1c,d, but for simulations based on data from 16S amplicon sequencing 

of tropical marine sediments (Qiita41 study ID 11922; a,b); 16S amplicon sequencing of 

multiple body sites from southern California fish42 (c,d); 16S amplicon sequencing of 

soil from the Earth Microbiome Project43 (e,f); ITS sequencing of office samples44 (g,h); 

18S amplicon sequencing of soil from Central Park, New York45 (i,j); and human gut 

metagenomic sequencing46 (k,l). N=120 simulations per panel. Across almost all simulation 

scenarios and environments SCRuB outperforms alternative decontamination approaches. 

Contamination levels were fixed to 5% for the simulations in panels b, d, f, h, j, and l. Box 

line, median; box, IQR; whiskers, 1.5*IQR; *, one-sided Wilcoxon signed-rank p<10−4 for 

comparison between SCRuB and marked method (see Supplementary Table 1 for exact p 
values).

Extended Data Figure 4 |. SCRuB is robust to evaluation metrics and simulation parameters.
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a-d, Same as Fig. 1c,d, box and swarm plot (line, median; box, IQR; whiskers, 1.5*IQR) 

showing the mean (a,b) and standard deviation (c,d) of the Jensen-Shannon divergence 

(JSD) between the ground truth of each experiment and its decontamination output. SCRuB 

performs similarly when evaluated using mean JSD, and displays stable standard deviation. 

e,f, Same as Fig. 1c,d, but with controls placed along the edge of a plate rather than 

randomly. Similar to Fig. 1c,d, SCRuB outperforms alternative methods under all parameters 

except no decontamination and microDecon with 50% well-to-well leakage levels. g, Shown 

are the results from Fig. 1d with well-to-well leakage levels of 5%, stratified by the number 

of controls (N=10 experiments per set). SCRuB outperforms alternative decontamination 

methods regardless of the number of controls (one-sided Wilcoxon signed-rank p<10−3 

for all, p=0.0029 vs. microDecon with one control). h, Same as Fig. 1d, showing also 

results from SCRuB running without sample location, and thus without accounting for 

well-to-well leakage. While SCRuB outperforms SCRuB without sample locations in all 

simulations (p<10−4 for all), SCRuB without sample locations still outperforms alternative 

decontamination methods in many settings. *, one-sided Wilcoxon signed-rank p<10−3 

(panel g) p<10−4 (otherwise) for comparison between SCRuB (panels a-g) and SCRuB 

without sample locations (panel h) and the marked method (see Supplementary Table 1 for 

exact p values). * is on the bottom if the marked method has better performance.
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Extended Data Figure 5 |. SCRuB is robust to sequencing depth.
Shown are results from in silico simulations under our model (Methods). a, Comparison 

between experiments in which the read counts of all samples were set to either 1,000, 

5,000, 10,000, or 25,000 reads, under contamination and well-to-well leakage levels of 

5%. With the exception of the depth of 1,000 reads, SCRuB outperformed the alternative 

methods in all simulations (one-sided Wilcoxon signed-rank p<10−3 for all). At a depth of 

1,000 reads, SCRuB had comparable performance to decontam (p=0.19), and significantly 

outperformed the rest (p<0.01 for all). b, For each experiment, the mean read depth was set 

to 10,000, the standard deviation to 2,500, and the contamination and well-to-well leakage 

levels to 5%. We divided the samples from each experiment into four groups, Q1–Q4, 

based on the within-experiment quantile to which the read depth of each sample belonged 

to. Within all groups, SCRuB outperformed alternative decontamination methods (p<10−3 

for all), demonstrating that SCRuB has consistent performance within an experiment with 
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varying read depths. c, Results from experiments with a mean read depth of 10,000, 

standard deviation of 0, 500, 2,500 or 7,500, and contamination and well-to-well leakage 

levels of to 5%. Across all standard deviations, SCRuB outperformed competing methods, 

demonstrating that it is robust to variability in read coverage across experiments. Box line, 

median; box, IQR; box whiskers, 1.5*IQR; *, one-sided Wilcoxon signed-rank p<0.01 for 

comparison between SCRuB and marked method (see Supplementary Table 1 for exact p 
values).

Extended Data Figure 6 |. SCRuB correctly handles unrelated controls.
a, Venn diagram illustrating the taxa removed by each decontamination method, defined 

as a taxa with an aggregate sum greater than zero in the observed data, and an aggregate 

sum of zero in the decontaminated data. When presented with unrelated controls, SCRuB 

removed far fewer taxa than microDecon and either version of decontam, and the majority 

of taxa removed by SCRuB were also removed by microDecon and decontam (LB). b, 
Box and swarm plots (line, median; box, IQR; whiskers, 1.5*IQR) showing the median 

Jensen-Shannon divergence per simulation between simulated samples before and after 

decontamination with an unrelated control (Methods), across 50 simulated datasets of 88 

samples and 8 negative controls. SCRuB is robust to non-informative controls, producing 

taxonomic compositions that are very close to the original, and significantly closer 

than alternative methods (one-sided Wilcoxon signed-rank p=4×10−10, p=8.8×10−10 and 

p=3.8×10−10 between SCRuB and microDecon, decontam or decontam (LB), respectively).
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Extended Data Figure 7 |. SCRuB correctly accounts for well-to-well leakage.
a, Similar to Fig. 2f, showing the Jensen-Shannon divergence (y-axis) between the 

ground truth taxonomic composition, as defined by the experimental design of Minich 

et al.31 (Methods), and the taxonomic composition of the unprocessed dataset (“No 

decontamination”), or the dataset following decontamination by various methods (x-axis), 

and displayed separately for the 31 distinct low-prevalence (left) and 90 high-prevalence 

(right) monocultures. For low prevalence samples, SCRuB produced estimates that were 

significantly more similar to the ground truth compared to microDecon, decontam, 

decontam (LB), and to a restrictive approach (one-sided Wilcoxon p<10−4 in all cases). For 

the high prevalence samples, SCRuB performed comparably to decontam and microDecon 

(p=0.93, p=0.12, respectively) and outperformed no decontamination, restrictive, and 

decontam (LB) (p=10−8, p=8.7×10−17 and p=1.3×10−4, respectively). b-f, A simulation of 

a more complicated well-to-well leakage experiment, in which each taxa was placed in 
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two monocultures instead of one. To simulate such a scenario, we randomly chose pairs 

of taxa, and then reassigned all reads assigned to one taxa across the experiment to the 

other, “focal”, taxa. For example, Minich et al. placed E. coli in well C10 (c), resulting 

in well-to-well leakage (d). We randomly selected well C3, containing a Corynbacterium 
species, and reassigned all Corynbacterium reads to E. coli (e). We then ran SCRuB on this 

simulated data, and evaluated the relative abundance of E. coli in its original well (b, f). 
We performed this 100 times, and examined the relative abundance of the focal taxa in its 

original well (b). In all cases, SCRuB accurately handled well-to-well leakage in this more 

complex scenario and avoided removing the taxa belonging to the focal monoculture.

Extended Data Figure 8 |. SCRuB correctly infers well-to-well leakage into negative controls in a 
metagenomic study of infant and maternal microbiomes.
a, The plate design used by Lou et al.33,39, which included a negative control placed in 

the corner of each extraction plate. Through a strain-level analysis, Lou et al. identified 

well-to-well leakage into certain negative controls. b, When running SCRuB on each plate, 

using the MAG abundances of each sample (Methods), we identified well-to-well leakage 

into the negative control in two of the four plates that included a negative control. c, 
SCRuB’s predictions of well-to-well leakage were consistent with an assessment based on 

the results of Lou et al.’s strain-level analysis (Methods).
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Extended Data Figure 9 |. Well-to-well leakage is more prominent during DNA extraction.
a,b, Plate layout during DNA extraction (a) and library preparation (b) of experiment 2 

(Fig. 3a). 10 controls were included in the DNA extraction stage (triangles), and additional 

7 in the library preparation stage (hexagon); a pair of each was away from other samples 

(“far samples”, purple). c, Box and swarm plot (line, median; box, IQR; whiskers, 1.5*IQR) 

showing the Jensen-Shannon divergence (y-axis) between human-derived samples adjacent 

to DNA extraction and library preparation controls and the various controls of each 

processing stage, stratified by adjacent and near controls (purple in a,b), and calculated from 

“raw” taxonomic compositions, without any decontamination. Samples are more similar 

to near than far controls, demonstrating well-to-well leakage occurring during both DNA 

extraction and library preparation. Samples are also more similar to near extraction controls 

than to near library controls, suggesting that well-to-well leakage is more prominent during 

DNA extraction. P, two-sided Mann-Whitney U; N, number of pairwise distances between 

relevant samples.
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Extended Data Figure 10 |. SCRuB improves prediction of melanoma and treatment response.
a-f, Receiver operating characteristic (ROC) curves evaluating the pairwise classification 

accuracy of gradient boosted decision trees on data from patients with lung cancer, 

prostate cancer, melanoma, and controls, using data from Poore et al.20 Compared to 

alternative decontamination methods, SCRuB offers classification accuracy that is on-par 

or improved, and improved accuracy compared to the original analyses in all cases. See 

Supplementary Table 1 for p values comparing between methods. Shaded area, 95% 

confidence interval. g, A Venn diagram enumerating the number of taxa completely removed 

by each decontamination methods applied to the tumor microbiome data from Nejman et 

al.18 SCRuB removed fewer taxa than alternative methods.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ID 13414. The Earth Microbiome Project soil dataset43, used in Extended Data Fig. 3e,f, 

is available from ENA, accession PRJEB42019, and Qiita41, study ID 13114. The office 

dataset44, used in Extended Data Fig. 3g,h, is available from ENA, accession PRJEB13115, 

and Qiita41, study ID 10423. The Central Park soil dataset45, used in Extended Data Fig. 

3i,j, is available from ENA, accession PRJEB6614, and Qiita41, study ID 2104. The gut 

metagenomic dataset46, used in Extended Data Fig. 3k,l, is available from ENA, accession 

PRJEB50408, and Qiita41, study ID 13692. The negative controls dataset, used in Fig. 1, 

and Extended Data Fig. 3a–f,4,5 is available from Qiita41, study ID 12019; the one used 

in Extended Data Fig. 3g,h,k,l is available from ENA, accession PRJEB40903, and Qiita41, 

study ID 12201; and the one used in Extended Data Fig. 3i,j is available from ENA, 

accession PRJEB25617, and Qiita41, study ID 10333. The well-to-well leakage dataset32, 

is available from ENA, accession ERP115213. The plasma cfDNA data20 is available from 

ENA, accessions ERP119598, ERP119596, and ERP119597; and Qiita41, study IDs 12667, 

12691, and 12692. The tumor microbiome dataset18 is available from SRA, accession 

PRJNA624822. The processed data was obtained from Table S2 in ref. 18.
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Figure 1 |. SCRuB demonstrates superior decontamination in simulated benchmarks.
a, An illustration of our assumptions underlying the data generating process: contamination 

from a shared source (such as kit contamination; top), and well-to-well leakage (bottom). b, 
SCRuB iteratively uses the shared information across the samples and controls to estimate 

well-to-well leakage and the composition of the shared contamination source. It then uses 

estimates of the contamination sources to infer the underlying composition of the samples 

of interest, and so on until convergence. c, d, Box and swarm plot (line, median; box, 

IQR; whiskers, 1.5*IQR), showing that in in silico simulations under our model (Methods), 

SCRuB outperforms alternative decontamination approaches, in the absence (c; N=120 

simulations) and presence (d; N=120 simulations) of well-to-well leakage. Contamination 

levels were fixed to 5% for the simulations in panel d. *, one-sided Wilcoxon signed-rank 

Austin et al. Page 38

Nat Biotechnol. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p<10−4 for comparison between SCRuB and the marked method (see Supplementary Table 1 

for exact p values).
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Figure 2 |. SCRuB correctly accounts for well-to-well leakage.
Results pertain to analysis of a dataset by Minich et al.32, who sequenced monocultures of 

distinct species along with multiple negative controls. a-d, An example of one such species 

from the dataset, Escherichia coli. Minich et al.32 processed and sequenced a monoculture of 

this species in well G10 (a). Due to well-to-well leakage, E. coli was detected in additional 

samples (colored circles), including in multiple negative controls (colored triangles; b). As 

E. coli was present in multiple negative controls, decontam, microDecon and the restrictive 

approach classified it as a contaminant, removing it from all samples, including G10 (c). 

SCRuB, however, successfully handled well-to-well leakage, and did not remove E. coli 
from G10 (d). e, Receiver operating characteristic (ROC) curve evaluating the accuracy of 

the different decontamination methods in correctly classifying contaminants, as defined by 

the study design of Minich et al.32 (Methods). SCRuB demonstrated a greater ability to 

overcome the challenge of well-to-well leakage, with an auROC of 0.67 vs auROCs of 0.06, 
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0.18, 0.12 and 0.5 for decontam, decontam (LB), microDecon, and a restrictive approach, 

respectively. f, The relative abundance (y-axis) of the 31 distinct low-prevalence (left) and 

90 high-prevalence (right) monocultures in the unprocessed dataset (“No decontamination”) 

and following decontamination by various methods (x-axis). microDecon, decontam, and 

decontam (LB) completely removed low prevalence taxa in 30, 11, and 30 of 31 cases, 

respectively, while SCRuB retained all of them.
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Figure 3 |. SCRuB outperforms alternative decontamination methods in a benchmark with 
human-derived samples.
a, An illustration of our experimental design. In the first experiment (top), 28 samples 

from different body sites (7 each of stool, saliva, skin, vagina; Methods) were processed 

in clusters, with empty wells separating between them. Each such cluster contained two 

extraction controls, and an additional two were placed on the edge of the plate, far from 

any sample. In the second experiment (bottom), replicate aliquots of the same 28 samples 

were processed along with 10 additional extraction controls, arranged next to samples from 

multiple body sites. All samples were processed using the V3–V4 primer, except 14 saliva 

replicates processed with the V1–V2 primer. This experiment was processed using a lysis 

buffer intentionally contaminated with a mock community (Zymo Microbial Community 

Standard D6300). b,c, t-SNE of 23 samples with >5,000 reads and 10 controls before (b) 

and after (c) decontamination with SCRuB. d, Receiver operating characteristic (ROC) curve 

evaluating the accuracy of the different decontamination methods in correctly identifying 

the components of the mock community used for contamination of the lysis buffer 

(Methods). SCRuB’s ability to identify the contamination in this benchmark (auROC=1.0) 

was significantly better than alternative decontamination methods (auROCs of 0.76–0.83; 

two-sided Delong p=2.37×10−5, p=0.003, p=0.003, p=1.5×10−4 for SCRuB vs. restrictive, 

decontam, decontam (LB) and microDecon, respectively). e, Box and swarm plot (line, 

median; box, IQR; whiskers, 1.5*IQR) showing the Jensesn-Shannon divergence (y-axis) 

between the two replicates of the same sample (with >5,000 reads) processed on both 

experiments (a), for each decontamination method. As replicates of the same samples were 

analyzed in both experiments, better decontamination performance would result in higher 
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similarity (lower Jensen-Shannon divergence) between the two replicates of each sample. 

Replicates decontaminated by SCRuB were significantly more similar to each other. *, 

one-sided Wilcoxon signed-rank p=6.1×10−5 for comparison between SCRuB and marked 

method.
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Figure 4 |. SCRuB improves prediction of melanoma and treatment response.
a, Illustration of the sequential decontamination we performed. In each iteration of 

decontamination, controls from a single contamination source are used to decontaminate 

the relevant samples. b, Box and swarm plot (line, median; box, IQR; whiskers, 

1.5*IQR) showing the α diversity (Shannon) of microbial DNA detected in plasma 

from high-grade cancer patients and healthy controls before (no decontamination) and 

after decontamination by SCRuB and alternative methods (N=169 for each method). 

c, Receiver operating characteristic (ROC) curve evaluating the accuracy of gradient 

boosted decision trees classifying patients with melanoma. SCRuB offers improved 

prediction accuracy compared to alternative decontamination methods (auROC of 0.92 

vs. 0.65, 0.65 and 0.85 for restrictive, decontam, and microDecon, one-sided Wilcoxon 

signed-rank p=9.8×10−4, p=9.8×10−4, p=0.002, respectively; Methods). The decontam 

method in panels b,c uses the parameters selected by Poore et al.20 See Extended 

Data Fig. 10a-f for evaluation of additional classification tasks from Poore et al.20 d, 
Same as (b), for α diversity of melanoma tumor microbiome samples (N=197 for each 

method). Decontamination by SCRuB resulted in higher α diversity compared to the 

custom approach, restrictive, decontam (LB) and microDecon (p=7.8×10−12, p=2.4×10−33, 

p=1.4×10−32 and p=9.9×10−10, respectively). e, ROC curve evaluating the accuracy of 

gradient boosted decision trees classifying the response to immune checkpoint inhibitor 

therapy. Models were trained on data from the MD Anderson Cancer Center (US) 

and evaluated on samples from the Netherlands Cancer Institute, after decontamination 

with different methods and without retraining. The model trained and evaluated on data 

decontaminated by SCRuB provided good prediction accuracy (auROC=0.84), while models 
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trained on alternative methods showed little to no predictive capacity (auROCs of 0.50–

0.64; p=3×10−5 for each method vs. SCRuB; Methods). *, one-sided Wilcoxon signed-rank 

p<0.01 comparing the marked method and the non-decontaminated data; shaded area, 95% 

confidence interval. See Supplementary Table 1 for exact p values.
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