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ABSTRACT OF THE DISSERTATION

Discovery and analysis of mosaic arrangements in
biological sequences and structures

By

Degui Zhi

Doctor of Philosophy in Bioinformatics

University of California, San Diego, 2006

Professor Pavel Pevzner, Chair

Biological molecules are composed of discrete units, called domains. The study

of the identity and organization of these domains can reveal the correspondence

between individual units in different molecules, and the history of domains

themselves, which may guide our understanding of the evolutionary history of

individual molecules. Currently, the study of domain organization in protein

sequences is a mature field; however, the studies of domain organization in other types

of biological sequences and protein structures are still in their infancy. There is

currently no general framework and specific tools for the identification of domains or

for the discovery of the domain organization.
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Existing tools do not explicitly define what a domain is. In some cases, existing

tools (e.g., multiple sequence alignment tools) ignore domain organizations entirely,

or represent only a limited subset of domain organization. As a result, the mosaic

structures of biological data are left undetected, and we demonstrate that the

prevalence of mosaic arrangements is under-appreciated.

This dissertation considers shortcomings of current technologies and develops a

generic framework for the discovery and analysis of domain organizations in any

types of sequential data. We apply this framework in several biological contexts. First

we develop the A-Bruijn Aligner (ABA), which represents a multiple sequence

alignment (MSA) as a graph that automatically reveals the domain structures. Second,

we develop a repeat domain graph approach that decomposes a repeat family library

into repeat domains, which is the first method for the comprehensive identification of

repeat domains in large genomes. Third, we extend the A-Bruijn graph approach to an

exploration of the mosaic arrangements in protein structures. Finally, we propose a

new method for structure comparison based on a simplified representation of protein

structures using the local curvatures along their generalized backbones.
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1 Introduction: mosaic arrangements and open biological problems

One of the important results of the analysis of the human genome [1] is the

discovery of a large number of low-copy repeats, also called segmental duplications

[2, 3]. Segmental duplications have drawn considerable attention due to their

implications in mammalian evolution [3-7] and genomic diseases [8-10]. Segmental

duplications exhibit a complex mosaic structure [11-13], which is hypothesized to be a

result of a series of duplication events: initially a set of independent ancestral donor

loci (duplicons) are copied to the so-called acceptor region, which tend to lie in

pericentromeric regions, thus forming a mosaic of segments from different genomic

locations. Subsequently, the now-mosaic acceptor region is duplicated to various

genomic loci. Although Eichler and colleagues [14, 15] had systematically identified

segmental duplication regions in the human genome, the problems of identification of

duplicons and the elucidation of segmental duplication events remained open, due to

the lack of algorithmic tools for disentangling the complex mosaic structures. The

challenge is that it is non-trivial to derive duplicons from a set of more than 25,000

pairwise alignments [14-16].

Only recently, Jiang et al [17] presented an elegant solution to this problem by

constructing a segmental duplication graph such that the edges in the graph correspond

to duplicons and the topology of the graph reveals the evolutionary history of

segmental duplications. While this study demonstrated how computational methods

can be crucial for solving the key problems in evolution of segmental duplications,

similar approaches for revealing mosaic structures in other biological sequences
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remain poorly developed, and are the focus of this work. Specifically, the goal of

present work is to develop a general framework for the discovery and analysis of

mosaic arrangements in other types of biological data, which include nucleotide and

amino acid sequences, as well as protein structures (as sequences of structural units).

It is well established that proteins consist of protein domains. A protein domain

is generally defined as a conserved sequence, which folds into a specific 3-D

conformation, and has a specific function. Protein domains are the units of protein

structure and function. Therefore, domain duplication, shuffling, and other domain

rearrangements are among the most important events in protein evolution. With the

availability of protein domains databases and automatic tools [18-25], large scale

studies of organization of protein domains become possible [26, 27], and the tools for

automatic domain identification [28] are being developed. While protein domains and

their organization have been the focus of active research for decades, the

understanding of other biological sequences’ mosaic structures has just begun. As we

will demonstrate later in this dissertation, interspersed transposons/retrotransposons

also often exhibit a mosaic structure.

Transposon repeats are classified into repeat families according to their global

sequence similarity. However, different repeat families typically share subparts of

their sequences with other families or with other parts of their own sequences. For

example, the ubiquitous human Alu family is dimeric [29]. Different retroviral

elements in human genome exhibit a complicated scenario of recombinations. An

extreme example of such recombination is the Harlequin family, which is a mosaic of

12 fragments from 7 distinct other retroviral families [30]. The understanding of this
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mosaic structure yields important insights into the evolution of repeat families.

However, even with the extensive manual curation of repeat families in the Repbase

[30], the sharing of sequences among repeat families in the human genome and their

mosaic structures is still poorly understood. It is even more difficult to study the

sharing of sequences among repeat families in newly sequenced genomes as the repeat

family sequences are typically generated by de novo repeat identification programs.

An even more challenging task is to compare repeat families across different

organisms. When comparing repeats in the newly sequenced C. briggsae genome with

that in the C. elegans genome, Stein et al [31] noted that no simple one-to-one

mapping exists between C. briggsae repeat families and C. elegans repeat families.

Obviously, without first delineating the underlying mosaic structure of repeat families,

it is not possible to answer questions about how repeats are shared across species, nor

about which repeat domains are shared among species. In fact, it is not clear that we

can say anything at all about the evolution of repeat domains without first discovering

what they are.

The prevalence of mosaic arrangements in biological sequences calls for the

development of a general framework for the analysis of mosaic arrangements in

biological sequences. In particular, the following questions need to be addressed:

given a set of sequences, (i) how can we identify all domains (subsequences) shared in

the set? (ii) how can we identify domain organizations among the sequences in the

set? (iii) what evolutionary events can we infer from the domain organizations? and

finally (iv) how can we compare domains shared between two different sets of

sequences?
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Close to the core of the problems of identifying domains, lies the problem of

multiple sequence alignment. Multiple sequence alignment has been an active research

area since the mid-1970’s. Traditionally a multiple alignment of several sequences is

represented in a row-column format. This representation is sufficient if all input

sequences share the same domain organization. However, when the input contains

sequences with different domain organizations, traditional multiple alignment

programs can only align a subset of domains that appear in the same order in all the

sequences. Domains that do not appear in the same order are left unaligned and

padded with long gaps. Thus, the alignment of sequences with multiple domains and

varied domain organizations requires a representation more flexible than the rigid row-

column format.

The A-Bruin graph, a generalization of the classical de Bruijn graph, provides a

framework for the analysis of a set of sequences with a set of arbitrarily defined

similarities. Thus the A-Bruijn graph approach is particularly well-suited for the

modeling of mosaic arrangements. The most important contribution of this work is

that it provides the first framework capable of discovering and analyzing mosaic

arrangements in biological sequences and structures. We further demonstrate the

utility of this approach in several important problems in bioinformatics. The remaining

chapters of the dissertation are organized as following.

Chapter 2 introduces the general concept of the A-Bruijn graph and algorithms

for the construction and simplification of A-Bruijn graphs, which serves as the

background and a starting point for this work.
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Chapter 3 presents A-Bruijn Alignment (ABA), a new method for the problem

of multiple sequence alignment. The major difference between ABA and existing

multiple alignment methods is that ABA represents an alignment as a directed graph,

possibly containing cycles. This representation provides more flexibility than a

traditional alignment matrix or the recently introduced Partial Order Alignment (POA)

[32] graph by allowing for a larger class of evolutionary relationships between the

aligned sequences. While this is a collaboration work, I developed the ABA software

package and the case studies; also I participated the entire writing process.

Chapter 4 develops new methods for the analysis of repeat family libraries via

the A-Bruijn graph approach. We build a repeat domain graph that decomposes a

repeat library into repeat domains, defined as short subsequences shared by multiple

repeat families, and reveals the mosaic structure of repeat families. Our method

recovers documented mosaic repeat structures and suggests additional putative ones.

Our method is useful for elucidating the evolutionary history of repeats and annotating

de novo generated repeat libraries.

While A-Bruijn graph is developed for modeling biological sequences, its

application is not limited to sequences. Chapter 5 explores the possibility of extending

the A-Bruijn graph approach to the analysis of repeated and shuffled protein domains

in structures. This exploration inspired the development of a new method for structure

alignments.

In chapter 6 we propose a new structure comparison approach based on a

simplified representation of proteins that describes its three-dimensional path by local

curvature along the generalized backbone of the polypeptide. We implement a
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dynamic programming procedure that aligns curvatures of the two proteins optimizing

a defined sum turning angle deviation measure.

Chapter 7 concludes this dissertation and points out several directions for future

research.
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2 A-Bruijn graph

The notion of A-Bruijn graph is the key concept in the present work. This

chapter reviews the definitions and algorithms for A-Bruijn graph. The A-Bruijn graph

is a generalization of the classical de Bruijn graph. In Section 2.1 the concept of de

Bruijn graph and its applications in computational biology are discussed. The

limitations of de Bruijn graph lead to the development of A-Bruijn graph. Section 2.2

gives a formal definition of A-Bruijn graph. The A-Bruijn graphs built from biological

sequences are typically very complicated and the algorithms for the simplification of

A-Bruijn graph are essential to their successful application in computational biology.

Section 2.3 reviews the key algorithms for the simplification of A-Bruijn graph, and

discusses alternative problem formulations. This chapter concludes with a brief

discussion of the applications of A-Bruijn graph outsides the scope of the remaining

chapters in the dissertation.

2.1 de Bruijn graph and its applications in computational biology

The de Bruijn graph [33] is a well-known concept in mathematics and computer

science. Given a set of sequences of length l, the de Bruijn graph over these sequences

can be constructed as following: represent each sequence as a vertex, and connect an

directed edge from vertex a to vertex b if the (l-1)-suffix of the sequence a is identical

to the (l-1)-prefix of the sequence b. The de Bruijn graph of a single long sequence can

be constructed by first fragmenting the entire sequence into overlapping l-mers, and

then applying the above procedure over the set of fragments. The entire sequence

corresponds to an Eulerian path of the de Bruijn graph.
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In bioinformatics, de Bruijn graph was first applied to the problem of

Sequencing by Hybridization [34]. Later, its application has been extended to many

other bioinformatics problems including fragment assembly [35, 36], resequencing

using DNA arrays [37, 38], EST analysis [39], and computational mass spectrometry

[40].

Effectively, in constructing the de Bruijn graph of a sequence, all occurrences of

identical l-mers in the sequence are “glued” together into the same node. If the input

sequence is a genomic sequence, the de Bruijn graph can glue all identical repeat

copies into a single edge with a high multiplicity. This provides a scheme for de novo

repeat identification.

However, the l-mer gluing in the original de Bruijn graph definition is limited to

identical repeat copies, which is too rigid for the analysis of biological sequences that

are subject to mutations during evolution. Indeed, minor variations among different

repeat copies can greatly complicate the topology of resulting de Bruijn graph.

Pevzner, Tang, and Tesler [41] proposed the A-Bruijn graph approach, which

extended the classical de Bruijn graph concept, in an attempt to allow for a broader

definition of sequence similarity. In principle, given a set of sequences as well as a set

of pairwise local alignments between these sequences, A-Bruijn graph is built as

following: represent each sequence as a linear chain of vertex, and glue two vertices

together if they are aligned in one of the input pairwise alignments. In practice, as the

input pairwise alignments may not be consistent, the straightforward result of A-

Bruijn graph construction procedure may contain many short cycles in two classes,

bulges and whirls (see below). Several heuristics must be applied to further simplify
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the graph to make it coherent and interpretable. In the remaining of this chapter, I first

give a formal introduction to the A-Bruijn graph, and then describe algorithms for the

simplification of A-Bruijn graphs.

2.2 A-Bruijn graph

Our presentation of A Bruijn graph includes an introduction of the concept of A-

Bruijn graph and discussions on alternative definitions and problem formulations that

may provide room for future improvements.

Let S be a sequence of n letters and A be a set of pairwise alignments between

subsequences of S. Let A = {aij} be a binary n x n "similarity matrix" that is based on

A . Assuming transitivity of the similarity, matrix A is defined as aij = 1 if the

positions i and j are aligned in any pairwise alignment and aij = 0 otherwise. Notice

that matrix A naturally defines the "adjacency matrix" of a graph on n vertices 1,..., n

(vertices i and j are connected iff aij = 1). This graph is called the A-graph. Each

connected component of the A-graph represents a set of positions that are

(transitively) aligned. In short, A-Bruijn graph is built by “gluing” these transitively

aligned positions into a single node1. Formally, let V  be the set of connected

components of A-graph and let vi ∈V be the connected component containing vertex i

(1 ≤ i ≤ n). The A-Bruijn graph is defined as the multi-graph on the vertex set V with

(n-1) directed edges (vi, vi+1) for 1 ≤ i < n. The A-Bruijn graph can be viewed as the

Eulerian path obtained from the path (1, ..., n) after contracting each connected

                                                  
1 We limit our use of terminology: vertices in the A-graph and nodes in the A-Bruijn graph.
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component in the A-graph into a single node. v1 and vn are called the source and sink.

See Figure 2.1 for an example of A-Bruijn graph construction.

Based on this constructive definition, there is a one-to-one correspondence

between the positions in the input sequences and the vertices in the A-graph, and there

is a many-to-one mapping from the vertices in the A-graph to the nodes in the A-

Bruijn graph. In other words, for each position in an input sequence, there is a

corresponding node in the A-Bruijn graph. Thus, the A-Bruijn graph is accurate to the

single letter level, i.e., it is possible to “thread” the input sequence onto the A-Bruijn

graph letter-by-letter.

It is straightforward to define the A-Bruijn graph over n (n > 1) sequences based

on a set of pairwise alignments among subsequences of them. One can build the A-

Bruin graph for n sequences by first concatenating them into a single one and

constructing the A-Bruijn graph for it, then removing the concatenation edges. The

resulting A-Bruijn graph for n sequences can be viewed as the amalgamation of n

paths with n sources and n sinks2.

The definition of A-Bruijn graph allows an arbitrary definition of the matrix A.

When the matrix A corresponds to all perfect l-mer matches in the sequence S, the A-

Bruijn graph corresponds to the classical de Bruijn graph (with minor technical

modifications). In the context of biological sequences, A is often a set of significant

pairwise local alignments produced by a pairwise sequence alignment program.

                                                  
2 To avoid the situation when two sources or two sinks are glued into a single vertex (i.e. when the ends
of two different sequences are aligned in one alignment in A), we add virtual vertices at the ends of a

sequence with zero length edges.
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Therefore, the concept of A-Bruijn graph generalizes the concept of de Bruijn graph,

and allows biologically meaningful sequence similarities to be represented in a graph.

Although the construction of A-Bruijn graph is relatively straightforward, the

direct application of the above procedure to real biological sequences often results in a

very noisy graph, i.e., a graph with a large number of short cycles. Short cycles can be

defined as cycles longer than a threshold, called girth. Two types of short cycles are

identified: whirls and bulges (Figure 2.2). Whirls are short cycles in which all edges

are oriented in the same direction, while bulges are short cycles that contain edges

with different directions. Whirls and bulges are formed by different causes. Bulges are

often caused by gaps in alignments, while whirls are usually the result of

inconsistencies among input pairwise alignments. When there is a large number of

similar sequences with inconsistent alignments, bulges and whirls can form a

complicated network and consequently the resulting A-Bruijn graph might no longer

be intuitive and informative. To better interpret A-Bruijn graph, one has to distinguish

the graph topology that corresponds to true sequence similarities from the graph

structures caused by technical inconsistencies among input alignments. Thus,

algorithms for simplifying A-Bruijn graph are essential to the application of A-Bruijn

graph to modeling biological sequences.

2.3 Algorithms for the simplification of A-Bruijn graph

The major challenge of simplifying A-Bruijn graph is the removal of whirls,

which result from inconsistencies among input pairwise alignments. Reconciling

inconsistencies among a set of pairwise alignments is a difficult task [42]. The A-
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Bruijn graph representation transforms this problem into a graph theoretic problem.

Whirls correspond to nodes in the A-Bruijn graph (connected components in the A-

graph) that contain two positions on a sequence that are less than girth apart. The goal

of whirl removal is to split the positions (by removing minimal number of edges in the

A-graph) in such nodes so that no two positions in a node are less than girth apart on a

sequence. Although it was not stated directly in [41], this is a hard combinatorial

problem, and in [41] a greedy iterative node splitting procedure is introduced.

After whirl removal, the resulting A-Bruijn graph represents a set of consistent

alignments among the input sequences. Since the whirl removal procedure is

essentially performed on the A-graph, and thus preserves the mapping between the

vertices in the A-graph and the nodes in the A-Bruijn graph, therefore, the letter-by-

letter correspondence between the A-Bruijn graph and the input sequences is

preserved.

However, because the whirl-free A-Bruijn graph may still contain bulges and

other complications that obscure the overall graph topology, further simplification of

the A-Bruijn graph is desired. In [41] a bulge removal procedure is described.

Comparing the whirl removal, the problem of bulge removal is relative simple.

The A-Bruijn graphs can be viewed as weighted graphs with the weight (multiplicity)

of an edge between two vertices equal to the number of edges connecting these

vertices. The problem of bulge removal can be formulated as the removal of edges

with minimal total weights such that the remaining graph does not have a cycle longer

than girth. Although theoretically this is the Maximum Subgraph with Large Girth

(MSLG) Problem, which is a hard problem, in [41] a heuristic approach that  peels a
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bulge network into its maximum spanning tree (MST) provides a practical solution.

After the removal of a bulge network, the remaining graph can be further simplified

through the erosion and zigzag path straightening steps. A warning with the bulge

removal procedure is that it performed on the A-Bruijn graph, thus the mapping

between the A-graph and the A-Bruijn graph may be destroyed, and the resulting A-

Bruijn graph may not be an exact letter-by-letter threading of the input sequences.

While the above solution to MSLG problem formulation provides a practical

procedure for bulge removal, here I provide an alternative approach to the bulge-

removal problem, which may be of some theoretical interests. First, an observation is

that network of bulges represents a section of multiple alignment with partial order.

Since the goal of bulge removal is to reveal such sections and give them a simplified

representation, one can consider the alternative procedure which first identify a

network of bulge, and then optimizes the alignment within the network via traditional

multiple alignment procedures or partial order alignment procedures [32].

In A-Bruijn graph there are simple chains of nodes linked by parallel edges.

These chains represent aligned regions among several sequences, and the A-Bruijn

graph can be simplified by collapsing such simple chains into single edges with the

length being the number of nodes in the path and the multiplicity being the

multiplicity of the edges (Figure 2.3).

After this collapsing, there still may be a number of short collapsed edges, due

to ambiguities at the boundaries of aligned regions. [41] provides one heuristic for the

reconciliation of the alignment boundaries. First define important edges as edges of

high multiplicity and edges with length greater than some threshold. Then apply a 2
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step rethreading procedure: (i) remove the unimportant edges; (ii) thread the input

sequences through the remaining important edges. For an aligned region, this

procedure essentially takes the minimum among all pairwise alignments. The problem

of boundary reconciliation is not well formulated. One possibility is to minimize some

entropy measure around the boundaries.

When the bulge removal procedure is performed on the A-Bruijn graph, the

original mapping between the A-graph and the A-Bruijn graph may be lost, and the

resulting A-Bruijn graph may not be the exact letter-by-letter threading of the input

sequences. However, the A-Bruijn graph is still accurate at the boundaries of the

simple chains, which define boundaries of aligned regions.

2.4 Some applications of A-Bruijn graph

In [41], A-Bruijn graph approach is developed for the tasks of de novo repeat

identification and fragment assembly. For the problem of de novo repeat identification,

the A-Bruijn graph framework provides an explicit representation to the repeat

boundary problem, and reveals more details of the similarity/dissimilarities between

repeat families/subfamilies. The algorithms for graph construction and simplification

are implemented as the RepeatGluer package. For the problem of fragment

assembly, the A-Bruijn graph approach is implemented as the EULER+ assembler,

which is an improvement over the EULER assembler [35] in handling low-quality

regions of reads, where l-mer matches for de Bruijn graph are problematic.

As we mentioned in the introduction, the A-Bruijn graph approach has been

applied to the analysis of segmental duplications [17]. Segmental duplications
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represent an important feature of mammalian evolution. Utilizing the A-Bruijn graph

approach, segmental duplications in human genome can be decomposed to a complex

mosaic of independent duplication units and the ancestors of these units can be

derived.
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2.5 Figures

Figure 2.1: (A) Construction of the A-graph from the sequence...at...act...acat by applying three
pairwise alignments (B) a-t versus act, (C) act versus acat, and (D) a-t versus acat. (D) The A-
graph consists of the eight nodes plus the seven thick, black edges created from the alignments;
the colored edges are shown to indicate the relation of the nodes to the sequence, but they are not
part of the A-graph. (E) Each of these alignments serves as "gluing instructions" that transform
the sequence into the A-Bruijn graph on four vertices; the colored edges are in the A-Bruijn
graph, although the coloring itself is not. (Source: Pevzner, P.A., H. Tang, and G. Tesler, Genome
Res, 2004. 14(9) [41])

Figure 2.2: A repeat region in an A-Bruijn graph in which alignment inconsistencies have caused
a whirl and a network of bulges. (Source: Pevzner, P.A., H. Tang, and G. Tesler, Genome Res,
2004. 14(9) [41])
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Figure 2.3: Merging simple chain into a single edge. (A) A-graph; (B) A-Bruijn graph; (C)
collapsed simple chain, lebeled with l(m), where l is the number of nodes in the chain and the m is
the number of vertices in a node.
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3 Multiple alignment of sequences with shuffled and repeated

domains

3.1 Introduction

Multiple sequence alignment (MSA) is arguably among the most studied [42-54]

and difficult [55] problems in computational biology. An optimal MSA of t sequences,

each of length n, can be computed in Θ((2n)t) time by dynamic programming [43, 44].

However, such an approach is not practical for more than a few sequences.

Consequently, a large body of research exists for the design of efficient heuristics for

MSA; see [56] for a recent review. Currently, popular programs include CLUSTALW

[49], T-COFFEE [57], DIALIGN [42], MultiPipMaker [53], and MACAW [51].

However, these programs (and the majority of alignment algorithms) consider the

sequences to be aligned as having resulted from an evolutionary process that includes

only point mutations and (small) insertions/deletions. Accordingly, a multiple

sequence alignment of t sequences is often represented in row-column format: the

sequences are listed in t rows with “space characters” (dashes) inserted in positions of

indels, and columns indicating aligned positions.

This representation of the alignment as a linear sequence of alignment columns

implicitly assumes that all regions of all sequences are similar over their entire length.

However, for many biological sequences this assumption does not hold. For example,

multi-domain protein families evolve not only through mutation of individual amino

acids, but also through operations such as domain duplications and domain
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recombinations [58]. Experienced users of multiple alignment programs often

manually clip their sequences into similar blocks and compute a global alignment of

each block [59]. In a sense, this manual procedure attempts to overcome the

limitations of the alignment program by trimming the sequences to the parts that are

related by point mutations and small indels. A more attractive alternative is to change

the alignment program to include a larger set of operations that more accurately reflect

the changes that occur in biological sequences.

Recently, in a pioneering paper, Lee, Grasso, and Sharlow [32] asked the

question “Should multiple sequence alignments be linear?” In answer to this question,

they proposed Partial Order Alignment (POA), an algorithm that replaces the row-

column representation of a multiple alignment by a directed acyclic graph (DAG).

Figure 1 illustrates the intuition behind the POA approach.  An alignment is a mapping

from a set of sequences to a graph. In row-column alignment the graph is always a

single directed path, while the POA approach expands the allowable graph structures

to include directed acyclic graphs. The POA approach opens a new perspective on the

multiple alignment problem by removing the rigid structure of the linear row-column

representation that has been the basis for multiple alignment research over the three

decades. POA permits domain recombinations making it a useful tool for the

alignment of multi-domain proteins and ESTs.

However, even the directed acyclic graph representation employed in POA is

not flexible enough to capture the full complexity of the similarities between

biological sequences. For example, related protein sequences frequently share

common domains, but the order of the domains may be different in different proteins
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(shuffled domains), or a single domain may be repeated in a single protein (repeated

domains). To represent shuffled or repeated domains, the alignment representation

must permit directed cycles (Figure 3.2). Hence, neither the row-column

representation nor the DAG representation provides an accurate representation of

shuffled or repeated domains.  We take the approach of Lee, Grasso, and Sharlow [32]

a step further and ask “Should multiple alignments be represented by acyclic graphs?”

In the case of proteins with repeated or shuffled domains, the answer is no.

We emphasize that the real multiple alignment problem is more difficult that the

schematic representation in Figure 3.2. For example, when aligning multi-domain

protein sequences, the delineation of the sequences into domains is not known in

advance, and needs to be derived from raw protein sequences. Neuwald et al. [60]

recognized this problem and developed a program that can automatically identify local

blocks of significant multiple alignment.  However, their program restricts the blocks

to be in same order and converges onto a single strongest domain. Different domains

may have different lengths in different proteins and pairwise alignments between them

are often inconsistent. Resolving these inconsistencies is a major challenge in multiple

alignment. In proteins with preserved domain order, local similarities should not

“cross” (Figure 3.3). However, alignments of proteins with shuffled domains often

contain many such crossing similarities. Since a row-column or partial order

alignment does not permit crossing similarities, in building such an alignment one

must decide which of the crossing similarities to represent in the alignment. Once we

allow cycles in our alignment representation, crossing local similarities are

permissible, and distinguishing the crossing similarities that indicate domains from
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“spurious” similarities becomes much more difficult. Therefore, the problem of

dealing with crossing local similarities calls for development of a new MSA approach

that adequately reflects the varieties of domain architectures in different proteins.

In this chapter, we describe a new representation for a multiple alignment as a

weighted directed graph (possibly containing cycles) called the A-Bruijn graph. The

A-Bruijn graph was recently introduced and applied to fragment assembly and de novo

repeat identification [41]. Our work is the first application of the A-Bruijn graph to

multiple sequence alignment. The A-Bruijn graph is an extension of the classical de

Bruijn graph that has been successfully applied to many bioinformatics problems [34-

40, 61]. Zhang and Waterman [62] pioneered the use of the de Bruijn graph approach

for global multiple alignment of DNA sequences. However, the question of how to

generalize their approach for highly diverged DNA or protein sequences remained

open. In this chapter, we show how the notion of A-Bruijn graph addresses this

problem. We describe A-Bruijn Aligner (ABA), a program to produce an alignment

representation from the A-Bruijn graph. We apply ABA to multi-domain protein

sequences and genomic sequences with repeated and shuffled elements. The alignment

representation produced by ABA is similar to the threaded blocksets recently

introduced by Blanchette et al. [63] to represent the complex multiple alignments of

large genomic sequences. We demonstrate that ABA provides a solution to the open

problem posed by Blanchette et al. [63] of how to automatically generate threaded

blocksets. The ABA software is available at http://nbcr.sdsc.edu/euler/.
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3.2 Methods

The MSA problem involves two tasks: finding a graph that represents the

domain structure and finding a mapping of each sequence to this graph. Our approach

constructs this graph based on a predetermined set of local similarities (e.g. pairwise

alignments) between the input sequences. We describe our methods in the framework

of A-Bruijn graph introduced in previous chapter.

While Figure 3.2f is illustrative of the alignment representation that we wish to

obtain, it is not immediately clear how to obtain such a representation. The major

challenge is the determination of the regions of similarity that should be “glued

together” in the graph to represent the protein domains (boxes in Figure 3.2). One

cannot use a stringent criterion for similarity, such as exact l-tuple matches, because

relatively few, if any, exact matches are present in distantly related sequences.

Therefore, the traditional de Bruijn graph approach that is based on perfect l-tuple

matches does not work for this application. With a less stringent criteria (e.g. local

alignments), local similarities will frequently be inconsistent, and one must decide

which local similarities to respect in the multiple alignment, a nontrivial task.

Morgenstern, Dress, and Werner [42] give a mathematical condition for the

consistency of a set of local similarities among sequences. A number of heuristics

have been proposed for selecting sets of consistent local similarities and building

alignments from these sets [48, 64]. The problem is compounded by our desire to

permit directed cycles that result from crossing alignments that indicate domain

structures. In the ABA approach, we distinguish crossing alignments from local
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inconsistencies by using graph heuristics that remove the short cycles resulting from

local inconsistencies while retaining longer cycles that result from multi-domain

organization.

Following the A-Bruijn graph approach, ABA represents an alignment of t

sequences, S1, S2, . . . , S t, as a directed graph (possibly containing cycles) with t

source and t sink vertices. Each sequence St
 corresponds to a directed path in the graph

from the ith source to the ith sink. Aligned regions from different sequences or

repeated regions in a single sequence correspond to high multiplicity edges in the

ABA graph. This latter feature - aligning regions in the same sequence - is not found

in existing approaches to multiple alignment, and is similar to the use of the A-Bruijn

graph in repeat analysis [41]. Thus, our representation reveals repeated and shuffled

regions in the input sequences, features that are not apparent in a row-column or

partial order alignment. The input to ABA is a set of t sequences and their pairwise

alignments. We first construct the A-Bruijn graph of the alignments by “gluing”

together the aligned positions in the sequences S1, S2, . . . , St, and then apply the bulge

and whirl removal procedure as described in [41]. After removing bulges and whirls,

the resulting graph may still contain many short edges, due to ambiguities at the ends

of aligned regions. These edges add unnecessary complexity to the A-Bruijn graph. To

reveal aligned regions, we are interested in important edges: edges of high multiplicity

and edges with length greater than some threshold. Therefore, we apply a 2 step

rethreading procedure: (i) remove the unimportant edges; (ii) thread each sequence Si

through the remaining important edges.
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Finally, for visual display purposes, we apply a short edge removal heuristic that

simply collapses any connected component of short edges in the graph into a single

super-vertex, represented by boxes in the figures. We use the Graphviz package [65]

to draw the resulting ABA graph. As an illustration, the construction of the ABA

graph in Figure 8 is shown in Appendix Figure A.4.

For short sequences (e.g. protein sequences) the running time of ABA is

negligible compared to the time taken in computing all local pairwise alignments that

form the input to ABA. For longer sequences (e.g. megabase-sized genomic

sequence), the major constraint is memory. The human-mouse-rat sequences

considered below required two hours of processing time and three gigabytes of

memory on an Alpha ES40 workstation. Improvements in memory usage will be

necessary for scaling ABA to larger genomic regions. We are currently implementing

a version of ABA with reduced memory requirements.

3.3 Result I: ABA for protein sequences

3.3.1 Case Study: Proteins with SH2, SH3, and Pkinase Domains

The ABA graph can represent alignments of proteins with shuffled domains. As

an illustration, we first examine the pairwise alignment of two proteins: SHK1 protein

in Dictyostelium (SwissProt id: Q9BI25) and the ABL1 protein in human (SwissProt

id: ABL1 HUMAN). Both proteins function as kinases in signal transduction

pathways and contain a protein Kinase domain and SH2 domain, but in different order

(Figure 3.4a).
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The ABA graph reveals the shared domains as edges of multiplicity two (Figure

3.4b). Furthermore, the ABA graph reflects the shuffled domain structure as a cycle

consisting of two edges of multiplicity two – corresponding to the shared domains –

and two edges of multiplicity one – corresponding to the unique interdomain regions

in each sequence. This cyclic structure cannot be represented as a row-column

alignment or as a POA graph.

As a second example, we present an alignment of four human proteins: MATK,

ABL1, GRB2, and CRKL. Lee, Grasso, and Sharlow [32] use this example to

illustrate the ability of the POA graph to reveal domain structures and to demonstrate

the advantage of the partial order representation over a row-column representation. In

their representation (Figure 3.5a), the alignment of the SH2 domains present in all four

sequences is shown as an edge in the center of the graph. However, POA does not

align the five SH3 domains present in these sequences. In fact, the acyclic property of

the POA graph prohibits an alignment with the five SH3 domains aligned and the four

SH2 domains aligned. The alignment of the four SH2 domains by POA forces the five

SH3 domains into two alignments: one preceding the aligned SH2 domains, and one

succeeding the aligned SH2 domains. This rigidity is not present in the ABA graph

(Figure 3.5b,c). The SH3 domains on both sides of the SH2 domains align in a single

unit. As a result, the edges corresponding to the SH2 domain and SH3 domain form a

cycle in the ABA graph.

To obtain the ABA graph, we identify pairwise local alignments between the

four protein sequences using the BLAST program with BLOSUM80 matrix. Hits with

minimal length of 40 and at least 40% conserved (as defined by BLAST) are input to
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the ABA algorithm. The resulting ABA graph (Figure 3.5c) clearly shows the domain

structures as edges with high multiplicity. In the ABA graph, the edge (2 -> 1) of

multiplicity four corresponds to the SH2 domain shared by all four sequences. The

edge (1 ->  2) of multiplicity five corresponds to the five SH3 domains in four

sequences. Notably, the two SH3 domains in GRB2 are glued together on this edge.

As a result, the path through the graph corresponding to the GRB2 sequence contains a

cycle signifying duplication of the SH3 domain. Also note that there is a second SH3

domain at the C-terminal end of CRKL that is not glued by ABA to the other SH3

domains. The reason for the isolation of this SH3 domain is that it is sufficiently

diverged from the other SH3 domains so that there are no significant pairwise local

alignments (satisfying our criteria above) between this SH3 domain and the other

sequences detected by BLAST.

3.3.2 Case Study: Proteins with GAF, Response Reg, GGDEF and EAL

Domains

Since ABA has the ability to align proteins with shuffled domains, we wanted to

explore the prevalence of domain shuffling in proteins from SwissProt [66], based on

the SwissPfam domains annotation [18]. The domain shuffling network (Figure 3.6)

summarizes our findings. Vertices in the domain shuffling network are Pfam domains,

and a pair of vertices are joined by an edge if they appear in different orders in some

proteins in the SwissProt database, i.e. they are shuffled. The domain shuffling graph

is similar to the domain network [26] or the domain graph [27], in which domains
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(vertices) are linked if they appear in the same protein. Clearly, the domain shuffling

network is a subgraph of the domain graph.

To construct the domain shuffling network, we select a subset of Pfam domains

(7316 domains, as at Feb 18, 2004) according to the following criteria: (i) longer than

50 aa; (ii) more than 21% conserved; and (iii) contained in at least 500 proteins. A

total of 119 domains satisfy these criteria, and 47 of these appear in different orders in

the Pfam annotation of some SwissProt proteins. There are a total of 56 edges

representing shuffles between these 47 domains. The network has 10 connected

components. The largest connected component of the domain shuffling network

(Figure 3.6) prominently displays the protein kinase domain (Pkinase) as the highest

degree vertex. This reflects the fact that domain shuffling is a common feature in the

kinase family. However, the domain shuffling network reveals that shuffling of

domains is not restricted to kinases. We now describe an example of domain shuffling

and duplication outside the protein kinase family.

We analyze four proteins Q82U13, ETR1 ARATH, PHY2 SYNY3, and

Q7MD98 from SwissProt, each containing some but not all of the Pfam domains

GAF, Response reg, GGDEF and EAL (Figure 3.7). The BLAST program with the

BLOSUM80 matrix gives eight significant pairwise local alignments between these

sequences satisfying the constraints that alignment length is longer than 40 aa and is

more than 40% conserved. We input these alignments into the ABA program, and

obtain the graph shown in Figure 3.7.

Edges of high multiplicity (or a chain of high multiplicity edges) in the ABA

graph corresponds to domains shared by the sequences. Table 2.1 shows four edges
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(chain of edges), each representing a significant local multiple alignment. We

emphasize that the correspondence between these edges and known protein domains is

approximate, since the edges result directly from significant alignments from BLAST.

We can extract the subsequences corresponding to high multiplicity edges, and refine

the multiple alignment using an existing tool like CLUSTALW. We remark that ABA

eliminates a time-consuming, manual clipping procedure.

Domain shuffling creates directed cycles in the ABA graph. In this example

there are two domain shuffles: Response reg vs. GAF, and EAL vs. GAF/GGDEF

represented by two directed cycles ( 2 -> 0 -> 1 -> 2 and 2 -> 3 -> 4 -> 5 -> 7 ->

2) in Figure 3.7. The different domain orders in individual sequences are reflected by

the different paths traversing the ABA graph that visit edges in different orders.

When we align these four sequences using POA [32], we observe that the DAG

representation used by POA cannot adequately represent the shuffled domain structure

(Appendix Figure A.1a,b). Among the four significant local alignments listed in Table

1, POA correctly identifies the first one: an alignment between the GGDEF-EAL

domains in the three sequences. However, depending on the order that the sequences

were input into the iterative alignment procedure, POA detects either alignment No. 2

or No. 3 in Table 1, but not both. Alignment No. 4 (self-alignment) is always missing.

We emphasize that the ABA graph (Appendix Figure A.1c), in contrast to the POA

graph, is independent of the order in which the sequences are considered.
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3.3.3 Case Study: Proteins with Condensation, AMP-binding and PP-

binding Domains

We use ABA to align 16 protein sequences from SwissProt containing the

condensation domain. Appendix Table A.1 gives the SwissProt ID for each of the 16

proteins. The condensation domain is 249 aa long and is found in multi-domain

enzymes that synthesize peptide antibiotics. Many of these proteins also contain an

AMP-binding domain, a 330 aa long domain that covalently binds AMP to their

substrates in an ATP-dependent manner, and a PP-binding domain, a short domain (65

aa) that serves as a “swinging arm” for the attachment of activated fatty acid and

amino-acid groups.

We obtain the ABA graph shown in Figure 3.8 using the same BLAST

parameters as the previous case studies. Most of the long edges in the graph

correspond to the long domains: condensation and AMP-binding. These domains are

typically not well conserved over their full length, and ABA reveals the well

conserved parts as high multiplicity edges (e.g. A -> B and C -> D) and splits the less

conserved parts into multiple edges, e.g. B -> C, E -> F, and G -> A.

3.4 Result II: ABA for genomic sequences

ABA is also applicable to the alignment of genomic sequences, and the ABA

graph directly reveals duplications and inversions that are often found in alignments of

long mammalian genomic sequences. The input to ABA is a set of t DNA sequences

(with the t reverse complements), and the pairwise local alignments between the 2t

sequences. The resulting ABA graph is a collection of 2t paths – corresponding to the t
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input sequences and their t reverse complements – that are 15 glued together according

to the local alignments. A duplication in a single sequence corresponds to a directed

cycle in the path corresponding to this sequence, while an inversion corresponds to a

gluing of the direct strand of one sequence to the reverse strand of another sequence.

We apply ABA to a pair of plant chloroplast genomes, Arabidopsis thaliana and

Oenothera elata, and produce the graph in Figure 3.9a. We compare our results to the

alignment obtained by the Threaded Blockset Aligner (TBA) of Blanchette et al. [63]

(Figure 3.9b). TBA represents a multiple alignment as a set of alignment blocks (a

blockset) that is ordered according to one of the input sequences; i.e. one “threads”

one of the input sequences through the set of blocks. Blocksets in TBA are analogous

to long edges in the ABA graph. We observe a striking correspondence between long

edges in the ABA graph of the chloroplast genomes (Figure 3.9a) and the blocks

obtained by Blanchette et al. [63] (Figure 3.9b). A single block (block 3) is missing

from the ABA graph, which probably could be rescued by a more sensitive parameter

setting when computing the pairwise BLASTZ alignments that are input to ABA.

Thus, in this example ABA automatically generates threaded blocks as long edges of

high multiplicity in the ABA graph.

We note that the current implementation of TBA produces a limited type of

threaded blockset, namely TBA “does not accommodate inversions3
 and duplications,

and it is restricted to finding matches that occur in the same order and orientation in

the given sequences”. ABA has no such restrictions. Indeed, in the ABA graph of the

                                                  
3 TBA now can handle reverse-strand matches and inversions (W. Miller, pers. comm.).
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chloroplast genomes, block 7 appears twice along the path corresponding to the

Arabidopsis genome, once in the direct strand and once in the reverse strand.

To further our comparison of the blocks extracted from the long edges of the

ABA graph with the blocks produced by TBA, we examined the human, mouse, and

rat sequences from the NISC target region T1. The complete set of sequences from 12

species was first analyzed in Thomas et al. [67]. The ABA graph (Appendix Figure

A.3) contains 13536 edges (for both strands of the three genomic sequences), while

TBA generates 4445 blocks. When projected on the direct strand of human genome,

the ABA graph (Appendix Figure A.2) has 3726 multiple edges (i.e. edges of

multiplicity larger than one) and TBA has 1624 multiple blocks (i.e. blocks containing

more than one sequence). We display the ABA and TBA blocks in the UCSC genome

browser [68] as custom tracks4
 for a visual comparison. A region surrounding the

CAV2 gene along human genome is shown in Figure 3.10.

ABA and TBA use different algorithmic approaches to blockset generation

(discussed below), yet most of the blocks produced by TBA and ABA have significant

overlaps. However, we observe three differences. First, ABA generates blocks of

multiplicity higher than 3 (dark grey blocks in Figure 3.10), demonstrating the ability

of ABA to handle duplications and inversions. Second, TBA detects a few blocks that

are missed by ABA: these blocks represent short 3-way alignments. ABA misses these

short alignments because it uses only pairwise alignments while TBA implements a

progressive multiple alignment engine (MULTIZ). Third, ABA generally produces

longer blocks (or concatenations of blocks).

                                                  
4 http://www.cse.ucsd.edu/groups/Bioinformatics/browser-tba-aba-human.bed
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The above results demonstrate that: (i) ABA is able to automatically generate

threaded blocksets for genomic sequence alignment, and (ii) ABA handles

duplications and matches of sequences that are in different orders in different

genomes. A more detailed comparison of the two approaches and the possibility of

synergistic combinations of both approaches are important questions for future study.

3.5 Discussion and Future Directions

The important feature of ABA is the ability to produce multiple alignments of

sequences that include shuffled and repeated regions, a feature lacking in other

alignment methods. We now compare ABA with other approaches to multiple

sequence alignment, and describe further applications and extensions of ABA.

3.5.1 Alignment Representation

ABA represents a multiple alignment as a directed graph, possibly containing

cycles. This is in contrast to most existing alignment programs that use a linear, row-

column representation. Recently, Lee, Grasso, and Sharlow [32] introduced Partial

Order Alignment (POA) that uses a variation of network alignment (first presented in

[69] and analyzed in [70]) to align a sequence to a directed acyclic graph

representation of an alignment. The method is order dependent, as each sequence is

aligned to the graph in turn. In a later paper, Grasso and Lee [32] generalize the

method to include alignment of two partial order graphs and thus implement a

progressive alignment. However, their partial order graph is not able to represent

shuffled or repeated domains.
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Lee, Grasso, and Sharlow [32] comment that their partial order representation

“expresses a more complex set of relationships than can easily be discovered by

phylogenetic tree”, and accordingly introduce a new edit operator: domain

recombination. In a similar fashion, ABA implements two other operations: domain

rearrangement (change in order of two domains in a single sequence) and domain

duplication (repetition of a domain in a single sequence). Both domain rearrangement

and domain duplication are common in protein sequences. Domain rearrangement is

similar to “string edit distance with moves” [71] or block edit distance [72] studied in

string matching. However, to our knowledge, ABA is the first multiple alignment

program that implements the domain rearrangement operation.

Zhang and Waterman [62] were the first to propose a multiple alignment method

based on the de Bruijn graph approach for DNA sequences. Following the Eulerian

method for fragment assembly in DNA sequencing  [35, 36], their EulerAlign

algorithm starts with the de Bruijn graph of k-mers contained in the set of sequences to

be aligned. Their algorithm transforms the de Bruijn graph into a DAG, and then

aligns all sequences to a consensus represented by a high weight path through the

DAG. Thus, their method aligns all sequences to a single consensus, and removes all

cycles present in the de Bruijn graph.

The Zhang and Waterman [62] algorithm presents a powerful new technique for

alignment of similar DNA sequences that eliminates the time-consuming task of

performing pairwise alignments. Thus, their method is suitable for aligning a large

number of DNA sequences. However, the question of how to generalize their method

to align highly diverged DNA sequences (e.g. DNA sequences that are less than 70-
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80% similar) remains open. Furthermore, while the similarity between DNA

sequences can often be captured by shared k-mers, protein sequences typically share

very few k-mers and the similarity between protein sequences often requires non-

trivial scoring matrices. Furthermore, shared k-mers are very sensitive to indels. Our

A-Bruijn graph approach bypasses these limitations by abandoning the k-mer analysis.

Recently, Blanchette et al. [63] introduced the Threaded Blockset Aligner

(TBA) for multiple alignment of megabase-sized regions of genomic sequences. The

development of TBA and ABA share a common philosophy: overcoming the

limitations of the row-column representation of a multiple alignment. The blocksets

employed by TBA are analogous to the high multiplicity edges in the ABA graph, and

the threading procedure in TBA to create “ref-blocksets” is analogous to following the

path in the ABA graph from source i to sink i. However, the current implementation of

TBA – similar to Partial Order Alignment – handles only alignments of blocks that

occur in the same order and orientation in the sequences. They leave open the problem

of “automatically, accurately, and reliably” identifying blocksets in genomic

sequences that resulted from inversions, duplications, and other complex

rearrangements. We demonstrate that ABA solves this problem for protein and

genomic sequences, and it is possible to use ABA to automatically generate blocksets

for TBA.

The algorithmic approach of TBA is very different from ABA. TBA

progressively aligns input sequences along a phylogenetic tree from leaves to the root.

The blocks in the blockset at a parent node result from intersections or exclusive-ORs

of the blocks at its children. The blocks are only split into smaller blocks during the
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progressive steps of TBA. There is no mechanism to merge blocks – TBA follows the

maxim: “once a block boundary, always a block boundary”. In contrast, ABA permits

the merging and simplification of very small blocks.

Every blockset represented by TBA is a somewhat simplified linear view of a

multiple alignment. In reality, some alignments within a blockset may extend over

several blocks while other alignments may be significantly shorter. In a sense, the

individual blocks in a blockset have the same limitations as the row-column

alignment, in comparison to a DAG alignment that was discussed in the introduction.

ABA has a more flexible approach to defining the block boundaries that are expressed

as “tangles” in the ABA graph.

3.5.2 Applications and Extensions

ABA integrates well with existing multiple alignment tools, and can serve as a

preprocessor for these multiple alignment programs. For example, given a set of

sequences with complex domain structure, we can first run ABA to uncover this

structure, and then apply an existing multiple alignment program like CLUSTALW to

refine the alignments given by high multiplicity edges in the ABA graph. In this

scenario, ABA automates the time-consuming clipping of sequences frequently

recommended for multiple alignment tools and performs this clipping in a rigorous

way.

The ability of the ABA graph to succinctly represent proteins with shuffled and

repeated domains makes it useful for de novo domain finding and studies of domain

structure. Galperin and Koonin [73] highlighted how the multi-domain organization of
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proteins can trigger mistakes in functional annotation, and thus ABA graphs may be

useful in this context. Since some protein domains cannot be determined solely from

pairwise similarity, alternative similarity measures will be necessary for these

applications. ABA can utilize different measures of similarity in the construction of

the A-Bruijn graph. In this chapter, we focused on similarities given by pairwise

sequence alignments, but we can also use k-way similarities, or similarity measures

given by profiles (e.g. PSI-BLAST), structural comparisons, Hidden Markov Models,

etc. In particular, we can use reverse position specific BLAST (rpsBLAST) with

profiles found in domain libraries such as the Conserved Domain Database [21]. Use

of rpsBLAST will reveal alignments corresponding to known domains. Other high

multiplicity edges in the ABA graph might suggest novel domains.

Further refinements in the ABA algorithm will be required to extend its

application. One possible improvement to ABA is the implementation of an iterative

refinement procedure: after we construct the initial ABA graph using pairwise

similarities, we identify the important edges and refine the alignment at each important

edge using more accurate alignment procedures. Finally, we rethread individual

sequences through the important edges; if the topology of the graph changes, the

procedure is repeated.

The text in this chapter, in part or in full, is a reprint of material as it appears in

Genome Research. The dissertation author was the secondary author of the paper. I

thank my co-authors Ben Raphael, Haixu Tang, and Pavel Pevzner.
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3.6 Tables and figures

Table 3.1: Four high multiplicity edges in the ABA graph. aAverage pairwise percent of conserved
amino acids. bNumber of occurrences of domain or domain combinations in the proteins. cThe
alignment corresponding to this domain extends into block 2 in the graph (data not shown), and
thus the alignment is longer than the length of the edge 7 ->2 in Figure 3.7b.

Domain
occurrenceb

No. Edge Length Conservationa Domain(s)

Q7 P E Q8

1 2 -> 3 -> 4 -> 5 ->
6

420 53% GGDEF-EAL 1 1 1

2 0 -> 1 58 51% Response_reg 1 1
3 7 -> 2 49c 60% GAF 1 1
4 2 -> 3 157 43% GGDEF 2
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Figure 3.1: An alignment is a mapping from a set of input sequences to a directed graph. Positions
that map to the same vertex are aligned. Standard MSA programs map each sequence to a single
path. Each vertex on the path contains either a letter or a gap character from each sequence.
POA maps each sequence to a directed acyclic graph (DAG). The structure of the DAG permits
alignments where a subset of the sequences is aligned at a position.
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Figure 3.2: (a) Four “protein” sequences containing three “domains” A, B, C (shown as boxes)
and unique regions (shown as lines). (b) A row-column multiple alignment introduces gaps
(dotted lines) to align domains A and C, but cannot represent the alignment of all three domains.
(c) The Partial Order Alignment (POA) graph improves the alignment in (b) by reducing the
number of gaps, but also does not align all copies of the domains. (d) A representation of the
domain structure as a graph with cycles. (e) We obtain a representation of the multiple alignment
of the four sequences by “gluing” together similar regions in the sequences. However, the
sequences do not align over their entire length, and the shuffled domains create cycles in the
resulting graph. (f) A simplified representation of the ABA graph shows the domains as edges of
high multiplicity, and the unaligned regions as edges of multiplicity one.
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Figure 3.3: With a row-column or partial order representation, any local similarities that “cross”
are inconsistent. In our representation, these local similarities are permissible and lead to cycles
in the alignment.
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Figure 3.4: (a) Dot matrix representation of similarities between Q9BI25 and ABL1 HUMAN
protein sequences as revealed by BLAST [74]. The two diagonals of length 274 and 86 represent
two domains: Pkinase (gray) and SH2 (black). (b) The corresponding ABA graph.  Each multiple
edge has a label of the form l(m) where l is the length of the sequences represented by that edge,
and m is the multiplicity of the edge. Each single edge is labeled simply as l (length) for brevity.
Source/sink vertices are labeled A and Q for protein sequences ABL1 HUMAN and Q9BI25,
respectively. Other vertices are numbered. The gray path through the graph corresponds to
Q9BI25 and the black path through the graph corresponds to ABL1 HUMAN. The Pkinase
domain corresponds to the edge (1->2) of length 274, and the SH2 domain corresponds the edge
(3-> 4) of length 86.
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Figure 3.5: Comparison of POA and ABA representations of the domain structure of four human
SH2 domain containing proteins: MATK (M), ABL1 (A), GRB2 (G), and CRKL (C). (a) A
simplified representation of the POA graph, as obtained in Lee, Grasso, and Sharlow [32]. Each
input sequence forms a path through the graph. Edges with a high multiplicity are labeled with
protein domains. (b) A simplified representation of the ABA graph. Dotted edges have length zero
and connect nodes that are glued together in the ABA graph. (c) The ABA graph with collapsed
multiple edges. Boxed vertices represent small subgraphs that have been contracted (cf.
Methods).  In this graph, high multiplicity edges correspond to protein domains: SH2, SH3, and
Pkinase domains with estimated lengths of 79, 45, and 274 nucleotides, respectively.
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Figure 3.6: The largest connected component of the Domain Shuffling Network of Pfam domains.
Only long, conserved, and common domains are shown. Pfam domains that appear in different
orders in proteins from SwissProt are connected by an edge. We omit loops in the network that
indicate repeated domains.
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Figure 3.7: Four proteins with shuffled domains and their ABA graph. (a) The domain structures
are derived from the SwissPfam database (Bateman et al. 2004). We show only well-annotated
PfamA domains. Domains that appear in only one of the four sequences are not shown. (b) Cycles
in the ABA graph reveal the extensive domain shuffling in these sequences.



45

Figure 3.8: ABA graph of 16 proteins, each containing a condensation domain. Edges A -> B and
C -> D (highlighted) indicate well-conserved parts of the AMP-binding domain. A long directed
cycle (A -> B -> C -> D -> E -> F -> G -> A) indicates repetition these well-conserved
sequences.
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Figure 3.9: Alignment of genomes of chloroplasts Arabidopsis thaliana and Oenothera elata. (a)
ABA graph. We use BLASTZ [75] with parameter “B=1 C=2” to generate pairwise local
alignments. Gray path corresponds to the direct strand of Arabidopsis DNA. The number in bold
font close to an edge corresponds to the block number in (b) the blockset of Blanchette et al. [63]
(Reproduced from Figure 3.2A in [63]). (b) [A] A dot plot of the Arabidopsis genome (horizontal
axis) and Oenothera genome (vertical axis). [B] Nine “alignment blocks”; each block contains
sequence segments that labelled by the genome: Arabidopsis (a) or Oenothera (p), and the
coordinates of the segment.
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Figure 3.10: Comparison of blocks produced by TBA and ABA. A region on human genome
surrounding the CAV2 gene is displayed on the “zoo genome” (NISC target region T1) of the
UCSC genome browser [68]. We use BLASTZ with parameters “B=1 C=2” to include reverse
strand matches. Blocks of multiplicity greater than 1 are shown with shades of grey indicating the
multiplicity of the blocks. Most of the blocks have multiplicity 3, corresponding to 3-way
alignments. Darker grey blocks indicate higher multiplicity, include duplications and inversions
(matches on the reverse strands).
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4 Repeat domains and composite repeats in repeat libraries

4.1 Introduction

Repetitive elements form a major fraction of eukaryotic genomes.  Though once

dismissed as mere junk DNA, they are now recognized as “drivers of genome

evolution” [76] whose evolutionary role can be “symbiotic (rather than parasitic)”

[77]. Examples of potentially beneficial evolutionary events in which repetitive

elements have been implicated include genome rearrangements [76], gene-rich

segmental duplications [78], random drift to new biological function [79, 80] and

increased rate of evolution during times of stress [81, 82].  For these and other

reasons, the study of repeat elements and their evolution is now emerging as a key

area in evolutionary biology.

Individual repeat elements can be grouped into repeat families, each defined by

the consensus sequence of its diverged copies.  Repeat family libraries, such as

Repbase Update libraries [30, 83] and RepeatMasker libraries [84], contain consensus

sequences of known repeat families.  Repeat families often contain shared

subsequences, which we call repeat domains. Repeat domains can occur more than

once within the same repeat family; for example, the ubiquitous human Alu family is

dimeric [29].  There are a number of cases of repeat families whose repeat domains

are known to have different biological origins, i.e., from repeat families with different

modes of replication or from distinct retrovirus families.  These repeat families and the

domains they share are worthy of special attention, since they are assumed to result

from interesting evolutionary events. We define a repeat family to be a composite
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repeat if it contains at least two repeat domains of different biological origin.  Of

course, discerning the biological origin of a repeat domain is a challenging endeavor.

Nevertheless, human Repbase Update documents more than 10 repeat families as

composite repeats, including the RICKSHA and Harlequin families.  Many other

composite repeats contain fragments from different retroviruses. Since composite

repeats which contain only fragments of retroviral origin are probably products of

retroviral recombinations, these are documented in Repbase Update as retroviral

recombinations  (see [85] for a review).  Composite repeats are likely more than a

mere curiosity: one composite repeat, SVA, is the third most active retrotransposon

since the human/chimpanzee speciation [86]. An additional example is found in the eel

where a composite SINE repeat family borrowed a repeat domain from a different

LINE family; this borrowed domain was experimentally shown to greatly enhance the

retrotransposition rate of the SINE family [87].

Shared repeat domains yield important insights into repeat evolution, in the

same way that multidomain protein organization yields insights into protein evolution

[88, 89].  However, while the study of protein domains is a well-established research

area, the study of repeat domains is still in its infancy.  Indeed, RepeatGluer [41] is the

only existing algorithm for repeat domain analysis.  While RepeatGluer shows

promise as a tool for repeat domain analysis, it is computationally intractable for large

genomes. For large genomes, we propose that instead of identifying repeat domains de

novo from genomic sequence, we identify repeat domains by analyzing repeat family

libraries that are obtained via other means.
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The main challenge in the analysis of repeat domains is that repeat family

consensus sequences typically form a complex mosaic of shared subsequences. This

mosaic structure is reminiscent of the mosaic structure of segmental duplications in

mammalian genomes (see [63, 90]). Standard sequence comparison tools are unable to

capture mosaic structure. These tools reveal local similarities between different repeat

families, but do not reveal the structure of shared repeat domains between different

families.  For example, although a dot plot of the sequences of the 11 C. elegans and

C. briggsae repeat families sharing repeat domains (Figure 4.1) contains essentially all

the information about these repeat families, it is not well-organized and leaves one

puzzled about what the repeat domains are.  Thus, identifying repeat domains is an

important and unsolved problem.

In this chapter, we propose a new framework for analyzing a library of repeat

families to identify the mosaic structure of its shared repeat domains.  Our main idea is

to represent a repeat library by a repeat domain graph which reveals all repeat

domains as edges (lines linking between nodes) of the graph, and indicates the order(s)

in which those domains appear in the corresponding repeat famili(es).  For example,

Figure 4.2 illustrates the domain structure of a selected subset of repeat families

sharing repeat domains with the RICKSHA family, and the corresponding repeat

domain graph.   We describe a method to construct the repeat domain graph from a set

of repeat sequences, and we demonstrate methods for analyzing the topology of the

repeat domain graph that lead to hypotheses about repeat biology. We apply our

method to single-species analyses of human and C. elegans repeat family libraries.

Our method recovers documented composite repeats in Repbase Update [30, 83] and
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suggests a number of additional putative shared repeat domains in human and C.

elegans.  In addition, we use our method to perform a cross-species comparative

analysis of C. elegans and C. briggsae repeat libraries, and we find a putative ancient

repeat domain shared between C. elegans and C. briggsae.  We also demonstrate the

application of our method in assisting annotation of repeat libraries that are generated

de novo from genomic sequence. As numerous new genomes are sequenced and repeat

family libraries are automatically constructed, the applications of our method will

multiply.

4.2 Results and Discussion

Finding all repeat domains is a difficult problem, since repeat family consensus

sequences can share subsequences with themselves (e.g. Alu repeats) or with other

repeat families (e.g. the composite repeat families described above).  Thus, we argue

that the ideal method for comparing repeat families and identifying repeat domains

should allow for both self-similarities and shared similarities that appear in different

orders in different sequences.  Such similarities are difficult to capture in traditional

multiple alignments that either attempt to align sequences other their entire length (e.g

global alignment) or show small conserved regions of similarity (e.g. local alignment)

with no information about the location of these regions in the original sequence.

Recently, several software programs including Partial Order Alignment (POA)

program [32], Threaded Blockset Aligner (TBA) [63], and the A-Bruijn Aligner

(ABA) [91] were developed to address these shortcomings.   ABA seems particularly

well-suited both to the alignment of repeat family consensus sequences and to the
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decomposition of a library of such consensus sequences into repeat domains since

ABA was designed for the alignment of sequences with both repeated and shuffled

segments. However, we found that ABA could not automatically generate a repeat

domain graph from a repeat library because repeat libraries frequently contain a large

number of diverged sequences including palindromic sequences.  Below we describe

how to overcome these difficulties.

In addition, since a repeat library typically contains several hundred to several

thousand sequences, and the annotation of repeats is typically incomplete, the analysis

of a repeat domain graph is a nontrivial task. Below we show several examples

illustrating how particular queries in the repeat domain graph can provide powerful

systematic analysis of repeat families in a repeat library, how topology of the repeat

domain graph can help elucidating evolutionary history, and how to deal with

contaminants which are common in de novo generated repeat libraries.

4.2.1 Applying the A-Bruijn graph to repeat library analysis:

methodology and new algorithms

We represent an alignment of sequences in a repeat library as a directed graph

called the repeat domain graph.  The repeat domain graph of n sequences contains 2n

source vertices and 2n sink vertices. A directed path in the graph from a source to sink

vertex represents a sequence or the reverse complement of a sequence in the repeat

library.  The repeat domain graph typically contains several connected components.

Each component corresponds to groups of repeat families with shared repeat domains,

and can be analyzed individually.  Edges in the repeat domain graph with multiplicity
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greater than one represent repeat domains which are shared between different repeat

families, while single-multiplicity edges correspond to domains unique to a single

family.

We construct repeat domain graphs using the framework of A-Bruijn graphs,

which were first introduced and applied to the problems of DNA fragment assembly

and de novo repeat classification in [41], and later extended to  the alignment of

protein sequences and genomic DNA sequences [91].  The A-Bruijn graph is a general

framework for handling sequences with repeated or shuffled domains and is

constructed from a set of sequences and a set of pairwise alignments between these

sequences.  In practice, the A-Bruijn graph of a set of pairwise alignments often

contains numerous short cycles, due to inconsistencies among the input alignments.

These short cycles obfuscate the identification of the shared domains among these

sequences and thus a series of graph heuristics is used for removing short cycles due to

inconsistent alignments while retaining longer cycles due to shared domains.  We

discovered that these approaches were not sufficient to handle two complications that

arise in repeat library analysis: namely, the need to align a large number of diverged

sequences and the existence of palindromic sequences.  The shortcomings of the

method were not anticipated or addressed in earlier work because these issues did not

arise in the problems addressed there:  namely fragment assembly [41], where the

input is a large number of very similar (greater than 95%) DNA sequences (reads), and

the problems of multiple sequence alignment of a relatively small number of protein

sequences or genomic DNA sequences [91].   We developed new algorithms for the

construction of the repeat domain graph that are modifications of the methods used to
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construct and simplify the A-Bruijn graph.  These algorithms are described in the

Materials and Methods section.

4.2.2 Analysis of repeat domains in human Repbase

We first build a repeat domain graph of the Repbase library [30, 83] of human

repeat sequences – the most well annotated repeat library available – in order to test

the ability of our method to reveal shared repeat domains and the structure of

composite repeats.  The resulting repeat domain graph of the 620 sequences in

Repbase update contains 9774 edges and has a complicated topology with 410

connected components, 168 of them containing shared repeat domains. (See [92] for

the entire repeat domain graph, and a list of repeat families contained in each

connected component).  The largest connected component contains sequences in the

library corresponding to the L1 retrotransposon, including the consensus sequences of

different families, subfamilies, and partial copies of L1 present in Repbase.  Many

repeat domains identified in the graph are domains shared by such derivative

sequences of a single repeat type.  However, other repeat domains are shared

sequences between repeat elements of different biological origin.  We found 624 such

domains by choosing edges in the graph that have minimal length 20, multiplicity

greater than one and contain sequences whose Repbase annotations suggest different

biological origin of the sequences. As there is no ontology of repeat families, we

identify “different biological origin” with a very loose definition: by the first two

characters of the repeat family name.  We also identify for each repeat family, the

length of shared domains and the fraction of its total length containing repeat domains
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of different biological origin. Table 4.1 lists the repeat families with the greatest length

of such shared domains.  (Appendix B.2 contains the full list).  Near the top of the list

are Harlequin and PABL_AI, two repeat families documented in Repbase Update as

products of retroviral recombinations. In addition, there are a large number of repeat

families with prefix MER- and HER-, consistent with the observation that retroviral

recombination is a dominant feature among repeat families in large mammalian

genomes [85]. We remark that the 624 repeat domains shared across repeat families is

much higher than what is documented in Repbase, suggesting that composite repeats

are a rather common phenomenon.  However, this conclusion is tempered by the

simple criterion that we used to determine biological origin.

In addition to repeat domains, the repeat domain graph also reveals known

composite repeats in Repbase. Figure 4.3 shows one connected component in the

repeat domain graph containing the families RICKSHA, RICKSHA_0, a number of

subfamilies of MLT2 and the sequences containing the internal part of the endogenous

retroviral element HERVL.  Repbase annotates RICKSHA as a composite repeat that

contains 79 bp terminal inverted repeats and a 3'-portion of HERVL endogenous

retrovirus including its LTR (MLT2B) (see Figure 4.3).  It is believed that RICKSHA

replicated before it obtained the retroviral component, and the Repbase entry

RICKSHA_0 contains the terminal inverted repeats and different internal sequence

from RICKSHA.  The repeat domain graph contains two basic paths: the path in the

middle containing the edge of length 855, and the path on the left (or right, since they

are reverse complement of each other) containing a sequence of red edges. The path in

the middle corresponds to the RICKSHA_0 element. The path on the left corresponds
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to the retroviral elements represented by MLT2 and ERVL. Interestingly, the path of

RICKSHA (sequence number 304) starts and ends in the middle path (the edge of

length 72 corresponds to the inverted terminal repeats), but jumps to the path on the

left traversing the edges of lengths 74 and 386. This graph vividly illustrates the

sequence structure and putative evolutionary history of the RICKSHA element.

We remark that the subtle structure of shared repeat domains in this example are

not clearly revealed by traditional row-column multiple alignment programs such as

CLUSTALW [49], which align all sequences over their entire lengths. The repeat

domain graph removes the restriction of aligning sequences over their entire length,

and strikingly reveals the mosaic structure of these repeat families. We further remark

that the correspondence between edges and repeat domains is only approximate.

Determining the exact boundaries of repeat domains is a challenging problem,

similarly to the difficulty in defining the boundaries of protein domains.  The

ambiguity in boundary definition is manifested by complicated structures of short

edges in the repeat domain graph.  We ameliorate this ambiguity by contracting very

short edges (length less than 20).

4.2.3 Discovering new composite repeats: repeats in C. elegans

We build the repeat domain graph of C. elegans repeat family library generated

by Stein et al. [93] with the RECON program [94].  This library contains 377

sequences of total length 251,168 bp. The resulting repeat domain graph contains 2725

edges which organized into 464 connected components. Of these, 300 components

represent 150 repeat families (and their reverse complements) that have neither self-
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similarities nor similarities with other repeat families.  Another 109 connected

components represent self-similarities among 86 repeat families that share no

similarities with any other families. The remaining 55 connected components reveal

the similarities and complex evolutionary relationship between the remaining 142

repeat families.

We examine one of these 55 connected components that is formed by 7 repeat

families (Figure 4.4).  We make the following observations.

1. The complex evolutionary history of these repeat families is reflected in the

mosaic structure of repeat domains. For example, repeat family E6 (path from

source E6 to sink E6 in Figure 4.4) is decomposed into 5 repeat domains.

Among them, the repeat domain with length 41 is shared with 3 other repeat

families: E1, E2, and E4.

2. The edges with multiplicity greater than one form two paths – plus the two

reflections of the paths resulting from the symmetry of repeat domain graph

(red in Figure 4.4). We refer to these paths as the long path (containing 5 red

edges) and the short path (containing 3 red edges). These paths delineate

important parts of the repeats and may correspond to domains important for the

propagation of the repeat elements [31].

3. These repeat families contain different combinations of edges on two red paths

in Figure 4.4. These structures illustrate how one repeat family may borrow

repeat domains from another repeat family. Repeat families E6, E2, and E4

contain only the short path; repeat families E5 and E7 contains only the long

path; repeat family E3 contains two (partial) copies of the long path, with
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opposite strand configurations.  Interestingly, repeat family E1 contains both

paths: part of the long path followed by the short path.

These observations provide a more detailed description of the relationships

among repeat families than the simple annotations that are part of the RECON library

(Figure 4.4(b)). Specifically, the graph reveals a complicated relationship between

these repeat families and suggests putative annotations of still unannotated repeat

families in the RECON library (e.g., those in Figure 4.4(b)).

4.2.4 Comparative repeat domain graph analysis

Comparing repeats across different species is a non-trivial task. Zhang and

Wessler [95] compared the transposable elements (TEs) in Arabidopsis thaliana and

Brassica oleracea via TBLASTN searches of the most conserved coding regions for

each type of TE. They found nearly all TE lineages are shared between the two plants.

Without complete repeat libraries, they are unable to compare repeats on the repeat

family level. Stein et al. [93] performed a similar study, comparing repeat family

libraries from C. elegans and C. briggsae, and report that “… despite their general

similarities, we were not able to systematically identify ortholog pairs among the C.

briggsae and C. elegans repeats … we found no simple one-to-one mapping between

them”.

We compare two repeat family libraries by building a comparative repeat

domain graph in the following way.  Given two libraries X and Y, we first pool the

sequences from both libraries into a single union library, then construct the repeat
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domain graph of the union library, and color the edges in the repeat domain graph

according to whether they are (i) from X only, (ii) from Y only, or (iii) from both X

and Y.  We call the resulting edge-colored graph the comparative repeat domain

graph. Note that alternatively one could construct separate repeat domain graphs for X

and Y then compare the two graphs, but this approach would introduce additional

complexity in comparing graphs and should give essentially same results.  We further

analyze repeat domains shared by both libraries (ancient domains), and repeat domains

present in a single sequence (young domains), and study the evolutionary relationship

between them.

We form the comparative repeat domain graph using the C. elegans and C .

briggsae repeat family libraries generated by Stein et al. [93] using the RECON

algorithm [94]. Indeed, because C. elegans and C. briggsae diverged roughly 100

million years ago, it is not surprising that only certain repeat domains present in a

common ancestor are still present in both species.  We are particularly interested in the

discovery of these shared ancient repeat domains, whose conservation are suggestive

of a role in repeat propagation, or alternatively may be due to horizontal transfer.

The C. elegans library contains 377 sequences (with an average length of 666

bp) and the C. briggsae library contains 466 sequences (with an average length of 520

bp). We generate pairwise alignments between these 843 sequences and construct the

comparative repeat domain graph. We annotate each edge in the graph as "C. briggsae

(only)", "C. elegans (only)", or "both".  Our comparison reveals that only 1810 bp are

shared between the two repeat family libraries.  These 1810 bp form 9 edges in the

comparative repeat domain graph, comprising 4 connected components (Table 4.2).
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Each component is a simple path. These edges match to Mariner, CEREP5 element,

and PALTTAA2/PiggyBac repeat families.

We analyze each of these four connected components.  The two shared edges

with lengths 61 and 309 are in the same connected component in the comparative

repeat domain graph. A translated sequence search reveals that they match to essential

parts in the transposase-coding sequence of the Mariner element. The edge of length

309 matches to a set of hypothetical protein in C. elegans, at residues 117-219. Those

hypothetical proteins are all closely similar to transposases of other organisms

including Adineta vaga, human, and Stylochus zebra. The edge of length 61 (translated

into a 20 amino acids sequence) does not have a significant BLAST result by it own.

A BLAST search of the entire repeat family consensus sequence of Cb000007, which

contains both edges, gives a result similar to what was obtained by searching the edge

of length 309 alone.

Figure 4.5 shows part of the component of the comparative repeat domain graph

containing the edge of length 34 in Table 4.2.   The blue edges correspond to the

connected component in the C. elegans repeat domain graph shown in Figure 4.4. The

red edges demonstrate four C. briggsae repeat families with shared domains. The

green edge of length 34 is shared across the two species. We have a conservative

estimate for the statistical significance of the 34 bp edge. Between the 5 sequences

from C. elegans and the 5 sequences from C. briggsae (Figure6.6(b)), the closest pair

across two species (e.g., B1 and E5) has only 1 bp mismatch, for which BLAST

reports an E-value (P-value) of 8E-16. Thus, with the correction of the database size
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(2.5E5 for C. elegans and 2.4E5 for C. briggsae), the matching between the two

sequences has an E-value of 5E-6.

The comparative repeat domain graph vividly depicts the complex evolutionary

history of these repeat families: subtrees split by the green edge (indicated in Figure

4.5 by dashed boxes) separate repeat families from the two species, and suggest that

the repeat domain shared by both species is an ancient repeat domain from a common

ancestor, rather than the result of horizontal transfer.  Each of these two subtrees

induces a phylogeny of the included repeat families.  We checked whether these

phylogenies were consistent with a phylogeny derived from nucleotide substitutions in

the segment of length 34 shared by these sequences (green edge in Figure 4.5).  A

phylogenetic tree (Figure 4.6) of the ten sequences of length 34 constructed by

CLUSTALW gives a phylogenetic tree that is remarkably consistent with the two

subtrees in the comparative repeat domain graph. In particular, all three trees group C.

elegans and C. briggsae families together.  In addition, sequences –B2 and –B3 share

few domains in the trees from the comparative repeat graph, consistent with their long

separation on the CLUSTALW tree, while sequences E5 and E7 are close on all three

trees.  The similarity of the three trees validates the use of the comparative repeat

domain graph to infer evolutionary history.

The structure of the comparative repeat domain graph raises a number of

interesting and still unresolved evolutionary questions. For example, can we

distinguish shared repeat domains between two species that arise from common

ancestry from those that arise from horizontal transfer? How have such ancient repeat

domains evolved in both genomes, and which repeat domains acquired independently
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in these genomes have contributed to the evolutionary success of some repeats over

the past 100 million years?  Finally, we remark that the repeat domain graph shown in

Figure 4.5 is generated from the alignments shown in Figure 4.1. While Figure 4.1

contains essentially the same information about local similarities between these repeat

families, the graph in Figure 4.5 organizes this information into a much more

interpretable structure.

4.2.5 Analysis of de novo repeat family libraries

We now demonstrate how the repeat domain graph overcomes certain

imperfections found in automatically constructed repeat family libraries and directly

reveals composite repeats. Repeat family libraries have historically been constructed

via manual curation.  Recently, algorithms such as RepeatFinder [96], RECON [94],

RepeatGluer [41], PILER [97] and RepeatScout [98] are increasingly automating the

process of identifying repeat families from genomic sequence.  For example, RECON

has aided the construction of a library of chicken repeat families [99], and

RepeatScout has been used to construct human, mouse and rat repeat family libraries

which are nearly as thorough as manually curated libraries. However, the resulting de

novo libraries (particularly for mammalian genomes) are frequently contaminated by

sequences resulting from segmental duplications [100].  We analyze a human repeat

family library which was automatically constructed by RepeatScout, and show how

the repeat domain graph helps remove these contaminants and reveals composite

repeat families.
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We generate a repeat domain graph of a human library generated by

RepeatScout containing 1139 sequences of total length 0.68M bp.  Surprisingly, the

resulting graph contained a large connected component which contained more than

half of the input sequences.  Upon close inspection, we found that this large

component was connected by a small number of long edges of single multiplicity.  An

analysis using BLAT [101] revealed that the instances of each of these long edges in

the genome are localized in a small number of narrow genomic regions.  This suggests

that these long edges do not represent repeat domains, but rather are tandem

duplications, a known contaminant of de novo repeat identification programs like

RECON or RepeatScout.

This discovery revealed an extra benefit of the repeat domain graph to repeat

domain analysis:  it directly reveals contaminants in automatically generated repeat

family libraries.  Moreover, the graph suggests a procedure for removing these

contaminants.  Briefly, we select the longest edge along the path of each repeat family

whose total length exceeds 100bp. We BLAT these edge sequences against the

genome sequence and select BLAT hits whose length exceeds 80% of the edge length.

We combine BLAT hits into clusters if they are less than 5Mb apart on the genome.

We compute the ratio of the number of hits to the number of clusters, and classify

sequences whose ratio exceeds 2 as tandem duplications.  Using this approach, 107

repeat families in the RepeatScout library were thus classified as tandem duplications

and excluded from further analysis. We remark that this method can detect tandem

segmental duplications, but not the dispersed segmental duplications. Distinguishing
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repeats from dispersed segmental duplications is a challenging and unsolved problem.

It is possible that the repeat domain graph might be useful for this problem; however,

this is beyond the scope of this chapter.

After removing these contaminants, we built a repeat domain graph from the

remaining 992 sequences. The graph contains 885 connected components; the largest

component contains 184 sequences. Since we do not have immediate biological

annotations for each sequence in the RepeatScout library, we wanted to determine if

direct analysis of the repeat domain graph would reveal domain recombinations or

composite repeats.  A “signature” in the graph of such an event is a simple branching,

or Y-shape fork where two sequences enter a node, and depart on a shared edge.

Unfortunately, repeat libraries (including the RepeatScout library) contain a large

number of sequences corresponding to partial copies of the same repeat element,

which also create Y-shape forks. To reduce the effect of these partial copies, we apply

the additional requirement that all three edges in the Y-shape fork should be at least

100 bp long and have multiplicity at least 2. We find 6 such Y-forks in the repeat

domain graph.  Furthermore, a single connected component contains 3 such forks.

Closer inspection reveals that 2 out of the 3 Y-forks are adjacent (Figure 4.7) and

contain a repeat domain of length 543.  We compared the sequences along this edge to

human Repbase and found that they correspond to repeat families HERVE, HERVI,

and Harlequin. Furthermore, Repbase Update annotates Harlequin as a recombination

between several repeat families including HERVE and HERVI.  Thus, we were able to

directly identify a composite repeat in an unannotated library directly from a signature
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in the repeat domain graph. The third Y-fork is related to some diverged subfamilies

of the MER41 retrovirus. Since the MER41 subfamily has very diverged sequences,

accurate subfamily annotation may not be possible.   Thus it is difficult to judge

whether this Y-fork is due to retroviral recombination or due to artifacts of alignment

programs.

We searched the repeat domain graph from RepeatScout for the RICKSHA

composite repeat family described in Section 4.2.2, but were unable to find it.  We

determined the reason is that the RepeatScout library itself does not contain

RICKSHA, probably due to the high sequence divergence of this repeat family.  In

addition, we conducted a comparative repeat domain graph analysis (Appendix section

B.4) for the de novo mouse and rat RepeatScout repeat libraries. We found the repeat

domain graph helps in purging artifacts in de novo repeat libraries, in annotating the

library, and in suggesting possible scenarios for repeat family evolution.

4.3 Conclusion and future directions

The computational analysis of repeats is becoming increasingly important as

additional full genome sequences become available, particularly those of repeat rich

mammalian and plant genomes.  The problem of identifying shared repeat domains is

especially critical to the understanding of repeat evolution. This chapter describes the

first algorithmic advance on automatic identification of repeat domains in large

genomes. We have applied our repeat domain graph approach to the single-species

analysis of human and C. elegans repeat family libraries and the cross-species

analyses between C. elegans and C. briggsae libraries. In doing so, we illustrated the
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discovery of their mosaic repeat domain structure and the revelation of interesting

clues about repeat evolution. As numerous new genomes with high repeat contents,

such as mammals and plants, are sequenced and repeat family libraries will be

typically automatically constructed, we expect that the applications of our method will

multiply.

We have only begun to explore the uses of the repeat domain graph in

understanding the relationships between different repeat sequences.  We demonstrated

that the repeat domain graph reveals known repeat domains of different biological

origin.  Additional candidates of such domains can be directly identified from

signatures in the graph.  Repeat families with shared domains which represent putative

composite repeat families can be further analyzed to check if their repeat domains do

in fact have different biological origins. The PILER algorithm [97], which achieves

high specificity in distinguishing between different classes of repeat families, may aid

this process.

The increasing use of de novo repeat identification tools demands careful

analysis of the resulting libraries. The repeat domain graph opens up possibilities for

the analysis of de novo repeat libraries. Essentially, it provides a method for merging

and comparing two (or more) repeat libraries for a genomic sequence. One can

construct a comparative repeat domain graph as described in Section 4.2.4. This is

useful when one wants to combine two de novo repeat libraries generated by different

automatic repeat identification tools; or one wants to absorb new entries from a de

novo repeat library into an existing repeat library. The comparative repeat domain
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graph provides a method for the comparison of de novo repeat libraries for the purpose

of evaluating de novo repeat identification programs.

Also, the repeat domain graph provides an alternative representation of repeat

libraries, which could be useful for the repeat masking task in the presence of

composite repeats. The repeat family annotation of a genomic sequence in the

presence of composite repeats is a non-trivial task. In fact, the RepeatMasker program

[84] has implemented hard-coded rules in order to achieve an accurate annotation for

repeat families in human genome (Arian Smit, pers. comm.), due to the presence of

extensive retroviral recombinations. The repeat domain graph explicitly represents the

mosaic structures of repeat families. Therefore, it is possible to implement a network

matching algorithm [102] for a more accurate annotation of repeat families.

4.4 Materials and methods

The concept of A-Bruijn graph was introduced in Chapter 2. In dealing with the

sequences in a repeat library, we designed a different whirl handling strategy.  The

existing method for A-Bruijn graph construction uses an “apply-all-glues-then-

simplify (AAGTS)” strategy. Basically, all glues, i.e. pairs of positions that are aligned

in one of the input pairwise alignments, are applied to construct an initial A-Bruijn

graph (often full of short cycles), and then a series of graph operations are applied that

remove bulges and whirls. In [41], for example, the bulge and whirl removal

procedures include an approximate solution to the Maximum Subgraph with Large

Girth (MSLG) problem.
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When investigating the A-Bruijn approach to the construction of a repeat

domain graph, we found the direct application of existing A-Bruijn graph construction

algorithms is problematic. The major technical challenge is the internal sequence

repeats in repeat consensus sequences. Consensus sequences of repeat families

typically contain tandem duplicated subsequences, and directed or inverted terminal

repeats. Tandem repeats and directed repeats with repeating unit longer than girth are

represented as cycles in the repeat domain graph, and those with repeating unit shorter

than girth are handled by the whirl removal procedure. However, the pairwise

alignments between repeat families containing similar repeating units can confound

the existing procedure for whirl removal in the A-Bruijn graph. For example, when a

tandem repeating unit is duplicated for a modest number n times in a repeat, a large

number (up to n(n-1)/2) of pairwise local alignments can be generated just by self-

similarities in this repeat. Even worse, different copies of a tandem duplicated

subsequence can have slight variations, which may result in an even larger number of

inconsistencies among the set of pairwise local alignments, leading to huge whirl-

bulge networks in the A-Bruijn graph. We found the existing whirl removal heuristic

is insufficient in handling the complexity in the alignments of repeat consensus

sequences in a repeat library. As a result, some similar regions among repeat families

are obliterated during bulge/whirl removal and left unglued in the simplified graph.

For example, three repeat families, Ce000444, Ce000069 and Ce000167, in the C.

elegans RECON library [93] contain 2, 3, and 5 copies of some 48 bp long repeat

domains. The alignments between these repeat families have extensive pairwise

inconsistencies.  Applying the existing bulge and whirl removal procedure to simplify
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the A-Bruijn graph (Figure 4.8(a)) for the C. elegans repeat library, the resulting graph

loses 312 pairs of gluing positions between Ce000444 and Ce000069 and the two

repeat families are separated in two different connected components (Figure 4.8(b)).

In order to handle such complex inconsistent glues in repeat libraries, we design

and implement a new strategy for filtration of glues. Instead of applying all glues as in

the AAGTS approach, we apply the glues one by one and watch for the creation of

potential whirls. Specifically, if a pair of positions (a,b) is about to create a whirl, i.e.,

if position b is in a node n(b), and n(b) contains a position that is on the same sequence

as position a and is less than girth away from position a, then the gluing pair (a,b) is

discarded. This conservative gluing procedure prevents the formation of whirls during

the A-Bruijn graph construction, and thus a later whirl removal procedure is no longer

necessary.

We compare our new whirl-filtration procedure to the existing AAGTS

procedure used by ABA by computing the fraction of gluing pairs in the input

pairwise alignments that are present in the resulting repeat domain and ABA graphs.

To measure the differences between the two methods, we compute the ratio of: (i) the

number of gluing pairs in the pairwise alignments that are input to each method, and

(ii) the number of gluing pairs present in the resulting ABA or repeat domain graph. If

there are no inconsistencies in the input alignments, this ratio is 1. If there are

inconsistencies in the input alignments the resulting graphs would have fewer

alignment positions, since both methods resolve inconsistencies by removing some

aligned positions. Thus, the ratio would be less than 1; however the best possible ratio

is not known.   We compute the number of gluing pairs in the input and in the
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resulting graphs in the following way. Gluing pairs in the input may be redundant. For

example, for three positions i, j, and k, if pairs (i,j), (j,k) and (i,k) are aligned in the

input, then since pair (i,k) can be inferred from pairs (i,j) and (j,k) by transitivity, only

pairs (i,j) and (j,k) are sufficient to define same set of gluing operations for

constructing the graph. Thus, when we count the number of gluing pairs in the input,

we only count non-redundant sets of position pairs; e.g. if 3 positions are aligned

transitively, we only count 2 pairs. In general, if n positions are aligned transitively,

we only count n-1 pairs. To count the number of gluing pairs in the resulting graph,

we count the number of positions along the edges with a multiplicity higher than 1.

For an edge with multiplicity m and length l, we count the number of gluing pairs as

l(m-1). This count is corrected with consideration of over-counting of the positions at

common vertices shared by multiple edges.

We find that the whirl-filtration method shows a definite improvement in

retaining gluing pairs from the input alignments for the de novo derived repeat family

libraries C. elegans RECON and human RepeatScout (Table 4.3). Most prominently,

for the C. elegans RECON library, the repeat domain graph produced by the whirl-

filtration procedure retains 97.2% of the input gluing pairs while the graph produced

by the AAGTS strategy retains only 89.4%; thus, the new procedure recovers 11553

gluing pairs. In particular, the alignment between the repeat families Ce000444 and

Ce000069 is now correctly represented in the repeat domain graph (Figure 4.8(c),(d)).

Conceptually the whirl-filtration strategy appears to throw away gluing pairs at

beginning and therefore should have produced a graph with fewer glued positions than

the previous AAGTS strategy. The explanation for this seeming paradox is the failure
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of aggressive whirl removal procedure in the AAGTS approach. In the case of the

well-annotated human Repbase, there fewer inconsistent pairwise alignments in the

input, and thus the whirl-filtration and the AAGTS strategies give essentially the same

results. Thus, we conclude that the whirl-filtration is more effective when the input

pairwise alignments contain many inconsistencies, which is often the case for libraries

constructed de novo from genome sequence.

The second complication in the construction of the repeat domain graph in

repeat is the presence of palindromic sequences. The procedure for constructing an A-

Bruijn graph of DNA sequences is designed to preserve the intrinsic symmetric

structure of the entire graph. Thus when gluing a pair of positions, the reverse

complement pair of positions are also immediately glued. With palindromic

sequences, the order of gluing needs to be coordinated carefully. The existing A-

Bruijn construction algorithm did not consider palindromic sequences, and

consequently we found that the direct application of the existing procedure often

results in a repeat domain graph containing broken paths for a single sequence. We

solve this problem by changing the A-Bruijn graph construction procedure so that all

glues between positions from same strands are applied before those from opposite

strands.  Furthermore, we ensure the bulge removal procedure can correctly remove

bulges contained in palindromic regions (See Appendix section B.5 for details).

While the procedure for construction of the A-Bruin graph is independent of the

particular local alignment method, in practice, the resulting repeat domain graph will

vary with different input alignments.  We determined that cross_match (P. Green,

unpublished) with the default scoring matrix and the gap penalties used by BLASTN
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is an effective tool for generating pairwise local alignment of repeat consensus

sequences.  In comparison, repeat domain graphs produced from alignments with

BLASTN (using default parameters) were generally similar but typically contain more

edges, thus artificially fragmenting repeat domains.

In all experiments, we selected local alignments with minimal length of 40 and

minimal score of 30 (corresponding to BLAST E-value 1E-3) and input these into our

method using default parameters with the minimal girth (-w) 40.  We found that the

topology of the repeat domain graph was similar when BLASTN was used to

determine the input alignments (data not shown).  However, we also observed the

importance of filtering out low-complexity alignments, which both cross_match and

BLASTN perform under their default options, but using different techniques.  When

low-complexity filtering was turned off in BLASTN with the “-F F” option, the repeat

domain graph generally included larger connected components, reflecting the fact that

more low-complexity regions were aligned into repeat domains.

We comment that although our method shares A-Bruijn graph framework with

the RepeatGluer program [41], these programs have different goals. RepeatGluer is a

de novo repeat family identification tool which attempts to identify all repeat families

in an input genomic sequence.  Unfortunately, it is currently not feasible to run

RepeatGluer directly on long genomic sequences.  Our approach takes an existing

repeat family library as input and decomposes it into repeat domains.

We incorporated our new methods for A-Bruijn graph construction and

simplification into a modified version of the ABA program, which is available at the



73

ABA website [103]. The program can also be run online at [104]. Perl scripts used for

analyzing the repeat domain graphs are available at web site [92].

The text in this chapter, in part or in full, is a reprint of material as it to appear in

Genome Biology. The dissertation author was the primary author of the paper. I thank

my co-authors Ben Raphael, Alkes Price, Haixu Tang, and Pavel Pevzner.
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4.5 Tables and figures

Table 4.1: 15 repeat families containing domains shared with repeat families of different
biological origin. The list is sorted by the total length of shared domains. See Appendix Table B.1
for the complete table.

repeat
family #domains

length of
domains

percent
shared

HARLEQUIN 34 6245 0.9
MER52AI 32 5375 0.76
HERVL 4 5117 0.9
ERVL 4 5117 0.89
HUERS-P3 31 5106 0.57
LOR1I 54 4034 0.5
HUERS-P3B 67 3791 0.51
HERVE 9 3463 0.44
HERVG25 50 3431 0.49
HERV35I 54 2933 0.42
MER51I 45 2914 0.37
MER4I 48 2896 0.45
HERVIP10FH 25 2782 0.54
PABL_AI 52 2665 0.53
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Table 4.2: Four connected components formed by shared repeat domains (edges shared between
C. briggsae and C. elegans). Length is the total edge length of a component. Multiplicity (Mul.)
refers to the highest multiplicity among all edges in a component. The multiplicity may exceed the
total number of C.elegans and C.briggsae families containing the repeat domain, because some
repeat families have self-similarities (e.g., E3 and B4 each contribute 2 to the multiplicity of the
green edge in Figure 4.5).

#
Edges

Length Mul. # C. elegans + C. briggsae
families

Annotation

1 61 2 1 + 1 Mariner
1 309 2 1 + 1 Mariner
1 34 10 4 + 4 CEREP5
6 71 34 2 + 16 PALTTAA2/PiggyBac

Table 4.3: Comparison of the AAGTS and whirl-filtration strategies. POAP: Pairs of aligned
positions. We measure the difference between the procedures by the fraction of aligned positions
in the input pairwise alignments that are retained in the multiple alignments produced by each
graph procedure.

Fraction of input POAP
in graph

Repeat Library Number of
non-redundant

input POAP AAGTS Whirl-filtration

Difference
in POAP

C. elegans
RECON

148989 0.894 0.972 11553

Human
RepeatScout

378080 0.981 0.994 4898

Human
RepBase

666100 0.982 0.979 -2446
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Figure 4.1: Dot plot of 11 concatenated repeat family sequences from C. elegans and C. briggsae
shows the presence of shared repeat domains.  Our repeat domain graph of the same set of
sequences is shown in Figure 4.5.
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Figure 4.2: (A) Diagram of repeat domains shared between RICKSHA and other repeat families.
RICKSHA and RICKSHA_0 have 79 bp inverted terminal repeats. In addition, RICKSHA
shares some sequences from retroviral elements ERVL and MLT2B. (B) Repeat domain graph of
the same set of sequences. Each sequence is represented by a path from a source to a sink vertex,
where source and sinks are labeled with the ID number in (A). Negative signs refer to the reverse
complement sequences (see Results section). Similar parts between sequences are glued into
shared edges. Edge with label l(m) indicates subparts of length l from m sequences are glued
together. Edges labeled simply as l indicate no similarity to other sequences and lengths of short
edges are omitted.
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Figure 4.3: A connected component in the repeat domain graph of the human Repbase. Labeling
follows Figure 4.2(B). Edges with multiplicity more than one are highlighted in red. Source/sink
labels: 1=RICKSHA, 2=RICKSHA_0, 3-12=various retroviral repeats, including subfamilies of
MLT2 and the sequences containing the internal part of the endogenous retroviral element
HERVL.
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Figure 4.4: (a) A connected component in the C. elegans repeat domain graph reveals similarities
between 7 different repeat families. High-multiplicity edges are colored red. We contract
connected subgraphs consisting of edges with a length shorter than 10 (except for edges linked to
a source or sink) into boxes to simplify the overall topology of the graph.  (b) Annotation of the
seven families obtained from [31].
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Figure 4.5: Part of the C. elegans/C. briggsae comparative repeat domain graph. Labeling follows
the legend in Figure 4.2. Edge color codes: blue = C. elegans; red = C. briggsae; green = both.
Thick edges have multiplicity greater than one. Dashed boxes enclose two subgraphs with a tree
topology (see Figure 4.6 and text).
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Figure 4.6: A phylogenetic tree (a) for ten sequences (b) that form the shared green edge in Figure
4.5 (constructed by CLUSTALW). Labeling matches that in Figure 4.5, except that sequence B4
threads through the shared green edge twice, giving two sequences labeled B4_1 and B4_2. We
remark that the ten sequences show few substitutions; consequently the topology of this tree is
rather reliable despite of the fact that the sequences are very short.
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Figure 4.7: Two Y-forks in a connected component of human RepeatScout library repeat domain
graph. The complete graph is available in Appendix B.3.
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Figure 4.8: The construction of one connected component in the repeat domain graph of C.
elegans. (a) In the initial A-Bruijn graph, seq. H (Ce000444) and seq. F (Ce000067) are in a same
connected component, but many short cycles fragment repeat domains in this graph.   (b)
However, in the graph after the standard bulge and whirl removal procedures (e.g. from ABA),
seq. H are in a separate connected component, all glues between seq. H and seq. F are lost, due to
a whirl removal process starting that the green edge in (b); (c) The repeat domain graph
constructed with the new whirl handling algorithm and the bulge removal procedure, now the
seq. H and seq. F are shown to share some significant edges; (d) Alignment of 10 sequences along
a shared edge (red) demonstrates that sequences H and F belong in the same component with the
remaining six sequences.
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5 Open problem: discovery of mosaic arrangements in protein

structures

Mosaic rearrangement is a major mechanism of protein evolution. In Chapter 3

we have discussed the identification and analysis of protein domains from protein

sequences. However, because protein structures can retain their shapes even though

their amino acid sequences rapidly diverge, many mosaic arrangements in proteins

may only be recognizable by studying their 3-D structures. This chapter reviews

current understanding on the mosaic arrangements in protein structures, and explores

the possibility of extending the A-Bruijn graph approach to the analysis of mosaic

arrangement in protein structures.

5.1 Mosaic arrangement in protein structures

Protein sequences fold into 3-D structures to fulfill their functions. Protein

structures provide molecular level understanding of protein domain organization.

Mosaic arrangements of protein structures exist at both the domain level and the sub-

domain level. The domain level mosaic arrangements do not alter the overall folds of

individual globular domains, but change what domains are associated and in which

order domains are associated. The sub-domain level mosaic arrangements change the

internal folds of individual domains, and thus have interesting implications to the

evolution of domains [105].

Although usually the mosaic arrangement in a protein refers to those at the

domain level, it is not the focus of this chapter for several reasons. Firstly, given a set

of 3-D structures, the domain level mosaic arrangements among them are apparent
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since the recognition of 3-D domain structures is relatively straightforward. Secondly,

the majority of the structures in the PDB are single domain structures. Large

multidomain proteins are typically dissected into domains before crystallization. Thus,

the remaining of this chapter is devoted to the study of sub-domain level mosaic

arrangements of structures.

One type of mosaic arrangement in structures, circular permutation, has drawn

considerable attentions from the structure comparison and classification community. A

circular permutation of a protein structure can be viewed as an imaginary

rearrangement operation that joins its N-terminus and C-terminus, and then breaks the

backbone at a new location (See Figure 5.1 for an example). Although it appears

dramatic, it is could be explained by tandem gene duplications [106]. As a result of the

fast accumulation of solved crystal structures, an increasing number of structure

circular permutations [106, 107] are reported. Also, Jung and Lee [107] developed a

method for detecting circular permutations.

Another type of mosaic arrangement in structures is structure repeat, or structure

duplication. In a sense, the common secondary structure elements, the α-helix and the

beta-strand, are probably trivial kinds of structure repeats. More interesting structure

repeats are those at super-secondary structure level. Major folds such as TIM-barrels,

leucine rich repeats (LRR), WD40, and beta-propeller consist of apparent repeating

super-secondary structure units. Taylor et al. [108] used the Fourier transform to

capture the periodicity of structure repeats.

While the discovery of mosaic arrangements in structures is an important

problem, most existing structure comparison tools rely on the concept of rigid body
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superposition of entire protein domains, and consequently they are unsuitable for this

problem. The work by Jung and Lee [107] and Taylor et al. [108] are good starts. In

this work, we explore the possibility of applying the A-Bruijn graph approach in the

analysis of mosaic arrangements in structures.

5.2 Discovery of mosaic arrangement in protein structures

Although the ABA alignment was initially developed for sequence comparison,

the underlying A-Bruijn graph framework has the generality to allow for an arbitrary

definition of similarity. Once the similarities are translated into the A-graph, or the

correspondence between positions, the sequence information is no longer used. Thus,

the A-Bruijn graph approach has the potential to be extended to the analysis of mosaic

arrangement in protein structures. We have made some preliminary explorations in

this direction, which is presented below.

The first question is: how to extend the ABA multiple alignment approach from

sequence alignment to structure alignment? While the local similarity of ABA is

typically derived from local sequence alignment tools like BLAST, the local

similarities in ABA structure alignment can be derived from the local structure

alignment programs. Given a set of protein structures and their pairwise local structure

alignments as input, the ABA alignment engine will produce an ABA graph in which

the edges of high multiplicity reveal the common (rigid or flexible) segments shared

among the structures.

POSA [109] is a pioneering approach to multiple structure alignment that

generalized the idea of partial order alignment proven successful in MSA to the
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analysis of structure alignment. POSA has the following unique features: (i) it reveals

regions that only similar among a subset of structures; (ii) it dissects structures into

mosaic arrangements of conserved segments. In our first experiment, we construct an

A-Bruijn graph based on a set of pairwise alignments generated by FATCAT for a set

of 3 Rossmann fold structures (we call this approach ABA-FATCAT), and compare

the resulting graph with the POSA graph (Figure 5.2). The result shows that the A-

Bruijn graph is overall in a good agreement with the POSA graph—even though the

POSA graph contains more similarities (more edges), since POSA implements

additional optimization after graph construction. A further improvement of the ABA-

FATCAT approach would be to develop new graph-based operations in the spirit of

bulge/whirl removal in the sequence alignment that can simplify the graph topology

with the consideration of the 3-D structures.

While the current result is encouraging, there are no repeated or shuffled

segments among these three structures. Similar to ABA addressing the limitation of

POA in handling rearranged and repeated domains, ABA-FATCAT addresses the

limitation of POSA: POSA is based on the notion of partial order. ABA relaxes the

restriction of the partial order, and is able to handle repeated or shuffled structural

segments (as directed cycles in ABA graphs).

In our second experiment, we investigate if an A-Bruijn graph can be

constructed for a single structure with repeated segments based on a set of self-

similarities. As repeated segments can only be detected if the suboptimal alignments

are included, which is not available for FATCAT yet, we use the AFP (aligned

fragment pairs) matrix to generate pairwise structure similarities. The AFP matrix was
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used in popular structure alignment programs such as FATCAT [110] and CE [111].

The AFP matrix of two structures is in the similar spirit to the dot-matrix of two

sequences. For the fragment starting at residue i of length l in structure 1 and the

fragment starting at residue j of length l in structure 2, the (i,j)-entry in the AFP matrix

is 1 if the two fragments can be superimposed well (with a small RMSD), and 0

otherwise. For all (i,j) pair there is an associated rotation corresponding to the rotation

for the best superposition. It is a temptation to directly use the AFP matrix as the

similarity matrix for ABA. However, structures typically contain large regions with

secondary structure elements and thus the AFP matrix is typically very dense, and thus

the corresponding ABA graph would be full of whirls (see Chapter 2). The FATCAT

program [110] implements an AFP chaining procedure, which links two AFPs into an

AFP-pair if they have similar associated rotations/translations (allowing gaps). Thus,

AFPs in pairs represent longer regions with structure similarity; while AFPs not in a

pair are more likely to be spurious hits. We implement a filtration procedure of AFP

matrix which only keeps the AFPs that are in pairs with other AFPs. It is also possible

to apply the more aggressive AFP-triple filter that only keeps AFPs that participate in

some AFP triples.

Figure 5.3 demonstrates the effect to the AFP matrix by selecting AFP-pairs or

AFP-triples. The structure 1a4y:a is of the leucine rich repeat fold, which consists of

repeating beta-strand/α-helix units, each with about 25 amino acids. Thus the ideal

AFP matrix of 1a4y:a should contain one main diagonal and multiple parallel minor

diagonals with 25 amino acids from each other. It is clear that the AFP-pair filtration

effectively removes some false AFPs, while the AFP-triple filtration provides a more
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effective filtration. As a result, the AFP-pair/triple filtration is an effective way for

removing noise in the AFP matrix. Admittedly, the case of leucine rich repeat is

relatively straightforward. Although the AFP-triple filtration in this case is likely to be

sufficient, more sophisticated applications of the AFP matrix are to be explored for

structures with more complicated repeat structures. The promise in the AFP matrix

similarity is that it would provide more details of mosaic structure arrangements than

the Fourier transform analysis [108].

With this AFP-matrix filtration procedure, the filtered AFP-matrix generally

contains only a few distinct connected regions. Ideally each region should be a straight

line but in the AFP-triple matrix they are thick lines due to the repetitive nature of

secondary structures resemble short tandem repeats in sequences. For example, long

helix region around 63-88 results in the thick part along the diagonals. Additional

works is required to transform the fat diagonals into thin diagonal lines that are

suitable as input to ABA.

In summary, we explored the application of A-Bruijn graph to the identification

of mosaic arrangements in protein structures. Our preliminary results demonstrated the

potential power of A-Bruin graph representation for multiple structure alignment, and

revealed the challenges of deriving sub-optimal structure alignments representing

structural mosaic arrangements. We plan to continue this exploration with a first goal

of producing a program that can automatically identify circular permutations and

structural repeats, and an ultimate goal of understanding the mosaic arrangements in

protein structures.
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Finally, we point out that ABA presents a framework that integrates both

sequence alignments and structure alignments, as both types of alignment define a

similarity between protein sequences. We can obtain a more accurate alignment by

simultaneously taking into consideration the sequence similarity and structure

similarity as inputs to the ABA graph construction.
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5.3 Figures

Figure 5.1: Circular permutation of the C2 domain. (Source: Grishin, N.V., J Struct Biol, 2001.
134(2-3) [92])
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a

b

Figure 5.2: POSA (a) and ABA-FATCAT (b) alignment graph of 3 rossmann-fold structures:
SCOP ids: d1ek6a_ d2cmd_1 d1oi7a1. Blocks represent aligned segments labeled with the their
lengths. Approximate correspondences between the two graphs are visible, highlighted by color-
filled blocks
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Figure 5.3 AFP-matrix for leucine rich repeat structure 1a4y:a aligned to itself. Only first 100
residues are shown. Filtering with AFP-pairs removes many weak AFPs. Filtering with AFP-
triples seems to be the most effective in removing false AFPs.
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6 Representing and comparing protein structures as paths in three-

dimensional space

6.1 Introduction

Knowledge of protein three-dimensional structure is a prerequisite to

understanding its function at a molecular level. With more than 30,000 protein

structures in the rapidly growing public repository PDB [112], the importance of

computer algorithms that can rapidly compare and find remote similarities between

these structures cannot be over-emphasized. The comparison of protein structures has

been an extremely important problem in structural and evolutionary biology ever since

the first few protein structures became available. Hundreds of algorithms for protein

structure comparison have been developed; there are several large databases and WEB

resources devoted almost entirely to the problem of comparing and classifying protein

structures, such as SCOP [25], CATH [24, 113], and DALI domain dictionary [114].

Typically, different representations of the protein structure are employed for

comparing them for different purposes. For example, an all-atom protein model is

useful when studying finer details of a protein structure such as the subtle changes of

the side-chain conformations of residues in the active site a protein may undergo upon

binding of substrate. However, for the rapid comparison of protein structures in order

to find global similarities, only one point per residue, often the positions of the Cα

atom, is sufficient.  Some programs use completely different representations of protein

structures, such as distance matrices [115] or secondary structure vectors [116].
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All protein structure alignment programs optimize some mathematical definition

of structural similarity. The most popular measure of structural similarity is the root

mean squared deviation (RMSD) of the matching atoms [117] and its variants [90]. In

general, alignments optimizing different measures of structural similarity may be

different from each other [118]. Moreover, structural alignment is an NP-hard

computational problem [111] and in order to solve it in a realistic time various

heuristics have been developed, such as, lowering the dimensionality of the problem

by identifying 7x7 interaction patterns in DALI [115], describing the protein as a set

of vectors based of secondary structure elements in VAST [116], or using local

structural similarities to identify short aligned fragment pairs (AFPs), which are used

later to construct the alignment in the CE [111] or FATCAT [110] methods.

Since structure alignment programs that optimize RMSD dominate the field of

structure comparison, they create a misconception that only structures that can be

superimposed with reasonable RMSD criteria, such as low RMSD over a large length

of the proteins, should be considered similar. While this is a pragmatic definition of

structural similarity that eliminates an excess of false-positive matches, it also fails to

find similarities between structures with extensive conformation changes including

structures with internal rearrangements and/or with swapped parts between domains.

The recent years have seen advances in algorithms that can align protein structures

assuming flexibility of their polypeptide chains [110, 119]. Human curated structure

classifications (such as SCOP and CATH) have dealt with this problem indirectly, by

using a highly abstracted, but not precisely defined, view of protein structure (fold)

and by grouping together protein structures based on a combination of sequence,
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structure and functional information. The rapid accumulation of new structures,

however, outpaces the human curation efforts, and automatic means of detecting

structural similarity that is beyond the scope of RMSD based structure alignment

programs are becoming essential.

In this chapter, we propose a very general description of the protein structure

that views it as a path in three-dimensional space, and describe a novel algorithm for

structure comparison based on this description. Our approach for abstracting the

protein structure is inspired by the earlier work in our group [120] and by the earlier

U-turn model [121]. We developed a highly simplified description of protein structure

that removes all local structural information by “smoothing” the protein backbone,

leaving only information about whether a protein chain is locally straight or whether it

makes a turn. In particular, we “smooth” the protein backbone by averaging Cα

position in a 7-residue window [120]. Chain fragments that remain straight after the

smoothing procedure are denoted as generalized secondary structure elements.  Local

secondary structural information is partially lost, and protein structure is abstracted to

a path in three-dimension that, for a typical protein structure, winds through space by

following a straight line for a 5-12 residues, then turning in a typically 4-5 residue turn

only to assume a straight course for another 5-12 residues.

We represent these characteristics by describing such paths as series of turning

angles along the (generalized) backbone. Intuitively, the angles are close to 180° along

the straight fragments and are smaller where the backbone is changing directions.

Turning angle series has several advantages for being a good descriptor of protein

structures: (i) It is invariant to rotation and translation. (ii) It is tolerant to hinges,
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bending, or other structural distortions that only result in small and well-localized

changes of turning angles. (iii) By treating the 1-D turning angle series as a sequence

of numbers, one can define the problem of comparing structures as aligning the angle

series in the same fashion as the traditional sequence alignment problem, for which an

optimal solution can be derived by standard dynamic programming techniques.

The idea of 1-D geometric descriptions of structures and the dynamic

programming alignment methods have been explored previously [122, 123], including

the use of curvature and torsion angles of spline-approximation of the backbone to

describe the local chain structure [124] [93]. However, these methods differ

significantly from our method at the level of structure abstraction in that they typically

provide a much richer description of the protein. Our method only focuses on turning

angles in a generalized (smoothed) protein backbone, thus providing a minimal level

of structure description. For instance, it would be impossible to recreate the three-

dimensional structure using just our turning angle descriptions, torsion angles would

have to be added for that purpose. Interestingly, as we will show in the chapter, in the

world of protein structures, this minimal information is often sufficient to recognize

similarity between structures.

We implement a dynamic programming algorithm for aligning the turning angle

series and test it against the structural similarity defined by the SCOP database.

Surprisingly, even at this clearly oversimplified level of protein structure description,

our results are in a good agreement with the SCOP classification and existing structure

alignment programs. We also test our method on structures with extensive distortion
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and structures from distinct SCOP folds. Our results reveal interesting perspectives

about structural similarity.

6.2 Methods

6.2.1 Backbone smoothing and turning angles

Our backbone smoothing procedure follows that of [120]. We assign the center

of gravity of every k consecutive Cα atoms as a new pseudo-Cα atom. With a proper

choice of k, the resulting chain of pseudo-Cα smoothes out the local “wiggles” due to

the zigzags in β-strands or the spiral patterns in the α−helices and reveals the global

fold of the protein structure as a smooth curve in three-dimensional space. Thus, we

refer the chain of pseudo-Cα’s as a smoothed backbone (Figure 6.1A). Our smoothing

procedure suppresses the local high frequency curvature signals that arise from the

local periodicity of the backbone, and thus reveals the overall topology of the

structure.

We define the turning angle at each pseudo-Cα atom along the smoothed

backbone in order to reflect medium level topological features around it. Ideally, this

turning angle should be close to 180° in the middle of a long straight segment along

the smoothed backbone and small (close to 0°) at a sharp turn such as a β-hairpin.

Also following the definition in [120], we define the turning angles at residue i as the

angle between the two vectors [i-d+1,i-d] and [i+d-1,i+d]. The value of d determines

the span of the angle definition, thus d is called the angle defining distance. Assuming

that d is small, the fragment from residue i-d to i+d is almost planar and the torsional
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angles are negligible, this definition can be interpreted as the integral of the curvature

function of the chain in this local interval. As our definition is different from the usual

definition of curvature, we use the term “turning angles” instead of “curvature”.

We experimented with different choices of d (Figure 6.1B). Small values of d

make all angles indistinctively large: they only capture local turns and are unable, for

example, to describe the 180° turn in anti-parallel β-sheets. Large values of d,

however, are uninformative for revealing local curvatures. Figure 6.1B demonstrates

the effect of value d on the shape of the angle series curve: with decreasing d values,

the first two plateaus in curve d=1 dissolve into narrower and lower peaks, while the

valley between them becomes deeper and wider. We choose d=3 since it is the

smallest value which gives a good dynamic range of angle values.

It is worth to note some general features of the angle series description of a

protein structure. First, the plateaus and peaks (regions with high angle values)

correspond to straight parts after smoothing, often long secondary structure elements

or generalized secondary structure elements. For instance, in Figure 6.1B, the first

plateau/peak corresponds to the first α−helix in structure and the second peak

corresponds to the β-strand after the first α−helix). However, some straight segments

do not correspond to classical secondary structure elements [120], we call such regions

generalized secondary structure elements. Second, the valleys correspond to points

where the path changes direction. Turning angle series is a rich description of the

chain topology that also includes detailed turning characteristics, such as the length of

the turn and the type of secondary structure (or generalized secondary structure)
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elements, with the latter described by the density of points along the smoothed chain

[120].

The turning angle series is not the only 1-D representation of 3-D structures.

Alternative 1-D representations include secondary structure profile, and solvent

accessibility. We choose turning angle series because it is unique in following three

aspects. First it is purely geometrical, i.e., it only depends on 3-D coordinates of the

Cα atoms. In particular, it does not assume any secondary structure classification,

which is sometimes problematic [120]. Thus it gives a minimalist structure

description. Second, turning angle series is locally robust, i.e., a global conformation

change will not change turning angle series drastically. Solvent accessibility and

contact number will change significantly. Third, turning angle series is better

interpretable in the context of conformation change, as we will see in the Result

section.

In order to uniquely specify a path in 3-D, both curvature and torsion angles

would be required. The information about the torsion angles is lost in the

representation of the path used here; therefore, it cannot distinguish whether the next

straight element after a turn would be to the left or right of the original element.

Surprisingly, as we will show below, using only the curvature angle series along, we

can still recognize most cases of the structural similarity between actual protein

structures.
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6.2.2 Aligning turning angle series

We treat the turning angle series as a sequence of numbers. A natural way to

compare such sequences is via dynamic programming. Protein and DNA sequences

are described by discrete alphabet and could be aligned by the well known dynamic

programming algorithms ([125, 126]). The alignment of sequences of continuous

numbers is rarely used in bioinformatics; however, it is very well studied in computer

science as the time warp problem. Essentially, given two series indexed by time, the

objective of time warp is to find the optimal matching between the points along the

two time series. Typically, mismatches are penalized by the squared deviation of two

time points (see [69] for a review).

In this study, we employ a standard time warp setting. Given two turning angle

series (ai) and (bj), the goal is to find a maximally scoring gapped local alignment

between them. The total score is the sum of scores of matching turning angle pairs

with affine gap penalties. We adopt the standard affine gap penalty scheme, and define

the score for matching a pair of angles ai and bj as of the form -(ai - bj)
2, i.e., the

penalty of aligning two angle values increases quadratically with their angle

difference. To avoid over-penalizing a large angle difference, the score has a lower

cap. If all matching scores are negative, the optimal alignment would be of zero

length. To encourage longer alignments, the matching score is augmented by a default

reward r0. Any angle difference smaller than r0 is rewarded, otherwise it is penalized.

Thus, the overall score for matching a pair of angles ai and bj is:

S(ai, bj) = r0
2 – min[(ai - bj)

2, (1.5r0)
2].
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Although our simplistic scoring scheme may produce unrealistic alignments

(such as creating large gaps in the middle of secondary structure elements), we find

that this scheme produces overall structure alignments that while not accurate enough

for comparative structure modeling, are yet good enough to discover the overall

structural similarity.

r0 and the gap opening and extension penalties are adjustable parameters. Based

on parameter-tuning tests (data not shown), we found the alignment is not very

sensitive to the choices of r0 and gap penalties as long as the alignment is in the log-

phase [127]. In our experiments we choose default parameters to be r0=21 and gap

opening/extension penalties 300/100. All these procedures are implemented as a

program CURVE, available as a webserver at http://pops.burnham.org/curve.

6.3 Results

6.3.1 The angle series alignment mostly agrees with existing measures

of structural similarity

In our first experiment, we used our program CURVE to align a single structure

against all structures in a 40% non-redundant set of SCOP 1.65 with 8666 structures

(see http://fatcat.ljcrf.edu/fatcat/struct_neighbor/ for details) to see if the top scoring

hits agree with widely accepted protein structure classifications and other structure

comparison programs. The top 10 scoring hits of a search using 1dlw:a (chain A of the

PDB 1dlw), a six-helical truncated hemoglobin (SCOP classification a.1.1.1) is listed

in Table 6.1. The result is not surprising: the top 5 hits include all chains from the

SCOP family a.1.1.1, the 6-helices truncated hemoglobin, followed by chains from the
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SCOP family a.1.1.2, the 7-helices hemoglobin. Figure 6.2 shows the detailed

CURVE alignment for 1dlw:a vs 1gvh:a1. As a comparison, the alignment dotplot

generated by FATCAT is overlaid with the alignment dotplot generated by CURVE in

Figure 6.2A. The alignment paths of CURVE and FATCAT have an excellent overall

agreement. Due to the smoothing procedure, the turning angle series is shorter at both

termini, thus CURVE alignment path is shorter correspondingly.

We also get some non-hemoglobin hits in the top 10 list. The 8th and the 10th on

the list are all-alpha proteins containing subdomains with some resemblance to the

hemoglobin fold. We notice that both these non-hemoglobin hits are easily

distinguishable from the other hits in that they have much larger number of gap

residues than the hemoglobin hits (see Figure 6.3 for the case of the 8th hit). One could

apply a simple criterion limiting number of gap residues to remove such artifacts.

However, such a criterion will also limit the search results by scoring low on

homologous domains that have large insertions in them, similar to how sequence

alignment programs behave.

6.3.2 Recognition of similarities between drastically different

conformations of same structures

Proteins are intrinsically flexible. Some proteins assume drastically different

structural conformation at different conditions (such as binding to different substrates)

to fulfill their functions. The similarity between different structural conformations of a

protein can go beyond what traditional RMSD-based structure alignment tools can
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recognize. Below we demonstrate that our method is particularly suited in identifying

similarities between structures with such drastic conformation changes.

It is well known that the APO form and the calcium-binding form of calmodulin

have distinct conformations [128]. In its calcium-binding form, calmodulin has two

globular domains (N- and C- terminal domains) linked by a central α−helix. In its

APO form, the central α−helix is broken into two short α−helices linked by a region

with poorly defined secondary structure. In addition, the two globular domains

experience some smaller internal changes.  Traditional structure alignment programs

that are based on rigid body superposition can only align one of the terminal domains

at a time and thus are unable to capture the overall conformation change. Angle series

alignment produces the correct result. From Figure 6.4, it is clear that CURVE

captures the breakage of the central α−helix with a region with large angle deviations,

while the twists in both N-terminal and C-terminal domains only result in smaller

changes in turning angle among few residues. We notice that flexible alignment

programs (FATCAT [110] and FlexProt [119]) can also align these two structures

through their entire length. However, they have to introduce four hinges, and they do

not have a way to distinguish the major structure changes versus minor structure

changes, thus the breakage of the central α−helix and the minor structure internal

shifting at both N- and C- terminal domains are both penalized indistinguishably.

Conformation changes are common when monomeric subunits form domain-

swapped oligomers. We present two examples of such cases. In the first example, we

compare two conformations of the catabolite repression HPr-like protein from Bacillus
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subtilis. The monomer structure 1k1c:a has an anti-parallel β-strand of order 1423. In

the dimer structure 1mu4, two subunits swap their N-terminal beta strands.  The angle

curve overlap graph of the CURVE result is shown in Figure 6.5. Similar to the case

of aligning calmodulin structures, CURVE aligns both the main part (alignment

positions 13-75) and the N-terminal swapped β-strand (alignment positions 1-7,

shortened by smoothing at the N-terminus). Moreover, CURVE captures the subtle

conformation change on the main part: notice the angle changes around the alignment

positions 44-48.

In the second example we compare the immunoglobulin-binding domain B1 of

streptococcal protein G (GB1), a favorite subject of studying protein folding and

design. Mutants of GB1 are reported to adapt drastic different structure conformation

from the wild type [129]. The wild type structure (PDBID: 3gb1) contains an α−helix

and a 4-stranded β-sheet made of two beta hairpins, one N-terminal and one C-

terminal to the α−helix. The structure of mutant HS#124F26A (PDBID: 1q10) reveals

a domain-swapped dimer that involves exchange of the second β-hairpin. The

resulting overall structure is comprised of an eight-stranded beta sheet whose concave

side is covered by two α−helices. CURVE alignment reveals that the most significant

angle change happens to the region between the α−helix and the second β-hairpin

(Figure 6.5); all secondary structures remain mostly unchanged. In both cases, the

conformation change results in structures with large RMSD, while the changes on

turning angles are only modest. In such cases, aligning structures by directly

optimizing RMSD may be not a good choice. CURVE alignment directly captures the
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backbone turning angle changes associated with the conformational changes, which,

we argue, is a better choice.

6.3.3 Revealing similarities between structures from distinct folds but

sharing structural (and often functional) similarities

We explore if CURVE alignment can detect similarities between structures from

different SCOP folds that share similar functions. We report an interesting case

showing the structural similarities between members of two groups of periplasmic

binding proteins, a Lysine/Arginine/Ornithine-binding (LAO) protein from Salmonella

typhimurium (1lst) and a Leucine/Isoleucine/Valine-binding (LIV) protein from

Escherichia coli (2liv). Apart from their similar functions, both structures consist of

two similar intertwined domains, each resembling an a/b/a sandwich from the

Rossmann superfold (Figure 6.6). The two domains are linked with different angle at

the two structures. Moreover, the two structures have different arrangements of the β-

strands. Traditional structure alignment algorithms are unable to detect the similarities

between these two structures. The angle curve overlap graph of the CURVE alignment

(Figure 6.6A) shows that there are two good aligned regions: 34-103 and 144-303. The

region 34-103 corresponds to the alignment between the a/b units5 345 of 2liv’s N-

terminal domain and the a/b units 234 of 1lst’s N-terminal domain. The region 144-

303 corresponds to similar regions spanning both the C- and N-terminal domains,

including the alignment between the a/b units 2345 of the C-terminal domain and the

three α−helices in the N-terminal domain of both structures.
                                                  
5 An α/β unit is defined as an α-helix followed by β-strand that runs back close to the beginning of the
α−helix.



106

The alignment of structures with similar intertwined multi-domain organization

is a difficult problem for structure alignment programs. Above result shows that

CURVE is able to find the overall correspondence of two structures with such domain

organization. We believe that further refinement of the CURVE program may provide

a promising solution for this problem.

6.4 Conclusion

In this chapter we introduce the turning angle series along smoothed backbones

of structure as a new descriptor of protein structure. We demonstrate its utility in

defining structural similarity by implementing and testing a time wrap alignment,

CURVE, based on this feature. Our results show that this simple approach works

surprisingly well. Although not directly optimizing RMSD, the result of CURVE

generally agrees with the SCOP structure classification and traditional structural

alignment programs. Moreover, CURVE can reveal similarities between drastically

different conformations of the same protein structure, which is beyond the scope of

traditional structure alignment programs. In aligning structures from different SCOP

folds CURVE demonstrate its potential in identifying remote structural similarity.

6.5 Discussion and Future directions

The results of this chapter bring up an interesting question: since turning angle

curve similarity is only a necessary condition for structural similarity, why would

CURVE alignment work? We postulate that this is because most proteins constraint

into a compact shape, thus for a given turning angle series, there are only a small
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number of ways to arrange them into a realistic compact shape. For example, turning

angle series cannot distinguish between α/β/α units arranged in a right-handed or left-

handed fashion. Fortunately, right-handed α/β/α connections dominate over left-

handed ones in naturally occurring proteins.

Our result extends the traditional definition of structural similarity. This brings

up an interesting question on the structural constraints of protein evolution. For most

structures, changes in their sequences caused by mutations such as substitutions and

minor indels only result in subtle changes in structure with the overall three-

dimensional shape of the structure largely being preserved. For some structures, such

as the GB1 protein, small mutations can result in a drastic change of their structural

conformation. Since CURVE is able to detect similarities between structures with a

similar turning angle series but drastically different structure conformations, An

interesting exercise will be to collect a set of such structure pairs where traditional

rigid-body alignments fail to detect a significant similarity but the CURVE alignment

can, and see what is in common among these structures. There may be intrinsic

characteristics among these structures that account for such conformational changes.

Some structures may utilize this flexibility in order to be functional.

The angle series alignment has some interesting implications. Traditional

structure alignments have never been like sequence alignment. While sequence

alignments typically define an edit distance, a score defined by a procedure via which

one can transform one sequence into the other, existing structure alignment programs

optimize RMSD of a superimposed subset of residues among structures. The result of
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such a structure alignment does not provide a series of operations that transform one

structure into the other. Angle series alignment produces a set of angle matches that

could be interpreted as a series of operations for structure transformation. Naively, one

can bend every angle of one structure to the corresponding angle of the other structure.

To derive a set of realistic backbone-bending operations, one needs to consider the

stereochemical constraints of the backbone and correlation of the turning angles.

One interesting extension of the pairwise CURVE alignment is the multiple-

CURVE alignment. Traditional RMSD based structure alignment programs cannot

align more than a handful of structures, due to both the computational complexity and

the representation of the multiple-structure alignment. CURVE, however, uses 1-D

features and can thus be easily extended to handle multiple structures, in a similar

fashion as the multiple sequence alignment. It is thus possible to construct a profile

HMM of curves for structures from a family, a superfamily, or even a fold. Such

profiles would be useful for remote homology detection, structure classification and

comparative structure modeling.

We want to emphasize that the goal of this work is not to produce a structure

alignment method that is superior to existing methods. We demonstrated that CURVE

is able to find structure similarity that was overlooked by traditional structure

alignment programs by case studies. We did not perform a benchmarking test mainly

due to that currently there is no collection of structures with extensive conformation

changes publicly available. One useful task would be to construct one such

collection.The current prototype implementation of angle series alignment certainly

can be improved by incorporating more information. For example, the alignment of
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angle curves can only give an alignment with a certain resolution due to the smoothing

procedure. It is possible to implement an iterative refinement scheme which starts with

an overall alignment of angle series based on a large smoothing radius, then iteratively

refine the alignment by considering angle series based on smaller smoothing radii.

Since angle series is only a “planar” feature, adding 3D features such as handedness

information will help (in cases where distinguishing between left and right is

important.)

The text in this chapter, in part or in full, is a reprint of material as it to appear in

a submitted manuscript. The dissertation author was the primary author of the paper. I

thank my co-authors S.S. Krishna, Haibo Cao, Pavel Pevzner, and Adam Godzik.
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6.6 Tables and Figures

Table 6.1: 10 top-scoring hits for hemoglobin d1dlwa_ using CURVE.

SCOP Chain id Score
#

gaps
#

aligned
a.1.1.1 d1dlwa_ 44982.0 0 102
a.1.1.1 d1idra_ 41916.9 2 102
a.1.1.1 d1dlya_ 40359.8 2 102
a.1.1.1 d1mwba_ 31841.0 15 99
a.1.1.1 d1ngka_ 31728.6 15 100
a.1.1.2 d1gvha1 30728.1 20 98
a.1.1.2 d1vhba_ 30711.4 17 96
a.123.1.1 d1n46a_ 29475.5 47 100
a.1.1.2 d1jl7a_ 29430.3 31 97
a.118.6.1 d1ld8a_ 29379.9 48 100
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Figure 6.1: Backbone smoothing and turning angle series of a structure (SCOP id d1b6ra2). (A)
Stereo images of overlapping backbone and smoothed backbone with smoothing radius d=3; (B)
turning angle series along the smoothed backbone with different angle defining distances, with X-
axis labeled by DSSP [130] secondary structure annotation. Data series: A3: angle defining
distance d=3.
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Figure 6.2: Aligning 6-helices hemoglobin 1dlw:a to 1ghv:a1. (A) dotplot of the alignments
generated by FATCAT and CURVE; (B) angle curve overlap graph.
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Figure 6.3: Aligning 6-helices hemoglobin 1dlw:a to 1n46:a. (A) angle curve overlap graph; (B,C)
structures of 1dlw:a and 1n46:a with aligned regions highlighted with same colors.



114

Figure 6.4: Flexible alignment of different calmodulin structures: 1dmo (APO form) and 1osa
(Ca-binding form). (A) Angle curve overlap graph of 1dmo and 1osa. (B) Stereo diagram of the
structural superposition of 1dmo (colors) and 1osa (grey) generated by FATCAT. FATCAT
breaks 1dmo into 5 rigid body segments (each with a unique color) linked by hinges. Notably, the
long α−helix in the middle of 1osa is broken into two smaller ones in 1dmo. See text for details.
Higher gap penalties (opening:1000 and extension:333) were used so that the center region
(alignment positions 65-95) appears to be “mismatch” instead of parallel gaps in both angle
curves. This is only to enhance the presentation of the angle changes associated with the
conformation change – the default parameters would produce essentially the same result.
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Figure 6.5: Angle curve overlap graphs for 1mu4 and 1k1c:a (A) and for 1q10:a and 3gb1 (D);
(B,C) stereo diagrams of 1mu4 and 1k1c:a with aligned regions highlighted with same colors;
(E,F) stereo diagrams of 1q10:a and 3gb1 with aligned regions highlighted with same colors

.
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Figure 6.6: Angle curve overlap graph (A) of structures 1lst (B) and 2liv (C) produced by
CURVE.  Two similar regions are colored cyan and magenta. The topology graphs are drawn by
TOPDRAW [131], and the α−helices in an a/b unit are indicated by thick lines.
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7 Conclusions and future directions

With the availability of an increasing amount of biological sequences with

limited annotations, bioinformaticians face the grand challenge of developing

principled approaches to facilitate large-scale automatic annotation. In particular, since

many biological sequences exhibit a mosaic arrangement of elements, the discovery

and analysis of the architecture of these mosaic arrangements is a fundamental

problem in bioinformatics. This dissertation presented a graph-theoretic framework for

the analysis of mosaic arrangements in biological sequences and structures.

In Chapter 3, we developed a new approach to the classical multiple sequence

alignment problem based on the A-Bruijn graph. Unlike previous approaches in which

multiple alignments are represented in a row-column format or a directed acyclic

graph format, our approach represents multiple alignments as a directed graph that

may contain cycles. This new approach enables us to identify shared subsequences

even though they may appear in different orders among input sequences. We have

shown that it can correctly identify repeated and shuffled domain organizations among

a set of protein sequences or a set of genomic sequences. We made the ABA software

freely available at  [103] and  [104].

 In Chapter 4, we presented a new method for the analysis of repeat families via

the construction of repeat domain graphs of repeat family libraries. Our method

enables a systematic identification of repeat domains and composite repeats, and is

proven to be useful in assisting the elucidation of evolutionary history of repeats and
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the annotation of de novo generated repeat libraries. We made the software available

at [92].

In Chapter 5, we explored the discovery and analysis of mosaic arrangements in

protein structures, which inspired the development of a new method for structure

comparison presented in Chapter 6. Our structure comparison method is based on a

generalized representation of protein structures. Unlike traditional structure alignment

programs that typically optimize a measure based on RMSD, our method optimizes a

newly defined sum-turning-angle-deviation measure. Our results demonstrate a good

agreement with the traditional structure alignment programs and the structural

similarity defined by SCOP. More importantly, our method can recognize structure

similarities that involve extensive conformation changes, which are beyond the

recognition of traditional structure alignment programs. We made this program

accessible at http://pops.burnham.org/curve.

While future directions pertinent to individual chapters have been discussed in

the corresponding chapters, I will end this dissertation by a discussion on several

potential additional applications of the A-Bruijn graph framework, and directions

along which improvements of the current A-Bruijn graph method could be achieved.

The A-Bruijn graph approach is best suited for the annotation of a set of

biological sequences with little or no annotations. Large scale sequencing projects has

generated a large amount of genomic sequence information. For the newly sequenced

genomes, de novo protein domain identification [28] is an important task for de novo

function annotation.
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The deluge of data from various environmental genome shotgun sequencing

projects [132-134] presents a tremendous challenge to practical MSA algorithms for

handling a large number of sequences. Currently, fast clustering programs such as CD-

HIT [135, 136] are the only tools available for the elucidation of the sequence

similarities among these sequences. However, these programs are based on global

sequence similarities and thus overlook the domain structures. A-Bruijn graph

approach would provide a more detailed analysis of such dataset.

Another possible dataset for the application of A-Bruijn graph is the ultra-

conserved non-coding sequences across large evolutionary distances [137].

Experimental and computational [138] analyses are being conducted to understand this

dataset. Similar to CDHIT [135, 136], Bejerano et al. [138] clustered the sequences

based on global sequence similarity. In addition, their algorithm contains an

articulation step that cut a long region into shorten ones. However, the articulation step

does not consider the domain structures inside these ultra-conserved sequences. The

A-Bruijn graph approach would help elucidating any hidden mosaic structures inside

this set of sequences.

The current A-Bruijn graph methods can be improved along two directions.

First, applications to large datasets require the scaling up of the current A-Bruijn graph

algorithms. In handling such large dataset, generally all pairwise comparisons between

the sequences may be too time-consuming. As a result, alternative incremental

approach for the construction of the A-Bruijn graph may be desired. Second, when

there are a large number of similar subsequences in the input dataset, the boundaries of

alignment blocks can be inconsistent and it may not be trivial to derive the true
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boundary directly from the A-Bruijn graph. Even though one may derive a statistical

test for the optimal placement of the boundaries, the optimization criteria should be

motivated by the nature of the underlying biological problems.
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Appendix A: Additional information for ABA

Figure A.1: POA alignment of four proteins whose domain structure shown in Figure 3.7. These
graphs are generated by the web-version of POA [32]. (a) The input order is: ETR1 ARATH,
PHY2 SYNY3, Q7MD98, Q82U13. POA detected alignments No. 1 and part of alignment No. 3 in
Table 3.1. (b) the input order is Q82U13, ETR1 ARATH, PHY2 SYNY3, Q7MD98. POA detected
alignments No. 1 and alignment No. 2 in Table 3.1. (c) Schematic of ABA alignment in the POA
visualization format [139].



122

Table A.1: SWISSPROT ID’s of proteins in Figure 3.8.

Vertex Label SwissProt ID
1 HMP2_YEREN
2 ENTF_ECOLI
3 PPS1_BACSU
4 SRF1_BACSU
5 ACVS_NOCLA
6 ACVS_PENCH
7 ACVS_EMENI
8 ACVS_CEPAC
9 GRSB_BACBR
10 PPS2_BACSU
11 SRF2_BACSU
12 SRF3_BACSU
13 PPS3_BACSU
14 HTS1_COCCA
15 GRSA_BACBR
16 TYCA_BREPA
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Figure A.2: We apply ABA with pairwise BLASTZ alignments of the human, mouse, and rat
sequences from the NISC T1 region (discussed in [140]) as input.  Here, only the direct strands
are glued together and only long alignments are shown.  This criterion excludes alignment of
some short exons. The 3 direct strands (+) and the 3 reverse strands (-) form 2 connected
components in the graph, (anti-)symmetric to each other. Labeling of the nodes indicates the
sequence (h=human, m=mouse, r=rat), strand (+ or -) and location in the sequence. For
example, "m+:0;" marks the beginning of mouse direct strand; "m+:19442;r+:34977" is a
result of gluing position 19442 on mouse direct strand and position 34977 on rat direct strand.
The green path in the graph is the human sequence. Long, syntenic regions among the three
genomes correspond to edges of multiplicity 3.  Mouse and rat share some rodent-specific
syntenic regions (e.g., edge 5930(2)).  The ABA graph contains two directed cycles: 213(6) ->
30(3) and 172(6) -> 150(3).  The former corresponds to a repeat of an ancient alu (aluJb in
human, alu B1F in mouse).  The latter appears to be an artifact that can be eliminated by
different parameter settings.
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Figure A.3: We apply ABA to the same human, mouse, rat alignments in Figure A.2, but now
glue both direct strands and reverse strands.  Only long alignments are shown. The ABA
graph is more complex than the graph in Figure A.2 due to the tangling between direct
strands and the reverse strands. Three alignments between the direct strand of one species
and the reverse strand of other species are visible (colored red). Visual inspection in the UCSC
genome browser [141] confirm that these alignments are indeed short inversions of length 1-3
kb.
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Figure A.4: Construction of the ABA graph. The input sequences are ETR1 ARATH, PHY2
SYNY3, Q7MD98, Q82U13 from SwissProt [18]. (a) The A-Bruijn graph. In this simple example,
only a few bulges and whirls (shown by red edges) are present in the A-Bruijn graph. Long
genomic sequences and lower similarity typically produce much more complex A-Bruijn graphs.
ABA performs a sequence of steps to simplify the A-Bruijn graph resulting in the intermediate
graphs: (b) after bulge/whirl removal; (c) after re-threading; (d) after short edge removal – the
ABA graph.
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Appendix B: Additional information for the analysis of repeat

domain graphs

Table B.1: Repeat families containing domains shared with repeat families of different biological
origin. The list is sorted by the total length of shared domains.

repeat family #domains
length of
domains

percent
shared

HARLEQUIN 34 6245 0.9
MER52AI 32 5375 0.76
HERVL 4 5117 0.9
ERVL 4 5117 0.89
HUERS-P3 31 5106 0.57
LOR1I 54 4034 0.5
HUERS-P3B 67 3791 0.51
HERVE 9 3463 0.44
HERVG25 50 3431 0.49
HERV35I 54 2933 0.42
MER51I 45 2914 0.37
MER4I 48 2896 0.45
HERVIP10FH 25 2782 0.54
PABL_AI 52 2665 0.53
MER61I 51 2485 0.48
MER57I 38 2376 0.31
HERV49I 43 2146 0.34
MER4BI 28 2113 0.31
HERV19I 43 2108 0.38
MER41I 40 2060 0.52
HERVIP10F 10 1715 0.22
MSTAR 12 1514 0.91
THE1BR 10 1470 0.92
HUERS-P2 13 1413 0.46
HSTC2 7 1298 0.68
MER65I 23 1196 0.25
MER50I 31 1185 0.16
MER83BI 20 1152 0.24
TIGGER7 8 1126 0.45
HERVI 8 1090 0.14
HERV17 9 1038 0.12
HERV39 29 982 0.11
HERV57I 18 968 0.18
PRIMA41 8 884 0.11
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repeat family #domains
length of
domains

percent
shared

MER34B_I 19 876 0.16
MLT1AR 11 848 0.49
IN25 2 832 0.96
L1PBB_5 2 832 0.87
MER104B 6 825 0.89
MER21I 4 813 0.19
HERV23 22 793 0.16
MER31I 21 764 0.15
HERV38I 14 744 0.41
MER57A_I 18 737 0.12
MER44C 5 732 0.99
MER104C 4 723 0.98
MER44D 6 707 0.99
MLT1R 10 705 0.52
MLT1CR 10 705 0.51
LTR12C 5 668 0.42
MER104A 5 663 0.88
LTR12E 4 646 0.48
PTR5 2 602 0.94
MER44B 5 550 0.98
MER1A 3 528 0.98
CHARLIE3 3 528 0.19
MER80 2 508 0.98
CHARLIE4 2 508 0.26
HERV30I 5 455 0.06
HERV9 5 455 0.05
RICKSHA 7 429 0.21
MER28 2 427 0.96
TIGGER2 2 427 0.16
MER4D 6 414 0.47
MER4D1 6 414 0.45
LTR5 3 399 0.41
SVA 3 399 0.24
MER66I 6 399 0.06
MER61C 9 390 0.88
LTR20 9 390 0.75
LTR8 5 382 0.54
CHARLIE5 4 379 0.14
MER1B 2 363 1.05
MER61B 9 347 0.8
MER44A 4 337 0.97
LTR12D 3 330 0.26
MER33 3 325 0.97
MER5C 1 324 0.97
CHARLIE10 1 324 0.11
MER4B 5 310 0.5
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repeat family #domains
length of
domains

percent
shared

HERV16 1 303 0.06
HARLEQUINLTR 2 302 0.64
LTR2B 2 302 0.6
MER4E1 4 302 0.39
MER4E 4 302 0.39
MLT2B3 6 298 0.41
LTR49 4 292 0.48
MLT2C2 5 268 0.58
MLT2B2 5 268 0.52
MLT2B4 5 268 0.47
MER72 4 268 0.36
MER4A 3 262 0.39
LTR48 5 251 0.31
HERV3 4 239 0.03
MLT2D 4 230 0.58
PRIMA4_LTR 3 223 0.37
LTR2 1 220 0.48
LTR2C 1 220 0.47
MER112 2 217 0.75
CHARLIE9 2 217 0.08
PRIMA4_I 2 217 0.03
MER83AI 4 211 0.05
MER46 4 206 0.84
ZOMBI_A 4 206 0.84
MER72B 3 205 0.26
MER115 2 204 0.29
ZAPHOD 2 204 0.05
MER61 4 198 0.54
MER49 3 195 0.21
MER4A1 2 193 0.4
LTR27B 5 189 0.31
HERVP71A_I 3 186 0.02
MER67C 1 183 0.25
LTR70 1 183 0.14
MER104 2 178 0.94
MER39B 3 178 0.27
LTR59 3 175 0.29
L1PA17_5 1 169 0.1
LTR20B 4 165 0.28
MER3 4 162 0.74
ZOMBI_B 3 160 0.33
LTR48B 3 160 0.23
ZOMBI 3 160 0.06
HAL1C 1 158 0.08
L1MC5 1 158 0.07
MSTB 5 156 0.36
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repeat family #domains
length of
domains

percent
shared

MSTA 5 156 0.36
MSTB1 5 156 0.35
MSTA1 5 156 0.33
HERV15I 3 154 0.02
HERV-K14I 1 141 0.02
MER39 3 139 0.19
LTR27 4 138 0.21
LTR28 4 138 0.13
MER52C 4 138 0.11
MER52A 4 138 0.08
MER52B 4 138 0.08
MER52D 4 138 0.06
LTR29 2 136 0.22
MLT1FR 2 128 0.12
L3 2 125 0.03
MSTD 4 124 0.31
MLT1A1 4 124 0.3
MSTC 4 124 0.28
MSTA2 4 124 0.27
LTR39 2 122 0.15
MLT2A1 2 116 0.26
MLT2A2 2 116 0.21
PABL_BI 2 106 0.01
HERVL68 1 105 0.03
LTR31 1 93 0.15
MLT1A 3 91 0.24
THE1B 3 88 0.24
THE1A 3 88 0.24
THE1C 3 88 0.23
THE1D 3 88 0.23
LTR8A 2 88 0.12
LTR54B 1 85 0.17
LTR54 1 85 0.16
LTR51 1 83 0.12
LTR77 2 76 0.12
MLT1G 3 75 0.14
MLT1F1 3 75 0.13
MLT1H1 3 75 0.13
MLT1G2 3 75 0.12
LTR1C 2 74 0.11
LTR1B 2 74 0.09
LTR1D 2 74 0.07
CR1_HS 1 71 0.15
HERVH48I 1 67 0.01
HERVKC4 2 60 0.01
MER8 1 59 0.24
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repeat family #domains
length of
domains

percent
shared

MER94 1 57 0.4
BLACKJACK 1 57 0.03
MLT1B 2 56 0.14
MLT1C 2 56 0.12
MER4C 1 55 0.12
MIR3 1 54 0.23
MLT1G3 2 53 0.1
MLT1G1 2 53 0.09
MLT1H 2 53 0.09
MER84I 1 53 0.01
MIR 1 51 0.19
L2B 1 51 0.12
MER34C 1 51 0.09
L1MD3 2 51 0.04
L2A 1 51 0.02
FORDPREFECT_A 1 49 0.09
FORDPREFECT 1 49 0.03
MER92B 1 47 0.07
HERV70_I 1 47 0.01
MER41F 1 43 0.11
MER41E 1 43 0.08
LTR73 1 43 0.07
MER41G 1 43 0.05
LTR5B 1 40 0.04
L1M2C_5 1 40 0.01
LTR35 1 39 0.06
MER21 1 39 0.04
MER21A 1 39 0.04
LTR20C 1 32 0.05
L1MC3 1 29 0.01
PRIMAX_I 1 25 0.01
MLT1C1 1 24 0.05
MLT1D 1 24 0.05
MLT1H2 1 24 0.05
MLT1F2 1 24 0.05
MLT1F 1 24 0.04
MLT1E2 1 24 0.04
MLT1E1 1 24 0.04
MLT1E 1 24 0.04
MLT1E1A 1 24 0.03
R66 1 22 0.29
LTR12 1 22 0.03
LTR12B 1 22 0.03
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Figure B.3: A connected component of human RepeatScout library repeat domain graph. This
connected component contain 3 Y-forks (green). Two of them are associated with the Harlequin
repeat family. (See Figure 4.7).
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Section B.4: Comparative repeat domain graph analysis of mouse and rat
RepeatScout libraries

While C. elegans and C. briggsae repeat families have few similarities, mouse

and rat repeat families are quite similar, due to the shorter time since speciation. In

fact, Repbase Update [30, 83] contains only a single library of rodent repeat families.

This library was largely constructed from manual curation of mouse repeat families.

Due to the large size and repeat-rich nature of these and other mammalian genomes,

de novo construction of repeat libraries from genomic sequence is a daunting

algorithmic problem.  Only recently were separate repeat libraries for mouse and rat

generated using RepeatScout [98], enabling a comparison of mouse and rat repeat

families.

The input mouse library contains 886 sequences of total length 1.2M bp and the

input rat library contains 831 sequences of total length 0.5M bp. We generated a

comparative repeat domain graph using our graph-based method. The resulting graph

contained a large connected component that contains 59% of the input sequences.

Upon close inspection, we found that this large component was connected by a small

number of long edges of single multiplicity. As in the analysis of human RepeatScout

library (see Section 2.5), we determined that these long edges represented tandem

duplications and used the same procedure to remove them. 261 mouse entries and 150

rat entries in the RepeatScout are thus classified as tandem duplications and excluded

from further analysis.

We build the comparative repeat domain graph with the remaining entries by

selecting all pairwise alignments between the entries with a score cutoff 30. The graph
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contains 9446 edges, of which 6598 edges lie in the largest connected component. The

largest component contains many edges that match to subparts of the LINE element

L1 as well edges that match to some LTRs and SINEs. In order to analyze the long

domains in the L1 repeat family, we used a more strict score cutoff of 350 for pairwise

alignments, resulting a graph containing smaller number of edges (Table B.4.1).

The largest component (Figure B.4.1) of the resulting mouse/rat comparative

repeat domain graph contains 53 sequences, 23 from mouse and 30 from rat. All these

entries are related to L1 (with the entire or a significant portion of the sequence

aligned to L1).

To identify prominent L1 repeat domains, we weight each edge in the repeat

domain graph by the number of times the repeat domain is present in the genome; i.e.,

we assign a copy number to each edge in the following way. We run RepeatMasker

with the RepeatScout libraries against the mouse and rat X chromosome sequences.

We create a counter for each edge. For each RepeatMasker hit matching to a sub-

region of an entry in the RepeatScout libraries, we identify edges in the repeat domain

graph corresponding to the matched sub-region, and increment the counters for these

edges.

We observe a number of features in the graph that correspond to known

knowledge to L1.

1. The topology of the graph contains only one main path, suggesting that there is

mainly one repeat family in this component. Indeed all but two edges in the

graph match to subparts of L1.



136

2. Edge copy numbers on the 3’ end (~13,000) are significantly higher than that

of the 5’ end (~5,000), reflecting the fact that there are frequent 5’ end

truncations of L1 after insertion.

3. The tree-like structure at the 5’ end has a mouse specific branch and a rat

specific branch, reflecting that L1 underwent significant expansions after the

speciation.

4. The tree-like structure at the 3’ end split into three major “sub-trees”. One is

mouse-specific, one is rat-specific, and one is shared across the two species.

The shared “sub-tree” corresponds to the Lx subfamilies, which predate the

speciation.

5. There is a set of multi-parallel edges close to the 5’ end, representing a region

of high variability. Interestingly, the lengths of these edges differ by some

multiple of 3. Indeed this region is inside the ORF1 coding region.

6. There are two major mouse specific branches at the 5’ end, each contains a

short directed cycle consisting of edges with high copy numbers. The two

branches correspond to the A-type and the F-type of L1Md subfamilies, which

are known to contain distinct domains of tandem repeats at their 5’ region that

may be serve as alternative promoters [142].

7. There are other directed cycles in this component which could correspond to

other interesting features of L1 repeats.

We remark that the graph provides a principled way to extract biological

knowledge out of a de novo constructed repeat library. During the graph construction
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we use zero prior knowledge on the repeat content in mouse or rat. The above results

demonstrate the potential of application the repeat decomposition graph approach to

post-processing de novo repeat libraries: purging tandem duplications,

family/subfamily classification of de novo repeat families, and gaining biological

insights.

Table B.4.1 The average edge length and multiplicity of mouse/rat comparative repeat domain
graph constructed from their RepeatScout libraries.

genome seqs. #
edges

avg. edge
len

avg. edge
mul

Mouse only 541 1542 298.9 1.2
Rat only 596 1762 256.7 1.2
both 85 244 148.8 6.8
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Figure B.4.1: Largest connected component of mouse/rat comparative repeat domain graph. Each
edge is labeled l(c), where l is the length and c is the copy number of the sequence in the X
chromosomes. Edges with length <10 are contracted. Sources (top of figure) are 5’ ends of L1
sequences, while sinks (bottom) are 3’ ends. Observations in text are highlighted with boxes and
arrows with corresponding numbers.
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Section B.5: New procedure for handling palindromic regions

Here we give an example to illustrate the improvement on handling repeat

families with palindromic structure. In the C. briggsae RECON library, the center part

of the repeat family Cb000083 (Stein et al 2003 [93] annotated as

AT_rich_Low_complexity___TC1_DNA/Tc1) is palindromic. Part of its sequence

aligned with the repeat family Cb000214 (Stein et al 2003 [93] annotated as

unknown). Without the new procedure for handling such palindromes, the repeat

domain graph (Figure B.5.1 (a)) breaks at the middle of the palindromic sequence of

Cb000083. The new procedure (Figure B.5.1(b)) brings them together to make a

complete path.

(a)

(b)

Figure B.5.1: Handling self-palindromic sequences in the C. briggsae RECON library (as part of
the C. elegans/C. briggsae comparative repeat domain graph).   Sequences numbered 11 and 192
have corresponding RECON ID’s of Cb000083, and Cb000214. (a) Direct use of ABA breaks the
path for sequence 11 (and –11) at the nodes labeled 11/-11. (b) The new graph building procedure
correctly contains a single path for sequence 11.
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