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ABSTRACT OF THE THESIS

Elucidation of Speckleplethysmography as an Alternative to Photoplethysmography for
Deriving Blood Pressure

By
Floranne Tavailau Ellington
Master of Science in Computer Engineering
University of California, Irvine, 2022

Professor Hung Cao, Chair

Speckleplethysmography (SPG) is a recently realized biosignal to measure heart rate variabil-
ity using a technique called laser speckle contrast imaging (LSCI). Compared to electrocar-
diography (ECG) and photoplethysmography (PPG), which are the signals used for deriving
continuous non-invasive blood pressure (BP), SPG is under explored and researched, espe-
cially concerning its relationship with BP. Studies into the relationship between SPG and
PPG have revealed that SPG has a higher signal to noise ratio, less sensitivity to melanin
content in skin for recording, and cleaner readings in colder environments than PPG. Addi-
tionally, a clear correlation is demonstrated between the two signals not only in their nature
of blood flow measurement but in their signal peaks relative to ECG. SPG has also been
proven to be low cost in components to record and is able to be adapted onto mobile or
wearable platforms, making it ideal for future remote and continuous systems. To demon-
strate the potential for SPG to be a viable substitute for PPG in BP measurement, several
experiments were conducted using a custom phone system and compared to simultaneously
recorded PPG and ECG signals. From these signals, the pulse transit time (PTT) was cal-
culated from the peak to peak time delay between the ECG waveform and the PPG and
SPG signals. The PTT values from the ECG-SPG and ECG-PPG pairings were used to

estimate BP and compared to a commercial gold standard device: the Omron inflatable

viii



cuff. From the proposed experiment, SPG was able to be used as a comparable substitute
for PPG in PTT based BP estimation as its results produced a similar or smaller error than
the BP predicted from PPG. This experiment shows the potential to create an alternative
BP system that is simple, accessible, and cost effective for users and researchers alike. To
build upon the findings in this thesis, more experiments with larger datasets and different
mathematical models capturing the relationship between BP and PTT will be conducted to

further explore the connection between SPG and BP.
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Chapter 1

Introduction

In healthcare, blood pressure (BP) measurement is an essential tool to determine the health
of a patient. BP is defined into two numbers: systolic and diastolic. Systolic BP (SBP)
measures the pressure in an arteries when the heart beats while diastolic BP (DBP) measures
the pressure of the arteries when the heart is resting in between heart beats. A normative
measurement of SBP and DBP numbers are less than 120 and 80 mmHg, respectively. High
blood pressure (HBP) or hypertension, which is defined as a reading of 140 and 90 mmHg or
higher, is a sign that a patient is at risk of heart attacks and strokes, two of the leading causes
of death in the United States. In 2019, the Center of Disease Control and Prevention reported
that hypertension was a primary or related cause of death for over half a million deaths in
the United States [1]. Currently, almost half of the adults in the US have hypertension,
with only 1 out of 4 actively monitoring and mitigating their HBP [1]. HBP has no visible

symptoms as the only definitive method to check for HBP is measuring one’s BP.

Currently, the gold standard for hospital BP measurements is catheter based arterial blood
pressure (ABP); however, this requires an invasive procedure during which an applicator

is inserted into a blood vessel. Thus, this method is not viable for continuous, remote



monitoring. For most commercial devices and hospital checkups, an inflatable cuff is used
to determine BP. As this measures ABP too, cuff-based systems are the most accurate
tool for remote and non-invasive BP. While this method is non-invasive, it is not feasible
for continuous monitoring as multiple compressions over a short period of time can cause
extreme discomfort. BP fluctuates rapidly during the day because of everyday activities,
indicating a need for a continuous monitoring option for users without hindering their day
to day life. Due to these pitfalls, there is a clear need for non-invasive and continuous BP

acquisition for long term monitoring and wearability.

Many papers have explored and reviewed the use of biological based signals, such as elec-
trocardiography (ECG) and photoplethysmography (PPG), to estimate BP from their re-
lationships to the change of blood flow over time [7, 26, 17, 22, 27, 24, 16]. Using proper
sensors, key locations on the body, and a combination of these signals, BP can be estimated
in a non-invasive and potentially continuous manner, opening up a new path for BP mon-
itoring. Researchers have investigated BP estimation using ECG and PPG and two PPG
signals using a technique called pulse transit time (PTT) [4, 23, 10], but as these rely on
PPG, they can be subject to error due to the shortcomings of this signal. PPG is an easy
to acquire signal as the equipment is low-cost, is easy to adapt into a wearable for specific
areas, such as on the wrist, finger, or earlobe, and can be recorded through reflectance or
transmission mode (Fig. 1.1). However, past studies have demonstrated that PPG can have
a delayed and small signal amplitude and is susceptible to low-temperature environments
constricting blood vessels [6, 5, 9]. Recent papers have investigated the potential of speck-
leplethysmography (SPG) for heart rate variability, microvascular flow and resistance, and
wearables as an alternative or replacement for PPG and illustrated how the experimental
setup is also relatively inexpensive, has a higher signal to noise ratio, and can record without
issue in different temperatures [5, 9, 6, 18, 20, 2]. No current literature have investigated
SPG’s potential as a signal in non-invasive, continuous BP monitoring. Thus, this thesis

aims to help fill this gap and call attention to this area of research for future BP system
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Figure 1.1: Methodology of PPG waveform acquisition:

(a) Two different modes with the use of PPG sensor: Reflectance mode and Transmission
mode;

(b) A collected PPG signal with the smartphone through the camera and LED;
(c) Procedures to extract the PPG signal through a video collected by a smartphone [16]



configurations and wearable adaptations.

This study aims to explore and demonstrate the capabilities of SPG for BP measurement and
its potential to replace PPG in BP PTT calculations. This paper will go over a more in-depth
definition of and investigate past research findings for PTT and the three signals. Then the
thesis will detail the experimental methodology, hardware and software components, and
testing protocol, the results from multiple trials of the experiments, a discussion of the

findings, and how this impacts the future steps for this research topic.



Chapter 2

Relevant Background and Works

In this section, current non-continuous BP measurement methods and the backgrounds of
PTT, ECG, PPG, and SPG are discussed. In supplement to discussing the last three topics,
related works in the field are considered to illustrate the latest research findings and the

current standing of BP techniques in relation to these three signals.

2.1 Non-continuous Blood Pressure Methods

As previously stated, the gold standard in the medical field for BP measurement is using a
catheter to assess ABP, which involves an invasive procedure to insert the catheter into a
patient’s blood vessel. As this is not feasible for long term and remote health care monitoring,
an alternative ABP method has been adapted for hospital check ups and commercial BP
recordings using an occluding cuff to report a static BP measurement and is comparable in
BP measurements as its invasive counterpart. The occluding cuff is an improvement over
catheter based ABP as it is non-invasive, quicker and simpler to perform, and adaptable

to various testing environments. However, this method is still not ideal for continuous



monitoring as frequent occlusion from the cuff can cause discomfort and potentially pain to
the user. Thus, many researchers have focused on alternative methods to achieve these goals

for ubiquitous BP monitoring.

2.2 Pulse Transit Time and Blood Pressure

A popular method to perform BP in a continuous and non-invasive manner is to use pulse
wave velocity (PWV) or, its reciprocal that this paper will be focusing on, PTT. While trav-
eling toward the peripheral arteries, the arrival times of a pressure pulse at two different sites
(i.e., proximal and distal sites) of the arterial tree are detected, which results in PTT (Fig.
2.1). This can be measured through the peak of a proximal signal and the maximum rising
slope or the peak of a distal signal as well as the peak difference between two strategically
placed distal signal devices. In this thesis, PTT is defined as the peak to peak difference
between a proximal and distal signal for simplicity. PTT relates to BP as it demonstrates
the prominence of blood flow in areas of the body over time. As PTT is the reciprocal of
PWV, their features and derived equations have a high correlation to each other. The PWV
parameter is determined as the ratio between the distance between the two measurement

sites (D) and PTT as shown in the follow equation:

D
PWV = o (2.1)

The propagation of blood in the artery is very similar to that of the propagation of a
compressible fluid. The elasticity of an artery is related to the velocity of the volume pulses

propagating through it, which can be described by the Moens-Kortweg equation [3]:

hEOe“P
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where h is the thickness in an elastic artery, d is the diameter, and p is the blood density. Ejy
is the zero-pressure modulus in mmHg, and a is a constant that depends on the particular
vessel (typically 0.016 mmHg! to 0.018 mmHg™!). From equations 2.1 and 2.2, it indicates
that high BP corresponds to high PWV, which in turn means a low PTT value. Many past
works have used this method for BP estimation using techniques from linear regression
equations to deep learning neural networks and achieved a high accuracy rate with small

margins of error [4, 23, 10, 14, 17].

2.3 Electrocardiography, Photoplethysmography, and

Speckleplethysmography

ECG-PPG ECG-SPG

ECG

PPG
SPG

Figure 2.1: Signals demonstrating simultaneous recordings of the ECG, PPG, and SPG
waveforms and how to derive PTT from ECG with either PPG or SPG

ECG is a widely used biosignal in the medical field, especially in the clinical setting, for
cardiovascular-related diagnosis and vital monitoring [12]. This waveform is also a common

proximal waveform used in PTT-based BP derivation and is typically paired with PPG in



cuff-less, non-invasive approaches using PTT [4, 23, 10]. This signal measures the small
voltage changes in the electrical activity of the heart over time in each cardiac cycle by using
electrodes attached on the body. In clinical settings, ECG electrodes are placed across the
chest, lower arms, and lower legs with grounding electrodes to create a 12-lead ECG system,
providing the clearest waveform [15]. This sensing technology is most commonly found in
hospital and clinical settings while recently-developed approaches aim to be applicable for
daily use in remote or home-based care [4, 23, 10]. Some of these home-based approaches
include using 1-lead instead of 12-leads to record ECG and weaving the electrodes into
textiles for signal acquisition [11, 19]. The waveform includes P waves, QRS complexes, and
T waves, which provides more information about the heart than other waveforms such as
PPG that usually displays one or two peaks (Fig. 2.1). Current ECG methods for BP data
acquisition include those employing machine learning or deep learning combined with PTT

14, 28).

PPG is an optical measurement commonly used in pulse oximetry in clinical settings for
obtaining oxygen saturation information. PPG is also a prominent distal waveform used in
PTT methods. This optical technique measures the amount of blood flowing in a region of
interest (ROI) through the amount of optical absorption or reflection in the optical path. In
other words, PPG detects the change of blood volume through a photoelectric technique [8].
PPG sensors can be classified into two separate measurement configurations: transmission
mode and reflectance mode (Fig. 1.1). In the transmission mode, the sensor setup includes a
light emitted diode (LED) on one side of the tissue serving as the ROI and a photodetector
(PD) on the opposite side of the tissue. In this configuration, the emitted light is transmit-
ted through the tissue and modulated by the underlying vasculature; the modulated optical
energy is then detected at the other side. In the reflectance mode, the two components (i.e.,
LED and PD) are on the same side of the tissue, usually on the same plane. The optical
signal penetrates into the tissue, and the PD will receive the reflected light back with some

fluctuations due to the tissue’s absorption. While the transmission mode is mainly limited



to the earlobe, fingertip, and toe, the reflectance mode is applicable to additional locations
as long as the ROI is a flat area (e.g. the forehead, forearm, supraorbital artery, under the
legs, and the wrist) [17]. Since the volume and distension of the arteries can be related to
the pressure in the arteries, the PPG signal produces pulse waveforms that are morpholog-
ically similar to pressure waveforms [17]. Therefore, many studies have been investigating
alternative methods to estimate BP through either only PPG signal or the combination of

PPG signal and other physiological signals such as ECG as previously mentioned.

SPG has been recently used as an alternative distal signal to PPG for measuring heart rate
variability (HRV) [6, 9]. SPG is an optical method based on laser speckle contrast imaging
(LSCI) to monitor changes in blood flow [13]. This technique is also referred to as affixed
transmission speckle analysis [9]. SPG devices utilize a laser source that emits a scatter
of small rays through the thickness of the tissue into a CMOS camera on the other side,
similar to PPG in Fig. 1.1. The camera records a raw video with at least 30 frames per
second (fps) and runs image processing techniques to identify the speckles from the laser
in the red channel of each frame. To measure, the user places a finger tip in the clip-on,
which further improves signal quality by reducing motion artifacts. The amount of speckles
detected in the image correlates to the volume of blood present at that time point, and the
change over time forms the SPG waveform. Studies comparing the signal to PPG report
a higher signal to ratio to the latter in situations with more motion and colder climates
(6, 9]. In terms of light exposure, SPG has not been compared to PPG in this aspect as
SPG tests are currently conducted in dark rooms. Similar to PPG, SPG can be measured
through smartphones as there are methods using LSCI for skin blood flow acquisition [13, 21].
Although smartphones and low-grade cameras, even with the newest models, cannot capture
raw images at a fast enough rate to create a video with 30 fps, the algorithms in [13, 21]
can be used on standard mp4 videos to derive SPG by adjusting the camera’s parameters
to have the speckles recorded shown larger than a pixel. While the HRV capabilities and its

properties compared to PPG have been explored, SPG’s relationship to BP and its potential



to be used as a distal waveform in PTT have not been investigated in current literature. This
may be due to a lack of research for SPG in healthcare measuring or less research groups

focusing on this signal.
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Chapter 3

Materials and Methodology

For validating SPG’s potential for BP monitoring, a simple hardware system and post-
experiment software configuration was constructed to record SPG, ECG, PPG, and ABP
simultaneously. The following sections detail the physical system, the signal algorithms, and

experimental procedure performed for each test subject.

3.1 Hardware

To evaluate the capabilities of SPG for BP monitoring, specific hardware is necessary such
as a CMOS camera and a red laser. For the scope of this project, the experiment involved
recording a video using a smartphone camera (A10s Samsung smartphone rear camera)
with 30 frames per second and a low cost laser diode (635NM from Quarton Inc.) shining
through the subject’s left pointer finger (Fig. 3.1). A smartphone camera was chosen as
previous literature has proven to derive SPG adequately [13, 21]. For future iterations of
this experiment, this phone based setup will be adapted into an edge device for real-time

signal display and in development of a prototype remote BP system. The laser is affixed
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Figure 3.1: SPG System Overview. The layout of the physical device with a phone accessory
holding the laser that illuminates the user’s finger with the smartphone camera capturing
the change over time.

1) Outside view of phone and device accessory

2) Inside view of device accessory displaying laser component shining through finger mem-
brane to recording smartphone camera

3) Physiological view of blood vessel during SPG measuring; adapted from [6] and [16]

to the subject’s finger via a Velcro strap, which allows for proper fitting between different
testers, and is powered by a 3V Lithium battery (Fig. 3.2). A Bluetooth remote is connected

to the smartphone to synchronize the start of the TT recording with the video recording.

For validation and comparison to previous BP monitoring methods, the AFE4950EVM Texas
Instruments (TT) device reported the subjects ECG and finger PPG. This board was vali-
dated by the company as well as in this thesis author’s research laboratory with other ECG
and PPG devices. The ECG is measured through a 3-lead chest configuration, which is
depicted in Fig. 3.3, while the PPG was recorded through the subject’s left fifth digit via
reflectance mode. Alongside this system, the Omron inflatable cuff was used to provide a

static ABP measurement to compare and calibrate the BP value calculated from PTT.

12



Figure 3.2: SPG Phone Configuration

O Q{

Figure 3.3: Schematic of 3-lead ECG
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3.2 Software and Algorithm

To filter, display, and predict the BP from the test, a python script was written to take in
an SPG video and .csv file as inputs. ECG and PPG data was exported as a .csv file from
TT Bio-Signal software is adapted and sampled at 50Hz. The data was filtered to remove the
wandering baseline using an open source algorithm presented in [25] and synchronized using
the first clear peak of the SPG and PPG for peak comparison and PTT calculation. An
additional savitzky golay filter was applied if the signal was visibly noisy. Using the video
recorded through the A10e Samsung phone, the SPG was calculated from extracting the red
intensity of each video frame. This value was determined through the following equation

presented from [6]:

1

SPG = T2

(3.1)

where T is the exposure time of the image and K is the average speckle contrast squared.
The filtered ECG and PPG signal were displayed alongside the SPG signal to determine

further calculations.

The peaks in each waveform were derived to use for PTT, which in this paper is defined as the
peak to peak difference between the proximal and distal waveforms. The time delay between

peaks between the ECG and PPG as well as ECG and PPG for PTT were ascertained for

the following linear model equations:

a

BP = 2
S (3.2)
a
P=—" .
S O (3.3)

14



BP =alnPTT +5b (3.4)

where a and b are the values calibrated from the static BP values line trend (Fig. 3.4), PTT
is the peak to peak difference between the ECG and either the PPG or the SPG signal (Fig.
2.1), and BP is the estimated blood pressure value. The a and b values change between the
3 different stages of activity performed by the test subjects. The algorithm flow chart is

depicted in Fig. 3.5.

Rest Test Data

® ~— 18%+123R*=0.082
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o
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25 3.0 35 4.0 45 5.0 5.5
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Figure 3.4: Calibration for BP estimation using the inverse of PTT and ABP values to
calculate a and b for the rest test data
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______________________________________________________________________

1) | SPG Video PPG & ECG raw data |

2) Video Data formatting
| Preprocessing and conversion

3) SPG Calculation of a) . PPG Processing ECG Processing :
Video Data . Algorithm Algorithm '
Synchronizing
5) and normalizing
signals
' v
Combined and PTT calculated
Labeled peaks from ECG-PPG and
on graph ECG-SPG peaks

Figure 3.5: Algorithm Flow Chart for SPG, PPG, and ECG comparison.

1) Input: SPG is calculated from a short video using a smartphone camera and a simple
red laser illuminating a finger. PPG and ECG are recorded using the TT AFE4950 device
with the PPG sensor measuring a finger on the same hand as the SPG acquisition and ECG
measured using a 3-lead configuration;

2) Preprocessing: The SPG video is converted into individual frames while the PPG and
ECG data is sampled at 50Hz;

3) SPG Calculation: To determine the SPG waveform, each frame’s red pixel’s intensity is
calculated based on the simplified speckle imaging equation 3.1;

4) PPG and ECG Processing Algorithms: The wandering baselines in the PPG and ECG
signals are removed, the signal amplitudes are normalized, and an optional savitzky-golay
filter is applied if the signal is visibly noisy;

5) Synchronization and Display: Using the timestamps from the input data, the SPG, PPG,
and ECG waveforms are synchronized and plotted. To show the correlation between the
three waveforms, the waveforms are normalized to have the same amplitude.

The output of the algorithm is a graph displaying all 3 signals and their respective labeled
peaks as well as the PT'T calculated between the peaks of ECG-PPG and ECG-SPG.

16



3.3 Experimental Procedure

The experiment can be broken into three main stages: measuring after 5 minutes of rest,
after light exercise (25 jumping jacks), and after heavy exercise (walking up and down three
floors of stairs). This paradigm was used to provide various BP values to fit the linear model
for BP-PTT prediction. For each stage, after performing an activity, the subject’s static
BP using the Omron is measured from their left upper arm. Immediately after removing
the cuff, the subject uses their left hand and places their fifth and second digits on the
PPG and SPG sensors respectively. The ECG is measured via a 3-lead chest configuration
using snap electrodes to connect the wires on the subject’s chest. With the TI Bio-Sensing
software and a Bluetooth controller connected to the smartphone, the signals were recorded
and simultaneously started via simultaneous clicks from the test proctor. These biosignals

were monitored for 60 seconds while the subject sits in a relaxed pose.

17



Chapter 4

Results

As previously stated in the methods chapter, the experiment was conducted in three phases
with each test subject. These tests were performed on separate days as each subject’s
availability varied. Since many potential volunteers had prior engagements, the testing pool
was limited. Each phase of the test was conducted without major delay as the only time
delay between the phases was hooking up the subject to the systems. The ECG was sampled
at a frequency of 500Hz and the PPG at 50Hz, which were defaults set by the TI development
kit. The SPG was sampled at 30 fps as this was the highest frame rate possible with the
A10e Samsung smartphone. The Omron cuff and the PPG and SPG finger readings were
all performed on the subject’s left arm to keep the test process standardized. The ECG was
recorded from the 3-lead configuration discussed in the previous chapter with snap electrodes

that the subject kept on for the total duration of the activities and tests.

From the four test subjects, the Omron SBP measurements were considered for further
calculations. These values, as depicted in Table 4.1, varied between each subject due to
fitness level, age, and sex. The trend of increased SBP did not uniformly occur for each test

subject after each increasing level of activity. The mean from these Omron SBP values were

18



Systolic Blood Pressure
Activity Subject 1 | Subject 2 | Subject 3 | Subject 4
after rest 121 144 124 132
after light exercise 117 150 135 133
after heavy exercise 124 149 141 144

Table 4.1: Systolic BP reported for each subject after each key exercise

determined as well as the BP values estimated from equations 3.2, 3.3, and 3.4 using either
the PTT obtained from ECG-PPG or ECG-SPG. The reported numbers were separated
based on the activity performed before the signals were recorded (see Table 4.2). To further
analyze the metrics presented in Table 4.2, the error percentages of the standard deviations
compared to the mean SBP values were calculated for each equation and PTT pairing (see
Table 4.3). As the resulting error percentages were below 10%, they were acceptable due
to the small sample pool used to derive the results. The filtered signals from the proposed
system demonstrated a first peak of ECG, a second following peak of SPG, and a slightly
delayed final peak of PPG for each heart beat, which was expected and coincided with
previous literature findings. As some parts of the signals were noisier due to motion artifacts,
specific segments of the signals were used to measure PTT to derive the best values for the
linear models, which are depicted in the following figures (Fig. 4.1, 4.2, 4.3). Each of these
figures illustrates the resulting signals from different subjects after performing resting, light

exercise, and heavy exercise.
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SD for BP from ECG-PPG PTT | SD for BP from ECG-SPG PTT
Activity Mean SBP | 1/PTT | 1/PTT"2 | In(PTT) 1/PTT |1/PTT"2 | In(PTT)
after rest 130.25 | £8.18653 +8.13251 +8.24167 | £7.36285 +7.28186 +7.34235
after light exercise 133.75 | £8.62369 | +£8.03936 £9.13630 | £8.81543 | +£8.65061 +8.38916
after heavy exercise 139.5 | £7.80216 | +£7.55895 £7.90282 | £5.49009 | +4.57306 +6.57019

Table 4.2: Mean of the Systolic BP from the Omron cuff and the Standard Deviations of the
BP values estimated from the ECG-PPG and ECG-SPG PTT values

PPG PPG PPG SPG SPG SPG
Activity

1/PTT | 1/PTT 2 | In(PTT) | 1/PTT | 1/PTT 2 | In(PTT)
after rest 6.29% 6.24% 6.32% 5.65% 5.59% 5.64%
after light exercise 6.45% 6.01% 6.83% 6.59% 6.47% 6.27%
after heavy exercise | 5.59% 5.41% 5.67% 3.94% 3.28% 4.711%

Table 4.3: Error Percentages of BP estimation from each equation and PTT pairing to
quantify the accuracy of SPG versus PPG
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Figure 4.1: Graph output snippet displaying the three filtered signals and their detected
peaks after subject was resting.
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Figure 4.2: Graph output snippet displaying the three filtered signals and their detected
peaks after subject was performing light exercise.
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Figure 4.3: Graph output snippet displaying the three filtered signals and their detected
peaks after subject was performing heavy exercise.

23



Chapter 5

Discussion

The experiment proposed in this thesis demonstrates that SPG has potential to be used as
a substitute or replacement for PPG in PTT-based BP estimation. The first recorded trial
was ultimately not used as the two separate systems for the SPG and ECG/PPG devices
were not, properly synchronized. This was revealed when looking at the waveforms alongside
each other and seeing the SPG signal peak before the ECG signal, which is physiologically
impossible as the ECG is recorded on the chest and the SPG is measured from a finger.
The result of this initial trial helped refine the testing protocol, and a Bluetooth remote
was introduced to the experimental configuration to solve this issue. When looking at the
subsequent test data after this change, this issue was resolved and those experiments were
used for data. For better comparison between the ECG and PPG signal, the ECG signal
was downsampled to 50Hz. Unfortunately, when the ECG and PPG were downsampled to
match the SPG signal frequency, the two signals lost key information to determine their
peaks accurately. As they were all recorded versus a time domain, the signals were able to

be synchronized based on the timestamps despite their varying sampling frequencies.

From applying the three linear equations, BP was estimated using the peak to peak time
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delay from ECG and PPG and compared to the BP values derived from the PTT established
from the ECG and SPG signal peaks. The standard deviations of the predicted results versus
the mean of the SBP recorded from the test protocol’s gold standard show that in the cases
of recording after the light exercise, the PPG and SPG based results were comparable.
Recordings performed after the first and last activities reported that SPG demonstrated
higher accuracy and a smaller standard deviation (Table 4.2) compared to PPG. Table 4.3
depicts that for all three equations and the two PTT values, the error was below 7%. SPG
was able to more accurately predict the SBP value than PPG by as much as 1% for resting
and 1.5% after heavy exercise, which can be contributed to its earlier peak detection. As
previously discussed in PTT calculations in chapter 2, a lower PTT value results in a higher
BP value, a finding which was evident in the data trend. While SPG did not outperform
PPG after the light exercise, the signal produced a PTT that accurately predicted within a
0.5% of PPG based PTT for each of the mathematical models. This discrepancy of SPG’s
accuracy may be due to the low sample pool and the light exercise not impacting BP as
much as resting or heavy exercise. Another contributing feature with inaccuracy was that
SBP for each subject did not linearly increase as the level of activity grew (Table 4.1), which
was unexpected and not the original goal of the test protocol. This nonlinearity led to poor
calibration for the equations and impacted the BP estimations, which led to a large majority
of higher error percentages for both PPG and SPG versus predictions for the other two
activities. A different exercise regimen for future experiments may correct this issue and

consequently improve SPG based BP estimation accuracy.

As the error was below 7% for every predicted value, this demonstrated that these three
mathematical models were able to adequately illustrate the relationship between BP and
PTT, especially using the inverse of PTT and the inverse of the square of PTT. However,
the estimations derived from the equations differed between patients and activities performed
before recording. As these are linear equations, they may not fully capture how complex

the human body is and how many physiological features may contribute to determining BP.
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Shown from the previously discussed issue with the light exercise SBP results, the decrease
in SBP versus the first activity’s values was not properly accounted for by these equations.
Additionally, this discrepancy may be due to the low sampling pool used for calibration, the
individual health and biological differences between the subjects, and the synchronization of
the SPG system and the ECG/PPG board. A larger test pool and different system format
for synchronizing the two signals may produce a lower error in future iterations of this

experiment.

As the SPG based results performed similarly or more precisely compared to PPG, a signal
which has been explored extensively in previous literature, SPG exhibits the ability to be
used in PTT based BP measurements in place of PPG. As SPG can be recorded through a
low-grade CMOS camera and laser pointer, the potential for a wearable platform is possible.
The signal has shown to be obtainable from a smartphone camera and laser attachment,
which also exemplifies its potential to move onto a solely smartphone platform for acqui-
sition and computation. Furthermore, since SPG is able to be recorded in transmission or
reflectance mode similarly to PPG, deriving BP from two SPG placed in key ROI like past

PPG experiments may be possible.

26



Chapter 6

Conclusion

As BP is a major tool in determining various health conditions such as hypertension, heart
attacks, and strokes, having continuous, non-invasive, and remote devices is important to
improve healthcare. SPG is a relatively new and unexplored biosignal, especially in the
realm of BP estimation. As past literature has investigated its relationship to ECG and
PPG, two prominent signals used in estimating SBP and DBP from PTT based methods,
the adaption of and research into SPG for the field of BP is a logical step. From the
experimental protocol described and performed in this thesis, SPG demonstrated to have
interchangeable capabilities with PPG in being the distal waveform paired with ECG as the
proximal waveform for PTT based BP estimation. This was determined through the similar
or lower error percentages in BP estimations between PPG and SPG based PTT calculations
reported by the study. Collecting more datasets and investigating various mathematical
models between BP and PTT can help improve BP estimation using SPG as well as reveal
more about SPG’s capabilities as a distal signal. Additionally, as SPG can be obtained using
low cost equipment and on a smartphone platform, the possibility for SPG to be obtained
and processed on a wearable or mobile format is highly probable. As ECG and PPG have

increasingly become incorporated into wearable formats, a system incorporating two or all
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three signals for continuous and non-invasive BP can be developed. This would allow for
more accessibility for continuous BP in remote healthcare and for integration into larger,
complex monitoring systems. For the next steps of this project, a wearable, edge computation
platform will be developed for future testing to further explore SPG’s relationship to BP. If
this investigation goes well, this signal will be integrated into a maternal and fetal healthcare

system to monitor the mother’s BP in relation to daily activities.
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