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Fractional Vortices, Z2 Gauge Theory, and the Confinement-Deconfinement Transition

Zhi-Qiang Gao1, Yen-Ta Huang1, and Dung-Hai Lee1,2∗
1 Department of Physics, University of California, Berkeley, CA 94720, USA.

2 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

In this paper we discuss the classical 3D XY model whose nearest-neighbor interaction is a mixture
of cos(θi − θj) (ferromagnetic) and cos 2(θi − θj) (nematic). This model is dual to a theory with
integer and half-integer vortices. While both types of vortices interact with a non-compact U(1)
gauge field, the half-integer vortices interact with an extra interaction mediated by a Z2 gauge field.
We shall discuss the confinement-deconfinement transition of the half-integer vortices, the Wilson
and the ‘t Hooft loops and their mutual statistics in path integral language. In addition, we shall
present a quantum version of the classical model which exhibits these physics.

I. INTRODUCTION

More than three decades ago Lee and Grinstein [1] con-
sidered a modified 2D classical XY model described by
the following Hamiltonian

H = −J1

∑
〈ij〉

cos(θi − θj)− J2

∑
〈ij〉

cos 2(θi − θj). (1)

Here 〈ij〉 denotes nearest neighbors. For 4J2 > J1, the
angle difference θi − θj = π is a local metastable mini-
mum. Because of that, half-integer vortices around which
the spin angles wind by ±π are local energy minimum
configurations. Two half-integer vortices are connected
by a string across which the nearest neighbor angle dif-
ference is π. The free energy difference per unit length
between θi−θj = 2nπ and θi−θj = (2n+1)π is a function
of temperature. At low temperatures the string tension
is non-zero and the half-integer vortices are confined by
a linear potential. At high temperatures, the configura-
tional entropy balances the energy cost hence the string
tension vanishes. Under such condition the half-integer
vortices go through a confinement-deconfinement tran-
sition governed by the 2D Ising model. The resulting
phases were discussed in Ref.[1]. In fact, the question
concerning how the phases of Ref.[1] meet, and the uni-
versality class of the phase transition, are still actively
studied today.

The purpose of this paper is to generalize the Lee-
Grinstein model to 3D. Here the point-like vortices be-
come vortex loops; the string between the half-integer
vortices becomes a surface sustained by the half-integer
vortex loops; the logarithmic vortex interaction be-
comes the interaction between the vortex loops medi-
ated by a non-compact U(1) gauge field; the confinement-
deconfinement transition of half-integer vortices is deter-
mined by whether the surface tension is finite. In Sec. II
we mathematically generalize the standard duality trans-
formation of the ordinary 3D XY model[2, 3] with only
the J1 term to show that the half-integer vortices couple
to a Z2 gauge field, and the deconfinement transition dis-
cussed above is governed by the deconfinment transition

∗ Corresponding author: dunghai@berkeley.edu

in the 3D Z2 gauge theory[4, 5]. In Sec. III we discuss the
Wilson and ‘t Hooft loops [6, 7] and their linking phase,
i.e., the anyon mutual statistics, in the deconfined phase.
In Sec. IV we discuss the confinement-deconfinement
transition using a quantum version of Eq.(1). Conclu-
sions are drawn in Sec. V and details of derivations are
given in Appendix. The main results of this paper are (1)
in the model governed by Eq.(1) where there is no built-
in gauge fields, nonethless a Z2 gauge structure emerges.
Therefore, the Z2 gauge field in our work is entirely emer-
gent. (2) In the deconfined phase of this Z2 gauge theory,
a Z2 topological ordered phase coexists with conventional
symmetry-breaking order. (3) A simple generalization of
Eq.(1), namely Eq.(8), has emergent Zn gauge structure
and realizes the associated Zn topological order. Last,
but not least, all of the above results are obtained ana-
lytically.

Experimentally, the model in Eq.(1) can be realized
in cold bosonic atomic gases interacting via a Feshbach
resonance [8] in either 2D or 3D. In addition, based on a
suggestion made in Ref.[9], recently it is suggested that
an one dimensional chain of superconducting islands each
harboring two Majorana zero modes[10] actually simu-
lates the model proposed in Ref.[1]. Moreover, generaliz-
ing Ref.[9] to 2D, several interesting works focus on two-
dimensional Josephson arrays with four Majorana zero
modes per superconducting island (the so-called Majo-
rana toric code (MTC)) find similar phases and the same
Z2 topological order[11–13] as in our work. However,
because (1) the Hilbert space difference, and (2) the dif-
ference in the path integral action, it is unclear to us
what is the relation between our model and the MTC.
However, it is clear that understanding such relation is
an interesting subject, and more studies are warranted.

II. THE DUALITY TRANSFORMATION

In the following we summarize the main steps in the
duality transformation. For more details please refer to
Section A of Appendix. We consider Eq.(1) defined on
an infinite simple cubic lattice. Note that if one performs
duality transformation on a finite lattice instead, twisted
boundary conditions need to be imposed, under which
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the angle of the spins is allowed to change by ∆θ across
the boundary. Moreover, one needs to sum this angle
from 0 to 2π. This procedure is called “orbifold”. For
analytic treatment, we replace the Boltzmann weight

exp [βJ1 cos(θi − θj) + βJ2 cos 2(θi − θj)]
by that of the Villain[14] model which has the same U(1)
symmetry and captures the 2π periodicity in θi. The
bond Boltzmann weight of the Villain model is given by,

exp[V (θi − θj)] =
∑

mi,j∈Z

{
exp

[
−K

2
(θi − θj − 2πmi,j)

2

]

+ exp(−∆) exp

[
−K

2
(θi − θj − π − 2πmi,j)

2

]}
.

In the above equation K is the curvature of the poten-
tial around θi − θj = 2nπ and (2n + 1)π. ∆ reflects
the energy difference between the local energy minimum
θi−θj = (2n+1)π and θi−θj = 2nπ and the summation
is over integers mi,j defined on links 〈ij〉 . For simplicity,
we have assumed the curvature of the interaction energy
around θi − θj = 2nπ and θi − θj = (2n+ 1)π to be the
same.

By Fourier transforming the Villain Boltzmann weight
and integrating out θi variables, the partition function
reads

Z=
∑

{∇·Li=0}

Trτ
∏
〈ij〉

exp

(
−
L2
ij

2K
−∆τij − iπLijτij

)
.

(2)

Here Trτ :=
∑
{τij=0,1}, “∇·” denotes the lattice diver-

gent and Lij is an integer-valued field defined on link 〈ij〉
with Li = (Li,i+x̂,Li,i+ŷ,Li,i+ẑ).

To solve the constraints ∇ · Li = 0, we introduce
integer-valued variables NRR′ residing on the links of
the dual lattice {R}, by Lij =

∑	
〈RR′〉∈�〈ij〉

NRR′ :=

NR,R+x̂ + NR+x̂,R+x̂+ŷ − NR,R+ŷ − NR+ŷ,R+x̂+ŷ. Here
�〈ij〉 is the dual plaquette whose center is the mid point
of 〈ij〉 (see Fig. 4(a)).

FIG. 1: (a) The relation between Lij (thick black ar-
row) and the NRR′ (blue arrows). The thin black lines
are the links of the original lattice, and the large black
dots are the dual lattice sites. (b) The relation between
φRR′ (thick blue arrow) and the τij (thin black arrows)
in Eq.(4). The large black dots and blue lines are the
sites and links on the dual lattice.

Lij =
∑	
〈RR′〉∈�〈ij〉

NRR′ can be abbreviated as Li =

∇ × NR. Under these definitions and by the virtue of
Poisson’s summation formula which changes the sum over
NR to the integral over a continuous vector field AR, the
partition function reads

Z= TrM,τ

∫
D[AR]

∏
R

exp
[
− (∇×AR)2

2K

] ∏
〈RR′〉

exp
[
i(2πMRR′ + πφRR′)ARR′

]∏
〈ij〉

exp (−∆τij) ,(3)

where TrM :=
∏
〈RR′〉

∑
MRR′∈Z. MRR′ and 1

2φRR′ are

the vorticity of integer and half-integer vortices, respec-
tively. Here φRR′ is a Z2-valued quantity defined as

φRR′ =
∑

〈ij〉∈�〈RR′〉

τij mod 2. (4)

In Eq.(3) both integer vortices and half-integer vor-
tices interact with a non-compact U(1) gauge field (A).
However, there is an extra term

∏
〈ij〉 exp (−∆τij) in the

partition function. It turns out this extra term gives rise
to a Z2 gauge field which only couples to the half-integer
vortices. To see that we first enforce Eq.(4) by a projec-
tion operator

P :=
∏
〈RR′〉

1

2

∑
ηRR′=0,1

(−1)φRR′ ×
∏

〈ij〉∈�〈RR′〉

(−1)τij

ηRR′

(5)

In Section A of the Appendix, between Eq. (A8) to Eq.
(A17), we show that

P
∏
〈ij〉

exp (−∆τij)→ ZZ2gauge
× 〈W [{φRR′}]〉

where ZZ2gauge is the partition function of Z2 gauge the-
ory and 〈W [{φRR′}]〉 is the expectation value of the Wil-
son loop[5, 15], namely,

ZZ2gauge = Trσ exp

Kd

∏
〈RR′〉∈�〈ij〉

σRR′


〈W [{φRR′}]〉 :=

〈 ∏
〈RR′〉

σ
φRR′
RR′

〉
Z2gauge

(6)

In Eq.(6) Trσ :=
∏
〈RR′〉

∑
σRR′=0,1 and tanhKd =

exp(−∆). σRR′ = ±1 are Z2 variables defined on dual
links. Note in Eq.(6) only the σRR′ associated with
dual links with φRR′ 6= 0 appears in the Wilson loop.
The fact that those dual links form loops is because
φR,R+x̂+φR,R−x̂+φR,R+ŷ+φR,R−ŷ+φR,R+ẑ+φR,R−ẑ =
0 (mod 2). More details for this part of duality trans-
formation is given in Section A (from Eq. (A8) to Eq.
(A17)) of the Appendix.
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The final partition function is given by

Z = ZZ2gaugeTrMTrφ

∫
D[AR]

∏
R

exp
[
− (∇×AR)2

2K

]
∏
〈RR′〉

exp
[
i(2πMRR′ + πφRR′)ARR′

]
〈W [{φRR′}]〉 (7)

where Trφ :=
∏
〈RR′〉

∑
φRR′=0,1 . It can be seen that vor-

tices in Eq.(7) interact with two gauge fields. Both inte-
ger and half-integer vortices interact with a non-compact
U(1) gauge field [2, 3] AR. In contrast, the half-integer
vortices interact with a Z2 gauge field via the Wilson loop
expectation value 〈W [{φRR′}]〉. In the confined phase
of the Z2 gauge theory, the Wilson loop obeys the area
law [5, 16]. Under such condition the half-integer vor-
tices are confined. Therefore at long wavelength only
the integer vortices are present. Depending on the cou-
pling strength to the U(1) gauge field, the integer vor-
tex loops can be bound, or unbound. In the Former
case there is long-range order in 〈exp(iθj) exp(−iθk)〉
and 〈exp(2iθj) exp(−2iθk)〉. In latter case both
〈exp(iθj) exp(−iθk)〉 and 〈exp(2iθj) exp(−2iθk)〉 decays
exponentially. If the Wilson loop obeys perimeter law
[5, 16], the half-integer vortices will be deconfined.
Now both the integer and half-integer vortices inter-
act only with the U(1) gauge field. If the interac-
tion is strong enough to bind the half-integer vortex
loops, the integer vortex loops will also be bound (be-
cause the integer vortices has twice the U(1) charge),
in such case 〈exp(iθj) exp(−iθk)〉 will exponential decay
(due to the proliferation of the θi − θj = π domain
walls) while 〈exp(2iθj) exp(−2iθk)〉 exhibit long-range
order. If the interaction with the U(1) gauge field is not
strong enough to bind the fractional vortex loops, both
〈exp(iθj) exp(−iθk)〉 and 〈exp(2iθj) exp(−2iθk)〉 will de-
cay exponentially.

The above duality transformation can be generalized
to situations where fractional vortices interact with a Zn
gauge field. In that case the generalized classical XY
model read

Hn = −J1

∑
〈ij〉

cos(θi − θj)− Jn
∑
〈ij〉

cosn(θi − θj), (8)

for integer n. A similar duality transformation yields the
following dual partition function

Zn = ZZngaugeTrMTrφ

∫
D[AR]

∏
R

exp
[
− (∇×AR)2

2K

]
∏
〈RR′〉

exp
[
i(2πMRR′ +

2π

n
φRR′)ARR′

]
〈W [{φRR′}]〉, (9)

where the vorticities of integer and fractional-vortices are
MRR′ and 1

nφRR′ , respectively. 〈W [{φRR′}]〉 is now eval-
uated in Zn gauge theory. Similar to the Z2 case, there is
a Zn confinement-deconfinement transition. For details
of this analysis of the Zn case please refer to Section B
of the Appendix.

III. TOPOLOGICAL EXCITATIONS

A. The Wilson and ’t Hooft Loops of the Z2 Gauge
Theory

In the following we review the Wilson and ’t Hooft
loops from the path integral point of view. For a gauge
theory, the Wilson loop is defined as the product of the
gauge connections along a loop ΓW living on the dual
lattice. For Z2 gauge theory, this corresponds to the
insertion of an operator[5]

WΓW ({σRR′}) =
∏

〈RR′〉∈ΓW

σRR′ (10)

This is drawn as the blue loop in Fig. 2. The ’t Hooft loop
ΓT , on the other hand, pierces through the plaquettes of
the space-time lattice. An example is the orange loop
in Fig. 2. The insertion of a ’t Hooft loop changes the
signs of the flux of a plaquette if the plaquette is pierced
through by ΓT , namely∏
〈RR′〉∈�〈ij〉

σRR′ → ΞΓT

(
�〈ij〉

) ∏
〈RR′〉∈�〈ij〉

σRR′ . (11)

Here ΞΓT

(
�〈ij〉

)
is −1 if �〈ij〉 is pierced through by ΓT ,

and +1 otherwise. The plaquettes which are pierced by
the ’t Hooft loop are painted in green in Fig. 2.

FIG. 2: Linking between Wilson loop and ’t Hooft loop
for Z2 gauge theory. Blue loop: the Wilson loop ΓW .
Orange loop: the ’t Hooft loop ΓT . Orange surface: a
surfaceAΓT that is enclosed by ΓT such that ∂AΓT = ΓT .
Green squares: the plaquettes pierced through by the ’t
Hooft loop. Thick black links: the bonds cut through by
the chosen surface AΓT .

When the ’t Hooft loop is contractible, there is an al-
ternative way to insert the ’t Hooft loop. Due to the con-
tractibility, one can find a surface AΓT bounded by ΓT ,
such that ∂AΓT = ΓT . Such a surface will cut through
some links in the space-time link lattice. The links cut
through are drawn by thick black line in Fig. 2. It doesn’t
take long to convince oneself that the insertion of ’t Hooft
loop corresponds to flipping the signs of the link variables
that are cut through by AΓT , namely

σRR′ → ΥAΓT

(
〈RR′〉

)
σRR′ . (12)
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where ΥAΓT

(
〈RR′〉

)
= −1 if 〈RR′〉 is intersected by

AΓT , otherwise it is +1. One can easily show that the
result only depends on ΓT but not on the specific choice
of AΓT .

One reason why Wilson and ’t Hooft loops are inter-
esting is that they correspond to the world lines of the
quasiparticles in the topological ordered phase [17, 18]
(the deconfined phase) realized when Kd in Eq.(6) is suf-
ficiently large. As we shall see in the following, these two
types of quasi-particle has mutual −1 statistics.

B. Mutual Statistics of Wilson and ’t Hooft Loops

Consider a Z2 gauge theory with the insertion of a Wil-
son loop. We would like to know how the partition func-
tion would change when a ’t Hooft loop which has non-
trivial linking with the Wilson loop is inserted. One such
example is drawn in Fig. 2. The partition function with a
single Wilson loop ΓW insertion, namely, ZZ2gauge [ΓW ],
is given by

ZZ2gauge [ΓW ] =

Trσ

 ∏
〈RR′〉∈ΓW

σRR′

 ∏
�〈ij〉

exp

Kd

∏
〈RR′〉∈�〈ij〉

σRR′

 .
(13)

On the other hand, in the presence of an additional ’t
Hooft loop we replace Eq.(13) by

ZZ2gauge [ΓW ,ΓT ] = Trσ

 ∏
〈RR′〉∈ΓW

σRR′

×
∏
�〈ij〉

exp

Kd

∏
〈RR′〉∈�〈ij〉

ΥAΓT

(
〈RR′〉

)
σRR′

 . (14)

For a specific AΓT , Eq.(12) is a one-to-one mapping
of the Z2 link variables. Because {σRR′} are dummy
variables to be summed over in Eq.(14), we can do the
replacement of Eq.(12) in Eq.(14), which leads to

ZZ2gauge [ΓW ,ΓT ] = (−1)nlinkingZZ2gauge [ΓW ] , (15)

Here nintercept is the number of times ΓW intercepts with
AΓT , i.e., the linking number between ΓW and ΓT . Phys-
ically this means that if the additional ’t Hooft loop has
non-trivial linking number [19] (mod 2) with the Wil-
son loop, the partition function would gain an additional
−1 sign. In the literature the Wilson/’t Hooft loop cor-
responds to the world line of the “e/m particle” of Z2

topological order [18]. The result above implies that e
and m particles have mutual −1 statistics[18] with re-
spect to each others.

IV. QUANTUM FORMULATION

FIG. 3: (a) The relation between the links on the original
and dual lattice in Eq.(18). (b) The relation between the
plaquettes in the original lattice and the stars in the dual
lattice.

To see the topological aspects of this model, we map
the 3D classical model into a (2 + 1)D quantum model
defined on 2D square lattice. The quantum Hamiltonian
reads

Ĥ =
∑
〈ij〉

−J1 cos(θi − θj)− J2 cos(2θi − 2θj)

+
∑
i

1

2(J1 + 4J2)
n2
i −

ln cothJ1

2
cosπni, (16)

where [θj , nk] = iδjk. For details of the derivation please
refer to Section C of the Appendix. In J2 = 0 limit
(corresponding to ∆ → +∞), there is a paramagnetic
to ferromagnetic phase transition when J1 is tuned from
0 to +∞, with U(1) symmetry spontaneously breaking
and order parameter eiθi . In J1 = 0 limit (correspond-
ing to ∆ = 0), there is another paramagnetic to ferro-
magnetic phase transition when J2 is tuned from 0 to
+∞, with U(1) symmetry spontaneously breaking and
order parameter ei2θi . What’s more interesting is the
confinement-deconfinement transition as a function of ∆
(or Kd), while the interaction with the U(1) gauge field
is infinitely strong (K →∞ in Eq.(7)). This limit corre-
sponds J2 → ∞ limit in Eq.(1) and Eq.(16), where the
quantum model has following Hamiltonian and Hilbert
space

lim
J2→+∞

Ĥ = −J1

∑
〈ij〉

cos(θi − θj)−
ln cothJ1

2

∑
i

cosπni.

Hilbert space constraint: θi − θj = kijπ, kij ∈ Z. (17)

Define a Z2 variable on the dual links of the square lat-
tice:

σxR1R2
= ei(θi0−θi1 ) ⇒ cos(θi0 − θi1) = σxR1R2

(18)

(see Fig. 3(a)). Because

ei(θi1−θi2 )ei(θi2−θi3 )ei(θi3−θi4 )ei(θi4−θi1 ) = 1
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it follows that

σxR0R1
σxR0R2

σxR0R3
σxR0R4

:=
∏

Ri∈star of R0

σxR0Ri = 1

(19)

(see Fig. 3(b)). Since cosπni0 |θi0〉 = |θi0 + π〉, it flips the
sign of σxR1R2

, σxR2R3
, σxR3R4

, σxR4R1
in Fig. 3(a). There-

fore cosπni →
∏
〈RR〉∈�i σ

z
RR′ . Thus Hamiltonian reads

lim
J2→+∞

Ĥ = −J1

∑
〈RR′〉

σxRR′ −
ln cothJ1

2

∑
�

∏
〈RR′〉∈�

σzRR′ .

(20)

Eq.(20) and Eq.(19) are the quantum Hamiltonian, and
the Hilbert space constraint of the Z2 gauge theory[15].
The confinement-deconfinement transition occurs as one
tunes J1 from infinity to zero. Under the constraint in
Eq.(17), the Hilbert space is the direct product of that
spanned by |θ〉 on a reference single site, and the Hilbert
space of the Z2 gauge theory. The θ degrees of freedom
reproduces the continuous degeneracy in the 〈ei2θi〉 6=
0 phase due to the U(1) symmetry of Eq.(17). Thus,
the deconfined phase possesses simultaneously 〈ei2θi〉 6= 0

and topological degeneracy on a torus when using the
orbifold boundary conditions.

V. CONCLUSION

In conclusion, we generalize the 2D classical model
proposed in Ref. [1] to 3D and show the emergence
of the Z2 gauge theory from a model without any
built-in gauge structures. The deconfined phase of this
Z2 gauge theory shows a coexistence of topological
order and conventional long-range order. By a further
generalization of our model, we also construct a simple
model realizing Zn gauge theory. The model Eq.(1)
can be realized in cold atom experiments in either 2D
or 3D. It remains an interesting question to detect the
topological signatures of our model in experiments.
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where Lij are integer-valued link variables, and Li := (Li,i+x̂,Li,i+ŷ,Li,i+ẑ). The lattice divergent-less constraint
∇ ·Li = 0 is solved by

Li = ∇×NR. (A2)

Here NR is an integer-valued vector field on the dual lattice {R}. Plug Eq.(A2) into Eq.(A1) we obtain

Z = Trτ
∑
{NR}

∏
R

exp
[
− (∇×NR)2

2K

]∏
ij

exp
[
−∆τij + iπ(∇×NR)ijτij

]
.

After applying the Poisson’s summation formula, we change the sum over NR to the integral over a continuous vector
field AR, which plays the role of a non-compact U(1) gauge field, and the partition function becomes

Z = TrM,τ

∫
D[AR]

∏
R

exp
[
− (∇×AR)2

2K

] ∏
〈RR′〉

exp
[
i(2πMRR′ + πΦRR′)ARR′

]∏
〈ij〉

exp (−∆τij) , (A3)

where TrM :=
∏
〈RR′〉

∑
MRR′∈Z . In Eq.(A3)

ΦRR′ =

	∑
〈ij〉∈�〈RR′〉

τij = τi,i+x̂ + τi+x̂,i+x̂+ŷ − τi,i+ŷ − τi+ŷ,i+x̂+ŷ (A4)

takes integer value from −4 to 4. The oriented sum is taken over the four links around the plaquette �〈RR′〉 in the
original lattice which is perpendicular to 〈RR′〉 (see Fig. 4(b)).

FIG. 4: (a) The relation between Lij (thick black arrow) and the NRR′ (blue arrows) in Eq.(A2). The thin black
lines are the links of the original lattice, and the large black dots are the dual lattice sites. (b) The relation between
ΦRR′ (thick blue arrow) and the τij (thin black arrows) in Eq.(A4). The large black dots and blue lines are the sites
and links on the dual lattice.

However, due to TrM in Eq.(A3), where MRR′ is integer valued on each dual link, the part of ΦRR′ which is a
multiple of 2 can be absorbed into MRR′ . The remaining part of ΦRR′ ,

φRR′ =
∑

〈ij〉∈�〈RR′〉

τij mod 2, (A5)

is a Z2-valued quantity. As a result, Eq.(A5) is equivalent to

(−1)φRR′ =
∏

〈ij〉∈�〈RR′〉

(−1)τij . (A6)

In terms of φRR′ the partition function is given by

Z = TrM,τ

∫
D[AR]

∏
R

exp
[
− (∇×AR)2

2K

] ∏
〈RR′〉

exp
[
i(2πMRR′ + πφRR′)ARR′

]∏
〈ij〉

exp (−∆τij) , (A7)

As stated in the main text, the constraints Eq.(A6) can be imposed through a projection operator defined as

P :=
∏
〈RR′〉

1

2

∑
ηRR′=0,1

(−1)φRR′ ×
∏

〈ij〉∈�〈RR′〉

(−1)τij

ηRR′

. (A8)
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After inserting P into the partition function, τij and φRR′ become unconstrained variables which can be summed over
independently. If we define

B[{φRR′}] := TrηTrτ

P∏
〈ij〉

exp (−∆τij)

 (A9)

where Trη :=
∏
〈RR′〉

∑
ηRR′=0,1 . It is straightforward to show that after performing Trτ in Eq.(A9),

B[{φRR′}] ∝ Trη

 ∏
〈RR′〉

(−1)ηRR′φRR′

 ∏
�〈ij〉

F2 [{ηRR′}] , (A10)

where

F2 [{ηRR′}] = exp

Kd cos

π ∑
〈RR′〉∈�〈ij〉

ηRR′

 . (A11)

In Eq.(A11)

tanhKd = exp(−∆) (A12)

is the coupling constant in the dual lattice gauge theory. By introducing a Z2 variable on each link

σRR′ := (−1)ηRR′ ,

F2 [{ηRR′}]→ F̃2 [{σRR′}]

where

F̃2 [{σRR′}] = exp

Kd

∏
〈RR′〉∈�〈ij〉

σRR′

 (A13)

is the Boltamann weight of Z2 gauge theory. Therefore

B[{φRR′}] = Trσ

σR1R′
1
...σRNR′

N
exp

Kd

∏
〈RR′〉∈�〈ij〉

σRR′

 , (A14)

where 〈R1R
′
1〉...〈RNR′N 〉 label are the dual links for which φRR′ 6= 0. The B[{φRR′}] given by Eq.(A14) is proportional

to the expectation value of the Wilson loop[5, 15] in the Z2 gauge theory, namely,

B[{φRR′}] = ZZ2gauge〈W [{φRR′}]〉 (A15)

where

ZZ2gauge = Trσ exp

Kd

∏
〈RR′〉∈�〈ij〉

σRR′

 (A16)

and

〈W [{φRR′}]〉 :=
〈 ∏
〈RR′〉

σ
φRR′
RR′

〉
Z2gauge

(A17)
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Appendix B: The duality transformation that lead to the U(1) and Zn gauge theory

We consider the following classical Hamiltonian

H =
∑
〈ij〉

[−J1 cos(θi − θj)− Jn cosn(θi − θj)] , (B1)

on an infinite simple cubic lattice, where J1 and Jn are positive coupling constant parameters, and n > 2 is an integer.
The partition function reads

Z =

∫ ∏
i

dθi
∏
〈ij〉

exp(βJ1 cos(θi − θj) + βJn cosn(θi − θj)), (B2)

The Villain form[14] of the Boltzmann weight for each link 〈ij〉 is given by

expV (θi − θj) =

∞∑
mi,j=−∞

n−1∑
τij=0

exp
[
−∆(τij)−

K

2

(
θi − θj − 2πmi,j −

2π

n
τij

)2]
, (B3)

and

∆(τij) = K

(
1− cos

2πτij
n

)
as a function of τij measuring the energy difference between local minima at θi − θj = 2kπ + 2πτ

n and θi − θj = 2kπ.
The Fourier transform of the Boltzmann weight in Eq.(B3) is given by (for simplicity we temporarily neglect i, j
indices)

CL =

∫ 2π

0

d∆θ expV [∆θ] exp(−iL∆θ) = Const.× exp

(
− L

2

2K

) n−1∑
τ=0

exp

(
−∆(τ)− i2π

n
Lτ
)
. (B4)

Here L is an integer, defined for each link, and ∆θ denotes the angle difference between site i and j. Therefore, the
partition function becomes

Z=

∫ ∏
i

dθi
∑
{Lij}

∏
〈ij〉

exp

(
−
L2
ij

2K
+ iLij(θi − θj)

)
n−1∑
τij=0

exp

(
−∆(τij)− i

2π

n
Lijτij

)

=
∑

{∇·Li=0}

Trτ
∏
〈ij〉

exp

(
−
L2
ij

2K
−∆(τij)− i

2π

n
Lijτij

)
, (B5)

where Trτ :=
∑
{τij=0,...,n−1} . In passing to the second line of Eq.(B5) we have integrated over θi which results in the

constraint

∇ ·Li = 0. (B6)

Here ∇· is the lattice divergence operator, and Li is the vector formed by the near-neighbor Lij , i.e.,
Li = (Li,i+x̂,Li,i+ŷ,Li,i+ẑ).

Like in Section I, we solve the constraints ∇ · Li = 0 by letting Li = ∇×NR, and use the Poisson’s summation
formula to convert the sum over the integer-valued vector field NR to the integration over a non-compact gauge field
AR [2, 3]

Z = TrM,τ

∫
D[AR]

∏
R

exp
[
− (∇×AR)2

2K

] ∏
〈RR′〉

exp
[
i(2πMRR′ +

2π

n
φRR′)ARR′

]
exp (−∆(τij)) . (B7)

Here

φRR′ = (τi,i+x̂ + τi+x̂,i+x̂+ŷ − τi,i+ŷ − τi+ŷ,i+x̂+ŷ) mod n. (B8)
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1. The emergence of the Zn gauge field

To enforce Eq.(B8), we introduce the projection operator

P :=
∏
〈RR′〉

1

n

n−1∑
ηRR′=1

ωφRR′

	∏
〈ij〉∈�〈RR′〉

ω−τij

ηRR′

, (B9)

where

ω = ei2π/n,

and �〈RR′〉 is the plaquette on the original lattice intersecting the dual link 〈RR′〉. After inserting this projector
operator, τij and φRR′ become independent variables ready to be traced over. If we define

B[{φRR′}] := Trη

 ∏
〈RR′〉

ωηRR′φRR′

Trτ
∏
〈ij〉

exp (−∆(τij))

	∏
〈ij〉∈�〈RR′〉

ω−τijηRR′ (B10)

it is straightforward to show that after the Trτ , up to a constant,

B[{φRR′}] ∝ Trη

 ∏
〈RR′〉

ωηRR′φRR′

 ∏
�〈ij〉

Fn


	∑

〈RR′〉∈�〈ij〉

ηRR′


 (B11)

where �〈ij〉 denotes the plaquette on the dual lattice which intersects 〈ij〉, and

Fn [χij ] := e−K
+∞∑

kij=−∞

Iν(χij ;kij)(K) where ν(χij ; kij) := χij − nkij , (B12)

and

χij =

	∑
〈RR′〉∈�〈ij〉

ηRR′ = ηR,R+x̂ + ηR+x̂,R+x̂+ŷ − ηR,R+ŷ − ηR+ŷ,R+x̂+ŷ. (B13)

In Eq.(B12), Iν(x) is the modified Bessel function of the first kind [20]. According to the asymptotic expansion of the
Bessel function, for large K,

Iν(K) ∼ 1√
2πK

exp

(√
K2 + ν2 − ν2

K

)
∼ 1√

2πK
exp

(
K − ν2

2K

)
hence

Fn [χij ] ∼
+∞∑

kij=−∞

exp

[
− (χij − nkij)2

2K

]
∼ exp

[
Kd cos

(
2π

n
χij

)]
, where Kd =

n2

4π2K
. (B14)

By introducing a Zn variables on the links of the dual lattice

qRR′ := ωηRR′

Fn [χij ]→ F̃n [χ̃ij ] = exp [Kd Re(χ̃ij)] where χ̃ij =

	∏
〈RR′〉∈�〈ij〉

qRR′ . (B15)

Note that χ̃ij in Eq.(B15) is the plaquette flux in the Zn gauge theory and F̃n [χ̃ij ] is its Boltzmann weight. Therefore

B[{φRR′}] = Trq

{
q
φR1R

′
1

R1R′
1
...q

φRNR′
N

RNR′
N

∏
�〈ij〉

F̃n [χ̃ij ]
}
. (B16)
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In Eq.(B16) 〈R1R
′
1〉, ..., 〈RNR′N 〉 are the dual links where φRiR′

i
6= 0. The B[{φRR′}] given by Eq.(B16) is proportional

to the expectation value of the Wilson loop in the Zn gauge theory[5], namely,

B[{φRR′}] = ZZngauge ×W [{φRR′}] (B17)

where

ZZngauge = Trq
∏
�〈ij〉

F̃n [χ̃ij ] , W [{φRR′} :=
〈 ∏
〈RR′〉

q
φRR′
RR′

〉
Zngauge

. (B18)

Here qR1R′
1
, ..., qRNR′

N
satisfy the constraint

qR,R+x̂ · qR,R−x̂ · qR,R+ŷ · qR,R−ŷ · qR,R+ẑ · qR,R−ẑ = 1

and qRR′ = q∗RR′ , (B19)

which enforces the continuity of the fractional vortex loops. The final partition function is given by

Z = ZZngauge × Trφ,M

∫
D[AR]

∏
R

exp
[
− (∇×AR)2

2K

] ∏
〈RR′〉

exp
[
i(2πMRR′ +

2π

n
φRR′)ARR′

]
W [{φRR′}].(B20)

In the special case of n = 2 we recover the results of Section I.

Appendix C: The Quantum Hamiltonian for n = 2

In this section, we show the 2D quantum Hamiltonian,

Ĥ =
∑
〈ij〉

−J1 cos(θi − θj)− J2 cos 2(θi − θj) +
∑
i

U

2
n2
i − Γ cosπni, (C1)

with [θj , nk] = iδjk is equivalent to the 3D classical XY Eq.(1) of the main text.

Z = Tr
[
e−βĤ

]
=
∑
{θτi }

∏
τ

〈{θτi }|e−εĤ |{θτ+1
i }〉

=
∑
{θτi }

exp

∑
〈ij〉

∑
τ

εJ1 cos(θτi − θτj ) + εJ2 cos 2(θτi − θτj )

∏
i,τ

〈θτi | exp

(
−εU

2
n2
i + εΓ cosπni

)
|θτ+1
i 〉, (C2)

where ε = β
N and

∏
τ is the product over imaginary time slices {τ}. Insert I =

∑
n |n〉〈n| we obtain (up to a constant)

〈θτi | exp

(
−εU

2
n2
i + εΓ cosπni

)
|θτ+1
i 〉 = exp

(
∆

2
cos
(
θτi − θτ+1

i

)
+

1

4

(
1

εU
− ∆

2

)
cos 2

(
θτi − θτ+1

i

))
, (C3)

where tanh ∆
2 = e−2εΓ, and we have used the fact that eεΓ cosπn ∝ 1 + e−∆−iπn for integer n. Therefore, the quantum

partition function is given by

Z =
∑
{θτi }

∏
τ

exp
∑
〈ij〉

(
εJ1 cos(θτi − θτj ) +

∆

2
cos(θτi − θτ+1

i ) + εJ2 cos 2(θτi − θτj ) +
1

4

(
1

εU
− ∆

2

)
cos 2(θτi − θτ+1

i )

)
.

Equating the above equation with the classical partition function we find

εJ1 =
∆

2
= tanh−1 e−2εΓ, and εJ2 =

1

4

(
1

εU
− ∆

2

)
=

1

4

(
1

εU
− εJ1

)
, (C4)

Hence the quantum Hamiltonian reads

εĤ =
∑
〈ij〉

−εJ1 cos(θi − θj)− εJ2 cos 2(θi − θj) +
∑
i

1

2(εJ1 + 4εJ2)
n2
i −

ln coth εJ1

2
cosπni. (C5)
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Redefine εJ1 7→ J1, εJ2 7→ J2 and εĤ 7→ Ĥ we obtain

Ĥ =
∑
〈ij〉

−J1 cos(θi − θj)− J2 cos 2(θi − θj) +
∑
i

1

2(J1 + 4J2)
n2
i −

ln cothJ1

2
cosπni. (C6)

In the limit of J2 → +∞ we arrive at

lim
J2→+∞

Ĥ = −J1

∑
〈ij〉

cos(θi − θj)−
ln cothJ1

2

∑
i

cosπni.

Hilbert space constraint: θi − θj = kijπ, kij ∈ Z. (C7)

which is given in the main text.
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