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Quantum Simulation of Second-Quantized Hamiltonians in Compact Encoding

William M. Kirby,1, ∗ Sultana Hadi,1 Michael Kreshchuk,1, 2 and Peter J. Love1

1Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

We describe methods for simulating general second-quantized Hamiltonians using the compact
encoding, in which qubit states encode only the occupied modes in physical occupation number basis
states. These methods apply to second-quantized Hamiltonians composed of a constant number
of interactions, i.e., linear combinations of ladder operator monomials of fixed form. Compact
encoding leads to qubit requirements that are optimal up to logarithmic factors. We show how to
use sparse Hamiltonian simulation methods for second-quantized Hamiltonians in compact encoding,
give explicit implementations for the required oracles, and analyze the methods. We also describe
several example applications including the free boson and fermion theories, the φ4-theory, and the
massive Yukawa model, all in both equal-time and light-front quantization. Our methods provide
a general-purpose tool for simulating second-quantized Hamiltonians, with optimal or near-optimal
scaling with error and model parameters.
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I. INTRODUCTION

We describe a framework for simulating second-
quantized Hamiltonians on quantum computers.
Hamiltonians in second-quantization are ubiquitous
in quantum chemistry, many-body physics, and
quantum field theory, all of which are target appli-
cations for quantum simulation. Fermionic Hamil-
tonians with fixed particle number admit simple en-
codings in the Pauli basis [1–3], and these have been
the focus of many quantum simulation experiments
to date [4–19]. However, second-quantized Hamil-
tonians are sparse — they have only polynomially-
many nonzero entries per row or column — as long
as they have polynomially-many terms. This makes
them appropriate for simulation using methods de-
veloped for sparse Hamiltonians [20–30].

The second-quantized Hamiltonians we consider
are given as polynomials in ladder operators act-
ing on occupation number states (Fock states). The
main idea is to extend the compact encoding pre-
viously studied in [31–33], which only stores in-
formation about occupied modes in a given Fock
state. The application of sparse simulation tech-
niques to electronic structure Hamiltonians was pre-
viously studied in [34, 35], and these papers use a
special case of the compact encoding (which they
call “compressed representation”). In Section II B,
we will compare the overall cost of simulation using
our algorithm to those of [34, 35].
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The compact encoding is to be contrasted with
direct encodings, which store information about all
physical modes, whether they are occupied or not.
The Jordan-Wigner and Bravyi-Kitaev encodings
commonly used in quantum algorithms for quan-
tum chemistry are examples of direct encodings [1–
3]. Compact encodings are suitable for Hamiltonians
that are sparse in the occupation number basis. In a
sparse Hamiltonian, the number of nonzero elements
in each row or column scales polynomially with the
problem size, and therefore polylogarithmically with
Hamiltonian dimension. The compact encoding per-
mits efficient sparsity-based state preparation and
time-evolution methods [31–33].

The methods we develop in this paper are mo-
tivated by simulation of quantum field theory. In
particular, we will focus on the case of Hamiltonians
expressed in the plane wave momentum basis as our
main example, since it illustrates the key techniques
of our method. We use the fact that such Hamiltoni-
ans can be expressed as sums of interactions, where
an interaction is a sum of ladder operator mono-
mials that only differ in their momentum quantum
numbers. The sum within each interaction runs over
all assignments of momenta that conserve the total
momentum (see Section III C for details).

In Sections II-VII we choose to define multi-
particle states using the plane wave momentum ba-
sis, as is typically done in quantum field theory, be-
cause this example is sufficiently complex to capture
the main considerations. However, our method ex-
tends straightforwardly to Hamiltonians where the
sums within interactions run over quantum num-
bers other than plane wave momenta, as long as the
number of distinct interactions in the Hamiltonian
is polynomial in the system parameters (such as mo-
mentum cutoffs). These cases include a wide range
of theories in quantum chemistry, condensed matter
physics, and quantum field theory, including basis
light-front quantization [36–38]. How to extend our
methods beyond the plane wave momentum basis is
explained in Section VIII.

II. MAIN RESULTS FOR PLANE WAVE
MOMENTUM BASIS

Algorithms for simulating general sparse Hamil-
tonians access the Hamiltonian via oracle unitaries
that are queried (applied) to provide the locations
and values of the nonzero Hamiltonian matrix ele-
ments [20–30]. If we want to apply such algorithms
to a second-quantized Hamiltonian in compact en-
coding, then we have to provide two main additional
components. First, we need to explicitly construct
the oracle unitaries for the specific Hamiltonian of

interest, as sequences of primitive gates. We will
show how to do this in Sections V and VI, decom-
posing the oracle unitaries into qubit operations that
are log-local in the problem parameters, which for
us will be momentum cutoffs, since we focus on the
example of the plane wave momentum basis. The
log-local operations can then themselves be decom-
posed into primitive gates from any desired gate set
with only polynomial overhead.

Second, the general sparse Hamiltonian meth-
ods assume that the oracles act directly upon row
and column indices (encoded in qubit states) of the
Hamiltonian [20–30]. We instead want methods that
act directly upon compact-encoded Fock states, be-
cause the physical meaning of such states can be
directly read out, which ultimately permits efficient
implementation of the oracle unitaries as well as of
observables. However, unlike simply labeling the
rows and columns of the Hamiltonian by sequential
binary numbers, the set of bitstrings correspond-
ing to compact-encoded Fock states is not simple
to characterize or enumerate. These bitstrings la-
bel computational basis states that span the sub-
space of qubit Hilbert space that the Hamiltonian
acts on. Therefore, we need to show that when
we implement oracle unitaries that act directly on
compact-encoded Fock states, the high-level simula-
tion algorithms [20–30] that use the oracles as their
building blocks will still work. This is explained in
Section IV.

The overall asymptotic costs of our methods in
both qubit and gate counts are summarized in Ta-
ble II, for the example of the plane wave momentum
basis. The details of the costs are as follows. The
number of qubits required to encode a Fock state in
compact encoding is derived in Section III A, result-
ing in the expression in (21), which is asymptotically

Q = O

(
I logW + I

d∑
j=1

log
(

Λmax
j − Λmin

j

))
, (1)

where I is the maximum possible number of occu-
pied modes in a Fock state, W is the maximum pos-
sible occupation of any mode, d is the number of spa-
tial dimensions, and Λmin

j and Λmax
j are lower and

upper momentum cutoffs in each dimension j. Hence
fixing |Λmax

j |, |Λmin
j | ≤ Λ for some overall cutoff Λ re-

sults in the scaling given in Table II. The expression
in (1) assumes that the number of qubits required
to encode the non-momentum quantum numbers is
constant.

In our implementations the cost in log-local gates
of the enumerator oracle (the oracle that gives the lo-
cations of nonzero matrix elements, defined in (52))
asymptotically dominates the cost of the matrix el-
ement oracle (defined in (53)). These costs are de-
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rived in Section V and Section VI, respectively, and
result in the expressions (92) and (101). The domi-
nant cost is the former, which is

O
(
Ih + Λdg

)
(2)

exactly as in Table II, where h is the maximum num-
ber of annihilation operators in any interaction in
the Hamiltonian and g is the maximum number of
creation operators in any interaction in the Hamil-
tonian.

Finally, if our Hamiltonian is time-independent,
then by using qubitization [29] the total number of
oracle queries required to simulate time-evolution is

O

(
τ +

log(1/ε)

log log(1/ε)

)
, (3)

where τ = k‖H‖maxt, k is the sparsity of the Hamil-
tonian H, t is the total evolution time, and ε is the
error. Multiplying by the oracle cost (2) gives the
overall asymptotic scaling of the number of log-local
gates:

O

[(
τ +

log(1/ε)

log log(1/ε)

)(
Ih + Λdg

)]
. (4)

If instead our Hamiltonian is time-dependent,
then by using the method of [30] the total number
of oracle queries required to simulate time-evolution
is

O

(
τ

log(τ/ε)

log log(τ/ε)

)
, (5)

where now τ ≡ k
∫ t
0
‖H‖maxdt (without loss of gen-

erality taking the starting time to be t = 0). Hence
the overall log-local gate count for our algorithm is

O

[(
τ

log(τ/ε)

log log(τ/ε)

)(
Ih + Λdg

)]
. (6)

Suppressing the logarithmic components in either
(4) or (6) gives the expression in Table II.

A. Comparison to direct encoding

Recall that the goal of the compact encoding is to
minimize the number of qubits required to simulate
a second-quantized Hamiltonian. Direct encodings,
which explicitly store information about every mode
including the unoccupied modes, will require more
qubits but afford simpler operations, as discussed in
the introduction.

In direct encoding we store the occupation of ev-
ery mode in a Fock state. Hence each mode can be

Parameters:

number of spatial dimensions d
max number of occupied modes I
max occupancy of a single mode W

momentum cutoff Λ
max incoming lines in any interaction h
max outgoing lines in any interaction g

sparsity k
max-norm of Hamiltonian ‖H‖max

simulation time t

TABLE I. Glossary of parameter definitions.

Costs:

qubits to encode Fock state O
(
I log(WΛd)

)
log-local operations for oracle O

(
Ih + Λdg

)
total log-local operations Õ

(
k‖H‖maxt

(
Ih + Λdg

))
TABLE II. Summary of qubit and gate count costs for
our algorithm, for a second-quantized Hamiltonian H in
the plane wave momentum basis. The parameters are
defined in Table I.

assigned to a specific register of qubits, so it is not
necessary to store the information identifying the
mode in the qubit state. Therefore, the number of
qubits required for a single mode is just O(logW ),
where as above W is the single-mode occupation cut-
off. This is multiplied by the number of modes to
give the total number of qubits required for the di-
rect encoding:

O

(logW )

d∏
j=1

(
Λmax
j − Λmin

j

) , (7)

where the number of modes is

O

(∏d
j=1

(
Λmax
j − Λmin

j

))
assuming the num-

bers of species and non-momentum quantum
numbers are constant. In other words, compared to
the number (1) of qubits for the compact encoding,
the direct encoding has linear rather than loga-
rithmic scaling with the number of modes. Hence,
when the maximum number I of distinct occupied
modes is much smaller than the total number of
modes, the compact encoding will be asymptotically
advantageous in number of qubits.

The costs of oracle implementations for the direct
encoding were evaluated in Section I.B of the Sup-
plemental Material to [39]. As with the compact en-
coding, the cost of the enumerator oracle dominates,
coming out to

O
(
(h+ g) logW

)
(8)

Toffoli gates (using our notation). As expected, in
typical cases this will be smaller than the cost (2) of
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the enumerator oracle in compact encoding, since it
could only be of the same order if the maximum oc-
cupation W of a single mode is exponentially larger
than I, the number of distinct occupied modes, and
Λ, the momentum cutoff.

These comparisons confirm the expected relation
between direct and compact encodings: they form a
space-time tradeoff, with the direct encoding using
more space to obtain shorter circuits, and the com-
pact encoding saving space at the expense of longer
circuits. Note, however, that both are efficient in the
sense that their costs in both space and time are at
worst polynomial in the problem parameters. The
differences are in which scalings are logarithmic (or
constant) versus polynomial.

B. Comparison to prior work on
electronic-structure Hamiltonians

Previous work has demonstrated how to imple-
ment sparsity-based simulation of the electronic-
structure problem in second-quantization [34]
and the configuration-interaction (CI) representa-

tion [32, 35]. These result in gate counts of Õ(N5t)

and Õ(η2N3t), respectively, where N is the number
of orbitals, η is the number of electrons, and t is the
simulation time. The dependence on error is sup-
pressed in these expressions, but is polylogarithmic
in the inverse error.

We can compare our method to [32, 34, 35] by
applying it to the electronic-structure problem. In
this case, we can replace I (the maximum possible
number of occupied modes) by η. The total number
of modes in our method is O(Λd), so we may replace
Λd by N in our asymptotic expressions. If we apply
our method to the CI-matrix, Eq. (20) in [35] gives
the sparsity as O(η2N2), and the discussion follow-
ing Eq. (73) in [35] shows that ‖H‖max is polyloga-
rithmic in N . Finally, g and h are both two for the
electronic-structure problem. Making all of these re-
placements in (4) and suppressing polylogarithmic
factors gives

Õ

(
η2N2t(η2 +N2)

)
= Õ

(
η2N4t

)
. (9)

This is better than the scaling for the second-
quantized algorithm of [34], but worse by a factor
of N than the CI algorithm of [35]. The extra factor
of N essentially comes from the fact that the algo-
rithm of [35] uses the Slater rules directly, which our
algorithm does not take into account.

This is illustrative of what we expect to be a
general pattern: while our algorithm is applicable
to a broad range of second-quantized Hamiltonians,
if special structure is known about some particular

Hamiltonian it may be possible to design algorithms
that are specific to that Hamiltonian and outperform
ours. An interesting question for future work is to
what extent it is possible to design general-purpose
algorithms that are able to naturally take advantage
of such problem-specific structure.

III. COMPACT ENCODING AND
HAMILTONIANS

In this section, we define the compact encoding,
which maps Fock states to qubit states, and the in-
put model for our second-quantized Hamiltonians.
After this section, we will often say “Fock state”
when we really mean “compact-encoded Fock state,”
since the latter is cumbersome. There will usually be
no ambiguity in this, since qubit operators can only
act upon compact-encoded Fock states, but when-
ever there is ambiguity we will explicitly state which
we are talking about.

A. Compact encoding of Fock states

Throughout, when we refer to momenta we will
mean dimensionless momenta, denoted by n. These
are related to the dimensionful momenta p as

pj =
2π

Lj
nj (10)

where Lj is the box size for each component j and
we take ~ = 1. We also impose cutoffs Λ on the
momenta, i.e., each component nj must satisfy

Λmin
j ≤ nj ≤ Λmax

j (11)

for some cutoffs

Λ = ( (Λmin
1 ,Λmax

1 ), (Λmin
2 ,Λmax

2 ), ..., (Λmin
d ,Λmax

d ) ),
(12)

where d is the number of spatial dimensions. In
equal-time quantization, it is generally the case that
each Λmin

i < 0 and each Λmax
i > 0, while in light-

front quantization there is some particular axis z
such that Λmin

z > 0 (see Section III B for details of
light-front quantization).

A Fock state in compact encoding has the form:

|F〉 = |(q1,n1, w1), (q2,n2, w2), ..., (qJ ,nJ , wJ)〉,
(13)

where each wi is the occupancy of the mode qi with
momentum ni [33]. qi is a collective label that speci-
fies the particle up to its momentum; for example, qi
might determine whether the particle is a boson or a
fermion [40], what species of boson or fermion it is (if
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multiple are present in the theory), and whether it is
a particle or an antiparticle, in addition to properties
like spin, flavor, color, etc. We store only occupied
modes, so each occupancy wi ≥ 1.

Example III.1. Suppose we have a 1+1D theory
containing bosons and fermions whose only quan-
tum number is momentum. We can let qi = 0 label
bosons, and qi = 1 label fermions (and qi = 2 label
antifermions, but for simplicity we will not include
these in the examples below). Then a few examples
of compact-encoded Fock states are:

|(0, 2, 1)〉, (14)

which encodes one boson with momentum 2.

|(0, 2, 2)〉 (15)

encodes two bosons with momentum 2.

|(0, 2, 3), (1, 5, 1)〉 (16)

encodes three bosons with momentum 2 and one
fermion with momentum 5.

|(0, 2, 3), (0, 3, 2), (1, 5, 1)〉 (17)

encodes three bosons with momentum 2, two bosons
with momentum 3, and one fermion with momentum
5. If our theory also contained spin, for example,
then we would expand the qi labels to include this:
e.g., qi = {1, ↑} means fermion with spin up, so∣∣({1, ↑}, 2, 1), ({1, ↓}, 2, 1)

〉
(18)

encodes one fermion with momentum 2 and spin up,
and one fermion with momentum 2 and spin down.

We compact-encode a Fock state (13) in a qubit
register of the form

|X1, X2, ..., XI〉, (19)

where I is the maximum possible number of occu-
pied modes, and each Xi is a mode register capable
of encoding a single mode (qi,ni, wi). For a Fock
state containing J ≤ I occupied modes we use the
first J of the Xi to encode the modes. The encoded
modes are ordered primarily by qi, and secondar-
ily by momentum. Note that in equal-time quan-
tization the actual number of occupied modes can
be unbounded, so we would have to impose a cut-
off I by hand. In light-front quantization I is finite
and determined by the harmonic resolution [33]. In
chemistry, the particle number (i.e., the total occu-
pation) is generally fixed, so I is equal to the particle
number.

Given some maximum number I of occupied
modes, either fixed by the theory or imposed by

hand, we have to encode I mode registers. Each
mode register must encode occupation of the mode
(which we take to be upper bounded by some cutoff
W ), the non-momentum quantum numbers of the
mode (which we assume to take a constant number
of possible values, and hence to require some fixed
number Nq of qubits), and the momentum of the
mode. For d spatial dimensions indexed by j, each
component of momentum takes Λmax

j − Λmin
j + 1

values, so the momentum of a mode can be encoded

in
∑d
j=1

⌈
log2

(
Λmax
j − Λmin

j + 1
)⌉

qubits. Hence

the total number of qubits required to encode a mode
is

Nq + dlog2W e+

d∑
j=1

⌈
log2

(
Λmax
j − Λmin

j + 1
)⌉

,

(20)
so the total number of qubits to encode a Fock state
that contains at most I occupied modes is

Q = I

(
Nq + dlog2W e

+

d∑
j=1

⌈
log2

(
Λmax
j − Λmin

j + 1
)⌉)

.

(21)

If for some dimension j, Λmax
j and Λmin

j are both
positive (or both negative), the number of occupied
modes I is bounded by some fraction of the total
momentum in that dimension. If this is only true
for a single dimension (i.e., all other dimensions can
have both positive and negative momentum), then
this case corresponds to light-front quantization [33].
Without loss of generality, suppose Λmin

1 > 0. Let
K denote the total momentum in dimension 1. In
this case the maximum total number I of occupied
modes in any Fock state is

I =

⌊
K

Λmin
1

⌋
, (22)

since every particle must have momentum at least
Λmin
1 in dimension 1. The Fock state satisfying (22)

is one containing bK/Λmin
1 c modes, all with momen-

tum Λmin
1 or Λmin

1 + 1 in dimension 1 such that the
total momentum in dimension 1 is K, but with dis-
tinct other quantum numbers [33]. In the special
case where Λmin

1 = 1, (22) simplifies to show that
the maximum number of occupied modes is identi-
cal to the total momentum along axis 1.

B. Special Case: Light-Front Quantization

Although the compact encoding is agnostic to the
form of the theory to which it is applied, it turns
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out to be particularly advantageous for relativistic
field theories in the light-front (LF) formulation [33,
37, 41–43]. Here, we review light-front quantization
and explain how compact encoding applies in this
case. We will later return to the light-front example
to illustrate the methods.

We can think of LF quantization as taking the per-
spective of a massless observer moving at the speed
of light in some direction, which we take to be the −z
direction. Thus the dimensionless discretized mo-
menta along this axis take strictly positive values
nz ∈ [1,K], where K is the total dimensionless LF
momentum of the Fock state (also called the har-
monic resolution). Importantly, this is also true for
massless particles [43]. In other words,

Λmin
1 = 1, Λmax

1 = K, (23)

where we take axis 1 to correspond to the z direction.
Also, since it is the total LF momentum, K automat-
ically imposes a cutoff on the number of excitations
in a mode (W = K), as well as on the number of

occupied modes in a Fock state (I =
√

2K for d = 1
and I = K for d ≥ 2) [33]. The momenta along axes
transverse to the light-front direction have the same
properties as in equal-time quantization.

The above points mean that for light-front quan-
tization the general expression (21) for qubit count
in compact encoding specializes to

QLF,d = 1
compact =

√
2K

(
Nq + 2dlog2Ke

)
(24)

for one spatial dimension, or

QLF,d ≥ 2
compact = K

(
Nq + 2dlog2Ke

+

d∑
j=2

⌈
log2

(
Λmax
j − Λmin

j + 1
)⌉) (25)

for d > 1 spatial dimensions.
We can compare this to the number of qubits re-

quired for the direct encoding, as a special case of
the general comparison between the two encodings
given above. The total number of modes is

K

 d∏
j=2

(
Λmax
j − Λmin

j + 1
) q, (26)

where q = O(2Nq ) is the number of possible values
of the intrinsic quantum numbers, the number of
possible values of the light-front momentum is K,
and the number of possible values of the transverse

momenta is
∏d
j=2

(
Λmax
j − Λmin

j + 1
)
. In a direct

encoding we would encode the occupancy of each of
these modes in dlog2Ke qubits (since K is an upper

bound on the occupancy), so the total number of
qubits for the direct encoding is

QLF
direct = K

 d∏
j=2

(
Λmax
j − Λmin

j + 1
) q dlog2Ke.

(27)
In other words, for Λ⊥ an upper bound on the

transverse momentum cutoffs, up to constant and
logarithmic factors the number of qubits for the di-

rect encoding is Θ̃
(
K(Λ⊥)d−1

)
, while the number of

qubits for the compact encoding is Θ̃ (K). This ex-
plains why LF quantization motivates development
of compact encoding methods. In Section VII, we
will analyze our oracle constructions for a number
of field theories in both equal-time and light-front
quantization.

C. Hamiltonian

A normal-ordered, second-quantized Hamiltonian
is composed of terms with the form

βa†ia
†
j · · · a†kalam · · · an, (28)

where β is a coefficient, a† and a are fermionic
or bosonic creation and annihilation operators, and
i, j, ..., k, l,m, ..., n are labels for the particles being
created and annihilated. In the remainder of this
paper, we will write creation and annihilation oper-
ators as

a(†)qi (ni), (29)

where ni is the momentum of the created or anni-
hilated particle and qi is a collective label for its
remaining quantum numbers (including species), as
in the previous section.

We may visualize a term like (28) as a diagram
with an incoming line for each annihilation operator
and an outgoing line for each creation operator. We
define an interaction to be a sum of such terms, with
the momenta varying over all momentum-conserving
combinations, but the other properties of the incom-
ing and outgoing particles fixed. Thus we can visu-
alize an interaction as a diagram without momen-
tum specifications. An interaction whose diagram
contains f external lines is called an f -point inter-
action. In the remainder of the paper, when we refer
to incoming or outgoing particles, we will mean the
incoming or outgoing lines of the diagram of an in-
teraction, which represent annihilation or creation
operators, respectively. Note that although a dia-
gram of this kind resembles a Feynman diagram, it
does not represent a matrix element calculation, but
instead is just a visualization of a collection of ladder
operator monomials.
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FIG. 1. Diagram of the example 3-point interaction (30),
which describes annihilation of a pair of particles of type
‘1’ to form a single particle of type ‘2’ (we read time from
left to right).

Example III.2. In a 1+1D theory consider the 3-
point interaction∑

n1,n2,n3

a†2(n3)a1(n2)a1(n1), (30)

where the sum varies over all momenta such that
n1 + n2 = n3. This interaction describes anni-
hilation of a pair of particles of type ‘1’ to form
a single particle of type ‘2’, and is represented by
the diagram shown in Fig. 1. So, for example, one
possible instance of the interaction would map two
particles of type ‘1’, both with momentum 2 (i.e.,
n1 = n2 = 2), to a particle of type ‘2’ with momen-
tum (i.e., n3 = 4). We can represent these as Fock
states in compact encoding as in (13):

|(‘1’, 2, 2)〉 → |(‘2’, 4, 1)〉, (31)

where we recall that the first entry in each tuple
encodes qi (in this case ‘1’ or ‘2’), the second entry
encodes the momentum, and the third entry encodes
the occupation. If instead the incoming momenta
were n1 = 1 and n2 = 3, then the incoming and
outgoing Fock states would instead be represented
as

|(‘1’, 1, 1), (‘1’, 3, 1)〉 → |(‘2’, 4, 1)〉. (32)

If another, non-interacting mode were present (say,
two particles of type ‘2’ with momentum 5), then we
would have

|(‘1’, 1, 1), (‘1’, 3, 1), (‘2’, 5, 2)〉 → |(‘2’, 4, 1), (‘2’, 5, 2)〉,
(33)

where the additional mode (‘2’, 5, 2) representing the
non-interacting particles is present on both sides.
Note that since all momenta are positive in the
above examples, they represent possible interaction
instances in a 1+1D light-front field theory.

We can formally define an interaction as follows:

Definition 1. An interaction is specified by the set

{(q1, q2, ..., qg), (qg+1, qg+2, ..., qf )}, (34)

together with a coefficient function β that maps sets
of momenta for the incoming and outgoing parti-
cles to coefficient values. The q1, q2, ..., qg specify
the outgoing particles, and qg+1, qg+1, ..., qf specify
the incoming particles, up to their momenta.

For an interaction as in Definition 1, the corre-
sponding interaction Hamiltonian is

HI ≡
∑
{ni}

β({ni})

 g∏
i=1

a†qi(ni)

 f∏
i=g+1

aqi(ni)

 ,

(35)
where the sum runs over all sets {ni} that conserve
total momentum, i.e., such that

g∑
i=1

ni =

f∑
i=g+1

ni. (36)

Any second-quantized Hamiltonian may be ex-
pressed as a sum of interaction Hamiltonians HI of
the form (35).

Notice that since the Hamiltonian must be Her-
mitian, for each interaction the Hamiltonian must
also contain its Hermitian conjugate. For example,
a Hamiltonian containing the interaction in Exam-
ple III.2 (Eq. (30)) must also contain the interaction∑

n1,n2,n3

a†1(n1)a†1(n2)a2(n3), (37)

where again the sum varies over all momenta such
that n1 + n2 = n3.

In this paper, we will assume that the Hamilto-
nian, and thus the interactions included in it, are
fixed up to momentum cutoffs. Each interaction
sets particular values of f and g, so f and g can
be treated as constants. We will focus on the scal-
ing of our algorithms with momentum cutoffs, which
specify the resolution at which we study the given
Hamiltonian.

IV. SPARSE HAMILTONIANS

A Hamiltonian written as a matrix in a particular
basis is said to be sparse if the number of nonzero
elements in each row (or column) is polylogarithmic
in the total Hilbert space dimension. Similarly, the
maximum number of nonzero elements in any row
(or column) is called the sparsity of the Hamilto-
nian. In this section, we first review methods for
simulating sparse Hamiltonians, then describe how



8

we can use these methods to act on Fock states in
the compact encoding as described in Section III A,
and finally analyze the sparsity of interaction Hamil-
tonians of the form (35).

A. Sparse Hamiltonian Simulation Review

Aharonov and Ta-Shma presented the first quan-
tum algorithm for simulating sparse Hamiltonians in
2003 [20], while the same year Childs et al. demon-
strated quantum advantage with respect to an oracle
in a similar setting [21]. Subsequent works have ex-
tended and improved these results [22–30]. These
methods are based on accessing the sparse Hamilto-
nians via oracle input models.

Early results in sparse Hamiltonian simulation
were based on product formulas [20, 22, 25, 26]
or quantum walks [23, 24]. The product formula
based methods ultimately achieved optimal depen-
dence on the error ε of the simulation [25, 26],
while the quantum walk based methods achieved
optimal dependence on the sparsity and simulation
time [24] (these optimal scalings are discussed be-
low). Then, Berry et al. used a quantum walk
structure with techniques borrowed from the prod-
uct formula approaches to obtain near optimal de-
pendence on all parameters [27], and a subsequent
paper extended and improved these results for time-
dependent Hamiltonians [30]. In specific cases, re-
lated methods that depend only on the interaction-
picture or off-diagonal norms of the Hamiltonian
may be advantageous, but may also require extra
work to cast the Hamiltonian from the sparse oracle
input model to the required forms [44–46]. Finally,
Low and Chuang developed a technique based on
quantum signal processing called qubitization that
achieved fully optimal scaling with all parameters
for the time-independent case [28, 29].

Recent works on sparse Hamiltonian simulation
specify the Hamiltonian via a pair of oracles, which
may be expressed as unitary operations. The first
oracle is typically defined in the quantum walk based
approaches as follows:

OF |x, i〉 = |x, yi〉, (38)

where for a Hamiltonian H with sparsity k,
i ∈ [k] ≡ {0, 1, 2, ..., k − 1}, and yi is the index of the
ith nonzero entry in row x of H. We refer to OF as
the “enumerator oracle.” The basic quantum walk
step developed in [23, 24] underlies the near-optimal
algorithms of [27, 30] as well as the optimal algo-
rithm obtained by qubitization [29], so these algo-
rithms use the form of the enumerator oracle given
in (38).

The product formula based methods [20, 22, 25,
26], on the other hand, typically define the enumer-
ator oracle as follows:

O′F |x, i, 0〉 = |x, i, yi〉, (39)

i.e., the index i is saved rather than being uncom-
puted on the way to computing yi. This distinc-
tion between uncomputing or saving the index i ap-
pears harmless, but we will see shortly that for the
variant of the oracles we will require, some care is
needed to properly employ OF in order to obtain the
optimal scaling offered by qubitization [29] or the
near-optimal algorithm for time-dependent Hamil-
tonians [30].

The second oracle (which is common to all of the
methods) calculates matrix elements of the Hamil-
tonian given indices for entries in the Hamiltonian:

OH |x, y, 0〉 = |x, y,Hxy〉. (40)

The 0 on the left-hand side above denotes a reg-
ister containing the number of qubits necessary to
store the value of the entry Hxy in binary form with
the desired precision. Note that although OH is de-
fined for arbitrary matrix elements, it is typically
only applied to pairs of indices (x, yi) correspond-
ing to nonzero matrix elements (i.e., generated by
the enumerator oracle), and this will always be the
case for us, which simplifies the construction (see
Section VI, and the proof of Lemma 1 in the next
subsection). We refer to OH as the “matrix element
oracle.”

To simulate evolution for time t under a time-
independent Hamiltonian H with sparsity k, qubiti-
zation uses

O

(
τ +

log(1/ε)

log log(1/ε)

)
(41)

oracle queries [29, Corollary 15], where

τ ≡ k‖H‖maxt (time-independent H) (42)

and ‖H‖max (the max-norm of H) is defined to be
the maximum magnitude of any entry in H. This
scaling is optimal in the error ε [25, Theorem 2.2],
and in the simulation time t and sparsity k [24]. The
optimal scaling with the simulation time is set by
the no fast-forwarding theorem, which states that
evolution under a general Hamiltonian for a time t
cannot be simulated using a number of operations
that is sublinear in t [22, Theorem 3] (this can be
violated for some special types of Hamiltonians [47]).

To simulate evolution for a time T under a time-
dependent Hamiltonian H(t), the method of [30] re-
quires

O

(
τ

log(τ/ε)

log log(τ/ε)

)
(43)
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oracle queries (note that (43) is a product, whereas
(41) is a sum), with τ now defined by

τ ≡ k
∫ T

0

‖H(t)‖max dt (time-dependent H),

(44)
where without loss of generality we take the initial
time to be t = 0. In other words, the dependence
on H(t) obtained in [30] is given by the L1-norm
of ‖H(t)‖max over the time interval [0, T ]. This
satisfies the intuitive notion that the cost of sim-
ulating H(t) should depend instantaneously only on
the value of H at the current time. For compar-
ison, previous works on the time-independent case
can generalize to time-dependent Hamiltonians, but
with query complexity that scales instead according
to maxt∈[0,T ]‖H(t)‖max (i.e., with the L∞-norm of
‖H(t)‖max over the time interval [0, T ]) [30].

The method of [30] uses a rescaling of the Hamil-
tonian depending on its instantaneous max-norm,
which is accessed via two additional oracles:

Onorm|t, z〉 = |t, z ⊕ ‖H(t)‖max〉,
Ovar|σ, z〉 = |σ, z ⊕ f−1(σ)〉,

(45)

where

f(t) ≡
∫ T

0

Λ(t) dt (46)

and Λ(t) is any efficiently computable tight upper
bound on ‖H(t)‖ (see [30, Section 4]). As noted
in [30, Section 4.2], f−1 can be computed to preci-
sion δ using O(log(T/δ) queries to f , so as long as
‖H‖max(t) is efficiently computable for any t, we can
efficiently implement the oracles (45).

These best known methods for simulation of
sparse Hamiltonians have in common the basic step
that they use to access the Hamiltonian. This step is
implementation of an isometry typically labeled T ,
which was originally proposed in [23] as a compo-
nent of a quantum walk, and first used explicitly in
a Hamiltonian simulation technique in [24]. In our
notation, T may be written:

T =

2n∑
x=1

|x〉a|φx〉b,c〈x|a, (47)

where

|φx〉b,c

≡
√

r

‖H‖1

2n∑
y=1

√
H∗xy|y〉b|0〉c +

√
1− rσx
‖H‖1

|ζx〉b|1〉c,

(48)

and a and b label registers of the same number of
qubits, and c labels a single ancilla qubit (we will

typically suppress these subscripts when doing so
leads to no ambiguity). Here r ∈ (0, 1] is a parame-
ter,

σx ≡
2n∑
y=1

|Hxy|, (49)

and |ζx〉 is some linear combination of the |y〉. A
careful reader may note that T as defined in (47)
is not unitary. This is resolved by letting (47) only
define the action on a state of the form |x〉|0〉, i.e.,

|x〉a|0〉b,c T−→ |x〉a|φx〉b,c, (50)

and the action on states not of this form can be any-
thing as long as the overall operation is unitary [24].

The final, single ancilla qubit in (48) (i.e., the
qubit labeled c) is present in order to ensure that
the last term (proportional to |ζx〉|1〉) is orthogonal
to any of the first set of terms for any x, which is re-
quired by Eq. (25) in [23]. Note that the final terms
need not be orthogonal to each other for distinct
values of x, even though a superficial reading of [23]
might suggest otherwise. In fact, it is the final term
in |x〉|φx〉 (rather than just |φx〉) that corresponds
to the state |⊥j〉 in [23]: this term must therefore
take orthogonal values for distinct values of x (see
Eq. (24) and the corresponding discussion in [23]),
but this is trivially satisfied, since the final term in
|x〉|φx〉 is proportional to |x〉|ζx〉|1〉.

A complete description of the various ways that
the isometry T can be used to construct Hamiltonian
simulation algorithms is beyond the scope of this
paper, but it was originally introduced in order to
construct the quantum walk operator

U = iS(2TT † − 1) (51)

in [23], where S is the operator that swaps registers
a and b, and also swaps the ancilla qubit c with an
additional ancilla qubit initially in the |0〉 state. Re-
peatedly applying the quantum walk step U yields
a discrete approximation of the Hamiltonian evolu-
tion, up to unitary equivalence [23, 24].

B. Sparse Hamiltonian Simulation for
Compact-Encoded Fock States

In the sparse simulation methods above, the ora-
cles act upon states that encode row and column in-
dices of the Hamiltonian. We instead want to use or-
acles that act upon Fock states (recall that through-
out, when we say “Fock states” we mean “compact-
encoded Fock states”). The best sparse Hamiltonian
simulation methods access the Hamiltonian via the
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operator T (defined in (47)), as discussed in Sec-
tion IV A. Therefore, we want to use our new ora-
cles to implement a version of T that acts on Fock
states rather than on row indices. This will allow
the sparse simulation methods to be implemented
directly on Fock states.

One complication is the fact that for a k-sparse
Hamiltonian, there are at most k nonzero entries
in any row or column, but in general there can be
fewer than k in some rows and columns. In such a
row, some of the values of i, which runs from 0 to
k − 1 and is supposed to index the nonzero entries
in a given row, cannot actually index nonzero en-
tries, because there aren’t enough nonzero entries in
the row. There is no obvious natural mapping from
these unused values of i to matrix entries. We will
see that this situation arises very commonly for in-
teraction Hamiltonians. We will define oracles that
act on Fock states in a way that resolves this is-
sue, and show that we can use these to recover the
desired building blocks for the sparse simulation al-
gorithms described above. In Sections V and VI,
we will then explicitly construct implementations of
these oracles.

Let |F〉 be a Fock state, and let H be a k-sparse
Hamiltonian. Then there are at most k states |F ′i〉
whose Hamiltonian matrix elements with |F〉 are
nonzero: assume that they are indexed by elements
of some set IF ⊆ [k]. Let OF and OH now define
oracles that act as follows:

OF |F〉|0〉|i〉 = |F〉|Ψ′(F , i)〉|a(F , i)〉, (52)

OH |F〉|F ′〉 = |F〉|F ′〉
∣∣〈F ′|H|F〉〉, (53)

where i ∈ [k] and the functions Ψ′(F , i) and a(F , i)
are defined by

Ψ′(F , i) =

{
F ′i if i ∈ IF ,
F if i /∈ IF ,

(54)

a(F , i) =

{
0 if i ∈ IF ,
i if i /∈ IF .

(55)

Without loss of generality, let F ′0 = F whenever the
matrix element of F with itself is nonzero. Thus
the enumerator oracle OF may be alternatively ex-
pressed as

OF |F〉|0〉|i〉 =

{
|F〉|F ′i〉|0〉 if i ∈ IF ,
|F〉|F〉|i〉 if i /∈ IF .

(56)

Next, we define an analog of |φx〉 (48) in terms of

Fock states:

|φF 〉 ≡
√

r

‖H‖1
∑
|F ′〉

√
〈F ′|H|F〉|F ′〉|a(F ,F ′)〉|0〉

+

√
1− rσF
‖H‖1

|ζF 〉|1〉,
(57)

where a(F ,F ′) is some binary number that is zero
when 〈F ′|H|F〉 6= 0, σF is defined analogously to
σx, i.e.,

σF ≡
∑
|F ′′〉

|〈F|H|F ′′〉|, (58)

and |ζF 〉 is a linear combination of states of the form

|F ′′〉|b〉, (59)

where |b〉 is some binary number encoded in the same
register as a(F ,F ′). All of these components will
be determined precisely by the algorithm for con-
structing |φF 〉, below. The fact that a(F ,F ′) = 0
whenever 〈F ′|H|F〉 6= 0 ensures that for

Q(F) ≡ {|F ′〉 | 〈F ′|H|F〉 6= 0}, (60)

we may rewrite (57) as

|φF 〉 =

√
r

‖H‖1
∑

|F ′〉∈Q(F)

√
〈F ′|H|F〉|F ′〉|0〉|0〉

+

√
1− rσF
‖H‖1

|ζF 〉|1〉.
(61)

Using |φF 〉, we define a version of T for Fock states:

T ≡
∑
|F〉

|F〉|φF 〉〈F|. (62)

In Lemma 1, below, we show how T can be con-
structed using O(1) queries to the oracles OF and
OH as defined by (52) and (53). First, however, we
will show that T as defined by (62) may replace the
original version of T in (47), and the resulting op-
erator acts on Fock states but otherwise reproduces
all of the properties of the basic step used in [24].

The terms in the first line of (61) are exact analogs
of the corresponding terms in (48), the definition of
|φx〉 used to construct the standard operator T as
used in [24, 27, 29, 30]. The only difference is the
inclusion of an additional ancilla register in state |0〉
instead of just the single ancilla qubit in state |0〉.

The second line in (61) is also analogous to the
corresponding term in (48), but here |ζF 〉 includes
the ancilla register |b〉 (see (59)) in addition to the
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register encoding Fock states, whereas |ζx〉 in (48)
is a linear combination of row indices only. How-
ever, in order to satisfy the orthogonality conditions
discussed in the final paragraph of Section IV A, we
only require that for any F , F ′, and F ′′, |ζF 〉|1〉 is
orthogonal to |F ′′〉|a(F ′,F ′′)〉|0〉; this is satisfied be-
cause of the final single qubit. These are the only
conditions that T must satisfy [24].

Lemma 1 (Construction of T ). Given an input
state |F〉, the operator T as defined in (62) can be
implemented using O(1) queries to the oracles OF
and OH as defined in (52) and (53). (This Lemma
closely follows Lemma 4 in [24].)

Proof. The operator T maps a Fock state |F〉 to
|F〉|φF 〉, for |φF 〉 as defined by (61). Explicitly in-
cluding ancillas, we assume an input state of the
form

|F〉|0〉|0〉|0〉. (63)

We map this to |F〉|φF 〉 as follows:

1. Prepare a uniform superposition of the indices
i = 1, 2, ..., k as:

1√
k

k∑
i=1

|F〉|0〉|i〉|0〉. (64)

2. Apply OF as defined in (52) to the first three
registers, obtaining

1√
k

k∑
i=1

|F〉|Ψ′(F , i)〉|a(F , i)〉|0〉. (65)

3. Controlled on a(F , i) = 0, apply OH as de-
fined in (53) to the first two registers, to cal-
culate 〈F ′i |H|F〉 in an ancilla register that is
initially |0〉 (recall that a(F , i) = 0 if and only
if 〈F ′i |H|F〉 6= 0). Then, controlled on the
resulting value 〈F ′i |H|F〉, rotate the single an-
cilla qubit (the final register) as

|0〉 7→
√
k
r〈F ′i |H|F〉
‖H‖1

|0〉+

√
1− k r|〈F

′
i |H|F〉|
‖H‖1

|1〉.

(66)
Finally, uncompute the ancilla register encod-
ing 〈F ′i |H|F〉 using another controlled query
to OH . This step is identical to the corre-
sponding step in the method described in the
proof of Lemma 4 in [24].

To obtain the full state after these steps are com-

plete, we insert (66) into (65), giving

k∑
i=1

√
r〈F ′i |H|F〉
‖H‖1

|F〉|Ψ′(F , i)〉|a(F , i)〉|0〉

+

k∑
i=1

√
1

k
− r|〈F ′i |H|F〉|

‖H‖1
|F〉|Ψ′(F , i)〉|a(F , i)〉|1〉.

(67)

Using the fact that when 〈F ′i |H|F〉 6= 0, we have
Ψ′(F , i) = F ′i and a(F , i) = 0 (see (54) and (55)),
we can rewrite the above expression as

|F〉
(√

r

‖H‖1
∑

|F ′〉∈Q(F)

√
〈F ′|H|F〉|F ′〉|0〉|0〉

+
k∑
i=1

√
1

k
− r|〈F ′i |H|F〉|

‖H‖1
|Ψ′(F , i)〉|a(F , i)〉|1〉

)
,

(68)

Thus as noted in [24], the expression in parentheses
in (68) is equal to |φF 〉 as given by (61), for |ζF 〉
given by

|ζF 〉 =
1√

1− rσF
‖H‖1

×
k∑
i=1

√
1

k
− r|〈F ′i |H|F〉|

‖H‖1
|Ψ′(F , i)〉|a(F , i)〉.

(69)

Hence, we have implemented T using one query to
OF and two queries to OH , as in [24].

In Sections V and VI we describe how to imple-
ment OF and OH , respectively, in the compact map-
ping, for general interactions as described in Defini-
tion 1. These implementations, together with the
construction in Lemma 1, give us access to the op-
timal sparse Hamiltonian simulation technique af-
forded by qubitization [29], as well as the other
nearly-optimal techniques [27, 30].

In this paper, we focus on the application to sim-
ulating time-evolution, which is the goal of all of
the sparse simulation papers we have cited [20–
30]. A recent paper by some of the authors of
the present work [39] demonstrated how to approx-
imate ground state energies of sparse Hamiltonians
using an extension of the variational quantum eigen-
solver (VQE), a hybrid quantum-classical algorithm
that requires shorter circuits and is more noise-
resilient than quantum algorithms for simulating
time-evolution [6]. Fock state oracles of the forms
given in (52), (53) apply in this setting, which would
allow us to implement VQE for second-quantized
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Hamiltonians in compact encoding. The measure-
ment scheme is given in [39], and for an ansatz we
could for example implement a version of Unitary
Coupled Cluster [48] via oracle-based time evolu-
tions generated by the Hamiltonian terms.

Because of the complexity of implementing the
oracles, which we will present below in Sections V
and VI, the circuit depths required for such an algo-
rithm will be substantially longer than those used
in VQE implementations appropriate for existing
quantum computers. Hence, they will require at
least heavily error-mitigated or hardware-improved
devices, and possibly fault-tolerance. However,
sparse VQE will still become possible before sim-
ulation of time-evolution, because it requires only a
constant number of oracle queries (at most six [39])
per variational circuit, whereas simulation of time-
evolution requires numbers of oracle queries that
scale with the problem parameters, as in (41) or (43)
for example.

C. Sparsity of general interactions in the Fock
basis

For the simulation methods described above to be
efficient, we require the interactions to be sparse.
Consider an interaction specified as in (34), in d di-
mensions with cutoffs as in (12). The corresponding
interaction Hamiltonian is given by (35).

To obtain an upper bound on the sparsity we may
assume that the f − g incoming particles in the in-
teraction may be taken from any of the modes in
the input state (recall that f is the total number of
external lines in the interaction, and g is the number
of outgoing lines). In general, this upper bound is
not tight, because it requires all modes in the input
state to be the same up to momentum and to match
all incoming lines in the interaction, but it will suf-
fice to show that the sparsity is polynomial in the
momentum cutoffs. For I the maximum number of
modes in the input state (as in Section III A), this
upper bound is((

I
f − g

))
= O

(
If−g

)
, (70)

where the left-hand side denotes I choose f − g
with replacement. As discussed in Section III C,
the intrinsic quantum numbers of the outgoing parti-
cles are fixed by the interaction, but their momenta
can take any values consistent with total momen-
tum conservation. For simplicity, we may upper
bound this by counting all outgoing momentum as-
signments consistent with the cutoffs, of which there

are

O

 d∏
j=1

(
Λmax
j − Λmin

j

)g−1 , (71)

since we assign a momentum to each of the g outgo-
ing particles, but one of these is fixed by momentum
conservation.

Hence, an upper bound on the total number of
connected states to any given initial state under the
interaction, and thus on the sparsity, is the product
of (70) and (71):

k ≤ O

If−g d∏
j=1

(
Λmax
j − Λmin

j

)g−1 ≤ O (Λd(f−1)max

)
.

(72)
The second upper bound is obtained by replacing
I with the total number of modes as a function of
Λmax, the maximum momentum cutoff. This illus-
trates that even in this worst case, the sparsity is
polynomial in the momentum cutoffs, for fixed di-
mension d and number f of external lines in the
interaction. The number of qubits Q is linear in I
up to logarithmic factors, so assuming I is polyno-
mial in the momentum cutoffs, Q is also polynomial
in the momentum cutoffs, and thus the sparsity is
polynomial in Q.

V. ENUMERATOR ORACLE

In this section, we describe how to efficiently im-
plement the oracle OF , whose action is given by (52).
In the first subsection, we describe some examples
that illustrate all of the main techniques required for
the general method. In the second subsection, we
describe the general method. This description refers
extensively to the details explained in the examples
in the first subsection, so we strongly encourage the
reader to begin with these. Finally, in the third sub-
section we analyze the general method.

A. Examples

For an input state |F〉|i〉, where |F〉 is some
(compact-encoded) Fock state and i ∈ [k] for spar-
sity k, the enumerator oracle’s action should be as
follows: in an ancilla register, compute |F ′i〉, the
ith Fock state whose matrix element with |F〉 is
nonzero, and also uncompute |i〉. Note that this ac-
tion is assuming that i does in fact index a nonzero
matrix element (see Section IV); the later examples
will illustrate the possible situations where this may
not be the case.
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Example V.1. Consider a boson field on which our
interaction is the number operator,

HI =
∑
n

a†(n)a(n). (73)

In the notation of Definition 1, if we let ‘0’ de-
note ‘boson’, we would express this interaction as
{(‘0’), (‘0’)} (meaning one boson in, one boson out),
and the coefficient function is just β(n) = 1. The
interaction Hamiltonian HI maps any Fock state to
itself, rescaled by a coefficient given by the total
number of particles. Hence, this interaction is di-
agonal and one-sparse (it maps each Fock state to
at most one other Fock state). Therefore, for any
input |F〉|i = 0〉 (since i takes only one value for a
one-sparse interaction), the output of the enumera-
tor oracle is just |F〉, i.e.,

OF |F〉|0〉 = |F〉|F〉. (74)

Comparing this expression to (52), the reader will
notice that we are suppressing the output |a(F , i)〉,
but for the current example a(F , i) is always 0.

Example V.2. Let us still consider a boson field,
but now with the three-point interaction

HI =
∑
n1,n2

a†(n1 + n2)a(n2)a(n1) (75)

i.e., two incoming bosons annihilate to form a single
outgoing boson whose momentum is the sum of the
incoming momenta. In the notation of Definition 1,
we would express this interaction as {(‘0’), (‘0’, ‘0’)}
(meaning two bosons in, one boson out), and the
coefficient function is still just β(n1,n2) = 1. Even
though this example appears only slightly more com-
plicated than the number operator in Example V.1,
it in fact will introduce almost all of the considera-
tions we will require for completely general interac-
tions. We break the implementation of OF up into
steps.
Step 1 (identify incoming modes). Given the

input Fock state |F〉, we need to use the input index
|i〉 to determine the output Fock state |F ′i〉. The way
we do this is to use i to choose the two modes in |F〉
that will contribute the incoming bosons in the inter-
action (they could come from the same mode). For
I the maximum possible number of occupied modes
(as in Section III A), we let i index all pairs Ji of
mode indices: i.e.,{
Ji | i = 1, 2, ..., I2

}
=
{
{j1, j2} | j1, j2 = 1, 2, ..., I

}
.

(76)
So the first step in implementing OF is to compute
Ji in an ancilla register, as a function of i.

Step 2 (remove incoming bosons). Next, we
find the momenta of the two modes indexed by Ji,

and make sure that they have sufficient occupation
to provide the incoming particles. We can com-
bine this with decrementing the occupation of those
modes, as the first step towards constructing |F ′i〉.
So, prior to beginning this step, we copy |F〉 to a
second qubit register that will become the output
register containing |F ′i〉 at the end of the implemen-
tation. Note that this copying of |F〉 is allowed be-
cause it is just copying in the (compact-encoded)
Fock basis, which can be implemented via qubitwise
CNOTs from the input |F〉 to the new copy register
assuming this is initially in the all-zeroes state.

On the copy of |F〉, we first find the j1th mode
(where Ji = (j1, j2)), and check whether it has
nonzero occupation. If it does not, then we need
some way to record the fact that i does not index a
valid nonzero matrix element. The way we do this
is to maintain an ancilla register called the “flag”
register, whose value is initially zero and should re-
main zero at the end of the implementation of OF if
and only if i indexes a valid nonzero matrix element.
So, to check whether the j1th mode has nonzero oc-
cupation, we add one to the flag register controlled
on j1th mode having zero occupation. Now we may
proceed as if the mode does have nonzero occupa-
tion, knowing that if the flag register is nonzero at
the end of the implementation we will simply reverse
the whole procedure.

Next we decrement the occupation of the j1th
mode by one, and record its momentum in an an-
cilla register that encodes n1, the momentum of the
first incoming boson. If the occupation of the mode
is now zero, we should also set the remaining qubits
encoding the mode to all zeroes (which we can do
by applying CNOTs controlled on the correspond-
ing qubits in the original version of |F〉 — recall
that we are currently operating on the copy). Also
controlled on the occupation of the current mode be-
ing zero, we store its index in the first entry of an
ancilla register E, which we will use later.

We now repeat this whole procedure (including
checking the occupation) for the j2th mode, record-
ing its momentum in another ancilla register that
encodes n2. If this mode is left empty, we store its
index in the second entry of the ancilla register E.
Note that if both modes are the same, i.e., j1 = j2,
then at this second step we will add one to the flag
register if the initial occupation of that mode was
not at least two, since one boson has already been
removed from the mode.

Step 3 (reorder modes). Once we are done
with steps 1 and 2, we have n1 and n2 recorded
in ancilla registers, and we have decremented the
corresponding mode occupations in the copy of |F〉.
However, it is possible that up to two modes in the
copy of |F〉 may have been left empty after their
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occupations were decremented. Since the compact
encoding only stores occupied modes, and encodes
them in the first J mode registers Xi (see (19)), we
need to move any empty modes to the end of the
encoding.

To do this, we use the ancilla register E that we
introduced above. This contains two entries E1 and
E2; E1 = j1 if the j1th mode was left empty after
removing the incoming particles to the interaction,
and otherwise E1 remains in its initial state (which
should be chosen to be different from any of the val-
ues encoding indices). E2 was similarly set according
to the j2th mode.

Using these, we reorder the modes as follows. It-
erate over j = 1, 2, ..., I − 1 (the mode indices). For
each j, swap the jth register and the (j+1)th register
controlled on E1 ≤ j (and on E1 actually encoding a
valid mode index). If the j1th mode is emptied, the
first time the above control condition will be satisfied
is when j = E1 = j1, so this will swap the emptied
j1th mode register with the (j1+1)th mode register.
Next we move to j = j1 + 1 ≥ E1, so the (j1 + 1)th
mode register (which now contains the empty mode)
gets swapped with the (j1 + 2)th mode register, and
so forth until the empty mode has been moved to
the last mode register.

We now repeat this procedure for E2 in order to
move the j2th mode to the end of the mode registers
if it was emptied. The only caveat with this step is
that, if both the j1th and j2th modes were emptied
and j1 < j2, then after the first swapping sequence
(for E1 = j1), the empty mode that was initially in
position j2 is now in position j2 − 1, since the j1th
mode was swapped out from before it. Therefore,
before repeating the procedure for E2, we should
subtract one from E2 controlled on E1 < j2.

Step 4 (insert outgoing boson). After we have
completed all of the above steps, the copy of |F〉 has
had the two incoming bosons to the interaction re-
moved, and the modes have been reordered if nec-
essary so that the J occupied modes are encoded in
the first J mode registers. The momenta n1,n2 of
the incoming bosons are also recorded in ancilla reg-
isters. All that remains is to insert the new boson
with momentum n1 + n2.

To do this, we first iterate over the already oc-
cupied modes, checking whether each one has mo-
mentum n1 + n2 and incrementing its occupation if
so. We also flip a single ancilla qubit from |0〉 to |1〉
if we find such a mode, to record the fact that we
have inserted the new boson. If at the end of the
iterations, this ancilla qubit is still |0〉, then the new
boson needs to be inserted as a new mode (so the
following operations should be controlled on this).
In this case, we first find the location where the new
mode should be inserted: to do this, we iterate over

j = 1, 2, ..., I, checking whether n1 + n2 is greater
than the momentum of the (j − 1)th mode and less
than the momentum of the jth mode. This will only
be true for a single value of j, which we can call j′,
so we record j′ in an ancilla register.

Then we iterate over the mode indices in reverse
order, i.e., j = I − 1, ..., 1, for each j swapping the
jth and (j+1)th mode registers controlled on j′ ≤ j.
Since the maximum possible number of occupied
modes is I and we are about to insert a new mode,
prior to this sequence of swaps the Ith mode reg-
ister is guaranteed to be unencoded. Hence, when
j = I − 1, we swap the (I − 1)th and Ith mode
registers, moving the unencoded register to location
I − 1. We then proceed to j = I − 2, swapping the
(I−2)th and (I−1)th mode registers and thus mov-
ing the unencoded register to location I − 2, and so
forth. The last swap we perform is when j = j′, so
once we are done with the full sequence of swaps the
unencoded register is in location j′. Therefore, we
can simply set its momentum to n1 + n2 and set its
occupation to one, and we are done.
Step 5 (uncompute ancillas). Once all of the

above operations are complete, the copy of |F〉 has
been transformed into the desired output Fock state
|F ′i〉, so all that remains is to uncompute the ancil-
las. This could be done simply by copying |F ′i〉 (in
the Fock basis) and then exactly reversing all of the
prior operations, but we also want to uncompute |i〉,
the input index. In order to accomplish this, we un-
compute |i〉 using the register encoding Ji. But now
we cannot uncompute Ji using i, since this value has
been uncomputed, so we instead need to uncompute
Ji using the registers it was used to compute. The
details of this are tedious, but since |F〉 and |F ′i〉 to-
gether contain enough information to determine the
values of all of the ancillas that were used to com-
pute |F ′i〉, we can use those values to uncompute
the ancillas via similar operations to those used to
compute |F ′i〉.

Also, if we reach the end of the procedure and
the flag register is nonzero, then we know that the
index i did not in fact correspond to a valid matrix
element. In this case, the desired output as given in
(52) is |F〉|F〉|i〉. Hence, we want to keep |i〉 (which
is |a(F , i)〉 in this case), completely reverse the rest
of the computation, and then just copy |F〉 itself to
the output Fock state register.

This completes the implementation of OF for this
example.

Example V.3. Let us again consider a boson field,
but now with the four-point interaction

HI =
∑

n1,n2,n3,n4

a†(n4)a†(n3)a(n2)a(n1), (77)

where the sum runs over all momentum conserving



15

combinations, i.e., n1 + n2 = n3 + n4. Many of the
steps to implement the OF oracle for this interaction
are the same as in Example V.2, so instead of go-
ing through the entire procedure again, we will just
describe what needs to change.

Steps 1 through 3, in which we identify the in-
coming modes, decrement their occupations, and re-
order the modes if some of them are left empty, are
the same as in Example V.2. However, the incoming
momenta no longer uniquely determine the outgoing
momenta, since for a given value of n1+n2 there are
multiple values of n3 and n4 that satisfy momentum
conservation. Therefore, our input index i needs to
do more work than just to specify Ji (the incoming
mode indices). In particular, after the total incom-
ing momentum

Q ≡ n1 + n2 (78)

has been determined, we need to use i to determine
how this momentum should be split up between the
outgoing bosons.

To do this, we use a classically-precomputed
lookup table A(Q, i) that maps any possible value
of the total momentum Q together with an index
value i to a partition of the momentum among the
outgoing particles. For example, if we are in a 1+1D
light-front field theory (see Section III B) with mo-
mentum cutoffs Λmin = 1, Λmax = K = 5, then we
could take A(Q, i) to be

A = {
(2, 0) 7→ {1, 1},
(3, 0) 7→ {2, 1},
(4, 0) 7→ {3, 1},
(4, 1) 7→ {2, 2},
(5, 0) 7→ {4, 1},
(5, 1) 7→ {3, 2}
}.

(79)

In other words, for each fixed value of Q, i indexes
the possible partitions of Q into two parts satisfying
the momentum cutoffs, and A(Q, i) returns these
values. So, for example, if Q = 4 and i = 1, then

A(Q, i) = A(4, 1) = {2, 2}. (80)

So, given the actual value of Q, which is stored in
some ancilla register, and the value of i, which is one
of the quantum inputs, we need to compute A(Q, i)
in an ancilla register. To do this, we classically it-
erate over the possible values (Q′, i′), for each one
setting the ancilla register to A(Q′, i′) controlled on
(Q, i) = (Q′, i′). When this iteration is complete,
we will have the outgoing momenta stored in this
ancilla register.

Since we are now using i both to specify Ji and
A(Q, i), we need to keep these independent. To do
this, if A(Q, i) requires at most a distinct values of i,
then we can let A(Q, i) be a function of i mod a and
Ji be a function of bi/ac. For example, the instance
of A(Q, i) given in (79) only requires two distinct
values of i, so for this case we could let

A(Q, i) 7→ A(Q, i mod 2) (81)

and

Ji 7→ Jbi/2c. (82)

The only additional consideration is that, as illus-
trated in (79), depending on the value of Q not all of
the values of i mod a may be used to specify outgo-
ing momentum assignments via A(Q, i). If i mod a
takes one of these unused values, then this is just
another instance of i not indexing a valid matrix
element, so we should add one to the flag register.
This would happen, for example, if we obtained the
inputs Q = 2, i mod 2 = 1 for A(Q, i mod 2) as
given in (79).

Once we have specified the two outgoing momenta
n3 and n4, inserting them in the outgoing Fock state
just requires applying step 4 in Example V.2 twice.
Step 5 is then also the same as for Example V.2,
and that completes the implementation of OF for
this example.

Example V.4. Let us now, finally, consider an in-
teraction including fermions as well as bosons:

HI =
∑

n1,n2,n3,n4

a†1(n4)a†0(n3)a1(n2)a0(n1), (83)

where subscript 0 indicates boson and subscript 1
indicates fermion, and the sum runs over all momen-
tum conserving combinations, i.e., n1+n2 = n3+n4.
Hence this interaction is an incoming boson and
fermion, and an outgoing boson and fermion.

Many of the elements of the implementation of
OF are the same as in the previous two examples.
One change is that the orders of the values of Ji
and A(Q, i) now matter, since the two incoming
modes are now distinguishable, as are the two out-
going modes. Also, we must now check that for
Ji = (j1, j2), the j1th mode is bosonic and the
j2th mode is fermionic, adding one to the flag reg-
ister if either is not. The remainder of identifying
and removing the incoming particles, reordering the
modes, and computing the outgoing momenta are
the same as in the prior examples.

When inserting the outgoing fermion we must also
alter the procedure. When we iterate over the modes
to check whether any match the new fermion to be
inserted, instead of incrementing its occupancy if we
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find a mode that matches (as we would for a boson),
we add one to the flag register, because fermionic
modes cannot have occupancy greater than one. We
then proceed with inserting the fermion as a new
mode in exactly the same way as for bosons, and
complete the rest of the procedure exactly as in Ex-
ample V.2. Note that when computing the matrix
element oracle OH , we will have to additionally treat
fermions and bosons differently because of their dif-
ferent commutation relations, but for the enumera-
tor oracle this is not relevant.

B. General method

We assume that the input is in the form |F〉|i〉,
where |F〉 is some compact-encoded Fock state, and
i ∈ [k] where k is the sparsity. The f -point in-
teraction is specified as in Definition 1, i.e., as a
set of g outgoing lines identified by (q1, q2, ..., qg),
and a set of f − g incoming lines identified by
(qg+1, qg+2, ..., qf ). The momentum cutoffs are as
in (12): for each momentum n, each component nj
must satisfy

Λmin
j ≤ nj ≤ Λmax

j , (84)

where j runs over the dimensions. All of the main
ideas for the implementation of OF were introduced
by the examples in Section V A, mostly in Exam-
ple V.2, so we simply indicate how to appropri-
ately generalize these ideas in order to describe the
method for arbitrary interactions.
Step 1 (identify incoming modes). This step

is the same as in Examples V.2 and V.3, except that
the possible sets of incoming modes now have size
f − g:

Ji ∈ {1, 2, ..., I}f−g. (85)

We therefore have to check that for Ji =
(j1, j2, ..., jf−g), the jkth mode in |F〉 matches the
identifying information qg+k of the kth incoming line
in the interaction. This generalizes the step in Ex-
ample V.4 where we check that the j1th mode is
bosonic and the j2th mode is fermionic.

Step 2 (remove incoming particles and re-
order modes). This step is implemented exactly as
in the examples, just with more repetitions of the re-
moval procedure as we decrement the occupation in
modes j1, j2, through jf−g. We store the momenta
ng+1,ng+2, ...,nf of the incoming lines in ancilla reg-
isters, and compute their sum Q. Reordering modes
is also exactly as in the examples; the list E of emp-
tied modes must now contain f − g entries.
Step 3 (compute outgoing momenta). The

classical lookup table A(Q, i) maps values of Q and

i to ordered sets of g outgoing momenta:

A(Q, i) = (n1,n2, ...,ng) (86)

such that
g∑
k=1

nk = Q. (87)

As in Example V.3, we classically iterate over the
possible values Q′ and i′ of Q and i, and implement
a quantum operation that encodes A(Q′, i′) in an
ancilla register controlled on (Q′, i′) = (Q, i).

The only difference is that now Q and i can take
more values. Q can be any momentum that is the
sum of f − g momenta consistent with the cutoffs
Λmin
j ,Λmax

j in each dimension j. For a given Q, out-
going momenta can be any set satisfying (87), so
i must provide enough distinct values to distinguish
these assignments for whichever value of Q gives the
most of them. We will provide a detailed analysis of
this later.
Step 4 (insert outgoing particles). This step

is the same as in the examples in Section V A, ex-
cept that we must now repeat the insertion proce-
dure g times, once for each of the g outgoing modes.
The momenta of the outgoing modes are given by
n1,n2, ...,ng, which we computed in step 3, and their
identifying information (particle types and quantum
numbers) is given by q1, q2, ..., qg in the interaction
specification.
Step 5 (uncompute ancillas). This step is the

same as in the examples in Section V A.
This completes the implementation of OF for a

general interaction. A schematic for the circuit is
shown in Fig. 2.

C. Analysis

We will analyze the above algorithm in terms of
the number of log-local operations required. The
specific log-local operations of interest are actions
on constant numbers of mode registers Xj , either
in encoded states or in ancilla registers. These
are log-local because each mode register contains
logarithmically-many qubits in the momentum and
occupation number cutoffs (see (20)). The log-local
operations we used are all controlled arithmetic op-
erations. The problem of compiling such operations
into primitive gates can be addressed independently,
and is well-studied (see for example [49]). The choice
of primitive gate set to compile into is also hardware-
specific. Hence, we express our gate counts in terms
of the log-local operations.

We analyze each of the steps outlined in the pre-
vious section. Step 1 requires controlling on the pos-
sible values of Ji, leading to a number of log-local



17

i

compute
Ji

compute
A(Q, i)

i

compute
Q

remove
incoming
particles

F

copy |F〉
(Fock basis)

insert
outgoing
particles

F

0 F ′
i

i i i i

0 Ji Ji Ji Ji Ji

F F F F F F F F

0 Q Q Q

0 A(Q, i) A(Q, i)

0 F F Fpartial Fpartial F ′
i

FIG. 2. Schematic of the circuit to implement the enumerator oracle. Labeled wires are input and output registers,
and unlabeled wires are ancilla registers (each initially in the all 0s state). The inputs and outputs are |F〉 (the
incoming Fock state), |i〉 (the sparsity index), and |F ′i〉 (the outgoing Fock state), all as in (52). The intermediate
quantities computed are Ji (the list of modes in |F〉 from which the incoming particles are taken, as in (85)), Q (the
total incoming and outgoing momentum), and A(Q, i) (the list of momenta of the outgoing particles, as in (86)). The
circuit hides some additional ancillas, does not show uncomputation of the ancillas, and shows the action when i is
a valid index for an outgoing state. At the points marked by red dashed lines we have to check whether this is true,
as described in detail in the text.

operations that scales with the number of possible
values of Ji. By (85), the number of possible values
of Ji is upper bounded by If−g (recall that I is the
maximum possible number of occupied modes), so

O
(
If−g

)
(88)

is an upper bound on the number of log-local oper-
ations required to implement step 1. Recall that f
and g are constant, so (88) is polynomial in I.

Step 2 requires finding the modes whose indices
match indices in Ji, decrementing their occupations,
and reordering the modes: these are implemented
via a constant number of simultaneous iterations
over the f − g entries in Ji, and over the I modes in
the copy of |F〉. Thus

O
(
I(f − g)

)
(89)

is an upper bound on the number of log-local oper-
ations required to implement step 2.

Step 3 requires controlling on the pairs of possible
values of Q and i that give distinct values of A(Q, i).
The number of such pairs is the same as the number
of possible distinct values of A(Q, i). These values
have the form (86), so the number of possible values
is upper bounded by the number of possible values
for each entry, raised to power g. Each entry is the
momentum of a single particle, so if we take Λmax to
be the maximum momentum cutoff (in magnitude)
over all dimensions, the number of possible values
for each entry in A(Q, i) is O(Λdmax) (recall that d is
the spatial dimension). Hence,

O
(

Λdgmax

)
(90)

is an upper bound on the number of distinct val-
ues of A(Q, i), and thus also an upper bound on
the number of log-local operations required to im-
plement step 3.

Step 4 requires a constant number of simultaneous
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iterations over the g outgoing modes (determined by
the value of A(Q, i) and q1, q2, ..., qg as specified by
the interaction), and over the I modes in the copy
of |F〉. Thus

O (Ig) (91)

is an upper bound on the number of log-local oper-
ations required to implement step 4.

Step 5, uncomputing the ancillas, at worst doubles
the cost of the full algorithm, so we may ignore it in
the scaling. The costs of steps 2 and 4 are subsumed
by the costs of steps 1 and 3, so the total number of
log-local operations required to implement the enu-
merator oracle and compute the inputs to the matrix
element function is

O
(
If−g + Λdgmax

)
. (92)

Hence, the number of log-local operations required
to implement the enumerator oracle and compute
the inputs to the matrix element function is polyno-
mial in the momentum cutoff Λmax, the number I of
mode registers, and the number of qubits (since this
is linear in I and logarithmic in the other parame-
ters — see (21)).

VI. MATRIX ELEMENT ORACLE

The oracle OH defined in (53) calculates a matrix
element of the interaction Hamiltonian HI (given by
(35)) to some desired precision. The quantum input
is a pair of compact-encoded Fock states |F〉 and
|F ′〉, taken to be the incoming and outgoing states
in the interaction, respectively. As described in the
proof of Lemma 1, above, OH is only implemented
when |F ′〉 = |F ′i〉 for some i (recall that |F ′i〉 is the
ith connected state to |F〉), so we may assume that
the matrix element of |F〉 and |F ′〉 is nonzero (or
that it is zero and that fact is recorded by the register
a(F , i) being nonzero — see (55)).

The value of the matrix element is given by its co-
efficient β({ni}) as in (35) multiplied by any factors
coming from the ladder operators. As usual, apply-
ing a creation operator to a mode containing w par-
ticles contributes a factor of

√
w + 1, while applying

an annihilation operator contributes a factor of
√
w.

In order to enforce antisymmetrization of fermions
and antifermions, each (anti)fermionic ladder oper-
ator also contributes a factor of ±1 determined by
the parity of the number of particles of the same
type encoded in mode registers preceding the mode
register acted upon by the ladder operator (in the
canonical ordering established in Section III A).

Consider a general interaction, with incoming
lines qg+1, qg+2, ..., qf and outgoing lines q1, q2, ..., qg.

This interaction connects Fock states |F〉 and |F ′〉
when there is some assignment of momenta {ni} to
the incoming and outgoing lines that conserves mo-

mentum, i.e.,
∑g
i=1 ni =

∑f
i=g+1 ni, such that

〈F ′|

 g∏
i=1

a†qi(ni)

 f∏
i=g+1

aqi(ni)

 |F〉 6= 0. (93)

This is the case if and only if {(qi,ni) | i = 1, 2, ..., g}
are the extra particles in |F ′〉 (and not in |F〉), and
{(qi,ni) | i = g+1, g+2, ..., f} are the extra particles
in |F〉 (and not in |F ′〉). When this condition holds,

〈F ′|

 g∏
i=1

a†qi(ni)

 f∏
i=g+1

aqi(ni)

 |F〉
= ±

√√√√√
 g∏
i=1

w′i

 f∏
i=g+1

wi

,
(94)

where the ± is set by fermion/antifermion antisym-
metrization, each wi (for i = g+1, g+2, ..., f) is the
occupation of the mode (qi,ni) in f∏

j=i+1

aqj (nj)

 |F〉, (95)

and each w′i (for i = 1, 2, ..., g) is the occupation of
the mode (qi,ni) in g∏

j=i

a†qj (nj)

 f∏
j=g+1

aqj (nj)

 |F〉. (96)

In other words, if multiple creation or annihilation
operators act on the same mode, for each the corre-
sponding wi or w′i should be the occupation of the
mode immediately before the annihilation or after
the creation.

Example VI.1. Consider a0(2)†a0(1)2, i.e., annihi-
lation of two identical bosons with momentum one
followed by creation of a boson with momentum two.
If the input state is

|F〉 = |(0, 1, 5)〉, (97)

i.e., five bosons of momentum one and nothing else,
then the output state is

|F ′〉 = |(0, 1, 3), (0, 2, 1)〉, (98)

i.e., three bosons of momentum one and one boson
of momentum two. Hence w′1 = 1 (since the created
momentum-two boson is in its own mode), w2 = 4,
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and w3 = 5 (since the momentum-one mode has
occupation 5 when the first boson is annihilated and
occupation 4 when the second boson is annihilated).
Thus for this example, (94) becomes

〈F ′|a(2)†a(1)2|F〉 =
√
w′1w2w3 =

√
20. (99)

Similarly, the value of the parity factor ±1 in (94)
is the product of the parity factors due to the ladder
operators at the times when they are applied. The
coefficient β is a function of the ni, so the complete
value of the matrix element is

± β({ni})

√√√√√
 g∏
i=1

w′i

 f∏
i=g+1

wi

. (100)

Recall that this is all assuming that |F ′〉 is con-
nected to |F〉 by the interaction, and that {ni} is the
corresponding assignment of momenta to the exter-
nal lines in the interaction. But as pointed out in the
first paragraph of this section, we may assume that
we only have to evaluate the matrix element for pairs
of states that are the output of the enumerator ora-
cle, and hence are connected. Therefore, computing
the matrix element of |F〉, |F ′〉 requires two steps:

1. Find the momenta of the extra particles in
each state, the occupations of the correspond-
ing modes (accounting for the case when mul-
tiple bosons in the same mode are created or
annihilated), and the parities of the preced-
ing modes for particles of the same type (for
fermions and antifermions).

2. Evaluate (100).

When we apply the enumerator oracle to deter-
mine |F ′i〉 given |F〉 and i〉, we can obtain the first
step above along the way. In particular, the set of
indices Ji (85) identifies the set of extra particles in
|F〉, and A(Q, i) is the set of momenta of the ex-
tra particles in |F ′i〉. The occupations of the corre-
sponding modes in |F ′i〉 are identified when the new
particles are inserted to construct |F ′i〉. The pari-
ties for fermions and antifermions can be obtained
by simply counting the numbers of preceding modes
with the same particle type (the particle types are
defined by the interaction), since the positions of the
modes that the ladder operators act on are specified
explicitly by Ji (for the incoming particles), and in
the course of inserting the outgoing particles. There-
fore, by the time we have obtained |F ′i〉 in the course
of implementing OF , we can also complete step 1 of
implementing OH above. Thus we can execute OH
as many times as desired by implementing step 2
above, as long as we do so prior to uncomputing the
ancillas used to compute OF .

In order to implement the quantum walk opera-
tor T (see (62)), we require two applications of OH ,
one to compute the matrix element, and another to
uncompute the matrix element after performing a
rotation controlled on it (see step 3 in the proof of
Lemma 1, above). There is no problem in putting off
uncomputing the ancillas used in the computation of
OF until after the controlled rotation has been ex-
ecuted. Thus, we can perform both applications of
OH simply by executing step 2 above, with the in-
puts given by these ancillas. In other words, we can
include all necessary applications of OH in our im-
plementation of OF , without needing to recompute
the extra particles in each state |F〉, |F ′〉.

The implementation of step 2 above, i.e., the ac-
tual evaluation of the matrix element as in (100),
depends on the specific functional form of β({ni}).
However, we can make some general statements.
The matrix element expression (100) is a function
of 2f variables, {ni} and w′i, wi. Each of the ni is a
d-dimensional vector whose entries are constrained
by the cutoffs (12), so if Λmax is the maximum mag-
nitude of any cutoff, ni takes O(Λdmax) values and is
encoded in O(d log Λmax) qubits for each i. Each of
the wi and w′i is a positive integer upper bounded
by W , where W is the occupation number cutoff,
so each can be encoded in O(logW ) qubits. Ele-
mentary arithmetic operations can be implemented
as sequences of NOT, CNOT, and Toffoli gates with
depth polynomial in the number of qubits of the in-
puts [49, 50].

Thus, assuming that the matrix element can be
expressed as a fixed combination of elementary arith-
metic operations, evaluating it requires

O
(
d f polylog(Λmax) + f polylog(W )

)
(101)

NOT, CNOT, and Toffoli gates. In other words,
for fixed interactions in fixed dimension, the entire
OH can be executed by using the ancilla values com-
puted during implementation of OF , with gate count
overhead that is polylogarithmic in the momentum
and occupation number cutoffs.

VII. ANALYSIS AND APPLICATIONS

In this section, we explain how to simulate sev-
eral example models in 1+1D using the tools we
have described above. For each model, we also pro-
vide a comparison of the number of gates required
for equal-time versus light-front formulations of rel-
ativistic quantum field theory.

The gates we are counting are log-local operations,
i.e., operations on constant numbers of registers en-
coding single modes. As noted above, we do not
compile these operations all the way into primitive
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gates, because optimizing such compilation is an in-
dependent problem and is itself the subject of ex-
tensive study (see for example [49]), as well as be-
ing hardware-specific. The gate counts we provide
are also only for implementing the enumerator oracle
and obtaining the inputs to the coefficient function,
since as explained in Section VI, once these steps
are complete computing the value of the matrix el-
ement requires a number of additional gates that is
polylogarithmic in the momentum and occupation
cutoffs (see (101)).

A. Free boson and fermion theory

We begin by examining free theories for bosons or
fermions before moving on to interacting theories.
The Hamiltonians we consider are linear combina-
tions of number operators, and thus diagonal and 1-
sparse. More general free fermion and boson Hamil-
tonians can be cast into this diagonal form. An or-
acle call only entails computing the diagonal matrix
element given the initial state |F〉. Clearly, applying
sophisticated quantum simulation methods to free
theories is overkill. However, we discuss these theo-
ries because they are the simplest examples, and be-
cause these terms occur in interacting theories where
nontrivial methods are necessary.

The enumerator oracle for a diagonal Hamiltonian
simply copies any input Fock state to the output
register:

OF : |F〉|0〉 → |F〉|F〉. (102)

Thus it can be implemented by a single layer of
CNOTs, one to copy the state of each qubit (in the
computational basis).

In light-front quantization, the Hamiltonian for a
free boson of mass mB in 1+1D is

H = m2
B

K∑
n=1

1

n
a†nan, (103)

where the different values of n are light-front mo-
menta, and K is the total light-front momentum
(harmonic resolution; see Section III B). The coef-
ficient function for the Hamiltonian is therefore

β{(0),(0)}(n) =
m2
B

n
, (104)

where ‘0’ denotes boson. Thus in this case the oper-
ations required to compute the matrix element are
just those to compute a reciprocal.

Recall that our interactions as in (34) (in
Definition 1) are specified as a pair of lists
{(q1, ..., qg), (qg+1, ..., qf )}, where (q1, ..., qg) are the

outgoing particles and (qg+1, ..., qf ) are the incom-
ing particles: thus in the present example {(0), (0)}
means one incoming boson and one outgoing boson.
The Hamiltonian can be rewritten in terms of (104)
as

H =

K∑
n=1

β{(0),(0)}(n)a†nan. (105)

The matrix element oracle for the free boson field
Hamiltonian is

OH : |F〉|F〉 → |F〉|F〉

∣∣∣∣∣∣
K∑
n=1

β{(0),(0)}(n)wn

〉
,

OH : |F〉|F ′〉 → |F〉|F ′〉|0〉,
(106)

where wn is the occupation of the mode with light-
front momentum n in |F〉, and |F ′〉 6= |F〉.

The Hamiltonian for the Dirac field in 1+1D light-
front quantization is

H = m2
F

K∑
n=1

1

n
(b†nbn + d†ndn), (107)

where mF is the fermion/antifermion mass. The co-
efficient function for each interaction is

β{(1),(1)}(n) = β{(2),(2)}(n) =
m2
F

n
, (108)

where ‘1’ denotes fermion and ‘2’ denotes an-
tifermion. Rewriting the Hamiltonian in terms of
these gives

H =

K∑
n=1

(
β{(1),(1)}(n)b†nbn + β{(2),(2)}(n)d†ndn

)
.

(109)
The matrix element oracles for the two interactions
in the Dirac field Hamiltonian are thus identical to
the matrix element oracle for the free boson field,
replacing the coefficient functions and occupation
numbers with those corresponding to fermions and
antifermions for the first and second interactions, re-
spectively.

In equal-time quantization, the free Hamiltonian
in second-quantized form looks similar to that in
light-front quantization. The only difference is that
the sum runs over positive and negative momenta,
and the coefficient function is given by

β{(i),(i)}(n) =
1√

m2 + n2
=

1

ωn
, (110)

where i = 0, 1, or 2 for the boson, fermion, or an-
tifermion interactions, and m is the mass of the par-
ticle (scaled by the box size L). Thus in this case the
operations required to compute the matrix element
are a square, a sum, a square-root, and a reciprocal.
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B. λφ4 theory

In light-front quantization, the λφ4 theory in
1+1D has the Hamiltonian [42]

H = H0 +HI , (111)

where

H0 =
∑
n

1

n
a†nan

m2 +
λ

4π

1

2

∑
k

1

k

 (112)

and

HI =
1

4

λ

4π

∑
klmn

a†ka
†
l aman√
klmn

δm+n,k+l

+
1

6

λ

4π

∑
klmn

(
a†kalaman + a†ka

†
l a
†
man√

klmn

)
δk,m+n+l,

(113)

where λ is the coupling constant, and H0, HI are
the free and interacting parts of the Hamiltonian,
respectively. The sums are over light-front momenta
in the range [1,K]. We can treat the free part of the
Hamiltonian by the methods of Section VII A. In
this section we focus on the interacting part of the
Hamiltonian, given in (113).
HI is composed of three interactions, cor-

responding to the ladder operator monomials

a†kalaman, a†ka
†
l aman, and a†l a

†
ma
†
nak (summed

over the momenta). In our interaction no-
tation as in Definition 1, these are written
{(0), (0, 0, 0)}, {(0, 0), (0, 0)}, and {(0, 0, 0), (0)}, re-
spectively. Reading off from (113), the coefficient
functions are given by

β{(0,0),(0,0)}(k, l,m, n) =
λ

16π
√
klmn

, (114)

β{(0),(0,0,0)}(k, l,m, n) =
λ

24π
√
klmn

, (115)

and

β{(0,0,0),(0)}(k, l,m, n) =
λ

24π
√
klmn

. (116)

Note that the delta functions that enforce momen-
tum conservation are not included in the coefficient
functions, because momentum conservation is en-
forced at an earlier step in the algorithm than com-
putation of matrix elements. These are the entirety
of the inputs needed to specify our oracle implemen-
tations. Rewriting the Hamiltonian in terms of the

coefficient functions gives

HI =
∑
klmn

β{(0,0),(0,0)}(k, l,m, n)a†ka
†
l aman

+
∑
klmn

β{(0,0,0),(0)}(k, l,m, n)a†kalaman

+
∑
klmn

β{(0),(0,0,0)}(k, l,m, n)a†ka
†
l a
†
man,

(117)

where the sums run over momentum-conserving
combinations of k, l,m, n ∈ {1, 2, ...,K} for total
light-front momentum K.

In equal-time quantization, the interacting part of
the λφ4 Hamiltonian in 1+1D is

HI =
λ

4!

∑
k,l,p,f

1√
16ωpωlωkωf

[

apakalafδ−f−l,k+p + a†pa
†
ka
†
l a
†
fδl+f,−k−p

+ 4a†fapakalδf,k+l+p + 6akalδf,pδk,−l

+ 6a†l a
†
fapakδl+f,k+p

+ 6a†ka
†
l δf,pδk,−l + 4a†ka

†
l a
†
fapδl+f+k,p]. (118)

From this, we can read off the coefficient functions:

β{(0,0,0,0),()}(k, l, f, p) =
1√

16ωpωlωkωf
,

β{(),(0,0,0,0)}(k, l, f, p) =
1√

16ωpωlωkωf
,

β{(0,0,0),(0)}(k, l, f, p) =
4√

16ωpωlωkωf
,

β{(0,0),()}(k, l) =
∑
f,p

6√
16ωpωlωkωf

δf,p,

β{(0,0),(0,0)}(k, l, f, p) =
6√

16ωpωlωkωf
,

β{(),(0,0)}(k, l) =
∑
f,p

6√
16ωpωlωkωf

δf,p,

β{(0),(0,0,0)}(k, l, f, p) =
4√

16ωpωlωkωf
.

(119)

Note that the coefficient functions for the interac-
tions having only two external lines (β{(),(0,0)} and
β{(0,0),()}) are only functions of the momenta of
those lines (k and l). For the sake of brevity, we will
omit rewriting the Hamiltonian explicitly in terms of
the coefficient functions going forward, as we hope
this correspondence has been made clear from the
examples above. As before, the coefficient functions
together with their associated interactions are the
inputs required to define the Hamiltonian oracles.

The log-local gate counts for an explicit implemen-
tation of the oracles for λφ4 in both light-front and
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equal-time quantization are given in Fig. 3. The gate
counts are given as a function of K. The equal-time
counts are obtained by choosing single-particle mo-
mentum cutoffs [−Λ,Λ] for Λ = dK/2e − 1, so that
the total number of lattice points in the equal-time
simulation would be

2Λ + 1 = 2dK/2e − 1 =

{
K − 1 for even K,

K for odd K,

(120)
for a fair comparison to K lattice points in the light-
front simulation. For the equal-time counts, we also
have to impose a cutoff on the number I of distinct
occupied modes (which is a priori arbitrary), which
we choose to be K, again to provide a conservative
comparison to the light-front simulation (in which
the number of distinct occupied modes is in fact
smaller still at O(

√
K) [33]).

The number of log-local operations to imple-
ment the enumerator oracle is given by (92):
O
(
If−g + Λdgmax

)
. Since the matrix-element oracle

requires only logarithmically-many additional gates,
implementing it does not change the asymptotic
scaling, as noted above. Since I = K for equal-time,
this number of log-local operations becomes O(K4)
due to the interactions that have four incoming par-
ticles (f − g = 4) in (118). For light-front, I =

√
K

so the term If−g no longer dominates, but the sec-
ond term gives O(K3) due to the interactions that
have three outgoing particles (g = 3) in (113) (since
Λmax = K in this case).

These costs are indeed what we see in the log-
log plot Fig. 3, which shows the exact log-local gate
counts for light-front and equal-time. To illustrate
the asymptotic behaviors, Fig. 3 also plots K3 and
K4/5. Since we expect the light-front cost to be
O(K3) and the equal-time cost to be O(K4), as dis-
cussed above, the slopes of the data should approach
those of the plotted lines on the log-log plot, which
is what we see.

The extra operations required to compute the ma-
trix elements for light-front quantization are those
required to evaluate (114), (115), and (116), namely
products, square-roots, and reciprocals. The ex-
tra operations required to compute the matrix ele-
ments for light-front quantization are those required
to evaluate (119) for the frequencies ωn defined as in
(110). Hence they require squares, sums, products,
square-roots, and reciprocals.

C. Massive Yukawa model

For the massive Yukawa model in 1+1D light-front
quantization, we only write the interaction Hamilto-
nian [41]. This is composed of the so called vertex,
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FIG. 3. Gate counts (in log-local operations) to imple-
ment oracles for λφ4 theory in 1+1D. The equal-time
cutoffs are [−Λ,Λ], for Λ defined in terms of K by
(120). The exact gate counts for light-front and equal-
time quantization are given by the points and crosses,
respectively. The solid line K3 and dashed line K4/5 are
included to illustrate that the datapoints are indeed con-
verging to their expected asymptotic scalings of O(K3)
for light-front and O(K4) for equal-time.
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FIG. 4. Gate counts (in log-local operations) to imple-
ment oracles for the massive Yukawa model. The equal-
time cutoffs are [−Λ,Λ], for Λ defined in terms of K by
(120). The exact gate counts for light-front and equal-
time quantization are given by the points and crosses,
respectively. The line K3 is included to illustrate that
the datapoints are indeed converging to their expected
asymptotic scaling of O(K3).

seagull, and fork terms:

HI = HV +HS +HF . (121)



23

The first term, HV , is

HV = gmF

∑
k,l,m[
2

(k + l)
√
l
(b†kbma

†
l + b†mbkal)

+
2

(k + l)
√
l
(d†kdma

†
l + d†mdkal)

+
2

(k −m)
√
m

(bkdla
†
m + d†l b

†
kam)

]
δk+l,m,

(122)

where the a(†) are boson ladder operators, b(†) are
fermion ladder operators, and d(†) are antifermion
ladder operators. The resulting coefficient functions
for HV are

β{(1),(1,0)}(k, l,m) = β{(1,0),(1)}(k, l,m)

= β{(2,2),(0)}(k, l,m)

= β{(2,0),(2)}(k, l,m) =
2gmF

(k + l)
√
l
,

(123)

β{(1,2),(0)}(k, l,m) = β{(0),(1,2)}(k, l,m)

=
2gmF

(k −m)
√
m
,

(124)

where in the subscripts, ‘0’ denotes boson, ‘1’ de-
notes fermion, and ‘2’ denotes antifermion.

The second term in (121), HS , is

HS = g2
∑

k,l,m,n

[
1

m− k (dkbla
†
ma
†
n + b†l d

†
kanam)

+
2

k − nb
†
kbla

†
man

+
2

k − nd
†
kdla

†
man

]
δk+l,m+n√

mn
,

(125)

resulting in the following coefficient functions:

β{(1,0),(1,0)}(k, l,m, n)

= β{(2,1),(2,1)}(k, l,m, n) =
2g2

(k − n)
√
mn

,
(126)

β{(2,1),(0,0)}(k, l,m, n)

= β{(0,0),(2,1)}(k, l,m, n) =
g2

(m− k)
√
mn

.
(127)

The third and final term in (121), HF , is

HF = g2
∑

k,l,m,n[
1

(k + l)
√
lm

(b†kbna
†
l a
†
m + b†nbkamal)

+
1

(k + l)
√
lm

(d†kdna
†
l a
†
m + d†ndkamal)

+
2

(k − n)
√
ln
b†kd
†
ma
†
l an

+
2

(k − n)
√
ln
dmbka

†
nal

]
δk+l+m,n,

(128)

resulting in the following coefficient functions:

β{(1)(0,0,1)}(k, l,m, n)

= β{(0,0,1),(1)}(k, l,m, n)

= β{(2)(0,0,2)}(k, l,m, n)

= β{(0,0,2),(2)}(k, l,m, n) =
g2

(k + l)
√
lm

,

(129)

β{(0),(0,1,2)}(k, l,m, n)

= β{(0,1,2),(0)}(k, l,m, n) =
2g2

(k − n)
√
ln
.

(130)

In 1+1D equal-time quantization, the interacting
part of the Yukawa Hamiltonian with free field ex-
pansion is:

HI =
∑
l,k,p

1√
2ωk

1√
2ωp

1√
2ωl

∑
γ,s

[
cs†l c

γ
kapµ̄

s(l)µγ(k)δl,k+p + cs†l d
γ†
k apµ̄

s(l)νγ(k)δl+k,p

+dsl c
γ
kapν̄

s(l)µγ(k)δl+k+p,0−dγ†k dsl apν̄s(l)νγ(k)δk,l+p

+cs†l c
γ
ka
†
pµ̄

s(l)µγ(k)δk,l+p+c
s†
l d

γ†
k a
†
pµ̄

s(l)νγ(k)δl+k+p,0

+dsl c
γ
ka
†
pν̄
s(l)µγ(k)δl+k,p−dγ†k dsl a†pν̄s(l)νγ(k)δl,k+p

]
,

(131)

where µ is the fermion spinor, ν is the antifermion
spinor, and s and γ are the spin indices. This leads
to the following coefficient functions:

β{(0,1),(1}(k, l, p, s, γ)

= β{(1),(0,1)}(k, l, p, s, γ) =
1√

8ωkωpωl
µ̄s(l)µγ(k),

(132)

β{(0),(1,2)}(k, l, p, s, γ)

= β{(),(0,1,2)}(k, l, p, s, γ) =
1√

8ωkωpωl
µ̄s(l)νγ(k),

(133)
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β{(1,2),(0)}(k, l, p, s, γ)

= β{(0,1,2),()}(k, l, p, s, γ) =
1√

8ωkωpωl
ν̄s(l)µγ(k),

(134)

β{(0,2),(2)}(k, l, p, s, γ)

= β{(2),(0,2)}(k, l, p, s, γ) =
1√

8ωkωpωl
ν̄s(l)νγ(k).

(135)

Note that we have expanded our set of arguments of
the coefficient functions to include the spin indices
s, γ. If we instead wished to obtain interactions ex-
actly as defined in Definition 1, we could let each of
the above coefficient functions split into four func-
tions, one for each of the pairs of values for the spin
indices, but this would just become unwieldy, and
there is no harm in including the spin indices as ar-
guments.

The log-local gate counts for implementing the or-
acles for the Yukawa interaction in both light-front
and equal-time quantization are given in Fig. 4, with
the equal-time cutoff Λ = dK/2e − 1 as for the φ4

theory, above. Recall that (92) gives the scaling of
the number of log-local operations required to im-
plement the oracles. Since Λ = O(K) as we just
discussed, and I < O(K) in both light-front and
equal-time, from (92) we see that in both light-front
and equal-time the most costly interactions to sim-
ulate are those with three outgoing particles. This
gives a cost in log-local operations of O(K3), which
is indeed what we see in Fig. 4.

VIII. BEYOND THE PLANE WAVE
MOMENTUM BASIS

We have demonstrated how, given a second-
quantized Hamiltonian in the plane wave momentum
representation of a field theory, we can implement
the oracle unitaries necessary to apply sparsity-
based simulation methods. Our methods extend
to any second-quantized Hamiltonian containing a
fixed number of interactions, even if it is not ex-
pressed in the plane wave momentum basis. All that
is required is that for each interaction, it is possible
to efficiently enumerate all possible sets of outgoing
particles given a particular set of incoming particles,
and to efficiently compute the matrix element given
the incoming and outgoing particles. In the plane
wave momentum representation, we used momen-
tum conservation for the former task: given a set
of incoming particles, we can add up their momenta
to obtain the total transferred momentum, and then
enumerate all possible allocations of this momentum
amongst the outgoing particles.

However, more generally the sets of outgoing
particles can always be enumerated in polynomial
time as long as the number of outgoing particles is
fixed and there are only polynomially-many possi-
ble states for each particle. Here polynomial means
polynomial in whatever problem parameter governs
the asymptotic scaling. If g is the number of outgo-
ing particles and P is an upper bound on the number
of states that each outgoing particle may take, then
P g is an upper bound on the number of distinct sets
of outgoing particles from a particular set of incom-
ing particles. We could apply this argument to the
plane wave momentum basis case, and it would lead
to an efficient algorithm, but with worse scaling than
the one we presented above, since it would overcount
the possible outgoing states. This illustrates that us-
ing momentum conservation at the level of enumer-
ating outgoing states was really an additional con-
straint that we imposed in order to save resources,
rather than an intrinsically necessary part of the al-
gorithm.

Hence there is no problem with extending our al-
gorithm to a non-momentum basis as long as it is
possible to efficiently calculate the matrix element
between two Fock states. If there is no conserved
quantity that constrains the outgoing particles, then
we can enumerate all of the possible sets of outgoing
particles as described above. If there is a conserved
quantity (or more than one), then just as for mo-
mentum conservation we can compute its value for
the incoming particles and then only enumerate sets
of outgoing particles that conserve it. But to reit-
erate, either of these approaches is efficient; choos-
ing whether or not to exploit a conserved quantity
simply changes the details of the scaling. Hence, al-
though our main presentation focused on the plane
wave momentum basis, we can apply our methods to
a wide variety of theories expressed in other bases,
in quantum chemistry, condensed matter physics,
and quantum field theory, including basis light-front
quantization [36–38].

IX. CONCLUSION

In this paper, we presented implementations of
the Hamiltonian oracles for second-quantized Hamil-
tonians of theories including bosons and fermions.
We focused on the plane wave momentum basis, but
the methods we described generalize to any second-
quantized Hamiltonian as long as it only contains
polynomially-many terms (monomials in the cre-
ation and annihilation operators), and as long as the
coefficients of the terms can be computed efficiently.
These oracle implementations are the necessary in-
puts to any of the large collection of simulation tech-
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niques for sparse Hamiltonians [20–30]. The gener-
ality of our algorithms means that for some specific
field theories, it is likely possible to develop algo-
rithms that are tailored to the structure of the the-
ories and outperform our methods (see Section II B,
for example). However, our goal was to provide
a general-purpose tool, and thus to establish that
for second-quantized Hamiltonians satisfying only
the modest constraints stated above, efficient quan-
tum simulation by optimal sparsity-based methods
is possible.
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