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Abstract

Dynamical Systems and Neural Networks: From Implicit Models to Memory

Retrieval

by

Sean Jaffe

The field of machine learning has seen great strides in the past two decades, leading

to groundbreaking advancements in various domains. Yet many challenges remain in

AI research. Scalability remains a persistent hurdle, with current models struggling to

efficiently manage increasing amounts of data and complexity. The challenge of scalability

is further highlighted by the power of the human brain, which, with its remarkable efficiency,

underscores the limitations of current machine learning models. Finally, both industry

and academia have faced considerable difficulties in advancing robotics, particularly in

enabling neural networks to interact effectively with the physical world.

In this work, we explore how the lens of dynamical systems can address all three of

these challenges. We tackle memory constraints by framing a quantization algorithm

as a fixed-point equation, enabling efficient differentiation. We investigate an energy-

based, biological model of human memory and reinterpret the widely used self-attention

mechanism through this model. Lastly, we leverage contraction theory to train a neural

network that can follow a trajectory with stability and robustness. In the first two problems,

viii



we utilize dynamical systems to differentiate neural networks, while in the latter, we

employ neural networks to learn a dynamical system. Through our understanding of

dynamical systems, we build on theoretical advancements and practical applications in AI,

offering new insights into both memory optimization and robust robotic manipulation.
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Chapter 1

Introduction

Neural networks have become the dominant tool across various fields of machine learning,

driving significant advancements in areas such as natural language processing (NLP),

computer vision, and beyond. Their success is partly due to the development of novel

architectures, like transformers, which have revolutionized tasks such as language trans-

lation and image recognition. Equally important is the role of modern computational

infrastructure, which, with its massive scale, has enabled the training of increasingly

complex models.

The enhanced capabilities of large neural networks, such as language models and

other advanced architectures, have introduced significant challenges related to scalability

and memory efficiency. As these models grow more complex and expansive, they require

increasingly large amounts of computational power and memory, often leading to ineffi-

ciencies that hinder their practical deployment. For example, state-of-the-art models like
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GPT-3 that has 175 billion parameters and GPT-4’s estimated 1.7 trillion parameters 1

require immense computational resources for training and deployment. Running a single

forward pass or even storing such a model can be computationally prohibitive, especially

on hardware that is not specifically designed for such tasks, like GPUs with limited

memory capacity. The sheer size of these models presents challenges not only in terms of

training but also in deployment, where executing these networks in real-time becomes a

significant hurdle.

While companies developing large language models have marketed their products

as possessing ”super artificial intelligence,” advanced neural networks still exhibit clear

deficiencies when compared to the human brain. The brain has mastered complex tasks

like language processing and visual perception, and executes them with far less energy

The stark difference in computational efficiency between the brain and artificial neural

networks has spurred research into ”biologically inspired” neural networks, which aim to

close this gap by mimicking the efficiency of biological systems in computational models.

Despite the remarkable progress in NLP and computational sensing, there are still

considerable challenges in fields like physical manipulation and robotics. Tasks such as

navigation, manipulation, and trajectory tracking remain difficult for neural networks, as

they require these systems to interact with and adapt to the physical world in real-time.

These challenges cannot be solved merely by adding more computational power. While

the brain manages these tasks with minimal computational resources, even the most

advanced artificial systems struggle to achieve similar robustness and reliability, regardless

1www.technologyreview.com
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of the amount of compute available.

This dissertation addresses these challenges through the lens of dynamical systems.

All complexity in the world, including the behavior of neural networks, can be viewed as

dynamical systems. By adopting this perspective, we can better understand and address

the issues of scalability, memory efficiency, and stability in neural networks.

Many modern machine learning techniques, including physics-informed neural networks

(PINNs) [68], implicit neural networks [7], [28], and ODE-based networks [16], utilize

iterative processes that are deeply connected to dynamical systems. These processes

are particularly evident in data related to physical systems. By differentiating these

processes as dynamical systems, we can employ novel differentiation techniques, such as

those based on the implicit function theorem [51], to achieve more efficient and accurate

model training.

Moreover, the underlying architecture of neural networks themselves can be seen as

dynamic systems. Neurons do not simply apply discrete filters; instead, they generate

continuous signals that interact within a network, creating a complex, interconnected

system of computation. Various models of neural networks, inspired by this dynamic

nature, have been developed to enhance their performance and efficiency.

Robotics, one of the most challenging applications of neural networks, inherently

involves dynamical systems. Long before the advent of neural networks, robotics relied

on principles of dynamics for tasks like trajectory tracking. While neural networks

have enabled the learning of more complex trajectories, this often comes at the cost of
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robustness and stability. By enforcing structural constraints on neural networks, grounded

in dynamical systems theory, we can reintroduce stability guarantees, making these models

more reliable for real-world robotic applications.

This dissertation explores these themes in detail, providing insights into how a dy-

namical systems approach can address some of the most pressing challenges in modern

neural network research.

• Chapter 2 investigates the challenge of storing large neural networks in memory. The

specific challenge of memory quantization is addressed. Quantization is a memory

reduction technique that replaces full-precision weights to their nearest weight in

a small dictionary of reference weights. Clustering algorithms like k-means have

been used to find the reference weights and their assignments. In order for the

weights to consider both the quantization objective and the performance objective,

the clustering algorithm can be made differentiable and injected into the training

loop. though, this is a computationally expensive procedure. We can reduce the

computational constraints of differentiable k-means by treating the clustering as a

discrete time dynamical system with a local fixed point. The dynamical systems

framing of the algorithm enables the use of implicit differentiation, which induces a

factor of memory savings with no performance cost.

• Chapter 3 investigates a biologically plausible model for human associative memory,

the Hopfield model introduced by [39]. The Hopfield model, and it’s descendant

Dense Associative Memory [53], are energy based models which stores memories

4



in the wells of an energy landscape created by a stored, low-dimensional, matrix

of memories. An input is evolved by minimizing it’s energy until a well and its

associated memory is found. The update to an energy state is identical to the

’attention’ mechanism found in transformers and in our quantization layer in chapter

2. We expand on the Hopfield model by showing how to alter the model for retrieval

of multiple memories. Our method introduces a generalization of the softmax

operator, which returns can return a matrix of distinct, stochastic vectors. This

new operator is analogous to a multi-headed attention, that only requires the

memory of a single head. We demonstrate the effectiveness of this operator in a

vision-transformer.

• Chapter 4 discusses the task of robust, robotic trajectory tracking. Many areas of

robotics require following complex, dynamic paths in a stable and robust fashion.

A neural network can learn a trajectory fairly easily, but at the cost of stability

and robustness. We learn a neural network dynamical system that is constrained

to be contracting, a stronger form of stability that is equipped with robustness

guarantees. Unlike prior work, our method directly parameterizes the system, rather

than its jacobian, making it computationally efficient. Additionally, our method

can represent systems with asymmetric Jacobians, allowing for the representation

of systems with oscillatory components like pendulums.

5



Chapter 2

Memory Efficient Neural Network

Quantization via Implicit,

Differentiable k-Means

2.1 Introduction

The capabilities of deep neural networks has grown in step with their size. The size of such

neural networks is a major draw-back when used on edge-devices with limited memory

and energy capacity. Building small neural networks that achieve high performance is

thus an essential task for real-world applications.

Works such as MobileNet [41] and SqueezeNet [42] aim to design explicitly compact

neural structures. Efficient architectures can be found using neural architecture search,
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as in EfficentNet [79]. Weight sharing such as repeated layers [20] methods also yield

compact models. Implicit neural networks [7], [28] take weight sharing to the extreme,

implementing the behavior of deep neural networks with single recurrent layers.

Another means to generate compact neural networks is to compress large neural

networks. Compression methods include pruning [87], knowledge-distillation [37], and

quantization. We focus on quantization, the aim of which is to limit a neural network to

using a limited number of unique weights. The quantized weights are generally found

with a clustering routine.

DKM [19] achieved state-of-the-art results in quantization. The authors introduce a

soft-k-means algorithm which uses an attention-based mechanism for assignment. DKM

incorporates soft-k-means into the training loop and evaluates the loss of the model after

clustering. Quantizing while training allows their algorithm to explicitly train weights

which perform well after clustering. The soft assignments produce better gradients than

hard assignments would. A major drawback is that DKM must store the result of every

clustering iteration for the backward pass. This memory requirement is so restrictive, the

clustering algorithm has to be stopped before convergence.

We solve the memory constraint of DKM by implementing the soft-k-means algorithm

as a Deep Equilibrium Network (DEQ) [7]. DEQs use implicit differentiation to calculate

the gradient for a layer independently of the forward pass. Implicit differentiation has been

used in many novel recurrent architectures [28], [17]. We employ implicit differentiation

to calculate the gradient of the clustering algorithm in fixed memory with respect to the

7



number of iterations. Additionally, with Jacobian-Free Backpropagation [31], we can

calculate the gradient in fixed time. In total, our method can perform the k-means routine

to greater precision while requiring less memory and time to calculate the gradient. As a

result, we are able to perform extreme quantization on large models such as Resnet18

without expensive cloud infrastructure.

2.2 Related Work

2.2.1 Compact neural Networks

A number of works design neural networks to be explicitly compact, such as MobileNet

[41], EfficientNet [79], and SqueezeNet [42], and ShuffleNet [96].

We are interested in compressing already-trained, high-performing neural networks.[66]

provides a thorough overview of neural network compression. Among the most well-studied

neural network compression methods are pruning [87], knowledge-distillation [37] and

weight sharing.

2.2.2 Weight Sharing and Implicit Neural Networks

[20] finds it beneficial to use the same weight in multiple layers. [7] take this to the

extreme with their DEQ, which outputs the solution to a fixed point equation determined

by a single neural network layer. Calculating the gradient of the DEQ requires implicit

differentiation, which we discuss in section 2.4.2.[28] structure their DEQ as a state-space
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model. [92] and [44] solve for the gradient of implicit, state-space models using monotone

and non-euclidean monotone operator splitting methods, respectively. The Neural ODE

[17] is another implicit model that uses a neural network to parameterize an ODE.

2.2.3 Quantization of Neural Networks

An overview of quantization is provided in [73]. The literature on neural network

quantization is vast. Quantization can roughly be split into two categories, post-training

quantization (PQT), and quantization aware training (QAT). PQT methods, such as [8],

[58], and [30], quantize a pre-trained neural network without re-evaluation. QAT on the

other hand, adjusts the model weights as it quantizes. For example [34] uses pruning,

quantization, and Huffman coding, with intermediary retraining steps.

Other QAT methods directly consider the gradient of the output of the quantized model

to update the unquantized model. This is inherently difficult, as hard quantization is not

differentiable. [11] introduce the widely used Straight-Through Estimator to approximate

the gradients of hard non-linearities. Other works use cluster-based regularization [94],

[85]. Another work, [77], uses Product Quantization (PQ) to cluster subvectors of the

weights.

Neural networks can also be quantized heterogeneously layer-to-layer. [89] use re-

inforcement learning to identify hardware-specifc clustering schemes. [18] employs a

meta-neural network to approximate the gradient of the non-quantized weights.[67] uses

an iterative training strategy which freezes layers subject to high instability. [24] uses

9



properties of the spectrum of the hessian to determine quantization schema.

2.3 Neural Network Quantization

In what follows, we let ∥·∥ denote the 2-norm. Suppose we have a deep neural network

f that takes input x and outputs a vector y parameterized by weights W ∈ RN . For a

given dataset, D = {(xi, yi)}, the weight vector w is trained to minimize the loss:

L(W) =
∑

(x,y)∈D

∥f(x,W)− y∥ (2.1)

We now employ the Product Quantization setup, as described in [77]. Consider a

single layer with weightsW ∈ Rn that is partitioned into m = n/d sub-vectors w1, . . . , wm,

each of which is an element of Rd. The goal of neural network quantization is to learn

a codebook of k, d-dimensional codewords C = {c1, . . . , ck}. Each element of W , wi is

mapped to its closest codeword in C. Define the map q : Rd × Rd×k → Rd such that

q(wi, C) yields the closest codeword c ∈ C to wi. We also define q : Rd×m×Rd×k → Rd×m

to be the map for which q(W,C) replaces every column wi of W with q(wi, C). Given a

previously trained W , a codebook C that minimizes the norm between each column in

W and their respective quantized weights can be found by minimizing the cost function:

C(C,W ) =
m∑
i=1

∥wi − q(wi, C)∥2 (2.2)

The k-means algorithm is guaranteed to converge to a local minimum of this objective.

Hence, running k-means directly on previously trained weights is a known method for

10



neural network quantization [34].

2.3.1 Neural Network Quantization via Gradient Descent

In model quantization, we are not just interested in minimizing the change in weights, but

rather we want to minimize loss in performance as a result of quantization. To achieve

this, we can incorporate the clustering loss (2.2) into the original training loss as follows:

L(W ) =
∑

(x,y)∈D

∥f(x,q(W,C))− y∥

withC = argmin
C

∑
i

∥wi − q(wi, C)∥2
(2.3)

The overall loss being minimized is the performance of the model using the quantized

weights q(W,C) with optimal C. If C is found using k-means, a differentiable procedure,

this objective can be minimized with stochastic gradient descent (SGD).

2.3.2 Soft-k-means for Better Gradients

While the k-means algorithm consists entirely of differentiable computations, the resulting

gradient may lack useful information because of the hard assignment between weights

and their respective centers. DKM uses continuous relaxation of the k-means algorithm.

Rather than quantizing each wi to its closest codeword in C, the algorithm quantizes

each wi by a convex combination of codewords. Let rτ : Rd × Rd×k → Rd be the new

quantization map, where τ > 0 is a temperature parameter. The formula for the quantizer

rτ is:

11



rτ (wi, C) =
k∑
j=1

aj(wi, C)cj (2.4)

with

aj(wi, c) =
exp(−∥wi − cj∥/τ)∑k
l=1 exp(−∥wi − cl∥/τ)

(2.5)

=
(
softmaxτ (

(
− ∥wi − c1∥, . . . ,−∥wi − ck∥

)
j

(2.6)

The vector of weights a(wi, C) is the softmax of negative distances between wi and

each codeword in C. Note that if τ = 0, then rτ (wi, C) = q(wi, C). As before, let

rτ : Rd×m × Rd×k → Rd×m be the map for which rτ (W,C) replaces every column wi

of W with rτ (wi, C). Let A : Rd×m × Rd×k → [0, 1]m×k give the matrix with elements

Aij(W,C) = aj(wi, C) as defined in equation (2.6). This distance-based attention matrix

(introduced by [6]) allows the matrix notation of rτ :

rτ (W,C) = C · A(W,C)⊤ (2.7)

The codebook C can be computed with EM . The attention matrix A(W,C) is

computed in the E -step. Distances between each weight and codeword are stored in a

distance matrix D(W,C) ∈ Rm×k
≥0 defined by dij(W,C) = ∥wi − cj∥. We define row-wise

softmax function rowsoftmaxτ : Rm×k → [0, 1]m×k so that A(W,C) (2.4) is written in

matrix form as:

A(W,C) = rowsoftmaxτ (−D(W,C)). (2.8)

Centers are updated in the M -step to be the average of all w, weighted by the center’s

12



importance to each w. Formally:

c+j :=

∑m
i=1 aj(wi, C)wi∑m
i=1 aj(wi, C)

(2.9)

or, in matrix notation:

C+ := diag(A(W,C)⊤1m)
−1A(W,C)⊤W⊤ (2.10)

The algorithm is described fully in algorithm 1.

Algorithm 1 Soft k-means

Require: W ∈ Rd×m with columns (w1, . . . , wm), tolerance parameter ϵ

Ensure: cluster centers C

1: let C ∈ Rk×d be an initial value of the cluster centers

2: repeat

3: Compute the distance matrix D ∈ Rm×k
≥0 by dij := ∥wi − cj∥, i ∈ {1, . . . ,m} and

j ∈ {1, . . . , k}

4: Given a temperature τ > 0, compute the attention matrix A by

A(W,C) = rowsoftmaxτ (−D(W,C))

5: Update the cluster centers by

C+ := diag(A(W,C)⊤1m)
−1A(W,C)⊤W⊤

6: until ∥C+ − C∥ < ϵ

7: RETURN C+

We can redefine loss (2.3) using the soft quantizer rτ to be:

13



L(W ) =
∑

(x,y)∈D

∥f(x, rτ (W,C))− y∥

withC = argmin
C

∑
i

∥wi − rτ (wi, C)∥2
(2.11)

2.3.3 Memory Complexity of Differentiating Soft-k-means

Suppose C∗(W ) is the optimal centers provided by soft-k-means (1). In order to optimize

the objective (2.3) via SGD, we will have to compute the gradient of soft-k-means, ∂C
∗(W )
∂W

.

With backpropagation, this calculation requires saving every iteration of the algorithm

in the autodiff computation graph and revisiting each iteration in the backward pass.

Let b = lg(k) be the number of bits required to identify a cluster and t be the number

of iterations in soft-k-means. The GPU space necessary for a forward pass of a single

soft-k-means layer is O(t ·m · 2b). Thus, the memory required is dependent on the number

of iterations t. Our contribution removes the need to store each iteration of soft-k-means

in the forward pass for backpropagation, lowering the memory complexity to O(m · 2b).

2.4 Proposed Method

Inspired by the work on deep equilibrium networks, as in [7], we propose a method to

calculate ∂C∗(W )
∂W

efficiently. We use implicit differentiation to calculate the gradient of soft-

k-means using only the centers found at convergence. The intermediate steps are not stored,

so we can run the clustering algorithm for as many steps necessary without increasing the
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memory overhead. Additionally, by using Jacobian-Free Backpropagation(JFB) as in [31],

we can calculate the backward pass with significantly reduced time complexity compared

to the original backward computation and its corresponding DEQ implementation. In

summation, our proposal is more efficient in time and space while providing more precise

clustering than prior work.

In section 2.4.1 we derive a fixed point equation whose solution is that of soft-k-means.

In section 2.4.2 we show how to take the gradient of that fixed point equation using only

the solution. In section 2.4.3, we show how to approximate that gradient with JFB. Our

proposed method, IDKM, uses implicit soft-k-means to cluster weights inside of SGD.

IDKM is described in full in algorithm (2).

2.4.1 Defining the Fixed Point Equation

To motivate the implicit differentiation, we will first frame the clustering algorithm (1)

as a fixed point equation. Thanks to [7], we can derive the implicit computation of the

gradient directly from the fixed point equation. Given a weight matrix W ∈ Rm×d and a

temperature τ > 0, with 1m being the vector of ones in Rm and rsτ (−D) being shorthand

for rowsoftmaxτ (−D(W,C)) we define a map F : Rd×k × Rd×m → Rd×k :

F
(
C,W ) := diag(rsτ (−D)⊤1m)

−1rsτ (−D)⊤W⊤ (2.12)

The fixed point problem associated with equation (2.12) is given by:

C∗ = F (C∗,W ) (2.13)

The solution C∗ is equivalent to the output of algorithm 1 by construction.
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Note: While F in equation (2.12) is a function of C, one could also define a function

which iterates on A instead of C that recovers the same solution C∗ (after one extra

evaluation of equation (2.10)).

2.4.2 Deriving the Gradient of the Fixed Point Equation

We utilize Theorem 1 in [7] to derive the gradient of the solution to the fixed point

equation (2.13). For simplicity, we derive the gradient in the case when d = 1. Let C∗(W )

be the solution to the fixed point problem (2.13). We first differentiate both sides of the

equilibrium condition: C∗ = F (C∗,W ):

∂C∗(W )

∂W
=
∂F (C∗(W ),W )

∂W
(2.14)

∂C∗(W )

∂W
=
∂F (C∗,W )

∂W
+
∂F (C∗,W )

∂C∗
∂C∗(W )

∂W
(2.15)

⇒
(
Ik −

∂F (C∗,W )

∂C∗

)∂C∗(W )

∂W
=
∂F (C∗,W )

∂W
(2.16)

⇒ ∂C∗(W )

∂W
=

(
Ik −

∂F (C∗,W )

∂C∗

)−1∂F (C∗,W )

∂W
(2.17)

To solve(2.17), we must compute the inverse matrix, which we denote by M∗ ∈ Rk×k:

M∗ =
(
Ik −

∂F (C∗,W )

∂C∗

)−1

(2.18)

Note that a sufficient condition for the existence of the inverse matrix above is that

F (C∗,W )
∂C∗ has all eigenvalues with magnitude less than one. This is also the condition for

the convergence of the fixed point equation (2.13). Even the fixed point does not have

global fixed points, we know there are local fixed points around which the matrix F (C∗,W )
∂C∗
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behaves well. We can rearrange to get:

M∗
(
Ik −

∂F (C∗,W )

∂C∗

)
= Ik (2.19)

⇒M∗ =
∂F (C∗,W )

∂C∗ M∗ + Ik (2.20)

Let G : Rk×k → Rk×k be the map defined such that G(M) = ∂F (C∗,W )
∂C∗ )M + Ik. It is

clear from equation (2.20) that M∗ is the solution to the fixed point equation:

M∗ = G(M∗) (2.21)

Using naive forward iteration, the iteration (2.21) convergence so long as all eigenvalues

of ∂F (C∗,W )
∂C∗ have magnitude less than one. This is also the condition for convergence of

the forward iteration (2.13).

We have shown so far how to calculate ∂C∗(W )
∂W

independently of the computation of

C∗(W ). At runtime, we take a solution C∗(W ), plug it into F (C∗(W ),W ) one time and

use autodiff to calculate ∂F (C∗,W )
∂W

. We then use some forward iteration solver to find the

solution of the fixed point of equation (2.21), which is equivalent to
(
Ik − ∂F (C∗,W )

∂C∗

)−1

.

Multiplying the two terms will yield ∂C∗(W )
∂W

.

To FindM , we simply run the forward iteration above until convergence. For numerical

convenience, we use an averaging iteration:

M(t+ 1) = αG(M(t)) + (1− α)M(t) (2.22)

The smaller the α, the more likely that the fixed point iteration will converge numerically,

but the more iterations it will take to reach convergence. In our method, we set α = .25
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and if we see the iteration diverge, we start over and divide α by 2.

2.4.3 Faster Gradient Computation with Jacobian-Free Back-

propagation

We further improve the efficiency of the gradient calculation by employing Jacobian-Free

Backpropagation (JFB), as discussed in [31]. JFB requires expanding the inverse term

(2.18) using the Neumann series:

M∗ =
(
I − ∂F (C∗,W )

∂C∗

)−1

=
∞∑
k=0

(∂F (C∗,W )

∂C∗

)k
(2.23)

JFB uses the zeroth-order approximation of the Neumann series such that M∗ = I.

This approximation allows to entirely avoid solving the fixed point equation (2.21). The

gradient (2.17) now becomes:

dC∗(W )

dW
=
∂F (C∗,W )

∂W
(2.24)

To motivate JFB further, the implicit function theorem, which enables us to calculate

the gradient implicitly, ensures that the gradient of the solution to a fixed point equation

is independent of the path taken to find the solution. In the case of the k-means, suppose

a solution were found by initializing at an optimal C∗. Following algorithm (1) from C∗

would terminate after one iteration. The gradient of this solution path is exactly equation

(2.24). The principle of the gradient being independent of the solution path means this

resulting gradient is the same as that calculated through any other solution path with

any other initial C.

18



Algorithm 2 IDKM

Require: Dataset D = {(xi, yi)}, pretrained neural network with weights W, learning

rate λ

Ensure: new weights W

1: while Still training do

2: for all (x, y) ∈ D do

3: Turn off autodiff.

4: for all Layer W ∈ W do

5: Find C∗(W ) with soft-k means (1),

6: end for

7: Turn on autodiff.

8: Calculate L(W) by (2.11).

9: for all Layers W ∈ W do

10: Solve for F as in (2.12) one time, recover ∂F (C∗(W ),W )
∂W

.

11: Compute
(
I − ∂F (C∗,W )

∂C∗

)−1

by fixed point (2.21) or JFB (2.24) for IDKM-JFB.

12: Update ∂C∗(W )
∂W

as in (2.17)

13: Complete the calculation of ∇WL(W ).

14: end for

15: W+ = W − λ∇WL(W)

16: end for

17: end while

18: Return W+
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2.5 Experiments

To show a proof of concept of our method, we compare directly against DKM. We evaluate

our method on two tasks in multiple compression regimes. In the following experiments,

we use a learning rate of 1e-4 and temperature τ , of 5e-4. We use an SGD optimizer with

no momentum and train for 100 epochs. We let the clustering algorithm in all methods

run until convergence or until 30 iterations, whichever comes first.

k d DKM IDKM IDKM-JFB

8 1 0.9615 0.9717 0.9702
4 1 0.9518 0.9501 0.9503
2 1 0.7976 0.7701 0.751
2 2 0.5512 0.5822 0.5044
4 2 0.8688 0.825 0.8444

Table 2.1: Top-1 accuracy of quantized two layer convolutional neural network pretrained
on MNIST.

2.5.1 Small Convolutional Neural Network on MNIST

First, we take a small, 2-layer convolutional neural network with 2158 parameters that has

been pre-trained on MNIST [56] up to 98.4% top-1 accuracy. We then run our implicit

soft-k-means algorithm (IDKM), our algorithm with Jacobian-Free-Backpropagation

(IDKM-JFB), and DKM[19]. We vary the values of d and k to experiment with different

compression ratios. The purpose of these experiments is to show our methods do not incur

a performance drop by calculating the gradient implicitly. So, we let all methods run

their clustering algorithm until convergence. We use such a small model because DKM
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would not be able to cluster until convergence on a large model, and our comparison

would be unfair.

k d DKM IDKM IDKM-JFP

8 1 3900 2560 1847
4 1 1723 1380 1256
2 1 1748 1299 1120
2 2 1711 1316 1214
4 2 1584 1418 1301

Table 2.2: Time in seconds required to for each method to run for 100 iterations for
varying compression schemes. Quantization target is a two-layer convolutional network
pre-trained on MNIST.

k d IDKM IDKM-JFP

4 1 122 95
2 1 88 72
2 2 78 69
4 2 96 83

Table 2.3: Time in minutes required to for each method to run for 100 iterations for
varying compression schemes. Quantization target is ResNet-18.

Our results in Table (2.1) show that IDKM performs fairly evenly to DKM. IDKM-JFB

exhibits a slightly greater loss. This is expected because IDKM-JFB approximates the

implicit gradient. We additionally show the total training time for each experiment in

Table (2.2). IDKM-JFB is the fastest method. Again, this result is expected because

IDKM-JFB uses no iteration, implicit or otherwise, to calculate the gradient. Strikingly,

IDKM also trains faster than DKM. This means that solving the fixed point equation

(2.21) is faster than the autodiff’s backpropagation through the soft-k-means iteration.

We can claim from these results that, all else being equal, both of our methods are more
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k d IDKM IDKM-JFB

2 1 0.5292 0.5346
4 1 0.897 0.8961
8 1 0.9284 0.9273
2 2 0.3872 0.4742
4 2 0.897 0.8961
16 4 0.8608 0.8648

Table 2.4: Top-1 accuracy on Resnet18 model pretrained on CIFAR10 using our quantiza-
tion methods. DKM never outperforms random assignment with the maximum iterations
allowed by our hardware (5). So, its performance is not reported. Note that when k = 2,
the number of bits required for storage is 1. With k = 2 and d = 2, half a bit is used for
every weight in the quantized model.

memory efficient and faster than DKM. IDKM-JFB allows for a further boost in speed

with a small tradeoff in performance.

2.5.2 Resnet18 on CIFAR10

We experiment with clustering the 11,172,032-parmater Resnet18 [35]. We first take a

set of publicly-available weights, replace the last layer to yield 10 labels, and fine-tune

on CIFAR10 [52] to a top-1 accuracy of 93.2%. We then evaluate our quantization

methods under the same compression regimes as before. Unlike with the 2-layer neural

network, DKM will run out of memory for all values of k and d tested if more than 5

iterations are used. In our experiments, 5 clustering iterations or fewer will prevent the

fully-quantized model from ever beating random. In this setting, it is not just significant

that our methods perform well, but rather that they can perform at all. The results of

IDKM and IDKM-JFB are shown in Table (2.4).
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2.6 Discussion

IDKM and IDKM-JFB remove the number of iterations as a factor in the memory

complexity of Quantization methods that use soft-k-means during training. This reduction

of memory is enough to justify our value of our methods to the research community.

We additionally argue that allowing for more clustering iterations in the forward pass

improves the overall performance of the algorithm. Due to hardware limitations, we have

yet to compare directly against the presented results in [19]. However, our experiments

do allow us to extrapolate that our method will improve performance when used in a

higher-resource setting.

In settings where DKM method does not have the memory to run until convergence,

[19] simply limit the number of clustering iterations. The authors argue that this is not

too restrictive on their performance, as the number of iterations necessary to converge

decreases in latter epochs as the model learns well-behaved weights. However, it is still

desirable to allow for as many forward iterations as possible. We find a significant decrease

in performance when the number of iterations are capped. For Resnet18, DKM was simply

not able to learn quantizable weights with 5 iterations, the same cap used by [19]. It’s a

straight forward argument that DKM will perform better when allowed more clustering

iterations. IDKM exhibits comparable behavior to DKM under the same settings. So, just

as in our Resnet18 experiments, we can expect that IDKM will outperform DKM when

the former is allowed significantly more clustering iterations than the latter in general

settings.
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Enabling more clustering iterations allows us to consider more thoughtful tuning of

the temperature parameter τ . [19] are encouraged to lower the temperature to increase

convergence speed. Of course, lowering the temperature lowers the quality of the clusters

and of the gradient information. In the future, we would like to explore using higher

temperatures equipped with annealing schemes to further improve performance.

IDKM and IDKM-JFB demonstrate extreme compression on a large-scale model

using modest hardware. Additionally, our methods’ memory efficiency widely expands

the reasonable hyperparameter space available to train with soft-k-means, making it

very likely we may find a configuration with a large improvement in performance in the

large-model, large-dataset regime.

Acknowledgements: This work was supported in part by AFOSR grant FA9550-22-

1-0059.
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Chapter 3

Retrieving k-Nearest Memories

with Modern Hopfield Networks

3.1 Introduction

Hopfield networks [39, 40] are a class of neural networks with an underlying energy

function and are typically used as a form of associative memory. Given a partial or noise-

corrupted memory, the network updates its state to minimize its energy, converges to a

fixed point, and retrieves the full memory. Hopfield networks have garnered interest thanks

to recent developments on dense associative memories and modern Hopfield networks.

It has been demonstrated that these newer variants possess greater storage capacity

compared to their classical counterparts [53, 22, 69, 54]. Further, [69] shows a connection

between modern continuous Hopfield networks (MCHNs) and the attention mechanism in
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transformers [88]. Building upon these breakthroughs in dense associative memories and

MCHNs, recent interesting extensions include (i) universal Hopfield networks [64], (ii)

kernel interpretations of MCHNs [43], and (iii) Hopfield networks with setwise connections

[15]. Finally, Hopfield networks can be used to design new transformer architectures [38].

In this paper, we propose a variant of MCHN to retrieve the k-nearest memories

to an input. We call this variant a k-Hopfield layer. In short, given a collection of

memories {ξi}Ni=1, and input x0, the k-Hopfield layer retrieves the k memories ξi1 , . . . , ξik

that are most similar to x0. We provide a pictorial representation of this procedure in

Figure 3.1. Our k-Hopfield layer is built upon a soft top-k operator [3], akin to how

MCHNs use softmax as a soft approximation for argmax. In this way, our k-Hopfield

layer is differentiable and can be seamlessly integrated into deep learning architectures

trained via gradient descent. To the best of our knowledge, the k-Hopfield layer is the first

Hopfield-type network to retrieve more than one memory. We demonstrate the k-Hopfield

layer’s ability to reconstruct obscured memories. We additionally demonstrate the utility

of our approach as a multi-head attention substitute that uses fewer trainable parameters

with comparable performance on small-scale vision transformers [25].

3.2 Methods

Motivation and ksoftmax: Recall the standard update rule for the modern continuous

Hopfield networks (MCHNs)

x+ = Ξ softmax(βΞ⊤x), (3.1)
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where Ξ = [ξ1, . . . , ξN ] ∈n×N with {ξi}Ni=1 being a collection of memories, and β > 0 is

an inverse temperature parameter. It was shown in [69] that when the memories are

sufficiently well separated, the update rule (3.1) in one step retrieves the memory closest

to x0.

We motivate our proposed approach for modifying the update rule (3.1) to retrieve k

nearest memories via an intuitive explanation for the effectiveness of (3.1) in memory

retrieval. In the limit as β → ∞, softmax(βΞ⊤x) converges to the binary vector with unity

in the entry corresponding to the largest entry of the vector Ξ⊤x. Then Ξ softmax(βΞ⊤x)

outputs the single memory which is closest to x.

Following the intuitive explanation above, we aim to define a new operation, ksoftmax,

which has the property that in the limit as β → ∞, ksoftmax(βΞ⊤x) converges to a binary

n× k matrix where the i-th column corresponds to one of the i-th closest memories with

unity in the entry of the vector corresponding to the i-th largest entry of Ξ⊤x. Specifically,

ksoftmax serves as a smooth and soft approximation for the nonsmooth operator that

outputs this binary matrix.

The key observation is the following: finding the index corresponding to the i-th

largest entry of a vector may be computed by taking the top-i operator of the vector

minus its top-(i − 1) operator, where we recall that the top-k operator of a vector x

returns a binary vector of the same size as x, but with unity in the entries corresponding

to the k-largest entries of x. Since the top-k operator is not differentiable, we replace it

by a soft version. We discuss alternative approaches to retrieving k-nearest memories
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Input Output

Figure 3.1: Pictorial representation of the k-Hopfield layer with k = 5. The left images
are the occluded MNIST and CIFAR-10 inputs to the k-Hopfield layer and the right
images are the outputs of the k-Hopfield layer, i.e., the k closest stored memories to the
occluded input.

in 3.4. In this work, we adopt the approach of [3], which they refer to as the limited

multi-label projection layer. We will refer to this layer as the sum-softmax function in

analogy with the classical softmax operation.

Definition 3.2.1. The sum-softmax function, ssm :n ×{1, . . . , n} →n is defined by

ssm(x; k) = argmin
y∈[0,1]n

−x⊤y −Hb(y), s.t. 1⊤
n y = k, (3.2)

where Hb(y) = −
∑n

i=1(yi log(yi) + (1− yi) log(1− yi)) is the binary entropy function.

The sum-softmax function and softmax share the following similarity: if k = 1

and Hb in the objective function (3.2) is replaced with the entropy function H(y) =

−
∑n

i=1 yi log(yi), then the solution to the minimization problem is equal to the output of

the softmax function. The choice of using Hb rather than H in the objective function

encourages less sparse gradients [3]. We establish in 3.5 that the ssm function converges

to the top-k operator as β → ∞. The forward and backward passes for the ssm function

were implemented in Pytorch in [3] and can be directly applied for the problem under
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consideration.

With the ssm function in hand, we are ready to define the ksoftmax function.

Definition 3.2.2. For k ≤ n, define the k-softmax function ksoftmax :n→n×k one column

at a time, for i = 1, . . . , k, by:

ksoftmaxi(x) =


ssm(x; 1), if i = 1,

ssm(x; i)− ssm(x; i− 1), otherwise

(3.3)

Note that since ssm(x; i) provides a smooth approximation for the binary vector

with unity in entries corresponding to the top-i entries of x, then ksoftmaxi(x) is an

approximation to the binary vector with unity in the entry corresponding to the i-th

largest entry of x. Moreover, this vector always has nonnegative entries (we prove this

intuitive fact in 3.5).

k-Hopfield Layer and Practical Considerations: Given an input x0 ∈n, we

propose the following single-step update, which we refer to as a k-Hopfield layer :

X = Ξksoftmax(βΞ⊤x0). (3.4)

Note that although the input x0 is a vector, the output, X ∈n×k is a matrix where each

column corresponds to a memory. The column Xi corresponds to an approximation to

the i-th closest memory to the input x0. Although the update rule (3.4) is a map from n

to n×k, we provide an energy interpretation of the update rule when studied one column

at a time in 3.6 (i.e., the dynamical system x+ = Ξksoftmaxi(βΞ
⊤x), which takes the

i-th column from ksoftmax).
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As was studied in [64], similarity measures other than the inner product may be

desirable depending on the application domain. To this end, we can modify our update

rule to accommodate more general similarity measures:

X = Ξksoftmax(βsim(Ξ, x)), where sim(Ξ, x)i = sim(ξi, x), (3.5)

where sim(ξi, x) denotes a measure of similarity between the vectors ξi and x and is

“large” when ξi and x are close to one another. Other choices of similarity are the negative

squared Euclidean distance, and the negative Manhattan distance, as reported in [64].

Our update rule (3.4) or (3.5) can also readily be used as a first step in a larger dense

associative memory. Specifically, given an input x0 ∈n, one can consider the combined

update

X = Ξksoftmax(β1Ξ
⊤x0), X+ = Ξ softmax(β2Ξ

⊤X), (3.6)

where the softmax is applied to each column independently. Intuitively, the k-Hopfield

update finds k new inputs which are close to the k memories closest to x0 and then

MCHN update retrieves these nearest memories in one step, as was shown in [69].

3.3 Numerical Experiments

Image Reconstruction: In line with the experiments run in [64] and [15], we study the

ability of the k-Hopfield layer to reconstruct corrupted memories as a function of both the

number of stored memories and k. Specifically, we say that a k-Hopfield layer correctly
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reconstructs a memory if, given a corrupted input, any of the columns of the output

matrix X are sufficiently close to the uncorrupted input. We say that a reconstruction is

sufficiently close to the uncorrupted input if the sum-of-squares difference between the

two is less than 50.

We embed data from MNIST, CIFAR-10, and Tiny ImageNet as memories into our

k-Hopfield layer. We corrupt inputs as follows: if the dataset is (i) either MNIST or Tiny

ImageNet, we occlude the top half of the input image, (ii) CIFAR-10, then we occlude the

top 10/32 rows of the input image. We use β = 3 and the negative Manhattan distance

as similarity function in all experiments. We report the results for the k-Hopfield layer in

additional to the MCHN in Figure 3.2.

We observe in all experiments that using k = 1 yields similar performance to using a

standard MCHN for reconstruction. Additionally, we can empirically observe that using

k > 1 provides improved ability to reconstruct the uncorrupted memory. This result

makes intuitive sense since increasing k allows the layer to reconstruct multiple memories

which are close to the input and check if any of these reconstructed memories are close to

the uncorrupted memory.

ksoftmax Multihead Attention: Next, we assess using ksoftmax as a replacement

for multihead attention. In this context, k represents the number of heads and the

k-Hopfield attention update is

kHopfieldAttn(X) = V ksoftmax(βQ⊤K), (3.7)

where K = UKX,Q = UQX, and V = UVX, denote the keys, values, and queries,
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Figure 3.2: Storage capacity of the k-Hopfield layer with varying k and a MCHN [69]
as measured by increasing the number of memories. We average the performance over
10 trials with different memories and report the mean and one standard deviation. We
observe that k = 1 performs comparably to MCHN and increasing k improves storage
capacity (higher is better).

respectively, and ksoftmax is applied to each column individually. Compared to standard

multihead attention which runs k self-attention updates in parallel and concatenates them,

the update (3.7) directly provides k different outputs. Thus, the update (3.7) serves as a

substitute for multihead attention, while only requiring the parameters of a single head.

To test the k-Hopfield attention update, we train small vision transformers (ViT) [25]
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Figure 3.3: ViT training curves on MNIST with k-Hopfield attention (ViT-Hopfield) and
standard multi-headed attention (ViT). k corresponds to the number of attention heads.
We observe that performance of both methods is comparable, even though our method
requires fewer parameters.
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with standard multihead attention and with k-Hopfield attention on MNIST (Figure 3.3),

CIFAR-10 ( 3.4), CIFAR-100 ( 3.5) and Tiny ImageNet [93] ( 3.6). We use the ViT

class from https://github.com/lucidrains/vit-pytorch. We train with patch size of

4, embedding dimension of 128, MLP dimension of 512, and depth of 2 for MNIST and

depth of 6 for CIFAR-10, CIFAR-100, and Tiny Imagnnet. For β, we set it equal to the

usual transformer normalization constant 1/
√
d, where d is the dimension of the head. We

use an Adam optimizer with learning rate of 0.001 and no dropout. For the ssm function,

we use a modified version of the implementation in https://github.com/locuslab/lml,

where we edited the forward pass to use a Newton solver rather than a bracketing method.

We observe that both multiheaded attention and k-Hopfield attention perform com-

parably on MNIST ( 3.3). Hopfield-ViT performs slightly worse on the CIFAR datasets

( 3.4, 3.5), and exhibits less variance in accuracy across the different number of heads.

We note, however, that the overall performance of both methods on CIFAR and Tiny

ImageNet datasets is poor. Vision transformers are known to be difficult to train on small

datasets [59]. Successfully training ViTs requires techniques such as distillation and smart

initialization [82, 83]. We do not use these techniques as we are interested in comparison

of the attention mechanism. We can see in our experiments on tiny ImageNet ( 3.6),

performance again is comparable between the two methods. However, adding additional

heads does not directly correspond to improved performance in either method, an artifact

of the fact that ViT’s have a lot of trouble with datasets like tiny ImageNet which have

few samples per class.
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Figure 3.4: Vision transformer training curves on CIFAR-10 with k-Hopfield attention(ViT-
Hopfield) and standard multi-headed attention(ViT). k corresponds to the number of
attention heads. We observe that performance of both methods is comparable for k=4
heads, even though our method requires fewer parameters.

Figure 3.5: Vision transformer training curves on CIFAR-100 with k-Hopfield
attention(ViT-Hopfield) and standard multi-headed attention(ViT).

We additionally propose the k-Hopfield for information retrieval. Contextual informa-

tion for large language models are provided by information retrievers, which select multiple

items from large vector databases that store compressed embeddings. The k-Hopfield

layer naturally retrieves multiple items in a differentiable manner, allowing for the training

of embeddings.

At inference time, we must harden the assignments produced by ksoftmax and we do

not multiply the assignments by the original memories so that we can index directly to
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Figure 3.6: Vision transformer training curves on Tiny ImageNet with k-Hopfield
attention(ViT-Hopfield) and standard multi-headed attention(ViT). k corresponds to
the number of attention heads. We observe similar performance for every configuration,
including networks with 4 and 8 heads.

memory. The equation for the ith memory retrieved, ξi, becomes:

ξi = argmax
(
ksoftmax(βΞ⊤x)i

)
(3.8)

We leave the training of embeddings for future work. To evaluate the k-Hopfield for

performing image retrieval. In our experiments, the memories are set to be 1000 images

from MNIST, CIFAR-10, and Tiny ImageNet, respectively. The k-Hopfield layer is given

each of theses 1000 images with added Gaussian noise and tasked with retrieving the

index of the k-closest images. Recall@k is the percentage of retrieved items that are

relevant. We say an item is relevant if it is one of the true, k-closest memories to the

un-noised input. Results for different k and variance are shown in (3.7).

3.4 Comparative Discussion to Alternative Approaches

One alternative to retrieving k-nearest memories, for example, would be to retrieve one

memory, and then remove that memory and retrieve again. Our method is better than
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Figure 3.7: Recall@k for different k and noise.

this one in two respects. First, our method is inherently differentiable, while iteratively

removing memories is not. Second, a key function of Hopfield networks is the ability to

retrieve superpositions of memories, or “in-between” memories, referred to as spin-glass

states [39] or metastable states [69]. The retrieval of superpositions is what makes Hopfield

networks suitable for continuous learning tasks. There is no intuitive way to remove a

superposition from memory if it was retrieved.

An alternative naive approach requires increasing the dimension of the state space to

be n× k and defining new “memories” which are combinations of the original ones. This

approach requires combinatorially many new memories compared to original ones and

becomes quickly intractible.

Finally, there is a growing literature on soft top-k operators [61, 3, 95, 75]. While we

adopt the approach of [3], an interesting future direction of research would evaluate the

performance of alternative soft top-k operators in k-Hopfield layers.
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3.5 Mathematical Analysis

Proposition 3.5.1. Let x ∈n and suppose x[k] > x[k+1], where x[i] denotes the i-th largest

entry of x. Then

lim
β→∞

ssm(βx; k) = topk(x), where topk(x)i =

{
1, if xi ∈ {x[1], . . . , x[k]}
0, otherwise

.

(3.9)

Proof. Since the optimization problem is permutation invariant, we assume, without loss

of generality, that x1 ≥ x2 ≥ · · · ≥ xn. Following the analysis from [3], the Lagrangian

for the minimization problem arising from ksoftmax is given by

L(y, λ; β) = −βx⊤y −Hb(y) + λ(k − 1⊤
n y).

The first-order optimality condition is ∇yL(y
⋆, λ⋆; β) = 0n and yields the conditions

−βxi+ log(y⋆i /(1− y⋆i ))−λ⋆ = 0 for all i ∈ {1, . . . , n}. These conditions can be expressed

succinctly as

y⋆ = σ(βx+ λ⋆1n), (3.10)

where σ denotes the logistic function σ(z) = 1/(1 + e−z), which acts elementwise.

Moreover, to find the optimal dual variable, we substitute (3.10) into the constraint

1⊤
n y

⋆ = k to find the condition

n∑
i=1

σ(βxi + λ⋆) = k. (3.11)

Note that the map λ 7→
∑n

i=1 σ(βxi + λ) is continuous and monotonically increasing so

that, if there is an interval [λ, λ] such that
∑n

i=1 σ(βxi+λ) ≤ k and
∑n

i=1 σ(βxi+λ) ≥ k,
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then there exists λ⋆ ∈ [λ, λ] satisfying (3.11).

We now aim to show that as β → ∞, y⋆ → topk(x). To this end, let ε > 0 be given. We

will prove that there exists β > 0 sufficiently large such that y⋆i ≥ 1− ε for i ∈ {1, . . . , k}

and y⋆i ≤ ε for i ∈ {k+1, . . . , n}1. To this end, let M = σ−1(1− ε),m = σ−1(ε) and pick2

β ≥ max

0,
M −m

xk − xk+1

,
M − σ−1

(
ε

n−k

)
xk − xk+1

,
σ−1(1− ε/k)−m

xk − xk+1

 .

Note that (1) for y⋆i ≥ 1− ε with i ∈ {1, . . . , k}, it is sufficient that λ⋆ ≥M − βxk and

(2) for y⋆i ≤ ε with i ∈ {k+1, . . . , n}, it is sufficient that λ⋆ ≤ m−βxk+1. In other words,

to prove the result, we need to establish that there exists λ⋆ ∈ [M − βxk,m − βxk+1]

satisfying the condition (3.11). First note that the interval [M − βxk,m − βxk+1] is

nonempty because β ≥ (M−m)/(xk−xk+1). To establish the existence of λ⋆, we leverage

the continuity and monotonicity of the map λ 7→
∑n

i=1 σ(βxi + λ). First, we evaluate this

map at the left endpoint of our interval to obtain

n∑
i=1

σ(βxi +M − βxk) =
k−1∑
i=1

σ(β(xi − xk) +M) + σ(M) +
n∑

i=k+1

σ(β(xi − xk) +M)

(a)

≤ k − ε+
n∑

i=k+1

σ(β(xk+1 − xk) +M)

= k − ε+ (n− k)σ(β(xk+1 − xk) +M)

(b)

≤ k − ε+ ε = k,

where inequality (a) holds because σ(z) ≤ 1 for all z, because σ(M) = 1− ε, and because

1If ϵ ≥ 1, any choice of β ≥ 0 will suffice, so we further assume ϵ < 1.
2Note that since σ is the logistic function, σ−1 exists on the domain ]0, 1[ and is given by σ−1(x) =

log(x/(1− x)).
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β(xi − xk) ≤ β(xk+1 − xk) for all i ∈ {k + 1, . . . , n} since β ≥ 0. Inequality (b) holds

because β ≥ (M − σ−1(ε/(n− k)))/(xk − xk+1).

Regarding the evaluation of the map at the right endpoint of the interval, we compute

n∑
i=1

σ(βxi +m− βxk+1) =
k∑
i=1

σ(β(xi − xk+1) +m) + σ(m) +
n∑

i=k+2

σ(β(xi − xk+1) +m)

(c)

≥
k∑
i=1

σ(β(xk − xk+1) +m) + ε

= kσ(β(xk − xk+1) +m) + ε

(d)

≥ k
(
1− ε

k

)
+ ε = k,

where inequality (c) holds because β(xi − xk+1) ≥ β(xk − xk+1) for all i ∈ {1, . . . , k}

since β ≥ 0, σ(m) = ε, and because σ(z) ≥ 0 for all z. Inequality (d) holds because

β ≥ σ−1(1−ε/k)−m
xk−xk+1

. Therefore, we conclude that there exists a λ⋆ ∈ [M − βxk,m− βxk+1]

satisfying condition (3.11). Since λ⋆ ≥M −βxk, by (3.10) we conclude that y⋆i ≥ 1−ε for

i ∈ {1, . . . , k} and since λ⋆ ≤ m− βxk−1, we conclude that y⋆i ≤ ε for i ∈ {k + 1, . . . , n}.

Since ε > 0 was arbitrarily small, the proof is completed.

Proposition 3.5.2. For all x ∈n, k, j ∈ {1, . . . , n}, with k ≥ j, the following inequality

holds elementwise:

ssm(x; k) ≥ ssm(x; j). (3.12)

Proof. Recall from the proof of Proposition 3.5.1 that ssm(x; k) =: y⋆,k is given by

y⋆,k = σ(x+ λ⋆,k), where λ⋆,k is the optimal dual variable and satisfies
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n∑
i=1

σ(xi + λ⋆,k) = k.

Note, however that if λ⋆,k ≥ λ⋆,j , then the result is proved in view of the formulas for y⋆,k

and y⋆,j in view of monotonicity of σ. However, it is straightforward to see that λ⋆,k ≥ λ⋆,j

since the mapping λ 7→
∑n

i=1 σ(xi + λ) is monotone and k ≥ j. In other words, for the

optimal dual variable to satisfy the constraint, it is necessary that λ⋆,k ≥ λ⋆,j. Thus, the

result is proved.

As a corollary to Proposition 3.5.2, we can see that for any x ∈n, ksoftmax(x) ≥ 0,

where the inequality is understood elementwise.

3.6 Energy Interpretation of Update Rule

Proposition 3.6.1. For any k ∈ {1, . . . , n}, the following statements hold:

1. There exists Vk :
n→ such that ∇Vk(x) = ssm(x; k). Indeed, one such Vk is given by

Vk(x) =

∫ 1

0

x⊤ ssm(tx; k)dt. (3.13)

2. The function Vk in equation (3.13) is convex and its Hessian, ∇2Vk(x), is a Laplacian

matrix for all x ∈n.

Proof. To establish that ssm is the gradient of a potential function Vk, we show that

its Jacobian is symmetric. To this end, leveraging the Lagrangian formulation from

Proposition 3.5.1, we know that
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ssm(x; k)i =: y⋆i (x, λ
⋆(x)) = σ(xi + λ⋆(x)) and

n∑
i=1

σ(xi + λ⋆(x)) = k, (3.14)

where λ⋆(x) denotes the optimal dual variable for the optimization problem. Computing

the partial derivatives for y⋆i yields

∂y⋆i
∂xj

(x, λ⋆(x)) = σ′(xi + λ⋆(x))
(
δij +

∂λ⋆

∂xj
(x)

)
, (3.15)

where δij is the Kronecker delta. The evaluation of ∂λ⋆/∂xj may be computed via the

implicit function theorem:

n∑
i=1

σ′(xi + λ⋆(x))
(
δij +

∂λ⋆(x)

∂xj

)
= 0

⇐⇒ ∂λ⋆

∂xj
(x) = − σ′(xj + λ⋆(x))∑n

ℓ=1 σ
′(xℓ + λ⋆(x))

.

Substituting this expression into the equation (3.15) yields

∂y⋆i
∂xj

(x, λ⋆(x)) = −σ
′(xi + λ⋆(x))σ′(xj + λ⋆(x))∑n

ℓ=1 σ
′(xℓ + λ⋆(x))

+ δijσ
′(xi + λ⋆(xi)). (3.16)

Since ∂y⋆i /∂xj = ∂y⋆j/∂xi for all i, j ∈ {1, . . . , n}, we conclude that the Jacobian matrix

of y⋆ is symmetric. The result is then implied by the Poincaré lemma from differential

geometry [1, Theorem 6.4.14]. A direct calculation shows that with Vk defined in (3.13)

satisfies ∇Vk(x) = ssm(x; k) using the symmetry of partial derivatives.

To see that Vk is convex, we will establish that the Jacobian of y⋆(x, λ⋆(x)) is positive

semidefinite for all x. For i ∈ {1, . . . , n}, we use the shorthand ai := σ′(xi + λ⋆(x)) and

note that for all x and i, ai ∈ ]0, 1/4]. Then we can see that the diagonal elements of the
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Jacobian are positive since

∂y⋆i
∂xi

(x, λ⋆(x)) = − a2i∑n
j=1 aj

+ ai = ai

(
1− ai/

n∑
j=1

aj

)
> 0.

We can also see that the off-diagonal elements are negative. Computing row sums of the

Jacobian yields

∂y⋆i
∂xi

(x, λ⋆(x)) +
∑
j ̸=i

∂y⋆i
∂xj

(x, λ⋆(x)) = ai −
a2i∑n
ℓ=1 aℓ

−
∑
j ̸=i

aiaj∑n
ℓ=1 aℓ

= ai −
ai∑n
ℓ=1 aℓ

(ai +
∑
j ̸=i

aj) = ai − ai = 0.

Since the diagonal entries of ∂y⋆

∂x
are positive, the off-diagonal entries are negative, and

row sums are equal to zero, we conclude that for all x, the Jacobian matrix is a Laplacian

matrix. An application of Gershgorin’s circle theorem establishes positive semidefiniteness

for all x, which proves convexity of Vk.

With Proposition 3.6.1 in hand, we are ready to provide an energy interpretation to

the k-Hopfield layer rule (3.4). To be more specific, since the rule (3.4) is a map from n

to n×k, it cannot have an energy function that it is minimizing. Instead, we study the

update rule one column at a time as follows:

x+ = Ξksoftmaxi(βΞ
⊤x), (3.17)

where i ∈ {1, . . . , k} and ksoftmaxi :
n→n outputs the ith column of ksoftmax. In other

word, in one step, the update rule (3.17) attempts to output the i-th closest memory to x.

This update rule defines a map from n to itself. If i ̸= 1, we consider the function E :n→n
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given by

E(x) =
1

2
x⊤x− 1

β

(∫ 1

0

x⊤(ssm(tβΞ⊤x; i)− ssm(tβΞ⊤x; i− 1))dt

)
. (3.18)

Then, the update rule (3.17) is a gradient descent update with unit step size. To see this

fact, note that

∇E(x) = x− Ξ(ssm(βΞ⊤x; i)− ssm(βΞ⊤x); i− 1)

and note that ssm(βΞ⊤x; i)− ssm(βΞ⊤x; i− 1) = ksoftmaxi(βΞ
⊤x). A gradient descent

algorithm on E with stepsize α > 0 is

x+ = x− α∇E(x) = (1− α)x+ αΞksoftmaxi(βΞ
⊤x).

Picking α = 1 yields the stated update rule (3.17).

If instead, i = 1, then ksoftmax1(βΞ
⊤x) = ssm(βΞ⊤x; 1) and the underlying energy

function E :n→n is given by

E(x) =
1

2
x⊤x− 1

β

∫ 1

0

x⊤ ssm(tβΞ⊤x; 1)dt. (3.19)

Although we do not present a closed-form expression for Vk(x) =
∫ 1

0
x⊤ ssm(tx; k)dt,

we provide the following interpretation: since ssm(x; k) is a smooth approximation for the

top-k operator, we believe its underlying potential function Vk is a smooth approximation

for the k-max sum function

fk(x) =
k∑
i=1

x[i],

where we recall the notation x[i] denotes the i-th largest element of the vector x. Smooth

approximations for k-max sums were studied in [81] and for k = 1, one such approximation
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is the log-sum-exp function, as was studied for MCHNs in [69]. We believe that different

approximations can provide different architectures for associative memory systems.

3.7 Conclusion and Future Directions

We propose the k-Hopfield layer which can retrieve k-closest memories to an obscured

input in a differentiable manner. We provide a mathematical treatment for the layer and

provide an energy-based interpretation. The layer performs well when embedded in small

vision transformers while requiring fewer parameters.

Future theoretical work will entail deciphering the provided energy function and

convergence guarantees for the update rule. Future experimental work will entail testing

on larger scale transformers.
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Chapter 4

Learning Neural Contracting

Dynamics: Extended Linearization

and Global Guarantees

4.1 Introduction

Due to their representation power, deep neural networks have become a popular candidate

for modeling continuous-time dynamical systems of the form

ẋ =
dx

dt
= f(x), (4.1)

where f(x) is an unknown (autonomous) vector field governing a dynamical process.

Beyond approximating the vector field f, it is desirable to ensure that the learned vector

field is well-behaved. In many robotic tasks like grasping and navigation, a well-behaved
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system should always reach a fixed endpoint. Ideally, a learned system will still stably

reach the desired endpoint even when pushed away from demonstration trajectories.

Additionally, the learned system should robustly reach the desired endpoint in the face

of uncertainty. In other tasks, such as manufacturing, animation, and human-robot

interaction, the learned system must smoothly follow a specific trajectory to its target.

Following a trajectory is necessary to ensure function, as is the case with a manufacturing

robot dynamically interacting with its environment, and safety, as is necessary with a

robot occupying the same space as humans.

To enforce stability guarantees, a popular approach has been to ensure that the

learned dynamics admit a unique equilibrium point and have a Lyapunov function,

e.g. [63]. While popular, approaches based on Lyapunov functions typically struggle to

provide general robustness guarantees since global asymptotic stability does not ensure

robustness guarantees in the presence of disturbances. Indeed, input-to-state stability of

global asymptotically stable dynamical systems needs to be separately established, e.g.,

see Chapter 5 in [47].

To ensure robustness and to allow for smooth trajectory following, there has been

increased interest in learning contracting dynamics. A dynamical system is said to be

contracting if any two trajectories converge to one another exponentially quickly with

respect to some metric [60]. If a learned contracting system that admits a demonstration

trajectory is pushed off that trajectory, it will follow a new trajectory that exponentially

converges to the demonstration trajectory. Additionally, if a system is contracting, it is

46



exponentially incrementally input-to-state stable [84]. If the system is autonomous, it also

admits a unique equilibrium, is input-to-state stable, and has two Lyapunov functions

that establish exponential stability of the equilibrium [14]. Since establishing contractivity

globally requires satisfying a matrix partial differential inequality everywhere, prior works

have focused on establishing contractivity in the neighborhood of training data.

4.1.1 Related Works

Stable, but not necessarily contracting dynamics. Numerous works have aimed to

learn stable dynamical systems from data including [48, 63, 86, 70, 97, 12, 29]. In [48], the

authors introduce the Stable Estimator of Dynamical Systems (SEDS), which leverages a

Gaussian mixture model to approximate the dynamics and enforce asymptotic stability via

constraints on learnable parameters. In [63], the authors jointly learn the dynamics and

a Lyapunov function for the system and project the dynamics onto the set of dynamics

which enforce an exponentially decay the Lyapunov function. This projection is done

in closed-form and establishes global exponential convergence of the dynamics to the

origin. In [86], the authors introduce Imitation Flow where trajectories are mapped to a

latent space where states evolve in time according to a stable SDE. In [70], Euclideanizing

Flows is introduced where the latent dynamics are enforced to follow natural gradient

dynamics [2]. A similar approach is taken in [97] where additionally collision avoidance is

considered. Finally, [12] and [29] enforce stability via Koopman operator theory whereby

the nonlinear dynamics are lifted to a higher-dimensional space and are enforced to be
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linear and stable in this space.

Existing works on learning contracting dynamics. Learning contracting vector

fields from demonstrations has attracted attention due to robustness guarantees [71, 76,

78, 84, 9]. In [71], the dynamics are defined using a Gaussian mixture model and the

contraction metric is parametrized to be a symmetric matrix of polynomial functions.

Convergence to an equilibrium is established using partial contraction theory [90]. In [76],

the dynamics are defined via an optimization problem over a reproducing kernel Hilbert

space; the dynamics are constrainted to be locally contracting around the data points,

i.e., there are points in state space where the dynamics are not contracting. In [78]

and [84], the authors study controlled dynamical systems of the form ẋ = f(x, u), where

u is a control input and train neural networks to find a feedback controller such that the

closed-loop dynamics are approximately contracting, i.e., contractivity is not enforced

but instead lack of contractivity is penalized in the cost function.

Recent work, [9], has proposed a Neural Contractive Dynamical System (NCDS) which

learns a dynamical system which is explicitly contracting to a trajectory. NCDS param-

eterizes contracting vector fields by learning symmetric Jacobians and performing line

integrals to evaluate the underlying vector field. NCDS is computationally costly because

of this integration. Additionally, the Jacobian parametrization used is overly restrictive,

because not all contracting vector fields have symmetric Jacobians. Constraining the

vector field to have symmetric Jacobian is equivalent to enforcing that the vector field

is a negative gradient flow and contracting with respect to the identity metric [91]. For
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scalability to higher dimensions, NCDS leverages a latent space structure where an encoder

maps the data space to a lower-dimensional space and enforces contracting dynamics in

this latent space. Then a decoder “projects” the latent-space dynamics to the full data

space. It is then argued that on the submanifold defined by the image of the decoder, the

dynamics are contracting.

4.1.2 Contributions

In this paper, we present a novel model for learning deep dynamics with global contract-

ing guarantees. We refer to this model as Extended Linearized Contracting Dynamics

(ELCD). To the best of our knowledge, ELCD is the first model to ensure global con-

traction guarantees. To facilitate the development of this model, we provide a review

of contracting dynamics and extended linearization of nonlinear dynamics. Leveraging

extended linearization, we factorize our vector field as f(x) = A(x, x∗)(x− x∗), where x∗

is the equilibrium of the dynamics. We enforce negative definiteness of the symmetric

part of A(x, x∗) everywhere and prove (i) global exponential stability of x∗, (ii) equilib-

rium contractivity of our dynamics to x∗, and (iii) using a converse contraction theorem,

contractivity of the dynamics with respect to some metric.

Since negative definiteness of the symmetric part of A is not sufficient to capture

all contracting dynamics, we introduce a latent space of equal dimension as the data

space and learn diffeomorphisms between the data space and this latent space. The

diffeomorphisms provide additional flexibility in the contraction metric and allow learning
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of more general contracting dynamics compared to those which are solely equilibrium

contracting.

Our example in Section 4.3.4 provides theoretical justification for why the diffeomor-

phism and the learned contracting model must be trained jointly. In summary, if the

diffeomorphism is trained first, and transforms the data to a latent space, the model class

may not be expressive enough to accurately represent the true latent dynamics. If the

diffeomorphism and dynamics are trained simultaneously, this limitation is overcome.

This is in contrast to [9] which trains the diffeomorphism independently as a variational

autoencoder and then trains the model after on the transformed data.

Our model, ELCD, directly improves on NCDS in several ways. We parameterize the

vector field directly instead of parameterizing its Jacobian. Doing so prevents us from

needing to integrate the Jacobian to calculate the vector field and thus speeds up training

and inference. ELCD is also more expressive than NCDS because it can represent vector

fields with asymmetric Jacobians. Additionally, ELCD is guaranteed to be contracting to

an arbitrary equilibrium point, either selected or learned, at all training steps. NCDS,

in contrast, must learn the equilibrium point over the course of training. Additionally,

NCDS learns an encoder and decoder for a lower-dimensional latent space and thus can

only be contracting on the submanifold defined by the image of the decoder. From initial

conditions that are not on this submanifold, NCDS may not exhibit contracting behavior.

In contrast, since the latent space of ELCD is of the same dimension as the data space, we

train diffeomorphisms that ensure global contractivity in the data space. ELCD exhibits
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better performance than NCDS at reproducing trajectories from the LASA [57], n-link

Pendulum, and Rosenbrock datasets. We additionally compare against the Euclideanizing

Flow [70], and Stable Deep Dynamics [63] models.

4.2 Preliminaries

We consider the problem of learning a dynamical system ẋ = f(x) using a neural network

that ensures that the dynamics are contracting in some metric. Going forward, we denote

by Df(x) = ∂f
∂x
(x) the Jacobian of f evaluated at x. To this end, we define what it means

for a dynamical system to be contracting.

The matrix measure µ(A) of a matrix A ∈n×n induced by norm ∥·∥ is given by

µ(A) = limh→o+
∥In+hA∥−1

h
. The matrix measure induced by ∥·∥2, in closed-form, is

µ2(A) = λmax

(
A+A⊤

2

)
where λmax is the largest eigenvalue. For the invertible R ∈n×n,

the weighted, L-p induced matrix measure is given by µp,R = µp(RAR
−1)

Definition 4.2.1. A contracting dynamical system is one for which any two trajectories

converge exponentially quickly. From [60], for a continuously differentiable map f :d→d,

the dynamical system ẋ = f(x) is contracting with rate c > 0 if there exists a continuously-

differentiable matrix-valued map M :d→d×d and two constants a0, a1 > 0 such that for all

x ∈n, M(x) =M(x)⊤ and a0Id ⪰M(x) ⪰ a1Id and additionally satisfies for all x

M(x)Df(x) +Df(x)⊤M(x) + Ṁ(x) ⪯ −2cM(x). (4.2)

The map M is called the contraction metric and the notation Ṁ(x) is shorthand

for the n × n matrix whose (i, j) entry is Ṁ(x)ij = ∇Mij(x)
⊤f(x). A central result in
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contraction theory is that any dynamical system ẋ = f(x) satisfying (4.2) has any two

trajectories converging to one another exponentially quickly [60, 62, 84]. Specifically,

there exists L ≥ 1 such that any two trajectories x1, x2 of the dynamical system satisfy

∥x1(t)− x2(t)∥2 ≤ Le−ct∥x1(0)− x2(0)∥. (4.3)

In other words, contractivity establishes exponential incremental stability [5].

We note that any contracting dynamical system enjoys numerous useful properties

including the existence of a unique exponentially stable equilibrium and exponential

input-to-state stability when perturbed by a disturbance. We refer to [60] for more useful

properties of contracting dynamical systems and [14] for a recent monograph on the

subject.

The problem under consideration is as follows: given a demonstration D = {xi, ẋi}

consisting of a set of n state, xi ∈d, and velocity, ẋi ∈d, pairs, we aim to learn a neural

network f(xi) = ẋi that parameterizes a globally contracting dynamical system with

equilibrium point x∗, such that f(x∗) = 0. In essence, this task requires learning both the

vector field and the contraction metric, M such that they jointly satisfy (4.2).

4.2.1 Contracting Linear Systems

Suppose we assumed that the dynamical system we aimed to learn was linear, i.e., ẋ = Ax

for some matrix A ∈d×d and we wanted to find a contraction metric M which we postulate

to be constant M(x) :=M for all x. The contraction condition (4.2) then reads

M(A+ cIn) + (A+ cIn)
⊤M ⪯ 0, (4.4)
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which implies that A has all eigenvalues with Re(λ(A)) ≤ −c, see Theorem 8.2 in [36].

In other words, for linear systems, contractivity is equivalent to stability.

Although the condition (4.4) is convex in M at fixed A, the task of learning both

(A,M) simultaneously from data is not (jointly) convex. Instead, different methods must

be employed such as alternating minimization. A similar argument is made in [63] in the

context of stability and here we show that the same is true of contractivity.

4.2.2 Contractivity and Exponential Stability for Nonlinear Sys-

tems

In the case of nonlinear systems, contractivity is not equivalent to asymptotic stability.

Indeed, asymptotic stability requires finding a continuously differentiable Lyapunov

function V :d→ R≥0 which is positive everywhere except at the equilibrium, x∗, and

satisfies the decay condition

∇V (x)⊤f(x) < 0, ∀x ∈d \{x∗}. (4.5)

One advantage of learning asymptotically stable dynamics compared to contract-

ing ones is that the function V is scalar-valued, while the contraction metric M is

matrix-valued. A disadvantage of learning asymptotically stable dynamics compared to

contracting ones is that we are required to know the location of the equilibrium point

beforehand and no robustness property of the learned dynamics is automatically enforced.

To this end, there are works in the literature that enforce an equilibrium point at the

origin and learn the dynamics and/or the Lyapunov function under this assumption [63].
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In the case of contractivity, existence and uniqueness of an equilibrium point is implied

by the condition (4.2) and it can be directly parametrized to best suit the data. At the

same time, it is known that globally asymptotically stable dynamics do not enjoy the

same robustness properties that contracting ones do, so we prefer to focus our attention

to learning contracting dynamics.

4.3 Methods

4.3.1 Motivation

The motivation for our approach comes from the well-known mean-value theorem for

vector-valued mappings, which we highlight here.

Lemma 4.3.1 (Mean-value theorem (Proposition 2.4.7 in [1])). Let f :d→d be continuously

differentiable. Then for every x, y ∈d,

f(x)− f(y) =
(∫ 1

0

Df(τx+ (1− τ)y)dτ
)
(x− y). (4.6)

If y = x∗ satisfies f(x∗) = 0, then the continuously differentiable map f admits the

factorization

f(x) = A(x, x∗)(x− x∗), where (4.7)

A(x, x∗) =

∫ 1

0

Df(τx+ (1− τ)x∗)dτ. (4.8)

This factorization is referred to as extended linearization in analogy to standard
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linearization, i.e., for x close to x∗, f(x) ≈ Df(x∗)(x− x∗). We remark that when d ≥ 2,

extended linearization is not unique, and for a given f , there may exist several A such

that f(x) = A(x, x∗)(x− x∗). In other words, (4.8) showcases one valid choice for A such

that this factorization holds. Indeed, this nonuniqueness has been leveraged in some prior

words, e.g. Section 3.1.3 in [84], to yield less conservative contractivity conditions.

Extended linearization is also sometimes referred to as apparent linearization and the

state-dependent coefficient parametrization and has a rich history in nonlinear control

theory, specifically in state-dependent linear-quadratic regulator (LQR) design; see the

survey [98]. Moreover, it was recently demonstrated in [72] that enforcing this extended

linearization structure during learning can be more data-efficient.

Since we know that a contracting vector field admits a unique equilibrium point,

x∗, we restrict our attention to learning a matrix-valued mapping A :d ×d →d×d and

ensuring that this mapping has enough structure so that the overall vector field satisfies

the contraction condition (4.2) for some contraction metric M . This task is nontrivial

since f(x) = A(x, x∗)(x− x∗) implies that

Df(x) = A(x, x∗) +
∂A

∂x
(x, x∗)(x− x∗), (4.9)

where ∂A
∂x

:n ×n →n×n×n is a third-order tensor-valued mapping. In what follows, we will

show that a more simple condition will imply contractivity of the vector field. Namely,

negative definiteness of the symmetric part of A(x, x∗) will be sufficient for contractivity

of the dynamical system ẋ = A(x, x∗)(x− x∗).
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4.3.2 Parametrization of A(x, x∗)

We show a simple example of our model, the Extended Linearized contracting Dynamics

(ELCD). Let x ∈d be the state variable and f :d→d be a vector field with equilibrium

point x∗. As indicated, we parametrize our vector field by its extended linearization

ẋ = f(x) = A(x, x∗)(x− x∗), (4.10)

where now

A(x, x∗) = −Ps(x, x∗)⊤Ps(x, x∗)
+ Pa(x, x

∗)− Pa(x, x
∗)⊤ − αId

(4.11)

Ps, Pa :
d ×d →d×d are neural networks, Id is the d-dimensional identity matrix, and

α > 0 is a constant scalar. Note that the symmetric part of A(x, x∗) is negative definite

since

A(x, x∗) + A(x, x∗)⊤

2
= −Ps(x, x∗)⊤Ps(x, x∗)− αId

and Ps(x, x
∗)⊤Ps(x, x

∗) is guaranteed to be positive semidefinite.

We prove that a vector field parametrized this way is guaranteed to be (i) globally

exponentially stable, (ii) equilibrium contracting as defined in [21], and (iii) contracting in

some metric. The key tools are partial contraction theory [90] and a converse contraction

theorem.

Theorem 4.3.2 (Equilibrium Contraction and Global Exponential Stability). Suppose

the dynamical system ẋ = f(x) is parametrized as f(x) = A(x, x∗)(x− x∗) where A(x) is

as in (4.11). Then any trajectory x(t) of the dynamical system satisfies
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∥x(t)− x∗∥2 ≤ e−αt∥x(0)− x∗∥2. (4.12)

Proof. We use the method of partial contraction as in [90]. To this end, define the virtual

system

ẏ = A(x, x∗)(y − x∗). (4.13)

We will establish that this virtual system is contracting in the identity metric, i.e., (4.2)

is satisfied with M(x) = Id. We see that the Jacobian for this virtual system is simply

A(x, x∗) and

A(x, x∗) + A(x, x∗)⊤ = −2Ps(x, x
∗)⊤Ps(x, x

∗)− 2αId

⪯ −2αId.

In other words, in view of (4.3),and since M(x) = Id, any two trajectories y1(t) and y2(t)

of the virtual system satisfy

∥y1(t)− y2(t)∥2 ≤ e−αt∥y1(0)− y2(0)∥2.

Note that we can pick one trajectory to be y1(t) = x∗ for all t and we can pick y2(t) = x(t),

where x(t) is a trajectory of the nominal system. This then establishes the claim.

Clearly, the bound (4.12) implies exponential convergence of trajectories of the dy-

namical system (4.10) to x∗. Moreover, this bound exactly characterizes equilibrium

contractivity, as was defined in [21]. Notably, using the language of logarithmic norms,
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Theorem 33 in [21] establishes a similar result to Theorem 4.3.2 without invoking a virtual

system.

Note that although Theorem 4.3.2 establishes global exponential stability and equi-

librium contraction, it does not establish global contractivity. Indeed, the contractivity

condition (4.2) is not guaranteed to hold with M(x) = Id without further assumptions on

the structure of A(x, x∗) in (4.10). Remarkably, however, due to a converse contraction

theorem of Giesl, Hafstein, and Mehrabinezhad, it turns out that one can construct a

state-dependent M such that the dynamics are contracting. Specifically, since trajecto-

ries of the dynamical system satisfy the bound (4.12), for any matrix-valued mapping

C :d→d×d with C(x) = C(x)⊤ ≻ 0 for all x, the matrix PDE

M(x)Df(x) +Df(x)⊤M(x) + Ṁ(x) = −C(x) (4.14)

admits a unique solution for each x [32]. In other words, the unique M solving this

matrix PDE serves as the contraction metric and will satisfy (4.2) with suitable choice for

c. The following proposition provides the explicit solution for M in terms of the solution

to the matrix PDE.

Proposition 4.3.3 (Theorem 2.8 in [32]). Let C :d→d×d be smooth and have C(x) =

C(x)⊤ be a positive definite matrix at each x. Then M :d→d×d given by the formula

M(x) =

∫ ∞

0

ψ(τ, x)⊤C(ϕ(τ, x))ψ(τ, x)dτ, (4.15)

is a contraction metric for the dynamical system (4.10) on any compact subset containing

x∗, where τ 7→ ϕ(τ, x) is the solution to the ODE with ϕ(0, x) = x and τ 7→ ψ(τ, x) is the

matrix-valued solution to
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Ẏ = Df(ϕ(t, x))Y, Y (0) = Id. (4.16)

While it is challenging, in general, to compute the metric (4.15), numerical considera-

tions for approximating it arbitrarily closely are presented in [33]. In practice, one would

select C(x) = Id and evaluate all integrals numerically.

We remark that our parametrization for A in (4.11) is similar to the parametrization

for the Jacobian of f that was presented in [9]. There are however a few key differences.

Notably, A(x, x∗) may be asymmetric while the Jacobian in equation (3) in [9] is always

symmetric. Notably, since the Jacobian in [9] is symmetric and negative definite, the

vector field ẋ = f(x) is a negative gradient flow, ẋ = −∇V (x), for some strongly convex

function V . On the contrary, our dynamics (4.10) can exhibit richer behaviors than

negative gradient flows in view of the asymmetry in A(x, x∗). Additionally, since the

dynamics in [9] with their parametrization can be represented as ẋ = −∇V (x) for some

strongly convex V , it is guaranteed to be contracting in the identity metric,M(x) = Id [91].

On the other hand, our dynamics (4.10) is not necessarily contracting in the identity

metric and instead is contracting in a more complex metric given in (4.15).

4.3.3 Latent Space Representation

Realistic dynamical systems and their flows including the handwritten trajectories found

in the LASA dataset, are often highly-nonlinear and may not be represented in the

form (4.10) or obey the bound (4.12). One solution to these challenges is to transform

the system to a latent, possible lower-dimensional, space and learn an ELCD in the latent
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space.

Latent space learning is possible because contraction is invariant under differential

coordinate changes. From Theorem 2 of [62], given a dynamical system ẋ = f(x), f :d→d,

with f satisfying (4.2.1), the system will also be contracting under the coordinate change

z = ϕ(x) if ϕ :d→d is a smooth diffeomorphism. Specifically, if ẋ = f(x) is contracting

with metric M , then the system that evolves z is contracting as well with metric given by

M̃(x) = Dϕ(x)−⊤M(x)Dϕ(x)−1, where z = ϕ(x) and Dϕ is the Jacobian of the coordinate

transform. In other words, We can learn vector fields that are contracting in an arbitrary

metric by training a vector field f which is parametrized as (4.10) and using a coordinate

transform ϕ.

NCDS, [9], treats the coordinate transform as a Variational Autoencoder (VAE) [49].

Their training procedure consists of two steps: first training the coordinate transform

with VAE training, then training the function f in the new learned coordinates.

4.3.4 On the Interdependence of Diffeomorphism and Learned

Dynamics

To demonstrate the need for a coordinate transform, we consider the task of learning

a vector field that fits trajectories generated by the linear system ẋ = Ax with A =−1 4

0 −1

 . Clearly, this linear system cannot be represented in the form (4.10) with

parametrization (4.11). To see this fact, we observe that A+ A⊤ is not negative definite

and thus no choice of Ps or Pa can represent this linear system. To remedy this issue, one
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Figure 4.1: The learned vector field and corresponding trajectories of an ELCD with
no transform (left) and a model with a transform (right) when trained on data that is
generated from a vector field that is contracting in a more general metric.

can take the linear coordinate transform z = ϕ(x) = Px, where P =

1 0

0 4

. Then the

z-dynamics read

ż = PAP−1z =

(
−1 1
0 −1

)
z (4.17)

and now the symmetric part of PAP−1 is negative definite and thus we can find suitable

choices of Ps, Pa. Specifically, we can take α ∈ (0, 1/2), let Pa(z) =

 0 0

1/2 0

 z, and

let Ps(z) = Qz where Q is the matrix square root of

 1 −1/2

−1/2 1

− αI2. Note that

in this toy example, asymmetry is essential to exactly represent these dynamics in the

latent space, z. If we used the parametrization in [9], we would not be able to represent

these dynamics since they have an asymmetric Jacobian. We demonstrate this routine in

Figure (4.1). We generate two trajectories starting at (0, 2) and (0,−2), and use that data

to train two ELCDs, one without and one with a learned, linear transform. Figure 4.1(a)

shows the vector field and trajectories corresponding to an ELCD with no transform. The

trajectories are forced to the center sooner than the actual data as a consequence of the
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bound (4.12). Learning a coordinate transform allows the ELCD to learn a system that

is contracting in an arbitrary metric and exhibit overshoot. This is demonstrated by the

learned system in Figure 4.1(b), which perfectly matches the data.

4.3.5 Choice of Diffeomorphism

There are several popular neural network diffeopmorphisms including coupling layers

[23, 70], normalizing flows [86], M-flow [13, 9], spline flows [27], and radial basis functions

[10].

A coupling layer ϕ :d→d consists of a neural network θ :k→N with 1 < k < d and a

neural network g :N × →. The transform ϕ maps input x ∈d to y ∈d with the following

procedure:

1. Set yi = xi for 1 ≤ i ≤ k for some 1 < k < d.

2. Set yi = g(x1:k, xi) for k ≤ i ≤ d

Coupling layers are invertible by doing the above process in reverse, so long as g is invertible.

A coupling layer can exhibit a wide variety of behaviors depending on the choice of g. A

simple example is the transform, which takes the form g(x1:k, xi) = α(x1:k) ∗ xi + β(x1:k),

where α and β are scalar functions. The affine g is clearly invertible.

Polynomial spline curves are another diffeomorphism that are commonly used as g in

coupling layers. A polynomial spline has a restricted domain which is divided into bins.

A different linear, quadratic [65], or cubic [26] polynomial covers each bin. [27] introduce
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rational-quadratic splines, which constructs a spline from functions that are the quotient

of two quadratic polynomials.

In practice, ϕ is the composition of several of transforms. Because the coupling

transform only alters some coordinates, they are often used in conjunction with random

permutations. If the latent space dimension is smaller than the data space dimension

[9] makes the last composite function of ϕ an ’Unpad’ function, which simply removes

dimensions to match the latent space. The decoder ϕ is then prepended by a ’Pad’

function, which concatenates the latent variable with the necessary number of ’zeros’ to

match the data space.

Of course, if the latent dimension is smaller than that of the data dimension, then

ϕ can not be bijective. However, [9] argue that as long as ϕ is injective and has range

over the dataset, then f being contracting in the latent space implies that the learned

dynamics are contracting on the submanifold defined by the image of ϕ−1. In other words,

NCDS cannot be globally contracting. The consequences of this are shown in Figure

(4.2). While NCDS can learn to admit an equilibrium point when on the submanifold,

trajectories that fall off the submanifold may diverge. ELCD, in contrast, is contracting

to the correct equilibrium point during all phases of training.

4.3.6 Training

Our task is to simultaneously learn the contracting system f(x) and the metric in which

f contracts. As previously discussed, the metric is implicitly determined by ϕ(x). [9] uses
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Figure 4.2: Plots of the vector fields and induced trajectories learned by ELCD (Top)
and NCDS (Bottom) after different training epochs. ELCD is contracting always while
NCDS may admit multiple equilibrium or diverge.

Epoch 1 Epoch 2 Epoch 3

a two-step method. First, they treat ϕ as a variational autoencoder and minimize the

evidence lower bound (ELBO). They then fix the encoder and train the model to evolve

the state in latent space. Note that the VAE objective is to make the encoded data to

match a standard-normal distribution. Notably, VAE training does not encourage the

encoder to transform the data to space in which the data is corresponds to trajectories of a

contracting system. If the data is not contracting in the transformed space, a contracting

model will not be able to fully fit the data. This explains why, in our implementation of

the two step-training, we are unable to reasonably learn the data. For further comparison

with NCDS, we will train the encoder and model jointly.

4.4 Comparisons to Other Models

In this section, we describe the models that we compare to, namely Eflow [70], SDD [63],

and NCDS [9].

Euclideanizing Flow: Starting with Eflow, they parametrize their dynamical system
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by

ẋ = −Gψ(x)
−1∇Φ(ψ(x)), (4.18)

where ψ :d→d is a diffeomorphism, Φ :d→ is a convex potential function, and Gψ(x) =

Dψ(x)⊤Dψ(x) is the induced Riemmanian metrc. The dynamics (4.18) then has the

interpretation of being the steepest descent for Φ ◦ ψ on the Riemmanian manifold

defined by metric Gψ. Specifically, in [70], the convex potential function is defined to

be Φ(y) = ∥y − y⋆∥2, where y⋆ = ψ(x⋆) and the diffeomorphism is parametrized via a

coupling layer [23]. Note that contraction properties of dynamics of these form were

studied in [91]. Since Ψ is chosen to be convex but not strongly convex, these dynamics

are only weakly contracting, i.e., satisfy (4.2) with c = 0.

Stable Deep Dynamics: In [63], the authors parametrize both an unconstrained

vector field f̂ :d→d and a Lyapunov function V :d→ R≥0 via neural networks. Then to

enforce global exponential stability, at every point x ∈d, they project f̂(x) onto the convex

set of points {u ∈d | ∇V (x)⊤u ≤ −αV (x)}. They do this projection in closed-form so

that the dynamics have the representation

ẋ = f̂(x)−∇V (x)
ReLU(∇V (x)⊤f̂(x) + αV (x))

∥∇V (x)∥22
. (4.19)

Under a smart parametrization of V using input-convex neural networks [4], the authors

guarantee global exponential stability of (4.19) to the origin with rate α. Note that the

dynamics (4.19) are continuous, but not necessarily differentiable. Due to this potential

nonsmoothness, it is theoretically unknown whether these dynamics are contracting (since

Theorem 2.8 in [32] requires at least some differentiability).
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Neural Contractive Dynamical Systems: In [9], the authors enforce contractivity

by directly enforcing negative definiteness of the Jacobian matrix of the vector field by

parametrizing

Df(x) = −(Jθ(x)
⊤Jθ(x) + ϵId), (4.20)

where Jθ :
d→d×d is a neural network. Under this parametrization of the Jacobian, it is

straightforward to see that (4.2) holds with c = ϵ and M(x) = Id for all x. To recover

the vector field from the Jacobian, the fundamental theorem of calculus for line integrals

(which can be seen as a version of the mean-value theorem) is utilized to express

ẋ = f(x) = f(x0) +

∫ 1

0

Df((1− t)x0 + tx)(x− x0)dt, (4.21)

where x0 and f(x0) denote the initial condition and its velocity, respectively.

To express richer dynamics, NCDS also consists of an encoder and decoder for a

lower-dimensional latent space. The dynamics in the latent space are constrained to

be (4.21) and the encoder and decoder are parametrized using a VAE. Since, generally,

the latent space is of lower dimension than the data space, the resulting dynamics are only

guaranteed to be contracting on the submanifold defined by the image of the decoder.

4.5 Experiments

For all datasets we compare our method against NCDS [9], Stable Deep Dynamics

(SDD) [63] and Euclideanizing Flow (Eflow) [70]. For the encoder ϕ in ELCD, we use the

composition of two coupling layers composed of rational-quadratic spline. The splines
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cover the range {−10, 10} with 10 bins, and linearly extrapolated outside that range.

The parameters of each spline are determined by residual networks, each containing two

transform blocks with a hidden dimension of 30. A permutation and linear flow layer is

placed before, in the middle, and after the two quadratic spline flow layers. For ELCD, we

let the latent dimension size equal the data dimension size. Pa and Ps are implemented

as two-layer neural networks with a hidden dimension of 16.

Figure 4.3: Plots of the 2D LASA data. Demonstrations are in black. The learned ELCD
trajectories in magenta are plotted along with the learned vector field. The vector field
velocities have been normalized for visibility.

As the authors of NCDS have not yet made their code publicly available, we imple-

mented NCDS to the best of our abilities. We used a latent dimension of size 2 for all

datasets. This is in-line with the description in [9], and necessary given the extra cost from

integrating the Jacobian in higher-dimensional latent spaces. We use the same encoder ϕ

as for ELCD with an added un-padding layer as the last function which removes the last

d− 2 dimensions.

All experiments are trained with a batch size of 100, for 100 epochs, with an Adam

optimizer and learning rate of 1e-3. All computation is done on CPUs.
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4.5.1 Metric

We evaluate trajectories by comparing them against their reference trajectory using

the normalized dynamic time warping distance (DTWD) [46]. For two trajectories

x = {xi}i∈{1,...,t1}, x̄ = {x̄i}i∈{1,...,t2} and some distance function d(·, ·), let DTWD be

DTWD(x, x̄) =
1

t1

t1∑
i=1

(
min
x̄j∈x̄

d(xi, x̄j)
)
+

1

t2

t2∑
i=1

(
min
xj∈x

d(x̄i, xj)
)

4.5.2 Datasets

We experiment with the LASA dataset [57], which consists of 30, two-dimensional curves.

We use three demonstration trajectories of each curve. As in [9], the first few initial points

of each trajectory are omitted so that only the target state has zero velocity. we stack two

and four LASA trajectories together to make datasets of 4 and 8-dimensional trajectories,

respectively. All data is standardized to have a mean of zero and variance of one. We use

in total 10 2D curves, 6 4D curves, and 6 8D curves. Some 2D-LASA trajectories and

their respective trained ELCD trajectories and vector fields are visualized in Figure (4.3).

We also experiment with simulated datasets. We simulate 6 trajectories of a 2,4, and

8-link pendulum (4D, 8D, and 16D respectively) each and 4 trajectories of 8D and 16D

Riemannian gradient descent dynamics on a generalization of the Rosenbrock function.

Each model is trained on all trajectories of the same dimension, and then predictions are

made starting from every initial point.

n-link pendulum: The n-link pendulum is a simple mechanical system which is
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the interconnection of n rigid links under the force of gravity. We specifically assume

that there is damping on each of these links, which makes the resulting dynamical system

stable and almost all trajectories converge to the downright equilibrium point. In this

case, the state of the pendulum is described by the n pairs (θ, θ̇i), where θ is the angle of

the i-th link and θ̇i is its angular velocity. Thus, this dynamical system is 2n dimensional.

As was done in [63], we adapt the code from http://jakevdp.github.io/blog/2017/

03/08/triple-pendulum-chaos/ to generate data for n links.

Rosenbrock datset: The classical Rosenbrock function, see [74]

f(x, y) = (1− x)2 + 100(y − x2)2, (4.22)

is a nonconvex function with global minimum at (1, 1). Despite its apparent nonconvexity,

it is known that a Riemannian gradient descent dynamics, is contracting with respect

to a suitable Riemannian metric, see Example 3 in [91] for details. In optimization and

in machine learning, the Rosenbrock function is a benchmark for the design of various

optimizers and in the study of Riemannian optimization [45, 50].

For a higher-dimensional generalization of the Rosenbrock function, we consider

f(x) = λ1(1− x1)
2 +

n∑
i=2

λi(xi − x2i−1)
2, (4.23)

where λi > 0 are parameters that affect the conditioning of the function. This generaliza-

tion is still nonconvex and admits several saddle points. Note that the classic Rosenbrock

corresponds to n = 2, λ1 = 1, λ2 = 100. The unique global minimum of this generalization

is at (1, 1, . . . , 1). The corresponding contracting Riemmanian gradient descent dynamics

that find this global minimum are
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Table 4.1: DTWD on LASA, Pendulum, and Rosenbrock datasets

SDD EFlow NCDS ELCD
LASA-2D 0.37 ± 0.32 1.05 ± 0.25 0.59 ± 0.61 0.12 ± 0.11
LASA-4D 2.49 ± 2.4 2.24 ± 0.12 2.19 ± 1.23 0.80 ± 0.54
LASA-8D 5.26 ± 0.50 2.66 ± 0.63 5.04 ± 0.77 1.52 ± 0.61
Pendulum-4D 0.49 ± 0.11 0.17 ± 0.01 1.35 ± 2.26 0.03 ± 0.01
Pendulum-8D 0.75 ± 0.08 0.33 ± 0.01 2.88 ± 0.69 0.14 ± 0.03
Pendulum-16D 1.86 ± 0.14 0.45 ± 0.01 1.65 ± 0.31 0.44 ± 0.09
Rosenbrock-8D NaN 1.90 ± 0.16 2.74 ± 0.15 1.22 ± 0.01
Rosenbrock-16D NaN 3.57 ± 0.66 3.68 ± 0.12 2.57 ± 0.09

ẋ = −G(x)−1∇f(x), (4.24)

whereG(x) = Dψ(x)⊤Dψ(x), where ψ :n→n is the mapping ψ(x) = (
√
λ1(1−x1),

√
λ2(x2−

x21), . . . ,
√
λn(xn − x2n−1)). Note that these dynamics were designed via a generalization

of the procedure proposed in [91]. To generate data, we choose four initial points and

evolved them according to (4.24).
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Figure 4.4: Phase plots of the two link-pendulum trajectories (blue) and the trajectories
produced by ELCD (red). Each column is a different trajectory. The top row is the first
link and the bottom row is the second link. The x-axis is angle and the y-axis is angular
velocity.

4.5.3 Results

Table 4.1 presents our results. ELCD performs the best in all taskst. These results shows

the benefit of the increased expressiveness allowed by the skew symmetric component of

our parametrization. These benefits are more apparent in the pendulum dataset, whose

oscillatory patterns inherently have Jacobians with complex eigenvalues, meaning they

are not symmetric. A sample of demonstration and learned trajectories is shown in figure

(4.4).

The Rosenbrock dynamics are stiff and difficult to learn. In our training of SDD, we

observed lack of stability and convergence, resulting in very large DTWDs. Hence, we

report NaN for the results of the SDD models on the Rosenbrock dataset. Our model

performs the best, there is still room for improvement. Handling dynamics with multpile

scales is still an open challenge.
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4.5.4 Universal Representation

Our ELCD model equipped with a coupling layer-based transformation can represent

any contracting dynamical system. It is known that any smooth nonlinear system with a

hyperbolically stable fixed point can be exactly linearized inside its basin of attraction via a

suitable diffeomorphism [55]. Our extended-linear parameterization is tasked with learning

the stable linear part, while the coupling layers aim to learn and approximate this suitable

diffeomorphism. As our ELCD model can universally approximate any linear model, we

simply need our coupling layer to universally approximate all diffeomorphisms. Indeed,

[80] proved that the coupling layers are universal approximators for diffeomorphisms.

4.6 Limitations

Our method assumes that the underlying dynamics of the data trajectories are contracting.

However, the diffeomorphic transform allows for a wide class of stable systems to be

represented. Our method is currently implemented for trajectories that converge to

the same fixed point. But, this can be overcome by manually changing the fixed point,

depending on which trajectory the input data came from. Also, right now our method is

limited to dynamics in n, but we imagine that an extension to more general manifolds

should be possible. It is also not obvious how to extend our method to the case of

control. Perhaps, one could learn the extended linearization of a dynamical system, with

no constraint, then jointly learn a controller and diffeomorphism such that the resulting

closed-loop dynamical system is contracting.
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4.7 Conclusions

In this paper, we introduce ELCD, the first neural network-based dynamical system

with global contractivity guarantees in arbitrary metrics. The main theoretical tools

are extended linearization, equilibrium contraction, and a converse contraction theorem.

To allow for contraction with respect to more general metrics, we use a latent space

representation with dimension of the latent space equal to the dimension of the data

space and train diffeomorphisms between these spaces. We highlight key advantages of

ELCD compared to NCDS as introduced in [9], including global contraction guarantees,

expressible parameterization, and efficient inference. We demonstrate the performance

of ELCD on high-dimensional LASA datasets and simulated Pendulum and Rosenbrock

dynamics. Our method shows consistent performance across all datasets.
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Chapter 5

Conclusion

The world is driven by complex dynamical systems, where interactions and processes

unfold over time, often with intricate dependencies and feedback loops. It follows that

intelligence and learning can be understood and analyzed through the lens of these

complex systems. In this dissertation, we explored key challenges in machine learning

scalability, the gap between computer and brain performance, and robotics using the

framework of dynamical systems.

First, we addressed the issue of scalability by reinterpreting the k-means algorithm as

a differential equation. This allowed us to apply the implicit function theorem to derive a

memory-efficient quantization algorithm, demonstrating that viewing traditional machine

learning methods through the lens of dynamical systems can lead to more efficient and

scalable solutions.

We then expanded on a mathematical model for associative memory, drawing con-
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nections between this model and the modern self-attention mechanism. Implicitly dif-

ferentiating through this model allowed us to integrate it in a transformer architecture,

emulating multi-headed self-attention and emphasizing the deep connections between

biological and artificial neural structures. This work helps bridge the gap between how

biological systems store and retrieve information and how these processes can be emulated

in artificial systems.

Finally, we demonstrated the training of a neural network capable of following trajec-

tories in a stable and robust manner. This was achieved by constraining the structure of

the neural network using contraction theory, resulting in a direct and efficient parame-

terization that ensures the desired stability properties. This approach underscores the

importance of incorporating principles from dynamical systems into the design of neural

networks for real-world applications, particularly in robotics.

As Moore’s law tapers off and the gains from increased computing power plateau, the

future of machine learning research will increasingly depend on a deeper mathematical

understanding of learning and its inherent dynamism. This dissertation contributes to this

ongoing effort by illustrating how the principles of dynamical systems can be leveraged to

address some of the most pressing challenges in the field. By continuing to explore these

connections, we can pave the way for more robust, scalable, and biologically inspired

machine learning models.
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