
UC Davis
UC Davis Previously Published Works

Title
The Effects of Blueberry Phytochemicals on Cell Models of Inflammation and Oxidative 
Stress

Permalink
https://escholarship.org/uc/item/6sz1d166

Journal
Advances in Nutrition, 13(4)

ISSN
2161-8313

Authors
Felgus-Lavefve, Laura
Howard, Luke
Adams, Sean H
et al.

Publication Date
2022-07-01

DOI
10.1093/advances/nmab137
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6sz1d166
https://escholarship.org/uc/item/6sz1d166#author
https://escholarship.org
http://www.cdlib.org/


REVIEW

The Effects of Blueberry Phytochemicals on Cell
Models of Inflammation and Oxidative Stress
Laura Felgus-Lavefve,1 Luke Howard,1 Sean H Adams,2,3 and Jamie I Baum1,4

1Department of Food Science, University of Arkansas, Fayetteville, AR, USA; 2Department of Surgery, School of Medicine, University of California Davis,
Sacramento, CA, USA; 3Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, CA, USA; and 4Center for
Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA

ABSTRACT

Blueberries have been extensively studied for the health benefits associated with their high phenolic content. The positive impact of blueberry
consumption on human health is associated in part with modulation of proinflammatory molecular pathways and oxidative stress. Here, we review
in vitro studies examining the anti-inflammatory and antioxidant effects of blueberry phytochemicals, discuss the results in terms of relevance
to disease and health, and consider how different blueberry components modulate cellular mechanisms. The dampening effects of blueberry-
derived molecules on inflammation and oxidative stress in cell models have been demonstrated through downregulation of the NF-κB pathway and
reduction of reactive oxygen species (ROS) and lipid peroxidation. The modulatory effects of blueberry phytochemicals on the mitogen-activated
protein kinase (MAPK) pathway and antioxidant system are not as well described, with inconsistent observations reported on immune cells and
between models of endothelial, dermal, and ocular inflammation. Although anthocyanins are often reported as being the main bioactive compound
in blueberries, no individual phytochemical has emerged as the primary compound when different fractions are compared; rather, an effect of
whole blueberry extracts or synergy between different phenolic and nonphenolic extracts seems apparent. The major molecular mechanisms of
blueberry phytochemicals are increasingly defined in cell models, but their relevance in more complex human systems needs further investigation
using well-controlled clinical trials, in which systemic exposures to blueberry-associated molecules are measured concurrently with physiologic
indices of inflammation and oxidative stress. Adv Nutr 2022;13:1279–1309.

Statement of Significance: Blueberries have been extensively studied for their health benefits using in vitro models of inflammation and
oxidative stress, however a comprehensive review of the in vitro literature is lacking. This review provides the first in depth overview of in vitro
models of inflammation and oxidative stress using blueberry polyphenols.

Keywords: blueberry, inflammation, in vitro, NF-κB, oxidative stress, phytochemicals, polyphenols

Introduction
Blueberries (Vaccinium genus) have been widely studied for
their high phytonutrient content, particularly phenolic com-
pounds. Dietary polyphenols found in blueberries consist of
flavonoids (anthocyanins, flavonols, proanthocyanidins) and
phenolic acids (Figure 1). Anthocyanins are the pigments
responsible for the color of berries and blueberries have one
of the highest anthocyanin contents among foods (1). The
individual anthocyanin profile of blueberries is complex and
contains 5 of the 6 anthocyanidins commonly present in
food: malvidin, cyanidin, delphinidin, petunidin, and peoni-
din (2, 3). The glycoside moieties attached to the anthocyani-
din are predominantly galactose, arabinose, and glucose (2,
4), with all combinations of the 5 anthocyanidins and 3 sugars

found across blueberry cultivars. Blueberries are also rich
in flavonols, with a predominance of quercetin derivatives
(5, 6), and proanthocyanidins, formed by polymerization of
catechin and/or epicatechin units (7). Nonflavonoid phenolic
acids are mainly represented by chlorogenic acid, which
results from the esterification of caffeic acid with a quinic
acid molecule (2, 7). Blueberry phytochemicals used in the
treatment of cells in vitro often consist of a whole extract,
delivered as a reconstituted powder, juice, or pomace (residue
after the juice extraction), concentrated or not. Specific
classes of phytochemicals such as polyphenol-rich extracts
and phenolic fractions, including anthocyanins, phenolic
acids, and proanthocyanidins are prepared using solvent
extraction and purified through solid phase extraction.

C© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. Adv
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FIGURE 1 Classes and structures of the main phenolic compounds found in blueberries.

Polyphenols found in blueberries have been shown to
contribute to their health benefits (8). A number of reviews
discuss the association between blueberry consumption and
cardiovascular health (8, 9), inflammatory markers (10), type
2 diabetes, neuroprotection, and ocular health (8). These
claims on the health benefits of blueberry consumption
are supported by epidemiological studies (11, 12), animal
studies (13, 14), and diverse cell culture models (15, 16).
Randomized controlled trials have investigated antioxidant
and anti-inflammatory effects of blueberry in the context
of hypertension, cardiovascular diseases, arthritis, insulin
resistance, and metabolic syndrome and supplemented with
doses between 20 and 50 g of wild blueberry powder,
equivalent to 1 to 2 cups of fresh blueberries daily for 6 to
16 wk (17–21). However, few reported direct modulation of
molecular markers via blueberry supplementation, including
circulating inflammatory cytokines and adhesion molecules.

To complete and extend the body of literature covering
the in vivo physiological effects of blueberry feeding, the
current review considers mechanisms of action by focusing

This work was supported in part by USDA, National Institute of Food and Agriculture, and
Hatch Act Funding.
Author disclosures: SHA is a member of the Advances in Nutrition Editorial Board. The authors
report no conflicts of interest.
Address correspondence to JIB (e-mail: baum@uark.edu).
Abbreviations used: AAPH, 2,2-azobis(2-amidinopropane)dihydrochloride; Aβ , amyloid-β ;
αSyn, α-synuclein; BMDM, bone marrow-derived macrophage; COX-2, cyclo-oxygenase-2;
CREB, cAMP response element-binding; ELN, exosome-like nanoparticles; ERK,
extracellular-signal-regulated kinase; HFF, human foreskin fibroblast; HO-1, heme oxygenase;
HUVEC, human umbilical vein endothelial cell; IBD, inflammatory bowel disease; iNOS,
inducible NO synthase; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase;
MMP, matrix metalloproteinase; NOX, NADPH oxidase; NQO-1, NADPH quinone
oxidoreductase-1; PBMC, primary peripheral blood mononuclear cell; PMA,
phorbol-12-myristate-13-acetate; ROS, reactive oxygen species; SOD, superoxide dismutase;
STAT, signal transducers and activators of transcription; TEER, transepithelial electrical
resistance; TLR, toll-like receptor.

on in vitro responses to blueberry components. Evaluation
of the bioactive potential of berry phytochemicals or extracts
often uses cell models (e.g., immortalized cell lines induced
with LPS, proinflammatory cytokines, oxidant species, or
physical stimulus), which serve as controlled, simplified
systems (22, 23). Numerous limitations exist regarding cell
culture conditions and the artificial environment in which
the cells are maintained, because they are not completely
representative of the body’s physiology (24). In general, cells
are treated with parent compounds, disregarding potential
host and microbial metabolism between consumption and
the moment compounds reach the target organ (25, 26).
Cells are also not always treated with amounts representative
of physiological concentrations in the body, which can be
low due to the limited absorption of polyphenols (27, 28).
They are relatively simple to access and maintain, and
provide insights into the cellular mechanisms of the studied
compounds (29). Although blueberry phytochemicals may
impact a multitude of health-related mechanisms, we focused
on 2 intrinsically related systems (inflammation and oxida-
tive stress), the regulation of which are central to health, and
when dysregulated, underlie many disease outcomes. The
objective of this narrative review is to discuss observations
related to the modulatory role of blueberry phytochemicals
on key pathways implicated in systems, and to consider the
results from a physiological perspective.

Search strategy
Search queries containing the keywords “inflammation”,
“anti-inflammatory”, “oxidative stress”, “cell culture”, “in
vitro”, and “berry” (title/abstract/keywords) were conducted
in the PubMed and Science Direct databases. The search was

1280 Felgus-Lavefve et al.
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Ar�cles from ini�al search:
• PubMed: 2994
• ScienceDirect: 3316 Exclusion criteria:

• 932 Duplicates
• 25 Language other than English
• 1529 Reviews

Abstract/Title:
• 2662 Irrelevant (plants other than berries, no rela�on 

to inflamma�on, oxida�ve stress, and /or chronic 
diseases)

• 309 Animal studies
• 119 Human studies
• 217 Use of chemical standards instead of berry extracts
• 88 Extract from other plant parts than fruit

• 429 studies on berries and cell culture

• 120 studies on blueberry or bilberry and 
cell culture

• 70 studies on blueberry or bilberry and 
cell culture models of inflamma�on, 
oxida�ve stress, and /or associated
dysfunc�ons

FIGURE 2 Flow diagram of included and excluded studies.

conducted for articles through to August 2021. Duplicates,
reviews, articles written in languages other than English, and
studies using animal models or human participants were
excluded (Figure 2) with the caveat that studies focusing
on animals and/or humans but containing complementary
cell-based experiments were included and an evaluation of
the cell model findings used in the current review. From all
studies on berries and cell culture-based models retrieved,
only studies using blueberries were included. In this article,
the term “blueberry” encompasses fruits from the Vaccinium
genus described as blueberries, including V. angustifolium,
V. corymbosum, V. ashei, V. uliginosum, and the European
blueberry also referred to as bilberry, V. myrtillus. In addition,
relevant references from earlier reviews were manually
entered. A total of 70 articles related to blueberry and cell
culture models of inflammation, oxidative stress, and related
conditions were included.

Blueberry phytochemicals: in vitro models of
inflammation and oxidative stress
Immune system and inflammation models.
Inflammation is the innate immune system reaction to
a stimulus generated by pathogens, damaged cells, car-
cinogens, toxic compounds, changes in concentrations of
reactive oxygen species (ROS), and some foods or metabo-
lites (e.g., certain SFAs and fatty acylcarnitines). General

response mechanisms of inflammation have been exten-
sively reviewed elsewhere (30–32). In brief, the NF-κB
and mitogen-activated protein kinase [MAPK, subdivided
into extracellular-signal-regulated kinase (ERK), c-Jun N-
terminal kinase (JNK), and p38] inflammatory pathways
are activated following an external stimulus (e.g., pathogen)
and/or by proinflammatory cytokines (e.g., TNF-α). Their
activation generates the production of proinflammatory
cytokines, including TNF-α, IL-1β , and IL-6, which upon
release mobilize immune cells (33). Abnormal activation of
inflammation-associated proteins, including NADPH oxi-
dase (NOX) (34), inducible NO synthase (iNOS), and cyclo-
oxygenase (COX)-2 (35), and failure to resolve the infection
or injury can lead to chronic inflammation linked to diseases
and cardiometabolic dysfunction.

Studies on murine cell lines include the extensively used
monocyte/macrophage RAW 264.7 cells and primary bone
marrow-derived macrophages (BMDMs) that can be readily
activated by binding ligand to several toll-like receptors
(TLRs). Numerous studies on blueberry treatment of murine
cell lines use TLR4-activated models, through the addition
of the bacterial cell wall component LPS at doses varying
from 0.01 to 10 μg/mL (details in Table 1). This produces
a strong inflammatory response through, but not limited to,
the expression of IL-6, TNF-α, or NO (36).

The capacity of blueberry components to reduce
proinflammatory marker gene expression and secretion in

Blueberries, inflammation, and oxidative stress 1281
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LPS-induced murine cell models (RAW 264.7 and BMDMs)
has been shown in several studies, although the anti-
inflammatory effect seems to be carried out by an array of
compounds rather than an individual blueberry phenolic
fraction. Diverse blueberry products, including blueberry
pomace, whole blueberry extracts, polyphenol-rich extracts,
or specific phenolic fractions lowered the production
of cytokines by the cells in a dose-dependent manner.
Further details on the treatments and doses used in the
studies are reported in Table 1. For instance, blueberry
phytochemicals reduced the gene expression and secretion
of proinflammatory cytokines induced by LPS, particularly
IL-6 (37–43), IL-1β (37, 39, 40, 43–45), and TNF-α (37,
38, 41, 42, 44) in RAW 264.7 cells and BMDMs compared
with the LPS-induced control. However, it is not clear
which fraction or specific phenolic compound exerts a more
potent effect, especially since their activities seem to be
cytokine specific. For example, Esposito et al. (43) reported
a better ability of a proanthocyanidin fraction to reduce
IL-1β compared with the polyphenol extract, anthocyanin,
or phenolic acid fractions. However, IL-6 gene expression
was not suppressed by that same proanthocyandin fraction,
and monocyte chemoattractant protein (MCP)-1 expression
(43), a chemokine that regulates monocyte infiltration (46),
was inhibited by the blueberry anthocyanins but not by
the other phenolic fractions. Although the large variation
between the blueberry treatment doses used across different
reports hinders direct comparisons between the studies,
most have shown a dose-dependent regulation of cytokines
(39, 41, 44). Cheng et al. (47), however, reported 40–60%
inhibition of IL-1β gene expression with ≤200 μg/mL
blueberry extract, but no effect when the treatment dose
was increased to 400 μg/mL (47). This observation was
tentatively explained by the increased phagocytic activity
of the macrophages in the presence of a high polyphenol
concentration.

iNOS is an enzyme responsible for the synthesis of
NO, a mediator secreted by neutrophils and macrophages
to induce vasodilation, mediate the immune response, or
regulate apoptosis (48, 49). After stimulation of RAW
264.7 cells by LPS, blueberry extracts inhibited iNOS gene
expression (40, 50) and NO production (38, 39, 50–53),
with extracts from anthocyanin-rich cultivars (39) and
blueberry proanthocyanidin fractions (43) being particularly
effective (Table 1). COX-2 also plays a central role in the
induction of inflammation. It is involved in the forma-
tion of prostaglandins, including prostaglandin E2 (PGE-
2) responsible for the induction of pain (54). Blueberry
extracts have consistently reduced COX-2 gene expression
in RAW 264.7 cells (37–40, 43, 50, 51) (Table 1), although
Mueller et al. (41) and Grace et al. (45) did not report a
significant reduction of iNOS and COX-2 gene expression
by whole blueberry or polyphenol-rich extracts. Although
most studies have focused on blueberry polyphenols, Gu et
al. (38) reported the anti-inflammatory effect of the volatile
extracts of several berries compared with their phenolic
counterpart. Volatile and phenolic blueberry extracts showed
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similar inhibitory effects on inflammatory cytokines, NO,
and COX-2 production, even though the volatile fraction was
tested at a lower concentration than the phenolic fraction.
This provides initial evidence that the volatile fraction of
blueberries also contains molecules with anti-inflammation
properties, but this remains to be validated.

The anti-inflammatory activities of blueberry phytochem-
icals have also been demonstrated in cell lines derived from
humans (23), including the U-937 and THP-1 monocyte-
like cells, that can be differentiated into macrophages after
stimulation with phorbol-12-myristate-13-acetate (PMA)
(55), and human primary peripheral blood mononuclear
cells (PBMCs). In the context of blueberry studies, a variety
of compounds have been used to induce inflammation,
including Fusobacterium nucleatum bacteria (56), LPS (57–
60), or cytokines (61, 62) (Table 1). Blueberry extracts exerted
an inhibitory effect toward cytokine secretion (56, 58–60)
and matrix metalloproteinase (MMP)-8 and 9 production
(56, 58), in cells triggered by bacteria or LPS. Blueberry
extracts decreased TNF-α gene expression induced by LPS
in THP-1 monocytes (59) and U937 macrophages (57),
but on the contrary, increased its expression in THP-
1 differentiated macrophages (60). The regulatory effect
reported in most studies was associated with a decrease in
NF-κB translocation in THP-1 cells (59). In PBMCs and
THP-1 cells alternatively induced with either IFN-γ or TNF-
α, the effects of a blueberry treatment were less robust
(Table 1). Cytokine secretion and adhesion molecule gene
expression were inhibited by a blueberry extract in IFN-
γ -induced PBMCs, but the same blueberry extract further
increased the proinflammatory marker secretion when the
cells were induced with TNF-α (61). These observations were
tentatively explained by looking at the pathways activated
by the different cytokines (IFN-γ or TNF-α): the signal
transducers and activators of transcription (STAT) pathway
activation was inhibited by coincubation of IFN-γ with the
berry treatment, but NF-κB was enhanced by the addition of
TNF-α combined with a blueberry extract (61). A follow-up
study demonstrated that the IFN-γ receptor 2, responsible
for transducing the signal conveyed by the proinflammatory
cytokines, was inhibited by the blueberry anthocyanins
(62). These observations on cell models induced with
non-LPS ligands suggest that the immunomodulatory ef-
fects of blueberry compounds are context and pathway
specific.

In summary, blueberry phenolic and polyphenolic ex-
tracts have been shown to dampen inflammation in RAW
264.7, U-937, BMDMs, and PBMCs challenged with inflam-
mation inducers, through the reduction of proinflammatory
cytokine gene expression and secretion, and inhibition
of NF-κB translocation to the nucleus. No specific frac-
tion emerges as being more potent, suggesting a general
effect of multiple phytomolecules rather than a single
compound. More studies are warranted to better define
molecular targets of blueberry-derived molecules and to
assess the involvement of TLR-dependent and -independent
pathways.

Oxidative stress models.
ROS and free radicals are natural by-products of enzymatic
reactions produced during metabolism (63, 64). When
controlled, ROS production is used for signaling in metabolic
processes (65). Environmental factors, lifestyle, and patholo-
gies contribute to an unbalanced state, where ROS pro-
duction overwhelms the defense capacity of the cells and
induces oxidative stress (66). This state leads to protein and
nucleic oxidation, and lipid peroxidation, which can impair
enzymatic processes, induce breakage of DNA strands, and
may lead to cell death (67–69). Endogenous antioxidant
defense mechanisms exist in the body to limit the production
and deleterious effects of ROS. Superoxide dismutase (SOD),
found in the membrane or cytosolic fractions of cells,
converts superoxide radicals (O2

−) to H2O2 and O2 (70).
Glutathione peroxidase (GSH-PX), via the oxidation of glu-
tathione S-transferase, reduces lipid peroxide and converts
H2O2 to H2O (71). Enzymes, including DNA glycosylases,
repair damaged DNA (72). Oxidation and inflammation are
intricately related, as cytokines and chemokines secreted by
inflammatory cells can trigger ROS production. In turn,
ROS activate proinflammatory pathways, including NF-
κB, and sustain the cycle of oxidative and inflammatory
stress (10, 65). These conditions favor the development
of chronic pathologies such as cancer (73), cardiovascular
(74), inflammatory (75), and neurodegenerative diseases
(76).

The effect of blueberry phytochemicals on oxidative
stress has been evaluated using several cell models, in-
cluding neurons (77), fibroblasts (78, 79), hepatocytes
(80, 81), enterocytes (82–86), and epithelial cells (82,
87). Despite the diversity in models used, studies over-
lap in terms of the endpoints measured, which focus
on evaluation of the modulation in ROS production and
lipid peroxidation, increases in antioxidant enzyme activ-
ities, and protection of DNA against oxidative damage
(Table 2).

The induction of oxidative stress in a variety of cells was
attenuated by treatment with blueberry extracts, principally
through the decreased formation of ROS (77, 78, 80, 84, 85),
but also increased scavenging activity (79), and/or reduction
of lipid peroxidation (77, 79). This effect, however, was only
partly explained by the regulatory effect of the blueberry
compounds on antioxidant enzymes, which were upregu-
lated in neuronal cells treated with blueberry juice (77) and
Caco-2 cells incubated with a polyphenol-rich blueberry
extract (84). Glutathione concentrations, however, remained
unchanged in Caco-2 cells treated with an anthocyanin
fraction (85). In addition, a blueberry pomace extract tested
on Chinese hamster ovary (CHO) epithelial cells and a
human colon cancer cell line (HT-29) failed to stimulate
the transcription of detoxification enzymes such as heme
oxygenase (HO-1) and NADPH quinone oxidoreductase-
1 (NQO-1) (88), both involved in the antioxidant/oxidant
balance (89, 90). In contrast with those observations made
on blueberry parent compounds, phloroglucinol aldehyde
(an anthocyanin degradation colonic product) increased the
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transcription activity of nuclear factor erythroid 2-related
factor 2 (Nrf-2), which when induced by oxidative stress
stimulates the transcription of HO-1 and NQO-1 (88). This
suggests that blueberry metabolite derivatives may contribute
to the antioxidant activity of the berries.

A consequence of oxidation is DNA damage (69)
and potentially increases in cell death. Blueberry extracts
demonstrated a protection against DNA damage induced
by hydroxide peroxide (79) and tert-butylhydroperoxide
(t-BuOOH) (83, 85), although in Caco-2 cells, only the
blueberry phenolcarbonic acid fraction reduced DNA dam-
age compared with whole blueberry extract, anthocyanin,
and polymeric fractions (84). Protective effects in terms
of DNA damage and cell death were attributed to blue-
berry anthocyanin fractions in liver cells (HepG2) and
pulmonary epithelial cells (HPAEpiC) exposed to light or
ionizing radiation, through modulation of apoptosis and
cell cycle regulatory gene expressions (80, 81, 87). However,
no improvement of cell cycle perturbation induced by
2,2-azobis(2-amidinopropane)dihydrochloride (AAPH) was
reported in intestinal epithelial cells IPEC-1 treated with
blueberry anthocyanins (86).

To summarize, blueberry extracts and phenolic fractions
demonstrated protective effects against oxidative stress,
which were mainly explained through reduction of ROS
production and protection against DNA damage induced
during oxidation. Additional studies comparing cell mod-
els and/or blueberry fractions using similar experimental
parameters are necessary to demonstrate the effects of the
treatment on antioxidant enzymes, and fully understand
the antioxidant contribution of blueberry phytochemicals
versus their metabolic by-products. There is also a need to
evaluate the potential effects of blueberry volatiles in this
regard.

Blueberry phytochemicals, inflammation, and oxidative
stress: perspectives on physiological functions
Endothelial and vascular inflammation models.
Atherosclerosis, a chronic inflammatory disease of the
arterial wall (91), is characterized by the buildup of
plaques in arteries and is the most frequent underlying
condition for the development of cardiovascular diseases
(92). Human umbilical vein endothelial cells (HUVECs)
and human microvascular vein endothelial cells (HMVECs)
provide a model to study normal as well as oxidation and
inflammation-related dysfunctions. Studies on the effect of
blueberry compounds in endothelial cell models are detailed
in Table 3.

Risk factors including smoking, aging, hypercholes-
terolemia, and hyperglycemia (93) promote the retention of
lipids, particularly LDL prone to oxidation in the vascular
wall, causing the activation of inflammatory processes (94).
The treatment of endothelial cells exposed to oxidative
stress triggers with blueberry anthocyanins demonstrated
protective effects toward ROS secretion and lipid peroxi-
dation (95). A similar observation was reported with cells
treated with blueberry exosome-like nanoparticles (ELN),
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an extracellular messenger vesicle presents in plants that
contains proteins, lipids, mRNA, and microRNA (miRNA)
(96). In addition to reducing ROS production, blueberry ELN
also regulated gene expression involved in endothelial acti-
vation and leukocyte recruitment [MAPK1 and intercellular
adhesion molecule (ICAM)] and inflammation (IL-6, TLR8,
and TNF) (97). The antioxidant effect of blueberry extract
on endothelial cells is likely due to the activity of several
phytochemicals, but the extent to which other compounds
contribute to the effect remains unclear, particularly due
to the low number of studies focusing on nonphenolic
compounds.

The secretion of chemokines and adhesion molecules by
the endothelium is primarily regulated by TNF-α and C-
reactive protein (CRP) (98), and leads to monocyte recruit-
ment (99). After infiltration, monocytes differentiate into
macrophages and phagocytose LDL (100). Macrophages that
accumulate lipids eventually turn into foam cells, becoming
surrounded by smooth-muscle cells and a collagen matrix,
ultimately resulting in plaque formation (101). Blueberry
anthocyanins reduced the adhesion of THP-1 monocytes
to HUVEC endothelial cells with a better efficacy than
the phenolic acid fraction derived from the same extract
(102). The action of blueberry anthocyanins was further
investigated and the individual compounds malvidin and
cyanidin 3-glucoside, protocatechuic, and gallic acid reduced
THP-1 adhesion (103). Blueberry extracts also decreased
platelet- and endothelial-derived microvesicles through the
inhibition of P2X7 transcription and Akt phosphorylation,
both contributing to the release of extracellular vesicles (104)
associated with monocyte interaction with endothelial cells
(105). Su et al. (42) observed that blueberry extracts led
to downregulation of noncoding miR-21, miR-146a, and
miR125b, miRs typically increased in macrophages involved
in plaque formation (Table 3).

In cardiovascular disease, endothelial cell migration and
angiogenesis are reduced, leading to structural and func-
tional alterations of the endothelium (106). Akt is a major
signaling pathway in angiogenesis, regulating cell survival,
cell cycle, and migration (107). Treatment with blueberry
polyphenols increased angiogenesis in endothelial cells
through the upregulation of the Akt pathway (108). However,
abnormal angiogenesis promoted by vascular endothelial
growth factor (VEGF) was counterbalanced by blueberry
extract treatment through the inhibition of ERK and Akt
phosphorylation (104, 109). In addition, blueberry polyphe-
nol extract did not modulate polyphospholipase C (PLC)
expression and phosphorylation, involved in angiogenesis, in
HUVEC cells following induction with VEGF or LPS (109,
110). These results suggest that blueberry components may
support angiogenesis under normal physiological conditions,
but attenuate abnormal angiogenesis induced by overactive
growth factors.

Blueberries exert protective effects on endothelial models
by reducing oxidative stress and monocyte adhesion to
the endothelium and modulating angiogenesis. The direct
impact of blueberry compounds on endothelial dysfunction
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in vivo remains to be elucidated, with few studies focusing on
the molecular pathways involved in atherosclerosis.

Brain and neuronal inflammation models.
Inflammation in the brain can be generated by the dys-
regulation of inflammatory pathways, molecular signals
released by injured neurons, or the accumulation of protein
aggregates (111). Brain inflammation has been associated
with an impairment of neuron regeneration (112) and an
increase in the incidence of neurodegenerative diseases
such as multiple sclerosis (113), and Alzheimer’s (114)
and Parkinson’s diseases (115). Mechanisms involved in
neurodegeneration have been reviewed in detail by Jellinger
(116).

The sensitivity of brain muscarinic receptors to oxidative
stress increases with aging (117), and abnormal signaling is
implicated in neurodegenerative diseases. Blueberry extracts
alleviate oxidative stress in neuronal models through a
variety of mechanisms (Table 4), including scavenging of
ROS (118) and downregulation of iNOS gene expression
(119–121). In COS-7 cells transfected with muscarinic
receptors, treatment with a whole blueberry extract reduced
activation of the cAMP response element-binding (CREB)
pathway, which can be activated by protein aggregates and
is involved in oxidative stress in neurons (122). Several
blueberry fractions exerted antioxidant effects, although via
different mechanisms: a blueberry extract polar fraction
(containing high concentrations of polyphenols) and a non-
polar fraction (low in polyphenols) both reduced oxidative
stress in TNF-α- and PMA-induced human neuroblastoma
(118). The polyphenolic-rich fraction exerted scavenging
activity of ROS, whereas the nonpolar fraction disrupted
NOX assembly, a mechanism that generates the production
of ROS. Blueberry treatment also reduced proinflammatory
cytokines in LPS-induced BV-2 cells, through modulation
of COX-2 gene expression (119, 120) and the inhibition of
NF-κB translocation into the nucleus (123). The phenolic
extracts increased concentrations of Arg-1 (124), a marker
of the M2 phenotype of macrophages, which promotes a
return to homeostasis (125) necessary to avoid chronic
inflammation. In a model of microglial cells subjected to
inflammation in different glycemic conditions, a blueberry
extract was effective at inhibiting inflammatory markers,
with a comparable effect to the insulin treatment used in the
model (121).

Protein aggregations in the brain result from the ab-
normal deposition of misfolded proteins, leading to the
accumulation of fibrils, including α-synuclein (αSyn) or
amyloid-β (Aβ) into plaques (126). Accumulation of Aβ

aggregates is associated with impairment of normal phys-
iological activity of the neurons, increased production of
ROS (127), and activation of microglia and astrocytes (128).
Immune cells also generate Aβ (129), therefore upregulating
the inflammatory cascade. A blueberry extract and an
anthocyanin fraction conferred protection against protein
aggregate-induced cytotoxicity in mouse neuroblastoma and
rat hippocampal neurons challenged with Aβ species (130,

131), most likely through the inhibition of the CREB pathway
but with no effect on ERK activation (131). αSyn-challenged
mouse microglia were also protected by polyphenol ex-
tracts, but not the cells challenged with glutamate, which
is sometimes found in excess in pathological conditions
(132).

Based on results in cell models, it is possible that the active
compounds of blueberries could dampen the development
of neurodegenerative diseases by reducing oxidative stress
and inflammation, which limits the formation of protein
aggregates and associated cell damage. It is important to
remember that although cell culture studies of neurons
and glial cells provide useful information to understand
inflammation mechanisms in the brain, these models may be
oversimplified due to the lack of a blood-brain barrier, which
is critical in maintaining homeostasis (133).

Dermal inflammation models.
The skin is subjected to constant challenge, including
pollution, physical damage (wounds), and light irradiation,
that play a role in the initiation of inflammation (134). Cell
models include keratinocytes, found in the epidermis (135),
and fibroblasts that synthesize the extracellular matrix, used
alone or in coculture (136). Recently, 3D skin models and
a human skin equivalent have been developed to provide
more complex models for testing toxicity, absorption, and
metabolism with the presence of several epidermal layers and
stratum corneum (137, 138).

Blueberry extracts were used to treat human keratinocytes
(HaCaT) and a human skin model (“EpiDerm”) (Table 5)
challenged with O3 exposure, a toxic pollutant that can
alter the redox status of the skin and induce inflammation
(138). O3 impaired wound healing of the cells, but function
was recovered with a blueberry polyphenol treatment by
activating cellular antioxidant defense systems, reducing
H2O2 production (138). A blueberry polyphenol extract was
compared with 2 anthocyanin and proanthocyanidin-rich
extracts to investigate wound healing in human fibroblasts
(HDFa), and anti-inflammatory and antioxidant effects on
murine macrophages. The fractions were both effective
at reducing ROS production and alleviated inflammation
by reducing the expression of COX-2 and iNOS in the
macrophages, but the protective effects of proanthocyanidins
were more pronounced than for the other blueberry polyphe-
nols (139). Blueberry treatments, obtained through several
extraction methods, were also effective at reducing NO
production of human foreskin fibroblast (HFF-1) induced by
IL-2β (140).

The major risk factor for developing skin cancer is sun
exposure. DNA absorbs UV-B, which can induce the for-
mation of dimeric pyrimidine bases (141). These mutations
are usually repaired by nucleotide excision, although certain
mutations, notably in the p53 gene, result in the loss of this
repair function (142), possibly leading to the development
of squamous or basal cell carcinoma (143). In cells exposed
to UV-B, responsible for DNA damage and initiation of
proinflammatory pathways, a blueberry extract protected

Blueberries, inflammation, and oxidative stress 1293



TA
BL

E
4

Ce
ll-

cu
ltu

re
-b

as
ed

st
ud

ie
s

on
th

e
eff

ec
to

fb
lu

eb
er

ry
ph

yt
oc

he
m

ic
al

s
on

m
ic

ro
gl

ia
an

d
ne

ur
on

al
in

fla
m

m
at

io
n

m
od

el
s

C
el

ll
in

e
Tr

ea
tm

en
ts

(d
os

e,
d

ur
at

io
n

)
C

h
al

le
n

g
e

(d
os

e,
d

ur
at

io
n

)
C

on
tr

ol
s

N
1

Pa
ra

m
et

er
s

m
ea

su
re

d
(m

et
h

od
)

Eff
ec

ts
of

tr
ea

tm
en

t
co

m
p

ar
ed

to
ch

al
le

n
g

e
Re

f.

W
ho

le
an

d/
or

po
ly

ph
en

ol
ic

ex
tr

ac
ts

:
M

ic
ro

gl
ia

fro
m

C
57

BL
/6

m
ic

e
Po

ly
ph

en
ol

ex
tr

ac
t(

1
μ

L,
eq

ui
va

le
nt

to
ab

ou
t

10
μ

g/
m

L,
24

h2
)

G
lu

ta
m

at
e

(1
00

μ
M

,
24

h)
or

α
-s

yn
uc

le
in

(1
00

ng
/m

L,
24

h)

Ve
hi

cl
e,

ch
al

le
ng

e
3

M
or

ph
ol

og
y

(li
gh

tm
ic

ro
sc

op
y)

,
vi

ab
ili

ty
(D

A
PI

st
ai

ni
ng

)
M

od
er

at
e

eff
ec

to
n

ce
ll

m
or

ph
ol

og
y

(p
re

se
nc

e
of

bo
th

he
al

th
y

an
d

“fr
ie

d
eg

g”
sh

ap
ed

ce
lls

).
N

o
ne

ur
op

ro
te

ct
iv

e
eff

ec
ts

by
th

e
tr

ea
tm

en
ta

ga
in

st
gl

ut
am

at
e-

in
du

ce
d

ce
ll

de
at

h,
bu

tp
ro

te
ct

io
n

ag
ai

ns
tα

-s
yn

uc
le

in
da

m
ag

e

(1
32

)

H
ip

po
ca

m
pa

ln
eu

ro
ns

fro
m

F3
44

ra
ts

W
ho

le
ex

tr
ac

t
(0

.1
25

m
g/

m
L,

10
–3

0
m

in
2
)

A
β

sp
ec

ie
s

(1
0

μ
M

,
10

–3
0

m
in

)
Ve

hi
cl

e,
ch

al
le

ng
e

4
Vi

ab
ili

ty
(s

ta
in

in
g

ex
cl

us
io

n)
,

C
RE

B,
ER

K,
PK

C
(im

m
un

ofl
uo

re
sc

en
ce

),
RO

S
(D

C
FD

A
),

gl
ut

at
hi

on
e

(im
m

un
ofl

uo
re

sc
en

ce
)

Pr
ot

ec
tio

n
ag

ai
ns

tA
β

-in
du

ce
d

cy
to

to
xi

ci
ty

.N
o

↓P
KC

α
an

d
PK

C
γ

in
ag

in
g

ne
ur

on
s.

↓
ph

os
ph

or
yl

at
io

n
of

C
RE

B
bu

t
no

eff
ec

to
n

ER
K

ac
tiv

at
io

n.
↓R

O
S

pr
od

uc
tio

n
an

d
↑

gl
ut

at
hi

on
e

co
nc

en
tr

at
io

ns

(1
31

)

CO
S-

7
tr

an
sf

ec
te

d
w

ith
m

us
ca

rin
ic

re
ce

pt
or

s
(M

1
an

d
M

3)

W
ho

le
ex

tr
ac

t(
2

m
g/

m
L,

45
m

in
+

4
h2

)
D

op
am

in
e

(1
m

M
,

4
h)

Ve
hi

cl
e,

ch
al

le
ng

e,
m

ur
in

e
re

ce
pt

or
ce

ll
co

nt
ro

l

—
PK

C
,C

RE
B,

M
A

PK
(W

B)
Fu

rt
he

r↑
M

A
PK

ph
os

ph
or

yl
at

io
n

in
du

ce
d

by
do

pa
m

in
e

in
M

1
ce

lls
bu

t
no

tM
3.

↓P
KC

γ
an

d
C

RE
B

ph
os

ph
or

yl
at

io
n

in
du

ce
d

by
do

pa
m

in
e

in
bo

th
ce

ll
ty

pe
s

(1
22

)

BV
-2

W
ho

le
ex

tr
ac

t
(5

0–
50

0
μ

g/
m

L,
45

m
in

+
4–

16
h2

)

LP
S

(1
00

ng
/m

L,
4–

16
h)

Ve
hi

cl
e,

ch
al

le
ng

e
3

N
O

(G
rie

ss
),

iN
O

S,
an

d
CO

X-
2

ge
ne

ex
pr

es
si

on
(q

PC
R)

,
iN

O
S

an
d

CO
X-

2
pr

ot
ei

ns
(W

B)
,I

L-
1β

an
d

TN
F-

α

(E
LI

SA
),

RO
S

(D
C

FD
A

)

↓N
O

pr
od

uc
tio

n.
D

os
e-

de
pe

nd
en

t↓
iN

O
S

an
d

CO
X-

2
ge

ne
an

d
pr

ot
ei

n
ex

pr
es

si
on

.↓
cy

to
ki

ne
s

an
d

RO
S

pr
od

uc
tio

n
fo

r
tr

ea
tm

en
td

os
e

10
0

μ
g/

m
L

an
d

hi
gh

er

(1
19

)

BV
-2

W
ho

le
ex

tr
ac

t
(0

.2
5–

2
m

g/
m

L,
1

h)
LP

S
(1

00
ng

/m
L,

ov
er

ni
gh

t)
Ve

hi
cl

e,
ch

al
le

ng
e

—
N

O
(G

rie
ss

),
iN

O
S,

CO
X-

2
pr

ot
ei

n
ex

pr
es

si
on

(W
B)

,
TN

F-
α

(E
LI

SA
)

↓N
O

,T
N

F-
α

pr
od

uc
tio

n
an

d
iN

O
S

ge
ne

ex
pr

es
si

on
(d

os
es

≥1
m

g/
m

L)
.↓

CO
X-

2
ge

ne
ex

pr
es

si
on

(d
os

e
0.

5
m

g/
m

L)

(1
20

)

BV
-2

Po
ly

ph
en

ol
ex

tr
ac

t
(1

0
ng

/m
L,

1–
6

h2
fo

r
qP

C
R

or
24

–4
8

h2
fo

r
ot

he
ra

ss
ay

s)

LP
S

(1
00

ng
/m

L,
1–

6
h

or
24

–4
8

h)
Ve

hi
cl

e,
ch

al
le

ng
e

3
Vi

ab
ili

ty
(M

TT
),

m
or

ph
ol

og
y,

iN
O

S
an

d
A

rg
-1

(im
m

un
ofl

uo
re

sc
en

ce
),

m
ig

ra
tio

n
(t

ra
ns

w
el

l
ch

am
be

rs
an

d
sc

ra
tc

h
as

sa
y)

,
Rh

o
G

TP
as

es
(W

B)
,I

L-
1β

,
TN

F-
α

,I
L-

6
(q

PC
R)

↓m
ig

ra
tio

n
an

d
pr

ev
en

tio
n

of
m

or
ph

ol
og

y
ch

an
ge

s.
↓

RA
C

-1
-G

TP
.M

od
ul

at
io

n
of

M
1

ph
en

ot
yp

e
ac

qu
ire

d
af

te
rL

PS
ch

al
le

ng
e,

to
w

ar
ds

M
2

ph
en

ot
yp

e.
↓c

yt
ok

in
e

pr
od

uc
tio

n

(1
24

)

(C
on

tin
ue

d)

1294 Felgus-Lavefve et al.



TA
BL

E
4

(C
on

tin
ue

d)

C
el

ll
in

e
Tr

ea
tm

en
ts

(d
os

e,
d

ur
at

io
n

)
C

h
al

le
n

g
e

(d
os

e,
d

ur
at

io
n

)
C

on
tr

ol
s

N
1

Pa
ra

m
et

er
s

m
ea

su
re

d
(m

et
h

od
)

Eff
ec

ts
of

tr
ea

tm
en

t
co

m
p

ar
ed

to
ch

al
le

n
g

e
Re

f.

BV
-2

Po
ly

ph
en

ol
ic

ex
tr

ac
t

(2
5–

10
0

μ
g/

m
L,

45
m

in
+

16
h2

)

LP
S

(1
00

ng
/m

L,
16

h)
Ve

hi
cl

e,
ch

al
le

ng
e

3–
4

Vi
ab

ili
ty

(M
TS

),
N

O
(G

rie
ss

),
iN

O
S,

an
d

CO
X-

2
(W

B,
tr

an
si

en
t

tr
an

sf
ec

tio
n/

lu
ci

fe
ra

se
as

sa
y)

,N
F-

κ
B

(E
M

SA
)

D
os

e-
de

pe
nd

en
t↓

N
O

pr
od

uc
tio

n.
↓i

N
O

S
an

d
CO

X-
2

pr
ot

ei
n

an
d

pr
om

ot
er

ac
tiv

ity
.↓

tr
an

sl
oc

at
io

n
of

N
F-

κ
B

(1
23

)

H
A

PI
W

ho
le

ex
tr

ac
t(

2
m

g/
m

L,
24

h,
al

on
e

or
w

ith
50

m
M

in
su

lin
)

LP
S

(1
00

m
g/

m
L,

ov
er

ni
gh

t,
in

pr
es

en
ce

of
5,

25
,

or
50

m
M

gl
uc

os
e)

Ve
hi

cl
e,

ch
al

le
ng

e
3

N
O

(G
rie

ss
),

TN
F-

α
(E

LI
SA

),
iN

O
S

(W
B)

,G
LU

T1
,a

nd
N

O
X4

ex
pr

es
si

on
(D

A
PI

st
ai

ni
ng

)

Co
m

pa
ris

on
w

ith
LP

S
co

nt
ro

l:
↓a

ll
m

ar
ke

rp
ro

du
ct

io
n

or
ex

pr
es

si
on

by
bl

ue
be

rr
y

tr
ea

tm
en

to
fa

ll
co

nc
en

tr
at

io
ns

of
gl

uc
os

e
(h

ig
he

ri
nh

ib
iti

on
in

lo
w

gl
uc

os
e

co
nc

en
tr

at
io

n)
.T

he
in

hi
bi

tio
n

eff
ec

tw
as

m
or

e
pr

on
ou

nc
ed

w
he

n
bl

ue
be

rr
y

w
as

us
ed

w
ith

in
su

lin
fo

rN
O

an
d

iN
O

S

(1
21

)

A
nt

ho
cy

an
in

fra
ct

io
ns

:
N

eu
ro

2a
A

nt
ho

cy
an

in
(0

.5
–8

-fo
ld

m
ol

ar
ra

tio
to

A
β

,
15

m
in

–3
h2

)

A
β

sp
ec

ie
s

(1
0

μ
M

,
15

m
in

–3
h)

Ve
hi

cl
e,

ch
al

le
ng

e
3

Vi
ab

ili
ty

(M
TS

),
am

yl
oi

d
fo

rm
a-

tio
n

(fl
uo

re
sc

en
ce

as
sa

y)
,

m
or

ph
ol

og
y

A
β

sa
m

pl
es

(m
ic

ro
sc

op
y)

,fi
br

il
fo

rm
at

io
n

(W
B)

D
os

e-
de

pe
nd

en
t↓

am
yl

oi
d

fo
rm

at
io

n
an

d
↑f

or
m

at
io

n
of

lo
w

-m
ol

ec
ul

ar
w

ei
gh

tA
β

sp
ec

ie
s.

↓c
el

lc
yt

ot
ox

ic
ity

in
du

ce
d

by
A
β

ag
gr

eg
at

es

(1
30

)

O
th

er
s:

SH
-S

Y5
Y

W
ho

le
ex

tr
ac

t,
po

la
r

(p
ol

yp
he

no
l-r

ic
h)

an
d

no
np

ol
ar

(n
ot

po
ly

ph
en

ol
-r

ic
h)

fra
ct

io
ns

(5
μ

g/
m

L,
1

h2
)

TN
F-

α
(2

00
ng

/m
L,

1
h)

or
PM

A
(4

00
ng

/m
L,

1
h)

Ve
hi

cl
e,

ch
al

le
ng

e,
ne

ga
tiv

e:
D

PI
(1

0
μ

M
),

N
A

C
(1

m
M

),
A

EB
SF

(1
m

M
),

G
W

48
96

(1
3.

8
μ

M
),

1
h

4
RO

S
(D

C
FD

A
),

sc
av

en
gi

ng
ca

pa
ci

ty
(c

ho
lin

e
ox

id
at

io
n

as
sa

y)
,c

yt
ot

ox
ic

ity
(M

TT
),

su
pe

ro
xi

de
pr

od
uc

tio
n

(c
yt

oc
hr

om
e

C
),

P6
7ph

ox
an

d
ph

os
ph

or
P4

0ph
ox

(E
LI

SA
),

P6
7ph

ox
(W

B)
,N

O
X

as
se

m
bl

y
in

lip
id

ra
ft

(c
on

fo
ca

l
m

ic
ro

sc
op

y)

↓R
O

S
fo

rm
at

io
n

by
w

ho
le

ex
tr

ac
ta

nd
no

np
ol

ar
fra

ct
io

n.
↑R

O
S

sc
av

en
gi

ng
ac

tiv
ity

of
po

la
rf

ra
ct

io
n

on
ly

.
↓s

up
er

ox
id

e
pr

od
uc

tio
n

an
d

pl
as

m
a

m
em

br
an

e-
as

so
ci

at
ed

p6
7ph

ox
,↓

fo
rm

at
io

n
of

la
rg

e
lip

id
ra

ft
by

no
np

ol
ar

fra
ct

io
n

on
ly

(1
18

)

1
N

,n
um

be
ro

fe
xp

er
im

en
ta

lr
ep

lic
at

es
,a

s
st

at
ed

by
th

e
au

th
or

s.
A

EB
SF

,4
-(2

-a
m

in
oe

th
yl

)b
en

ze
ne

su
lfo

ny
lfl

uo
rid

e;
A
β

,a
m

yl
oi

d
β

;C
O

X-
2,

cy
cl

oo
xy

ge
na

se
-2

;C
RE

B,
cA

M
P-

re
sp

on
se

el
em

en
tb

in
di

ng
;D

A
PI

,4
′ ,6

-d
ia

m
id

in
o-

2-
ph

en
yl

in
do

le
;D

C
FD

A
,

2′ ,7
′ -d

ic
hl

or
ofl

uo
re

sc
in

di
ac

et
at

e;
D

PI
,d

ip
he

ny
li

od
on

iu
m

;E
M

SA
,e

le
ct

ro
ph

or
et

ic
-m

ob
ili

ty
sh

ift
as

sa
y;

ER
K,

ex
tr

ac
el

lu
la

r-
si

gn
al

-r
eg

ul
at

ed
ki

na
se

;i
N

O
S,

in
du

ci
bl

e
ni

tr
ic

ox
id

e
sy

nt
ha

se
;M

A
PK

,m
ito

ge
n-

ac
tiv

at
ed

pr
ot

ei
n

ki
na

se
;M

TS
,

3-
(4

,5
-d

im
et

hy
lth

ia
zo

l-2
-y

l)-
5-

(3
-c

ar
bo

xy
m

et
ho

xy
ph

en
yl

)-2
-(4

-s
ul

fo
ph

en
yl

)-2
H

-t
et

ra
zo

liu
m

);
M

TT
,3

-(4
,5

-d
im

et
hy

l-2
-t

hi
az

ol
yl

)-2
,5

-d
ip

he
ny

lte
tr

az
ol

iu
m

br
om

id
e;

N
A

C
,N

-a
ce

ty
l-L

-c
ys

te
in

e;
N

O
X,

N
A

D
PH

ox
id

as
e;

PK
C

,p
ro

te
in

ki
na

se
C

;P
M

A
,

ph
or

bo
l-1

2-
m

yr
is

ta
te

13
-a

ce
ta

te
es

te
r;

RO
S,

re
ac

tiv
e

ox
yg

en
sp

ec
ie

s;
W

B,
W

es
te

rn
bl

ot
.

2
Bl

ue
be

rr
y

an
d

ch
al

le
ng

e
in

co
ad

m
in

is
tr

at
io

n.
If

no
sy

m
bo

li
s

in
di

ca
te

d,
th

e
ce

lls
w

er
e

tr
ea

te
d

w
ith

th
e

bl
ue

be
rr

y
ex

tr
ac

ts
fir

st
be

fo
re

ch
al

le
ng

e.

Blueberries, inflammation, and oxidative stress 1295



TA
BL

E
5

Ce
ll-

cu
ltu

re
-b

as
ed

st
ud

ie
s

on
th

e
eff

ec
to

fb
lu

eb
er

ry
ph

yt
oc

he
m

ic
al

s
on

de
rm

al
in

fla
m

m
at

io
n

m
od

el
s

C
el

ll
in

e
Tr

ea
tm

en
ts

(d
os

e,
d

ur
at

io
n

)
C

h
al

le
n

g
e

(d
os

e,
d

ur
at

io
n

)
C

on
tr

ol
s

N
1

Pa
ra

m
et

er
s

m
ea

su
re

d
(m

et
h

od
)

Eff
ec

ts
of

tr
ea

tm
en

t
co

m
p

ar
ed

to
ch

al
le

n
g

e
Re

f.

W
ho

le
an

d/
or

po
ly

ph
en

ol
ic

ex
tr

ac
ts

:
H

aC
aT

an
d

3D
sk

in
m

od
el

“E
pi

D
er

m
”

Po
ly

ph
en

ol
ex

tr
ac

t(
H

aC
at

:
10

μ
g/

m
L,

24
h;

3D
m

od
el

:1
00

μ
g/

m
L,

24
h)

O
3

(H
aC

at
:0

.5
pp

m
,

1
h;

3D
m

od
el

:
0.

5
pp

m
,5

h)

Ve
hi

cl
e,

ch
al

le
ng

e
3

Cy
to

to
xi

ci
ty

(L
D

H
),

w
ou

nd
cl

os
ur

e
(s

cr
at

ch
w

ou
nd

he
al

in
g)

,m
ig

ra
tio

n
(t

ra
ns

w
el

l),
pr

ol
ife

ra
tio

n
(B

rd
U

),
H

2
O

2
(D

C
FD

A
),

in
fla

m
m

as
om

e
ac

tiv
at

io
n

(A
SC

ol
ig

om
er

iz
at

io
n)

,A
SC

an
d

N
LR

P1
(im

m
un

oc
yt

oc
he

m
is

tr
y)

ca
sp

as
e

1
(W

B)
,A

SC
,c

as
pa

se
1,

an
d

IL
-1

8
ge

ne
ex

pr
es

si
on

(q
PC

R)

↑k
er

at
in

oc
yt

e
w

ou
nd

cl
os

ur
e

by
in

cr
ea

se
d

m
ig

ra
tio

n
an

d
pr

ol
ife

ra
tio

n.
↓i

nfl
am

m
as

om
e

ac
tiv

at
io

n
by

lim
ite

d
in

du
ct

io
n

of
A

SC
,

tr
an

sc
rip

tio
n

of
ca

sp
as

e
1

an
d

IL
-1

8,
an

d
↓o

lig
om

er
iz

at
io

n
of

A
SC

(1
38

)

H
aC

aT
Po

ly
ph

en
ol

ex
tr

ac
t

(5
–1

00
m

g/
L,

1
h

+
4

h2

or
4

h2
on

ly
)

U
V-

A
(1

0–
40

J/
cm

2
),

H
2
O

2
(0

.3
m

M
,4

h3
)

Ve
hi

cl
e,

ch
al

le
ng

e
3–

4
Vi

ab
ili

ty
(L

D
H

an
d

ne
ut

ra
lr

ed
re

te
nt

io
n)

,
RO

S
(D

C
FD

A
),

lip
id

pe
ro

xi
da

tio
n

(T
BA

RS
),

gl
ut

at
hi

on
e

(D
TN

B)

D
os

e-
de

pe
nd

en
t↓

RO
S

pr
od

uc
tio

n.
↓

m
em

br
an

e
lip

id
pe

ro
xi

da
tio

n.
Pr

ot
ec

tio
n

ag
ai

ns
tg

lu
ta

th
io

ne
de

pl
et

io
n

(1
49

)

H
aC

aT
Ph

en
ol

ic
ex

tr
ac

t
(5

–5
0

m
g/

L,
1

h
+

4–
8

h2
or

4/
8

h2
on

ly
)

U
V-

B
(5

0–
10

00
m

J/
cm

2
)

Ve
hi

cl
e,

ch
al

le
ng

e
3

Cy
to

to
xi

ci
ty

(L
D

H
),

pr
ol

ife
ra

tio
n

(B
rd

U
),

D
N

A
da

m
ag

e
(g

el
el

ec
tr

op
ho

re
si

s)
,

ca
sp

as
e-

3
an

d
-9

ac
tiv

ity
(fl

uo
re

sc
en

t
as

sa
y)

,c
as

pa
se

-3
ac

tiv
at

io
n

(W
B)

,
RO

N
S

(d
ih

yd
ro

rh
od

am
in

e
12

3)
,I

L-
6

(E
LI

SA
)

↓L
D

H
re

le
as

e
an

d
↑p

ro
lif

er
at

io
n

at
hi

gh
er

tr
ea

tm
en

td
os

es
.↓

D
N

A
da

m
ag

e
an

d
ap

op
to

si
s.

↓R
O

N
S

ge
ne

ra
tio

n,
be

tt
er

fo
rc

el
ls

tr
ea

te
d

af
te

ri
rr

ad
ia

tio
n

on
ly

.↓
IL

-6
pr

od
uc

tio
n

(1
44

)

H
aC

aT
an

d
H

FF
(a

lo
ne

an
d

in
co

cu
ltu

re
)

Ph
en

ol
ic

ex
tr

ac
t

(6
–1

0
m

g/
m

L,
2

h
+

12
h)

U
V-

C
(8

m
J,

cm
2
,5

s,
27

0–
29

0
nm

)
Ve

hi
cl

e,
ch

al
le

ng
e

3
Vi

ab
ili

ty
(m

et
hy

le
ne

bl
ue

),
D

N
A

da
m

ag
e

(D
N

A
la

dd
er

as
sa

y)
,S

O
D

an
d

M
D

A
co

nt
en

t(
ki

ts
),

M
M

P-
1

(E
LI

SA
),

p3
8M

A
PK

,c
-fo

s,
c-

Ju
n,

M
M

P-
1,

IL
-1

β
,

IL
-8

,T
N

F-
a,

an
d

IL
-6

(q
PC

R)
,3

8M
A

PK
,

c-
fo

s,
c-

Ju
n,

M
M

P-
1

(W
B)

Pr
ot

ec
tio

n
ag

ai
ns

tU
V-

C
-in

du
ce

d
cy

to
to

xi
ci

ty
an

d
↓D

N
A

da
m

ag
e.

↓
M

M
P-

1
on

ly
in

co
cu

ltu
re

sy
st

em
.↓

ac
cu

m
ul

at
io

n
of

M
D

A
an

d
↑a

ct
iv

ity
of

SO
D

.↓
pr

oi
nfl

am
m

at
or

y
ge

ne
ex

pr
es

si
on

.↓
M

A
PK

pa
th

w
ay

th
ro

ug
h

↓M
M

P-
1,

c-
fo

s,
an

d
c-

Ju
n

ex
pr

es
si

on
s

in
H

FF
an

d
co

cu
ltu

re
bu

tn
ot

H
aC

at

(1
50

)

Ph
en

ol
ic

an
d

po
ly

ph
en

ol
ic

fra
ct

io
ns

:
RA

W
26

4.
7

an
d

H
D

Fa
Po

ly
ph

en
ol

ex
tr

ac
t,

an
th

oc
ya

ni
n

an
d

pr
oa

nt
ho

cy
an

id
in

fra
ct

io
ns

(5
0

μ
g/

m
L,

24
h3

)

RA
W

26
4.

7:
LP

S
(1

0
μ

L,
24

)
Ve

hi
cl

e,
ch

al
le

ng
e

3
Cy

to
to

xi
ci

ty
(M

TT
)R

AW
26

4.
7:

RO
S

(D
C

FD
A

),
N

O
(G

rie
ss

),
CO

X-
2,

iN
O

S
(q

PC
R)

RA
W

26
4.

7:
N

o
eff

ec
to

fp
ol

yp
he

no
l

ex
tr

ac
to

n
RO

S
pr

od
uc

tio
n.

↓R
O

S
by

an
th

oc
ya

ni
n

an
d

pr
oa

nt
ho

cy
an

id
in

fra
ct

io
ns

.H
ig

he
st

N
O

su
pp

re
ss

io
n

w
ith

pr
oa

nt
ho

cy
an

id
in

fra
ct

io
n.

↓
CO

X-
2

an
d

iN
O

S
by

al
lt

re
at

m
en

ts

(1
39

)

H
D

Fa
:c

el
lm

ig
ra

tio
n

(fl
uo

re
sc

en
ce

)
H

D
Fa

:↑
w

ou
nd

re
pa

ir
by

pr
oa

nt
ho

cy
an

id
in

B2
A

nt
ho

cy
an

in
fra

ct
io

ns
:

H
um

an
de

rm
al

fib
ro

bl
as

t
A

nt
ho

cy
an

in
(1

–1
0

m
g/

L,
48

h2
)

U
V-

B
(1

00
m

J/
cm

2
,

31
2

nm
)

Ve
hi

cl
e,

ch
al

le
ng

e
3

Vi
ab

ili
ty

(M
TT

),
RO

S
(D

C
FD

A
),

A
SK

-1
,

JN
K,

p3
8,

c-
Ju

n,
p5

3,
ST

AT
-1

,M
M

P-
1,

8
an

d
13

,I
κ

B,
N

F-
κ

B
(W

B)
,p

ro
co

lla
ge

n,
co

lla
ge

n
(im

m
un

oc
yt

oc
he

m
is

tr
y)

,
pr

oc
ol

la
ge

n,
M

M
P-

1
(q

PC
R)

,T
N

F-
α

,
IL

-8
,I

L-
6,

IL
-1

β
(E

LI
SA

)

D
os

e-
de

pe
nd

en
t↑

ce
ll

vi
ab

ili
ty

.
In

hi
bi

tio
n

of
re

du
ct

io
n

of
pr

oc
ol

la
ge

n
an

d
co

lla
ge

n
in

du
ce

d
by

U
V-

B.
↓

M
M

P
pr

od
uc

tio
n

an
d

ge
ne

ex
pr

es
si

on
in

cr
ea

se
d

by
th

e
U

V-
B

ch
al

le
ng

e.
↓p

ro
in

fla
m

m
at

or
y

cy
to

ki
ne

se
cr

et
io

n,
↓t

ra
ns

lo
ca

tio
n

of
N

F-
κ

B
an

d
↓a

ct
iv

at
io

n
of

A
SK

-1
-M

A
PK

pa
th

w
ay

(1
45

)

(C
on

tin
ue

d)

1296 Felgus-Lavefve et al.



TA
BL

E
5

(C
on

tin
ue

d)

C
el

ll
in

e
Tr

ea
tm

en
ts

(d
os

e,
d

ur
at

io
n

)
C

h
al

le
n

g
e

(d
os

e,
d

ur
at

io
n

)
C

on
tr

ol
s

N
1

Pa
ra

m
et

er
s

m
ea

su
re

d
(m

et
h

od
)

Eff
ec

ts
of

tr
ea

tm
en

t
co

m
p

ar
ed

to
ch

al
le

n
g

e
Re

f.

O
th

er
s:

H
FF

1
Bl

ue
be

rr
y

ex
tr

ac
ts

,
co

m
pa

ris
on

of
ex

tr
ac

tio
n

m
et

ho
ds

(1
2.

5
μ

g/
m

L,
90

m
in

)

IL
-2

β
(1

0
μ

g/
m

L,
30

m
in

)
Ve

hi
cl

e,
ch

al
le

ng
e,

po
si

tiv
e

(L
-N

IL
,

1
μ

g/
m

L)

4
Vi

ab
ili

ty
(M

TT
),

N
O

(G
rie

ss
)

↓N
O

pr
od

uc
tio

n
by

al
lf

ru
it

ex
tr

ac
ts

.
St

ro
ng

er
in

hi
bi

to
ry

eff
ec

tf
or

ex
tr

ac
t

ob
ta

in
ed

by
de

co
ct

io
n

m
et

ho
d

(1
40

)

1
N

,n
um

be
ro

fe
xp

er
im

en
ta

lr
ep

lic
at

es
,a

s
st

at
ed

by
th

e
au

th
or

s.
A

SC
,a

po
pt

os
is

-a
ss

oc
ia

te
d

sp
ec

k-
lik

e;
A

SK
,a

po
pt

os
is

si
gn

al
-r

eg
ul

at
in

g
ki

na
se

-1
;B

rd
U

,b
ro

m
od

eo
xy

ur
id

in
e;

CO
X-

2,
cy

cl
o-

ox
yg

en
as

e-
2;

D
C

FD
A

,2
,7

-d
ic

hl
or

ofl
uo

re
sc

in
di

ac
et

at
e;

D
TN

B,
5,

5′ -d
ith

io
bi

s-
(2

-n
itr

ob
en

zo
ic

ac
id

);
H

FF
,h

um
an

fo
re

sk
in

fib
ro

bl
as

t;
iN

O
S,

in
du

ci
bl

e
ni

tr
ic

ox
id

e
sy

nt
ha

se
;I
κ

B,
N

F
κ

B
in

hi
bi

to
r;

JN
K,

c-
Ju

n
N

-t
er

m
in

al
ki

na
se

;L
D

H
,l

ac
ta

te
de

hy
dr

og
en

as
e;

L-
N

IL
,

L-
N

6
-(1

-im
in

oe
th

yl
)ly

si
ne

;M
A

PK
,m

ito
ge

n-
ac

tiv
at

ed
pr

ot
ei

n
ki

na
se

;M
D

A
,m

al
on

di
al

de
hy

de
;M

M
P-

1,
m

at
rix

m
et

al
lo

pr
ot

ei
na

se
-1

;M
TT

,3
-(4

,5
-d

im
et

hy
l-2

-t
hi

az
ol

yl
)-2

,5
-d

ip
he

ny
lte

tr
az

ol
iu

m
br

om
id

e;
N

LR
P,

nu
cl

eo
tid

e-
bi

nd
in

g
ol

ig
om

er
iz

at
io

n
do

m
ai

n,
le

uc
in

e
ric

h
re

pe
at

an
d

py
rin

do
m

ai
n

co
nt

ai
ni

ng
;R

O
N

S,
re

ac
tiv

e
ox

yg
en

an
d

ni
tr

og
en

sp
ec

ie
s;

RO
S,

re
ac

tiv
e

ox
yg

en
sp

ec
ie

s;
SO

D
,s

up
er

ox
id

e
di

sm
ut

as
e;

ST
AT

-1
,s

ig
na

lt
ra

ns
du

ce
rs

an
d

ac
tiv

at
or

s
of

tr
an

sc
rip

tio
n-

1;
W

B,
W

es
te

rn
bl

ot
.

2
Bl

ue
be

rr
y

tr
ea

tm
en

ta
dm

in
is

te
re

d
af

te
rc

ha
lle

ng
e.

3
Bl

ue
be

rr
y

an
d

ch
al

le
ng

e
in

co
ad

m
in

is
tr

at
io

n.
If

no
sy

m
bo

li
s

in
di

ca
te

d,
th

e
ce

lls
w

er
e

tr
ea

te
d

w
ith

th
e

bl
ue

be
rr

y
ex

tr
ac

ts
fir

st
be

fo
re

ch
al

le
ng

e.

DNA against strand break formation (144). Blueberry ex-
tracts also demonstrated anti-inflammatory effects in UV-
B-challenged cells and reduced cytokine gene expression
through inhibition of NF-κB and MAPK activations (145).
UV-A, in contrast, is less absorbed by DNA, but can
interact with exogenous chromophores and induce lipid
peroxidation, which generates ROS (146). These reactive
species can lead to the oxidation of nucleic acid, DNA
strand breaks (147), and increased MMP-1 activity (148),
potentially increasing the risk of aggressive cancer. The
increase of oxidative stress by UV-A on keratinocytes was
partially reduced by a blueberry phenolic extract through
decreased ROS production and lipid peroxidation (149). The
third type of sunlight irradiation, UV-C, has the weakest
penetration rate in the atmosphere, but has very high energy,
possibly contributing to oxidative stress, inflammation, and
DNA damage in the skin cells. A blueberry extract applied
to HaCaT keratinocytes and HFF fibroblasts irradiated with
UV-C showed protective effects against oxidative stress and
DNA damage. The anti-inflammatory effects of the treatment
were, however, only characterized in the keratinocyte and
fibroblast coculture and the activation of MMP-1 expression
by fibroblasts after irradiation was only observed in the
presence of keratinocytes, suggesting interactions between
the 2 types of cells (150). These observations support the need
to use more complex models (coculture or 3D skin model) to
investigate mechanisms mediated by the interaction between
cell types in the skin. Limiting the studies to one type of cell
may leave out crucial information regarding the physiological
effects of the treatments on the skin. The results to date in
cell models suggest that blueberry derivatives could have a
protective effect on skin damage in response to sun and other
stressors; however, the extent to which these molecules are
stored and present in skin cells or associated tissue layers in
vivo is not clear.

Ocular inflammation models.
Artificial lights, environment, diet deficiencies, pathologies,
and aging can impact oxidative stress and inflammation in
the eyes, and may contribute to diabetic retinopathy (151)
or age-related macular degeneration (152). The eye tissues
and fluids contain little extracellular SOD, hence they have
less protection against superoxide radical damage (153).
Despite having higher SOD activity, the retina is at more
risk of oxidative stress due to its high content of unsaturated
fatty acids and high exposure to light (154) leading to lipid
peroxidation, which can, in turn, react with DNA, proteins,
and lipids, inducing cell damage (155).

Studies on blueberry compounds applied to cell-based
models relevant to eye function have typically used light ir-
radiation (UV, blue light, visible light) (156–159), a chemical
challenge (e.g., H2O2, DHA) (160–162), or a combination
of both (155, 163, 164) to induce inflammation (Table 6).
The protective effect of blueberry compounds on oxidative
stress induced by light in ocular models has been tentatively
explained through a decrease in ROS production and
lipid peroxidation. In murine photoreceptors (661 W line)
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induced with UV and blue light, blueberry extracts exerted
protective effects through regulation of ROS production,
limiting cell death induced by the light through inhibition of
p38-MAPK, JNK, and NF-κB pathways (156, 157).

The effects of blueberry extracts on alternatively chal-
lenged cells (H2O2 and glucose) were also reported (Table 6),
but more research is needed to confirm the mechanisms
behind their antioxidant and anti-inflammatory effects.
Oxidative stress was alleviated by blueberry compounds in
chemically challenged (H2O2) retinal pigment epithelial cells
through an increased production of antioxidant enzymes
(160). Blueberry anthocyanins modulated oxidative stress
through a decrease in ROS production and increase in
glutathione peroxidase activity in ARPE-19 cells induced
with H2O2 (161). In 661 W cells challenged with high
glucose, anthocyanins reduced ROS secretion and NOX
protein expression, but limited anti-inflammatory effects
were reported with no clear modulation of NF-κB (162).

Several studies have reported the effects of an array of
phenolic fractions (anthocyanins, flavonoids, and pheno-
lic acid). Blueberry anthocyanins tested on light-induced
ARPE-19 cells helped mitigate lipid peroxidation (159),
whereas malvidin 3-glucoside, purified from a blueberry
extract, decreased ROS and VEGF production in irradiated
cells (158). However, a blueberry flavonoid fraction and
whole polyphenol mixture were more effective than the
anthocyanin and phenolic acid fractions at reducing lipid
peroxidation (155, 163). These observations support the
evidence for a general effect to reduce cell stress markers in
ocular cell models when using multiple blueberry fractions
and phytochemicals, with a potentially stronger activity
of the total polyphenol extracts as opposed to individual
compounds. Thus, testing the effects of dietary blueberries
or their derivatives on eye function is an interesting avenue
for future research.

Intestinal inflammation models.
Inflammatory bowel diseases (IBDs) encompass chronic
inflammation-related disorders in the gastrointestinal tract.
Chronic inflammation, associated with oxidative stress,
increases the risk of developing colorectal cancers (165). Even
though genetic predispositions have been documented (166),
environmental factors such as the gut microbiota compo-
sition, influenced by lifestyle and diet, and its interaction
with the intestinal mucosa, are key factors in increasing the
prevalence of IBD (167, 168).

The effects of blueberry compounds on intestinal models
are reported in Table 7, along with experimental conditions.
IBDs are characterized by a loss of intestinal barrier integrity
through the alteration of tight junction proteins (169).
Although it is not clear if this loss of permeability is a cause or
consequence of IBD, it promotes the chance of pathogens to
enter the mucosa, triggering inflammation (170). Blueberry
extracts were tested on Caco-2 cell permeability using a
transepithelial electrical resistance (TEER) measurement.
The anthocyanin and total polyphenolic fractions decreased
permeability of the cell monolayer induced by Escherichia coli

challenge, but the proanthocyanidin fraction did not restore
TEER values. The authors suggested an interaction between
proanthocyanidins, cell surface proteins, and the ability of E.
coli to adhere to the cells (171).

Regarding oxidative and inflammatory markers, a number
of cytokine gene expressions have been found to increase in
colonic mucosa of ulcerative colitis patients due to excessive
immune response and immune cell reactivity (172, 173). In
T84 cells, the increase in TNF-α and IP-10 gene expressions
by a cytokine cocktail were counteracted by a blueberry
extract and the production of IL-8 protein was slightly, but
not significantly inhibited (174). ROS production in a similar
cell model was also decreased by blueberry compounds
(175). However, the effects of blueberry compounds on the
NF-κB pathway remain unclear, with contradictory effects
reported in intestinal models of inflammation. The response
induced by cytokines was dose-dependently alleviated by a
blueberry anthocyanin fraction in Caco-2 cells through the
inactivation of NF-κB, but a water extract from the same
fruits did not modulate the inflammatory response (176).
An anthocyanin extract used on T84 human colon cells
decreased the activation of the STAT pathway, upregulated
during IBD, but also upregulated the NF-κB pathway
(62).

A strong advantage of using an intestinal model is the
possibility to study both the effect of polyphenol compounds
and their colonic metabolites in a more physiologically
relevant situation than for other systems in the body, as both
parent molecules and metabolites are present in the intestinal
epithelial cell environment despite the low bioavailability of
polyphenolic compounds. The limited number of studies
on blueberry phytochemicals and cell culture models of
intestinal inflammation, the diversity of cell lines used, and
parameters measured speak to the need for more studies
to determine how blueberries modulate gut function and
health.

Inflammation and oxidative stress: summary of the
bioactivity of blueberry phytochemicals
Because both inflammation and oxidative stress are fre-
quently associated with the development of chronic diseases
(10), it is important to understand how dietary factors impact
these outcomes. Here, we have reviewed studies reporting the
effects of blueberry phytochemicals on cell culture models of
inflammation and/or oxidative stress (Figure 3). Blueberry
phenolic compounds and more broadly, phytochemicals,
exert regulatory effects including a decrease in proinflam-
matory gene expression/production in part through the
modulation of the NF-κB pathway. A modulation of the
MAPK pathway by blueberry phytochemicals is less evident
with contradictory observations reported but may also play
a role. Blueberry phytochemicals decreased DNA damage
in cells in vitro, via the reduction of ROS production,
lipid peroxidation, and an increase in antioxidant enzyme
activities.

Despite many in vitro studies on blueberry extracts,
no specific compounds have emerged as singly responsible
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ILs

FIGURE 3 Summary of proposed cellular regulatory mechanisms of blueberry extracts on inflammatory or oxidative stress pathways
investigated through cell-based models. Blue lines and arrows show the modulatory effects of blueberry phytochemicals. ↓,
downregulation or reduction; �, inhibition; ?, contradictory results. ARE, antioxidant response element; Bax, Bcl-2-associated X protein;
Bcl-2, B-cell lymphoma 2; COX-2, cyclooxygenase-2; IKK, inhibitory kappa B kinase; iNOS, inducible nitric oxide synthase; IκBα, inhibitor of
nuclear factor kappa B-alpha; Keap-1, Kelch Like erythroid-derived CNC homology Associated Protein 1; Nrf-2, nuclear erythroid 2-related
factor 2; P, phosphorylated; TLR, toll-like receptor.

for the regulatory effects on inflammation and oxidative
stress. Virtually all studies have focused on blueberry
(poly)phenolic extracts or fractions, with a large emphasis
on anthocyanins. Health effects of dietary anthocyanins
have been extensively reported and discussed (177–179),
and berries provide an excellent vector for anthocyanin
consumption. Blueberries have a complex anthocyanin pro-
file and both major anthocyanidin derivatives, malvidin and
delphinidin, have demonstrated a reduction of inflammatory
markers in different in vitro models of intestinal inflamma-
tion (174) and endothelial dysfunction (103, 180). Although
it is highly likely that anthocyanins largely contribute to
the health benefits provided by blueberries, as supported
by the number of studies focusing on those compounds,
it is doubtful that they are entirely responsible for the
bioactivities.

Several in vitro studies compared different fractions of
blueberry phytochemicals, with reports of similar or better
effects by other phenolic fractions and/or whole blueberry
extract compared with anthocyanins (43, 84, 139, 158, 163).
These different studies highlight that mechanisms of action
of individual blueberry compounds and fractions are context
and/or model specific. More studies comparing the effect
on individual compounds and well-defined combinations

of molecules in different systems are needed to investigate
the impact of a system’s environment or system-specific
regulation on the bioactivity of blueberries. Although the
amplitude of the effect of individual compounds appears to
be widely specific to the model studied, the use of whole
fractions of the fruits seems to alleviate inflammation and/or
oxidative stress more consistently across models, despite not
always demonstrating the strongest effects compared with
specific blueberry fractions.

As the health effects of polyphenols have been extensively
described, more data on other phytochemicals should be
gathered as they may also exert health benefits. Other notable
phytochemicals in blueberries include ascorbic acid (181),
polysaccharides (182), and volatile compounds (183) and
could contribute to inflammatory or oxidative responses
of cells to stimuli. A blueberry volatile extract, high in
monoterpenes (linalool, linalool oxide, and α-terpineol),
modulated the inflammatory response in LPS-induced RAW
264.7 cells through inhibition of the NF-κB pathway (38).
Phenolic compounds, although carrying anti-inflammatory
and antioxidant modulatory effects, may not be solely re-
sponsible for the health benefits of blueberries. Whether the
phytochemicals act in synergy or target different molecular
pathways remains to be elucidated.
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Although the scope of this review is limited to blueberries,
the anti-inflammatory and antioxidant effects and mecha-
nisms are likely applicable to other commonly consumed
berries. Berries are generally rich in polyphenols, particularly
anthocyanins, flavonols, and proanthocyanidins, but the
profile of each berry species, and even within varieties,
harbors differences in terms of the individual compounds
present and their respective concentration (184). Gaspar-
rini et al. (15) reviewed in detail the anti-inflammatory
effects of several berries in cellular models using LPS-
induced inflammation, and consistently report alleviation of
inflammation by berry phytochemicals through inhibition
of NF-κB and MAPK pathways. Other reviews also discuss
and compare the anti-inflammatory properties of berries,
in preclinical and human models (10, 16, 185). Moore
et al. (186) and Gu et al. (38) have reported similar
anti-inflammatory effects of berry volatiles compared with
phenolic extracts for cranberries, blackberries, blueberries,
red and black raspberries, and strawberries. Notably, the
bioactivities of berry polyphenol extracts do not always
explain the overall anti-inflammatory effects observed with
whole berries (84, 187, 188), highlighting that potential
health effects of berries as a group derived from highly
diverse phytomolecules.

After consumption, blueberries and their phytochemicals
undergo metabolism through phase II enzymatic reactions
in the enterocytes and hepatocytes (189) or microbial
metabolism in the gut (190). Metabolites are more likely
to reach target sites inside the body and exert health
benefits than their parent compounds (191). Evidence
of the role of blueberry metabolites (e.g., protocatechuic
acid and gallic acid, the catabolites for cyanidin and del-
phinidin 3-glucoside, respectively) in the modulation of
inflammation and/or oxidative stress has also been estab-
lished (103). Metabolites of elderberry were tested in RAW
264.7 and dendritic cells, and p-coumaric, homovanillic, 4-
hydroxybenzoic, ferulic, protocatechuic, caffeic, and vanillic
acids [also reported to be blueberry metabolites (25, 192)],
exerted a dose-response inhibitory effect on NO (193).
Studies regarding berry catabolites are less abundant than
studies on berry parent phytochemicals but have gained
interest in more recent literature. These studies of microbe-
and host-modified phytochemicals are extremely important
to fully understand the potential anti-inflammatory effects
of blueberry consumption. Although most of the evidence
focuses on the effect of individual compounds, it is essential
to consider the potency of these metabolites in profiles
similar to what occurs physiologically. To take the compound
profile and physiologically available doses into account,
Rutledge et al. (194) treated LPS-induced rat microglial
cells with serum from subjects having regularly consumed
blueberry, strawberry, or a placebo powder blends over 90
d. The blueberry consumption decreased NO production,
TNF-α secretion, iNOS expression, and moderately mod-
ulated COX-2 protein expression in the cells (194). This
type of design allows the integration of a more realistic
profile of parent compounds and metabolites from blueberry

consumption, at physiological doses, within a cell-culture-
based model.

The current review summarizes the extensive amount of
literature available on blueberry phytochemicals and inflam-
mation using cell-based models. This choice comes with
limitations, since it can be challenging to interpret results
using specific concentrations of berry-derived molecules
on cells when concentrations of these metabolites at the
site of the target organs may not be established. There
have been major differences in concentrations used to
treat the cells, ranging anywhere from tens of μg/mL to
mg/mL for total polyphenols and from tens of ng/mL to
≤1.2 mg/mL for anthocyanin fractions. Some of these con-
centrations are much higher than the blood concentrations
that would be present in the body after consumption, as
bioavailability of anthocyanins in the body is estimated
to be lower than 2%, and peaking at 100 nmol/L after
consumption of grape/blueberry juice (195). The relevance
of the findings of cell-culture-based studies in complex
human systems needs further investigation. These studies
should comprise of well-controlled clinical trials, with the
relevant choice of placebo controls and inclusion criteria
depending on the specific blueberry phytochemical and
physiological condition investigated. Future studies should
also quantify the entire suite of berry-derived molecules
and derivatives in key pools such as the blood, concurrently
with physiologic indices of inflammation and oxidative
stress.

Conclusions
General anti-inflammatory and antioxidant outcomes are
consistently reported for blueberry extracts or derivatives
across many studies. However, results observed in diverse cell
culture studies from different investigators are challenging
to interpret due to the differences in protocol, treatment,
cell line, and analyzed markers. More studies investigat-
ing the effects of blueberry extracts on different systems
and using comparable conditions would be valuable. Cell-
culture-based models are not suitable to draw definitive
conclusions on the effects of blueberry compounds on
complex physiological processes occurring in the human
body. Limitations include the compartmentalization of the
observations in space and time: the compounds are only
available in the form they are distributed and to the type of
cells tested, outside of any regulatory processes by surround-
ing local tissues or on the whole-body scale, and tested on
a one-time, acute, and usually high-dose treatment. Thus,
precautions should be taken when drawing conclusions from
simplified models, especially when using pharmacological
doses of compounds. Despite the limitations, cell-culture-
based studies have yielded critical information regarding
mechanisms of action of blueberry phytochemicals, and have
provided consistent evidence that components of blueberries
have anti-inflammation and antioxidant properties, which
likely contribute to health and functional benefits attributed
to blueberries.
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