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Generalization of the Dynamic Clamp Concept in
Neurophysiology and Behavior
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Abstract

The idea of closed-loop interaction in in vitro and in vivo electrophysiology has been successfully implemented in the
dynamic clamp concept strongly impacting the research of membrane and synaptic properties of neurons. In this paper we
show that this concept can be easily generalized to build other kinds of closed-loop protocols beyond (or in addition to)
electrical stimulation and recording in neurophysiology and behavioral studies for neuroethology. In particular, we illustrate
three different examples of goal-driven real-time closed-loop interactions with drug microinjectors, mechanical devices and
video event driven stimulation. Modern activity-dependent stimulation protocols can be used to reveal dynamics (otherwise
hidden under traditional stimulation techniques), achieve control of natural and pathological states, induce learning, bridge
between disparate levels of analysis and for a further automation of experiments. We argue that closed-loop interaction
calls for novel real time analysis, prediction and control tools and a new perspective for designing stimulus-response
experiments, which can have a large impact in neuroscience research.
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Introduction

The idea of a direct closed-loop interaction with neurons goes

back to the beginnings of electrophysiology in the 1940s when the

work of George Marmount and Kenneth Cole resulted in the

voltage clamp technique that measures currents across the

membrane of excitable cells while holding the membrane voltage

at a set level [1,2]. Later on, the dynamic clamp technology for in

vitro and in vivo electrophysiology [3,4] has produced many

examples of successful closed-loop interactions with neural

systems. The dynamic clamp protocols build a voltage-dependent

current-injection cycle to introduce artificial membrane or

synaptic conductances into living neurons. It has been used to

investigate a large variety of membrane properties and to create

hybrid circuits of real and artificial neurons and synapses [5–9]. As

different software implementations have become available both

under Windows [7,10–12] and real time Linux operating systems

[13–17], this technique has turned into a widely used tool for

studying neural systems at the cellular and circuit levels (for a

review see [5,18–20]).

The dynamics of neurons and neural networks can only be

observed partially, i.e., through a subset of variables that reflect

their current state such as intra– or extra–cellular membrane

potential, calcium concentration, blood oxygen level, etc. Classic

dynamic clamp only considers membrane potential for observation

and current injection for stimulation. A further complication is

that neural systems are highly nonlinear and adaptive, usually

working in transient regime [21–23], which adds to the problem of

partial observation. Thus, the mechanisms to extract information

from them and the way to drive effective stimulation are very

limited. In this context, closed-loop interaction provides a large

variety of possibilities to characterize dynamics from partial

measurements and to exert control or induce learning through

activity-dependent stimulation.

Given a specific goal, an adaptive closed-loop protocol can

automatically search for or characterize dynamics, achieve

effective control or induce learning that relies on precise or

varying timing, duration, amplitude and/or location of the

stimulation. In this paper we show several examples of how the

dynamic clamp concept can be further generalized into a wide

variety of activity dependent interactions that go beyond electrical

recording and stimulation. Note that similar concepts to the

voltage clamp, such as calcium clamp techniques, exist since the

80s [24,25]. However, they not always follow a close-loop

feedback approach or still pose a number of problems in the

context of neurophysiological studies [26]. The examples discussed

in this paper arise in different experimental contexts but they all

share a common goal-driven closed-loop illustrated in Fig. 1. The

activity of the biological signal is monitored through a specific set

of sensors (e.g. microelectrodes or cameras) and an event detection

algorithm is used to drive the adaptive stimulation protocol

through the actuator (a microelectrode that conveys a current, a

microinjector that delivers a neurotransmitter, a stepper motor

that applies a mechanical stimulus, etc.). The output of the

detection and the stimulation can be used for identification

purposes by updating or estimating the parameters used in this

loop. The goal-driven nature of the closed-loop is crucial as only in

this case can the adaptive stimulation be evaluated and then

modulated online by the update of the loop parameters.
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The paper is organized as follows: First we describe a closed-

loop for activity-dependent neurotransmitter or neuromodulator

microinjection with the goal of controlling the spiking-bursting

activity of motoneurons; in the next section we illustrate closed-

loop video event driven stimulation for behavioral control in

neuroethological studies; then we provide an example of activity-

dependent mechanical stimulation that allows to automate the

search for receptive fields throughout the sensory-motor transfor-

mation. Finally, we discuss the need for real time or online event

detection algorithms and internal representations to build a new

generation of adaptive activity-dependent stimulation protocols for

a broad range of research in neuroscience.

Results

Closed-loop Drug-microinjection
In dynamic clamp protocols, microelectrodes are used to record

voltage and deliver currents in an activity-dependent manner.

Such closed-loop allows to build an artificial chemical synapse by

modeling the dynamics of a synaptic current triggered by a

presynaptic spike. This is generally done with one or several

equations that readily provide the current for each voltage value

[3,4,12].

A more realistic artificial chemical synapse can be achieved by

substituting current with a controlled amount of neurotransmitter

or neuromodulator injection in a given neuron or circuit. This

injection can be delivered as a function of a specific event detected

in an electrophysiological recording. The drug delivery, controlled

by a computer that is monitoring a signal used to build a stimulus-

response loop, can be executed through a microinjector. Closed-

loop drug-microinjection is particularly relevant since in the most

common cases the event to trigger the microinjection is the

occurrence of one or several action potentials at a specific time not

known a priori. The event detection monitoring in the closed-loop

scheme shown in Fig. 1 provides a solution to this problem.

Here we will illustrate closed-loop drug microinjection with a

specific example in the framework of the study of neural signatures

of cell-specific intraburst insterspike intervals [27–29]. Neural

signatures are robust and reproducible spike timings within the

bursting activity of individual neurons. They were first described

in the context of the study of central pattern generator circuits

[27]. Experimental and modeling results show that neural

signatures can have an important role in the activity of neural

networks to identify the source of the information or to

contextualize a message [30–32]. In order to address the

functional effect of neural signatures, a procedure to change the

number of action potentials and the temporal structure of the

intraburst spiking activity is required. We describe bellow a simple

experiment to perform this task with the heart motoneurons of the

crab Carcinus maenas using our closed-loop system. The goal of this

activity-dependent stimulation is to achieve specific number of

spikes in the bursting activity of a neuron through acute chemical

inhibition.

In an open-loop experiment the heart central pattern generator

(CPG) from the cardiac ganglion of the crab Carcinus maenas was

subjected to microinjections of gamma-aminobutyric acid

(GABA). Figure 2 shows that GABA microinjections have a

transient inhibitory effect on the neurons of the cardiac ganglion.

The effect of this inhibition depends on the amount and timing of

the microinjections and can be adjusted so that the inhibition is

mild and short (enough to modify the number of spikes or the

duration of single bursts). This type of stimulus was used in the

closed-loop microinjection protocol that we describe below.

In the proposed closed-loop drug-microinjection, the membrane

potential of one neuron is measured and an adaptive stimulation

protocol of GABA microinjection is implemented by coupling the

microinjections to the detection of specific events in an

eletrophysiological recording. The microinjections are delivered

at a desired location with a Picospritzer. The stimulation onset and

duration is precisely controlled through the activity-dependent

protocol.

Figure 3 illustrates the details of this activity-dependent closed

loop. The membrane potential of a cardiac cell is monitored by the

real time (RT) software which runs an event detection algorithm to

perform the activity-dependent drug microinjection. When an

event is detected, the software sends a signal to the microinjector

and GABA is released. The right panel shows the RT stimulation

protocol we employed in the experiments. This protocol consists of

a double 1 mM GABA injection (two 40 ms pulses separated by

30 ms) when the third spike is detected at the beginning of a burst

of a cardiac neuron. In fact, any protocol based on sequential

event detections involving different temporal and spatial scales can

be implemented to build the loop.

Figure 1. Schematic representation of the goal-driven closed-loop for the activity-dependent stimulation used in the three
examples discussed in this paper. The activity of the biological system is monitored through a set of sensors (e.g. microelectrodes, cameras). A
given goal drives the detection of specific events that are used to control the adaptive stimulation (through specific actuators) that will lead to this
goal. Simultaneously, the output of the event detection and the stimulation can be used for identification purposes by updating or estimating the
parameters that control this loop. Examples of goals for the closed-loop interaction are to exert control, reveal or characterize the dynamics, or to
achieve the automation of a experiment as we illustrate in the next sections.
doi:10.1371/journal.pone.0040887.g001
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The effect of the activity-dependent GABA microinjection

protocol evoked by the real time detection of three action

potentials in a CPG neuron is shown in Fig. 4. For the

characterization of the activity during the control, the inhibitory

closed-loop protocol and the recovery period, we used the raster

plots of the spiking activity, the distribution of the number of spikes

per burst and the inter-spike interval return maps. The top row

shows the control activity (irregular bursts with a large variability

in the number of spikes in this preparation). The middle row shows

the activity during the closed-loop stimulation period. The activity-

dependent stimulation protocol was able to regularize the bursting

activity and maintain it within a given number of spikes per bursts

without periodic injections of GABA. At the beginning of this

adaptive protocol there were successive microinjections that

automatically became less and less frequent leading to the activity

shown in the middle panel of the first column of Fig. 4. The

bottom row shows the activity after the stimulation protocol was

stopped and the neurons went back to their normal bursting

regime.

We have illustrated a simple protocol of real time event-driven

drug microinjection to change neural signatures and achieve a

desired state in the spiking-bursting activity of CPG neurons. This

novel type of activity-dependent chemical interaction can be

applied to the study of many aspects of neuromodulation and

neurotransmitter stimulation, and to achieve control of natural or

pathological states through a temporally precise drug release. The

protocol can be further enhanced through the monitoring of

signals from different neurons or nerves and multiple drug delivery

at different sites. Note that these families of protocols may use

Figure 2. Transient effect of GABA microinjections on cardiac cells in a traditional open-loop protocol with periodic stimulation.
The top panel shows the effect of GABA on the membrane potential of a CPG neuron from the cardiac ganglion of Carcinus maenas. The vertical
arrow indicates the instant in which a burst of periodic GABA microinjections (vertical lines) of 50 ms of duration and separated by 200 ms takes
place. These injections produce a transient inhibitory effect on the bursting activity. The bottom panel is a blow up of the squared region on the top
panel. Single pulses evoke a much more transient response as shown in Fig. 4, which is used to control the number of spikes in each burst during the
closed-loop experiment.
doi:10.1371/journal.pone.0040887.g002

Figure 3. Activity-dependent drug microinjection. Panel A shows a schematic representation of the closed-loop drug stimulation protocol. In
this example, the membrane potential of a neuron is monitored by an event detection algorithm to perform the activity-dependent drug
microinjection. When an event is detected, the software sends a signal to the microinjector and the neurotransmitter or neuromodulator is released.
Panel B shows the real time (RT) stimulation protocol we employed in the experiments discussed in this section. This adaptive protocol consists of a
double 1 mM GABA injection (two 40 ms pulses separated by 30 ms) when the third spike is detected at the beginning of a burst of a cardiac neuron
(vertical lines indicate the detection of single spikes, arrows indicate the instant in which the microinjection takes place). The resulting inhibitory
closed-loop is used to achieve a desired number of spikes in the bursting activity of these neurons.
doi:10.1371/journal.pone.0040887.g003
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stimuli that depend not only on instantaneous measurements, but

also on the previous (adequately long) history of the recordings.

Closed-loop Video-event Driven Stimulation
Following the same strategy illustrated in the previous section,

animal behavior can be monitored and stimuli can be driven as a

function of events that evolve in time and are not periodic or

predictable a priori. This is especially relevant in those studies

where the focus is on behavioral activity that is triggered by the

interaction of the animal with its own environment. It is also

important for conditional learning tasks that heavily rely on the

animal’s previous activity to decide what stimulus comes next.

While offline video analysis is widespread in behavioral studies

[33–35], online video tracking and particularly video event-driven

stimulation remains quite unexplored in neuroscience research.

Online video tracking is often limited for automation of

observations [36], with very few exceptions mainly in the context

of maze studies in rodents [37]. In this section we show an

example of online video tracking and device triggered in a closed-

loop to implement neuroethological activity-dependent stimulation

protocols.

Video event driven stimulation can be used to build model-

driven conditional training experiments, learning protocols and

behavioral control procedures. Behavioral monitoring can be

implemented through online video tracking while stimulation is

driven through the online control of visual, auditory, olfactory,

mechanical or electrical cues. There is a wide variety of

possibilities to monitor animal behavior and deliver activity-

dependent stimulus by building actuator control signals which can

have an adaptive temporal structure based on events detected

from the online video tracking and/or other behavioral sensors. It

is also possible to define events from multiple modalities when

available and to combine different stimulation techniques.

We illustrate the use of these protocols with an example of

activity-dependent stimulation for the elephant fish Gnathonemus

petersii (see Fig. 5). This fish has poor eyesight and uses a weak

electric field to find food and to navigate [38–40]. Gnathonemus

petersii is also a well-known animal model for the study of electric

communication [41], and its signaling has also been used to assess

water quality [42]. In our example we use adaptive electrical

stimulation as a function of the fish position detected from online

video-tracking to build a virtual fence. Panel D in Figure 5

illustrates the setup for the online video tracking and the activity-

dependent stimulation protocol.

In many cases, fast online tracking of the position of the animal

in a controlled environment can be achieved in a simple manner

by subtracting consecutive frames from the camera recording.

This can be easily implemented with, for example, opencv libraries

(http://opencv.willowgarage.com). Thus, events for the triggering

of the stimulus in our example can come from the camera that

monitors the location of the fish, and/or from the electrical activity

of the animal. This activity is recorded in real time from cables

immersed in the water tank and the corresponding signals are

amplified, acquired by a DAQ board and processed by a computer

(see Fig. 5D). The electrical stimulus is generated in the computer

(conditioned in amplitude and frequency to make it aversive but

not harmful to the fish), sent to the DAQ board and delivered by

the immersed cables (the actuators in the general close-loop

scheme shown in Fig. 1).

Since the goal in this example of closed-loop video-event driven

stimulation is to build a virtual fence for the fish, we used a

sinusoidal aversive electrical stimulus that was delivered as a

function of the fish position in the tank. Right panels in Figure 6

depict the virtual fence as a vertical black line both in the online

video panel and in the tracking panel (below). This figure also

illustrates the fish electrical activity (left top panel) and the aversive

signal delivered when the fish crosses the virtual fence (below).

Figure 7 shows the result of the analysis of the tracking of the fish

during a control experiment with no stimulation (left panels) and

during the virtual fence activity-dependent stimulation protocol

(right panels). Both experiments lasted 800 seconds. In the control

experiment, the fish explored the tank without a preferred position

(left panels). In the closed-loop system, the position of the fish was

monitored and the aversive stimulus was delivered when the animal

crossed the virtual barrier (located at pixel 300 in the horizontal axis

of the camera). Once the virtual fence closed-loop stimulation

started, the fish remained mainly on the left part of the tank where no

Figure 4. Results of the activity-dependent drug stimulation protocol. The rows on the first column show the membrane potential time
series during control (top row), stimulation (middle row) and recovery after washout (bottom row). The rows on the second column show the raster
plots for control (top), stimulation (middle) and recovery (bottom). The rows on the third column show the distribution of the number of spikes in
each burst for the three time series. Finally, the panels on the fourth column show the inter-spike intervals (ISI) return maps during control (top),
stimulation (middle) and recovery (bottom). Note that during the stimulation, the number of spikes per burst drastically decreased because of the RT
activity-dependent GABA microinjections.
doi:10.1371/journal.pone.0040887.g004

Generalization of the Dynamic Clamp Concept
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stimulation was received (right panels in Fig. 7). The protocol can be

adapted so that the stimulus gets increasingly stronger as the fish gets

closer and closer to a virtual fence. Similarly, the protocol can also

include the online analysis of the electric fish signals as well as its

position to deliver the stimulus. All these families of protocols can be

used to train the fish to be in a specific region of the water tank

without having a physical barrier and to study its signaling in

different behavioral contexts.

Figure 5. Closed-loop video-event driven stimulation. A: Electric fish Gnathonemus petersii. B: Single electrical organ discharge of this fish. C: a
typical train of activity (signals are squared in this plot). D: Schematic representation of the closed-loop video-event driven stimulation.
doi:10.1371/journal.pone.0040887.g005

Figure 6. Virtual water fence through position-dependent stimulation. When the fish crosses a virtual barrier (vertical black line on the right
panels) an aversive stimulus is delivered (bottom left) so that the fish stays in a specific space of the water tank. The top left panel shows the electrical
activity of the fish.
doi:10.1371/journal.pone.0040887.g006

Generalization of the Dynamic Clamp Concept
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Closed-loop Mechanical Stimulation
In a last example, we illustrate a further generalization of the

activity-dependent closed-loop in electrophysiology, in this case

oriented to automatically find receptive fields throughout the

sensory-motor transformation with an adaptive mechanical

stimulation. Mechanical stimulation is widely used to study

sensory encoding and sensory-motor transformation (e.g. see

[43–46]). Realistic mechanical stimulation is needed in these

studies as the correct sensory input will evoke a natural response at

any stage of the nervous system [47]. Novel types of mechanical

stimulation protocols that include artificial closed-loops between

different stages of the sensory-motor transformation can unveil the

underlying dynamics of information processing. The stimulation of

mechano-receptor neurons is achieved through a large variety of

devices that generate movement [48–51]. In particular, a stepper

motor can act as a precise mechanical stimulator since, as an

electric device that divides a full rotation into a large number of

steps, it can be turned to a very accurate angle. Speed and

acceleration can also be controlled by sending the appropriate

commands at precise time windows, which in some cases requires

dedicated hardware, programmable logic or the use or real time

software technology [47].

To illustrate a closed-loop control of a stepper motor for

mechano-sensory stimulation we will use an in vitro preparation of

the mollusk Clione limacina. A combination of simplicity, accessi-

bility of the system and variability of behaviors make this animal

especially attractive for a complete understanding of the sensori-

motor transformation [52,53]. Clione is a planktonic mollusk that

swims by rhythmic movements of a pair of wings and the tail.

During swimming Clione maintains a head up orientation [54–56],

under the control of signals from a pair of gravimetric organs, the

statocysts [56–58]. Each statocyst contains a stone-like structure,

the statolith, that moves inside the sphere under the influence of

gravity. The statolith excites the sensory neurons that line the

internal wall of the statocyst. The statocyst activity has a strong

influence on the wing and tail motor systems that control the body

orientation [52]. A deviation from the vertical orientation of the

animal evokes compensatory changes in wing and tail motions. In

addition, the statocysts have been shown to play a major role in

generating Clione’s hunting behavior [53,59–61], which consists in

a series of fast loops in varying planes to scan the surrounding

Figure 7. Analysis of the fish position tracking. In the control experiment, the fish explored the tank without a preferred position (left panels).
Once the virtual fence closed-loop stimulation started, the fish stayed mainly on the left part of the tank where no stimulation was received (right
panels). Note the abrupt change in the histogram at pixel 300 in the horizontal axis of the camera, which corresponds to the position of the virtual
fence.
doi:10.1371/journal.pone.0040887.g007

Generalization of the Dynamic Clamp Concept
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space in search of prey [62]. After removal of one statocyst, Clione

can maintain orientation, although it is slightly off the vertical

plane [58]. We used this fact and manipulated only one of the

statocyst to produce a motor response.

To build a realistic method of statocyst stimulation, we detached

the statocyst from the pedal ganglion while leaving the nerve to the

cerebral ganglion intact. The statocyst was gently sucked into a

glass pipette whose tip diameter corresponded to that of the

statocyst (see Fig. 8). The pipette was attached to an arm

connected to the stepper-motor. By closely adjusting the length of

the pipette to align its tip with the axis of rotation of the arm, we

were able to move the statocyst in one plane of a particular

orientation, either posterior/anterior or left/right. Different

stimulation paradigms involving speed, acceleration and direc-

tional changes can be tested with this setup, in which only the

statocyst moves while the rest of the nervous system remains static.

The motor controller has to send a sequence of commands

distributed in accurate time intervals to the motor inputs. Since

our goal is to implement an activity-dependent control of the

rotation, we have used the analog inputs of a data acquisition

board to record neural activity and its digital output to send

commands to the motor (for details on the real time control of

stepper-motors see [47]). To build the activity-dependent stimu-

lation, extracellular recordings from the wing nerve were done

with a steel electrode as described in [53,62].

Figure 9 shows the results of the closed-loop used in this

example with the goal of automatically finding receptive fields of

motoneurons reacting to the mechanical stimulation of the

gravimetric organ. The following protocol was used: The motor

sweeps through a range of angles (top row in Fig. 9). The software

monitors the occurrence of a stereotyped burst in the activity of the

wing nerve as recorded by the extracellular electrodes (middle row

in this figure, the burst events are indicated by blue vertical arrows

at the bottom row). After a burst detection, the motor changes

direction. When another burst is detected or a maximum angle is

reached (horizontal dotted lines), the motion turns back in the

opposite direction. Vertical dashed lines in the middle row in

Figure 9 point out a region found with this closed-loop protocol

where a strong response to the motor movement was observed for

an angle of around 221u (green horizontal arrow). This receptive

field was automatically detected by the activity-dependent

stimulation protocol.

The above experiment is just an illustrative example of the use

of closed-loop mechanical stimulation to achieve an automatic

search for activity. The same protocol can be used throughout the

sensorimotor transformation to find receptive fields at the sensory,

central nervous system or motor system stages. In fact, a wide

variety of adaptive protocols involving complex spatial or temporal

relations between the detected events and the mechanical stimuli

can be implemented using the same approach. In this method (as

well as in the other examples above), as a pure software-based

solution based on the scheme depicted in Fig. 1, all efforts are

directed at relatively simple programing using experimental

equipment that is already present in any laboratory without the

need for additional expensive hardware. Thus, the real time

detection of events and the control of actuators are compactly

integrated, which allows a researcher to define and modify a large

variety of detection algorithms and control parameters.

Discussion

In this paper we have shown three representative examples of

how the dynamic clamp concept can be generalized to build novel

activity-dependent protocols to exert control, drive behavior or

reveal dynamics both in neurophysiological and behavioral

experiments. Traditional dynamic-clamp experiments monitor

voltage activity and instantaneously drive a corresponding

electrical current to implement artificial membrane conductances

or synapses. The examples presented illustrate that other types of

monitoring and stimulation mechanisms are possible for a wide

range of applications in neuroscience research by following and

expanding the philosophy used in dynamic-clamp protocols with

the adaptive closed-loop approach represented in Fig. 1. In

particular, we have first described an activity-dependent drug-

microinjection to precisely deliver GABA as a function of specific

events detected in membrane potential activity. This inhibitory

closed-loop produces regularized activity with the desired number

of spikes as a result of a reduced number of microinjections whose

Figure 8. Experimental setup for the closed-loop mechanical stimulation. (A) Close up of the preparation showing Clione’s nervous system
with the pipette holding the statocyst (white arrow). (B) Schematic representation of the activity-dependent mechanical stimulation closed-loop. The
figure depicts the suction pipette that holds the gravimetric organ and the recording electrodes used to detect events that drive the motor
movements.
doi:10.1371/journal.pone.0040887.g008
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timing is determined by the ongoing activity. Then we have

illustrated an online video-event driven stimulation to control the

behavior of an electric fish. In this protocol the position of the fish

was tracked online and an aversive electrical signal was used to

build a virtual fence. Finally in the last section, the mechanical

stimulation of a gravimetric organ was triggered by the ongoing

activity of a nerve to automatically find receptive fields of neurons

reacting to this stimulation. All these protocols were implemented

following the goal-driven closed-loop illustrated in Fig. 1. The goal

given to each experiment was used to evaluate and modulate the

adaptive stimulation, in particular its timing, duration, and/or

amplitude.

From a theoretical point of view, building new types of closed-

loops for neuroscience research requires to enlarge the techniques

and procedures presented in the previous sections, which used

relatively simple event-detection and stimulation protocols. The

research and development of new interaction closed-loops for

neuroscience and neuroethology call for novel online event

detection, characterization of the dynamics, and stimulus explo-

ration tools. As we have discussed above, stimuli can be

constructed not only in response to instantaneous activity but also

by integrating past measurements. Moreover, we have highlighted

the convenience of using all possible sources of information (i.e., to

integrate multimodality both in the recording and the stimulation)

to construct the actuation law. Novel types of activity-dependent

stimulation protocols need methods to automatically select the

proper stimulus to modify given dynamics. The aim of these

procedures is not only to achieve a desired dynamical behavior,

but also to unveil the inner characteristics of the system(s) by

means of the analysis of events detected in correspondence to

realistic stimuli. Therefore, methods and tools are required to

simultaneously address identification, representation and explora-

tion tasks for closed-loop interactions.

Online event detection is one of the most critical components of

the closed-loop technology, since the controllability of closed-loop

schemes requires the extraction of the significant parts of time

series in a short span of time. There is a real need to design and

implement accurate and fast methods to handle non-stationarity.

Procedures based on asymptotic behavior of time series are not

suitable in this context, since in many cases the core of neural

activity is determined by transient dynamics and non-stationary

processes [22]. As alternatives we can consider model based and

time-frequency methods, along with the symbolic analysis of time

series. Transient dynamics can be reproduced by a proper

dynamical system model [23,63] and, consequently, event

identification can be defined as a procedure to determine some

parameters of the underlying dynamical system model [64]. The

interleaving of event detection and internal representation is very

time consuming and dependent on the selected model, which

makes this strategy not advisable in some cases. A possible solution

can be provided by time-frequency methods, since they can be

successfully applied to dynamics characterization [65,66]. Another

option for approaching transient dynamics is to deal with coarse-

grained versions of the associated time series and resort to the

framework of applied symbolic theory. An efficient and accurate

way to translate time series into symbolic representations is drawn

by their ordinal patterns [67], which have been successfully

applied to detect determinism [68], to the estimation of dynamical

parameters [69], and to control chaotic systems [70]. Finally, on-

line detection of events can be only performed if statistics are

computed for short time series, and thus sliding windows must be

used in order to meet this need. Entropy estimation for short time

series can be further improved by using, for example, the Lempel-

Ziv complexity measure [71].

It is important to emphasize that modern types of activity-

dependent stimulation can act simultaneously in different time and

spatial scales in order to bridge between different levels of analysis

and deal with intrinsic limited observation and stimulation

capabilities. Multimodality both in the recording and the

stimulation can also lead to improved results for the tasks of

revealing dynamics and achieving control. The goal-driven closed-

Figure 9. Automatic receptive field search through the stepper motor activity-dependent stimulation. The figure shows the
simultaneous recording of the stepper motor movement (top row), the wing motor nerve (middle row) and the real time burst detection on the wing
nerve (bottom row). The motor is automatically sweeping through a range of angles. The software monitors the occurrence of stereotyped bursts in
the activity of the wing nerve. After a burst detection or when a defined maximum angle is reached (horizontal dotted lines), the motor changes
direction. Vertical dashed lines indicate a region where a strong response of wing motoneurons was observed in response to a stimulation around
221u (green horizontal arrow).
doi:10.1371/journal.pone.0040887.g009
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loop interaction scheme depicted in Fig. 1 allows the processing of

multiple sensors and actuators.

We can identify two main factors that may impede the rapid

progress of the generalization of closed-loop activity-dependent

stimulation in neuroscience: The cost of commercial hardware and

software solutions, and the inertia to go beyond the classical ways

of thinking about stimulus-response experiments in neuroscience.

We hope that the examples that we have provided in this paper

and the fast development of non-commercial software can

contribute in this direction. In this context, we are building

RTbiomanager [16], a tool to take advantage of real time

technology to build activity driven protocols in a wide variety of

experiments. All examples shown in this paper were implemented

using this software.

Beyond the examples illustrated here, multiple electrode and

modern optical techniques (voltage and calcium imaging,

optogenetics, two-photon microscopes, fMRI setups, laser stimu-

lation) can largely benefit from the generalization of the dynamic-

clamp concept that we have discussed in this paper. Cell cultures

and stem-cell research could also use a large variety of adaptive

activity-dependent protocols for targeted differentiation purposes.

Extracting information from the nervous system from partial

measurements and limited stimulation methodologies is an

extremely difficult task. In this context, novel goal-driven closed-

loop interactions will lead to automate experiments, to reveal

dynamics otherwise hidden under traditional stimulus-response

protocols, and to achieve faster and better control on natural or

pathological dynamics.

Methods

Although the activity-dependent stimulation protocols were

described in the main text and illustrated in the figures, in this

section we provide further details on the methods for the three

different experiments discussed in this manuscript.

Closed-loop Drug-microinjection
Adult male and female shore crabs were used for the illustration

of the closed-loop drug-microinjection. The heart was accessed by

removing the overlying carapace. Once extracted, it was pinned

ventral side up in a silicone elastomer (Sylgard) petri dish. The

lateral walls were cut out and the heart ganglion was dissected out

from the surrounding muscles. The isolated cardiac ganglion was

bathed by Carcinus maenas saline (in mM: 433 NaCl, 12 KCl

12 CaCl22H2O, 20 MgCl26H2O, 10 HEPES, adjusted to

pH 7.60 with 4 M NaOH). Membrane potential was recorded

from the anterior motor neuron LC3 using 3M KCL-filled

microelectrodes (10–20 Mohms). The signal was amplified on a A-

M Systems neuroprobe amplifier (model 1700) and acquired by a

National Instruments PCI-MIO-16E-4 card. GABA was dissolved

in Carcinus maenas saline to a final concentration of 1 mM. This

solution was directly applied onto the LC3 soma using a

Picospritzer III microinjector (Parker Hannifin Corp.).

Closed-loop Video-event Driven Stimulation
Large specimens of Gnathonemus petersii were acquired from a

local aquarium. Silver cables located in the corners of the water

tank (c.f. Figs. 5D) were used to deliver the aversive stimulus and to

record the electrical activity of the fish. We used a Logitech C905

USB camera to monitor the location of the fish in real time. The

RTBiomanager software implemented the online video-tracking to

instantaneously calculate the position of the fish and to deliver the

aversive stimulus via a DAQ National Instruments PCI-6251

acquisition board, which was also used to record the electrical

activity of the fish.

Closed-loop Mechanical Stimulation
Clione limacina specimens were collected at St. John’s,

Newfoundland, and sent to our lab in Madrid. The preparation,

including cerebral, pedal, and abdominal ganglia with the tail and

wing nerves, was pinned to a Sylgard lined petri dish as previously

described [53,62]. Extracellular recordings were made by stainless

steel electrodes. The details of the real time control of the stepper

motor can be found in [47]. The stimulation and the recording

were performed using a National Instruments PCI-MIO-16-E4

acquisition board. A stand-alone code to control stepper motors

under Linux with RTAI (RealTime Application Interface) is

available in our website http://www.ii.uam.es/̃gnb/rtmotor.
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7. Pinto RD, Elson RC, Szücs A, Rabinovich MI, Selverston AI, et al. (2001)

Extended dynamic clamp: controlling up to four neurons using a single desktop

computer and interface. J Neurosci Methods 108: 39–48.

8. Varona P, Torres JJ, Abarbanel HD, Rabinovich MI, Elson RC (2001)

Dynamics of two electrically coupled chaotic neurons: experimental observations

and model analysis. Biol Cybern 84: 91–101.

9. Masson GL, Masson SRL, Debay D, Bal T (2002) Feedback inhibition controls

spike transfer in hybrid thalamic circuits. Nature 417: 854–858.

10. Kullmann PHM, Wheeler DW, Beacom J, Horn JP (2004) Implementation of a

fast 16-bit dynamic clamp using LabVIEW-RT. J Neurophysiol 91: 542–554.

11. Nowotny T, Szucs A, Pinto RD, Selverston AI (2006) StdpC: a modern dynamic

clamp. J Neurosci Methods 158: 287–299.

12. Kemenes I, Marra V, Crossley M, Samu D, Staras K, et al. (2011) Dynamic

clamp with StdpC software. Nat Protoc 6: 405–417.

13. Butera RJ, Wilson CG, Delnegro CA, Smith JC (2001) A methodology for

achieving high-speed rates for artificial conductance injection in electrically

excitable biological cells. IEEE Trans Biomed Eng 48: 1460–1470.

14. Dorval AD, Christini DJ, White JA (2001) Real-time linux dynamic clamp: a fast

and flexible way to construct virtual ion channels in living cells. Ann Biomed

Eng 29: 897–907.

Generalization of the Dynamic Clamp Concept

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e40887



15. Muniz C, Arganda S, Rodrı́guez FB, de Polavieja GG, Varona P (2005) Realistic

stimulation through advanced dynamic clamp protocols. Lect Notes Comput Sc
3561: 95–105 3561: 95–105.

16. Muniz C, Rodrı́guez F, Varona P (2009) RTBiomanager: a software platform to

expand the applications of real-time technology in neuroscience. BMC
Neuroscience 10: P49.

17. Lin RJ, Bettencourt J, Ite JW, Christini DJ, Butera RJ (2010) Real-time
experiment interface for biological control applications. Conf Proc IEEE Eng

Med Biol Soc 2010: 4160–4163.

18. Goaillard JM, Marder E (2006) Dynamic clamp analyses of cardiac, endocrine,
and neural function. Physiology (Bethesda) 21: 197–207.

19. Destexhe A, Bal T, editors (2009) Dynamic-Clamp: From Principles to
Applications. Springer, New York.

20. Economo MN, Fernandez FR, White JA (2010) Dynamic clamp: alteration of
response properties and creation of virtual realities in neurophysiology.

J Neurosci 30: 2407–2413.

21. Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI (2006) Dynamical
principles in neuroscience. Reviews of Modern Physics 78: 1213–1265.

22. Rabinovich MI, Varona P (2011) Robust transient dynamics and brain
functions. Front Comput Neurosci 5: 24.

23. Rabinovich MI, Afraimovich VS, Bick C, Varona P (2012) Information flow

dynamics in the brain. Physics of Life Reviews 9: 51–73.
24. Baker P, Knight D, Umbach J (1985) Calcium clamp of the intracellular

environment. Cell Calcium 6: 5–14.
25. Belan P, Kostyuk P, Snitsarev V, Tepikin A (1993) Calcium clamp in isolated

neurones of the snail helix pomatia. The Journal of Physiology 462: 47–58.
26. Idoux E, Mertz J (2011) Control of local intracellular calcium concentration with

dynamic-clamp controlled 2-photon uncaging. PLoS ONE 6: e28685.

27. Szucs A, Pinto RD, Rabinovich MI, Abarbanel HDI, Selverston AI (2003)
Synaptic modulation of the interspike interval signatures of bursting pyloric

neurons. J Neurophysiol 89: 1363–1377.
28. Szucs A, Abarbanel HDI, Rabinovich MI, Selverston AI (2005) Dopamine

modulation of spike dynamics in bursting neurons. Eur J Neurosci 21: 763–772.

29. Lago-Fernandez LF, Szucs A, Varona P (2009) Determining burst firing time
distributions from multiple spike trains. Neural Comput 21: 973–990.

30. Latorre R, Rodrguez FB, Varona P (2006) Neural signatures: multiple coding in
spiking-bursting cells. Biol Cybern 95: 169–183.

31. Baroni F, Torres JJ, Varona P (2010) History-dependent excitability as a single-
cell substrate of transient memory for information discrimination. PLoS ONE 5:

e15023.

32. Brochini L, Carelli PV, Pinto RD (2011) Single synapse information coding in
intraburst spike patterns of central pattern generator motor neurons. The

Journal of Neuroscience 31: 12297–12306.
33. Buccafusco J, editor (2009) Methods of Behavior Analysis in Neuroscience. 2nd

edition. CRC Press, Boca Raton (FL).

34. Turner SL, Li N, Guda T, Githure J, Card RT, et al. (2011) Ultra-prolonged
activation of co2-sensing neurons disorients mosquitoes. Nature 474: 87–91.

35. da Silva Arago R, Rodrigues MAB, de Barros KMFT, Silva SRF, Toscano AE,
et al. (2011) Automatic system for analysis of locomotor activity in rodents–a

reproducibility study. J Neurosci Methods 195: 216–221.
36. Noldus LP, Spink AJ, Tegelenbosch RA (2001) Ethovision: a versatile video

tracking system for automation of behavioral experiments. Behav Res Methods

Instrum Comput 33: 398–414.
37. Aguiar P, Mendona L, Galhardo V (2007) Opencontrol: a free opensource

software for video tracking and automated control of behavioral mazes.
J Neurosci Methods 166: 66–72.

38. Caputi AA, Budelli R, Grant K, Bell CC (1998) The electric image in weakly

electric fish: physical images of resistive objects in gnathonemus petersii. J Exp
Biol 201: 2115–2128.

39. Pusch R, von der Emde G, Hollmann M, Bacelo J, Nbel S, et al. (2008) Active
sensing in a mormyrid fish: electric images and peripheral modifications of the

signal carrier give evidence of dual foveation. J Exp Biol 211: 921–934.

40. Cain P, Malwal S (2002) Landmark use and development of navigation
behaviour in the weakly electric fish gnathonemus petersii (mormyridae;

teleostei). J Exp Biol 205: 3915–3923.
41. Moller P, Bauer R (1973) Communication in weakly electric fish, gnathonemus

petersii (mormyridae) ii. interaction of electric organ discharge activities of two
fish. Animal Behaviour 21: 501–512.

42. Geller W (1984) A toxicity warning monitor using the weakly electric fish,

gnathonemus-petersi. Water Research 18: 1285–1290.
43. Cullen KE, Minor LB (2002) Semicircular canal afferents similarly encode active

and passive head-on-body rotations: implications for the role of vestibular
efference. J Neurosci 22: RC226.

44. Castro AD, Drew LJ, Wood JN, Cesare P (2006) Modulation of sensory neuron

mechanotransduction by pkc- and nerve growth factor-dependent pathways.
Proc Natl Acad Sci U S A 103: 4699–4704.

45. Sánchez D, Anand U, Gorelik J, Benham CD, Bountra C, et al. (2007) Localized
and non-contact mechanical stimulation of dorsal root ganglion sensory neurons

using scanning ion conductance microscopy. J Neurosci Methods 159: 26–34.

46. Witschi R, Punnakkal P, Paul J, Walczak JS, Cervero F, et al. (2011) Presynaptic

alpha2-gabaa receptors in primary afferent depolarization and spinal pain
control. J Neurosci 31: 8134–8142.

47. Muniz C, Levi R, Benkrid M, Rodrı́guez FB, Varona P (2008) Real-time control

of stepper motors for mechano-sensory stimulation. J Neurosci Methods 172:
105–111.

48. Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guic-Robles E (1990)

Functional reorganization of primary somatosensory cortex in adult owl
monkeys after behaviorally controlled tactile stimulation. Journal of Neurophys-

iology 63: 82–104.

49. Grunfeld EA, Morland AB, Bronstein AM, Gresty MA (2000) Adaptation to
oscillopsia. Brain 123: 277–290.

50. Milenkovic N, Wetzel C, Moshourab R, Lewin GR (2008) Speed and

temperature dependences of mechanotransduction in afferent fibers recorded
from the mouse saphenous nerve. Journal of Neurophysiology 100: 2771–2783.

51. Fox JL, Fairhall AL, Daniel TL (2010) Encoding properties of haltere neurons

enable motion feature detection in a biological gyroscope. Proceedings of the
National Academy of Sciences 107: 3840–3845.

52. Deliagina TG, Arshavsky YI, Orlovsky GN (1998) Control of spatial orientation

in a mollusc. Nature 393: 172–175.

53. Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI (2005) The role
of sensory network dynamics in generating a motor program. J Neurosci 25:

9807–9815.

54. Arshavski II, Beloozerova IN, Orlovski GN, Pavlova GA, Panchin IV (1984)
Motor neuron activity of the pedal ganglia of pteropod mollusks during

generation of locomotor rhythms. Neirofiziologiia 16: 269–271.

55. Satterlie RA (1993) Neuromuscular organization in the swimming system of the
pteropod mollusk clione limacina. J Exp Biol 181: 119–140.

56. Deliagina TG, Orlovsky GN, Selverston AI, Arshavsky YI (2000) Neuronal

mechanisms for the control of body orientation in clione ii. modifications in the

activity of postural control system. J Neurophysiol 83: 367–373.

57. Panchin YV, Arshavsky YI, Deliagina TG, Popova LB, Orlovsky GN (1995)

Control of locomotion in marine mollusk clione limacina. ix. neuronal

mechanisms of spatial orientation. J Neurophysiol 73: 1924–1937.

58. Deliagina TG, Orlovsky GN, Selverston AI, Arshavsky YI (1999) Neuronal

mechanisms for the control of body orientation in clione i. spatial zones of

activity of different neuron groups. J Neurophysiol 82: 687–699.

59. Varona P, Rabinovich MI, Selverston AI, Arshavsky YI (2002) Winnerless

competition between sensory neurons generates chaos: A possible mechanism for

molluscan hunting behavior. Chaos 12: 672–677.

60. Varona P, Levi R, Arshavsky Y, Rabinovich M, Selverston A (2004) Competing
sensory neurons and motor rhythm coordination. Neurocomputing 58–60: 549–

554.

61. Venaille A, Varona P, Rabinovich MI (2005) Synchronization and coordination
of sequences in two neural ensembles. Phys Rev E Stat Nonlin Soft Matter Phys

71: 061909.

62. Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI (2004) Dual
sensory-motor function for a molluskan statocyst network. J Neurophysiol 91:

336–345.

63. Rabinovich MI, Huerta R, Varona P, Afraimovich VS (2006) Generation and
reshaping of sequences in neural systems. Biol Cybern 95: 519–536.

64. Schiff SJ (2009) Kalman meets neuron: the emerging intersection of control

theory with neuroscience. Conf Proc IEEE Eng Med Biol Soc 2009: 3318–3321.

65. Huang Z, Chen Y, Pan M (2007) Time-frequency characterization of atrial
fibrillation from surface ECG based on Hilbert-Huang transform. J Med Eng

Technol 31: 381–389.

66. Quiroga RQ, Rosso OA, Basar E, Schürmann M (2001)Wavelet entropy in
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