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Abstract

In this dissertation, I will describe two experimental studies on two different condensed mat-

ter systems. The first study originates from our crystallographic findings on LaNiGa2. After

developing a single crystal synthesis method, single-crystal X-ray diffraction results improve

upon previous studies by showing that LaNiGa2 crystallizes in a Cmcm unit cell instead of a

Cmmm one. As a result of uncovering nonsymmorphic symmetry operations, we show that

these directly result in two topological features precisely at the Fermi level. With the previ-

ous knowledge that LaNiGa2 breaks time-reversal symmetry within its superconducting state

and shows evidence for multi-gap superconducting behavior, we can then directly connect

the new crystallographic results, the topological features, and the unique superconducting

state.

In the second study, we synthesize and then characterize single crystals of Nd substi-

tuted CeIn3. This well-studied heavy-fermion system has previously exhibited fascinating

phenomena as its antiferromagnetic ordering is systematically suppressed. In Ce1−xNdxIn3

we reveal an interesting interplay between the Kondo lattice coherence and crystal electric

field depopulation effects. Wherein we can separate the two features in electrical resistivity

measurements in the most disordered substitution range of x = 0.4 − 0.5. We also reveal a

comprehensive phase diagram between the two antiferromagnetic ordering.

vii



In addition to these two studies, I also provide an overview of relevant concepts and exper-

imental techniques. The purpose of this overview is to provide incoming graduate students a

starting point to begin to understand what principles are relevant to the condensed matter

systems discussed in this dissertation and how to perform specific experimental techniques to

study said principles. Within the experimental section, I also provide some “experimentalist’s

insights” on the techniques I have used extensively throughout my graduate work.
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Chapter 1

Introduction

The past century and a half of human history have been scattered with technological de-

velopments that have rapidly progressed society. Many of these technologies have allowed

humanity to prosper and to achieve extraordinary feats. More specifically, novel technologies

have allowed our capabilities to expand exponentially and beyond our wildest imaginations

within the Information Age. For example, the computational power behind the pinnacle of

scientific and engineering achievement, the Apollo missions to the moon, is now dwarfed by

the computational power within your average mobile phone [1]. Therefore discovering and

understanding these new technologies is vital to the continued development of our society as

a whole. Furthermore, as highlighted by a 2011 United States Department of Energy report,

this progress is especially critical towards curbing anthropogenic climate change [2].

These novel technological developments are driven by the discovery of new materials and

unique condensed matter states. As evidence by the fact that the aforementioned average

mobile phone now contains at least 70 of the 83 nonradioactive stable elements [3]. The

metals that make smartphones “smart” are mostly rare-earth metals (yttrium, scandium,

and the lanthanides). These metals not only allow us to have access to the internet at our
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fingertips, but materials with these elements are also found throughout society in televisions,

computers, head-phones, and other such modern-day ‘necessities.’ As a result, discovering

new materials containing these elements and comprehensively understanding the fundamen-

tal principles behind such systems, will continue to progress technology and society forward.

At a fundamental level, this work is best accomplished from an interdisciplinary perspec-

tive. Wherein experts across various fields collaborate to use their knowledge to elucidate

every aspect of an exotic system. Generally, this works by solid-state chemists discover-

ing new materials and performing experiments to learn about the structural and physical

properties. Condensed matter physicists follow up this work by conducting high-level exper-

iments to better understand fundamental principles behind the more unique systems. And

then, materials scientists lead the charge behind uncovering the practical properties of the

most promising materials. Overall, as our collective understanding of specific characteristics

and materials continues to grow, we can bridge the experimental results with comprehensive

microscopic models that can accommodate and predict every detail of the state. With these

models, we can then drive technological advances. Today this is most evident in the ongoing

development towards discovering and understanding “quantum materials” like those used in

fault-tolerant quantum computing systems.

This dissertation will describe two experiments where I use my background as a chemist

to better understand two vastly different condensed matter systems. The first pertains

LaNiGa2. Previous work on polycrystalline LaNiGa2 revealed that the superconducting

state broke time-reversal symmetry - a rare phenomenon only observed in ∼ 25 known

systems [4]. Additionally, the superconducting state showed evidence for multi-gap behavior.

Our discovery of a single-crystal synthesis route shows that previous structural work on

LaNiGa2 was incorrect. And that with this new structural information, we can tie together

2



the unique properties of the unconventional superconducting state. I also provide an outlook

about how our work can be employed to discover future materials with similar properties.

The second project is about Nd substituted CeIn3. This well-studied heavy fermion

system has shown fascinating phenomena as its antiferromagnetic ordering is suppressed

with hydrostatic pressure, magnetic fields, and/or chemical substitution. We show that by

systematically substituting Nd into the parent compound, we can separate the Kondo lattice

coherence features and the crystal electric field (CEF) depopulation effects. Thus far, this

behavior has never been observed in any study on CeIn3 nor the related CeMIn5.

Before diving into the two projects, I first start by describing fundamental principles re-

lated to each material. Then I dive into specific experimental details about how to grow single

crystals, obtain structural properties, and perform some physical property measurements.
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Chapter 2

Background of Concepts

Copyright permission has been obtained and granted to use figures 2.2(a), 2.5, 2.6, 2.7, 2.8,

2.10, 2.13, 2.14(b), and 2.15. Figures 2.3, 2.9, 2.12, and 2.14(a) were obtained from open

access sources.

2.1 Concepts related to LaNiGa2

2.1.1 Unconventional Superconductivity

Superconductivity has been hotly studied for over a century, and numerous people have

dedicated their entire careers towards uncovering all of the intricacies of this phenomenon.

Consequently, the topic is vast with countless books and articles dedicated to explaining all

the nuances ranging from physical properties to microscopic theories. To begin to understand

unconventional superconductivity we must first understand conventional superconductivity.

Here I first start by briefly covering BCS theory (named after the authors John Bardeen, Leon

Cooper, and Robert Schrieffer) and then cover the basics of unconventional superconductiv-
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Figure 2.1: Experimental signatures of superconductors. (a) Electrical resistivity (ρ(T ))
measurement on β-FeSe shows when the resistance drops to zero. (b) Magnetic susceptibility
(M(T )/H) measurements (ZFC and FC) on β-FeSe that show the diamagnetic response
when the external magnetic field is expelled. (c) Heat capacity (C(T )) measurement on
LaNiGa2 which shows the second-order phase transition. Despite both β-FeSe and LaNiGa2
being unconventional superconductors, all superconductors show these essential experimental
signatures.

ity. More can be read about other complexities from superconductivity (both conventional

and unconventional) in [5, 6].

From a historical standpoint, the first superconductors discovered were basic elements

such as mercury, tin, and niobium [6]. Elemental superconductors were discovered because

they exhibited three main phenomena upon entering the superconducting state: exhibited

zero electrical resistance, expelled small external magnetic fields (Meissner effect), and dis-

played a second-order phase transition. Subsequently, new superconductors could be identi-

fied by observing each of these phenomena through different experimental techniques: elec-

trical resistivity measurements can show the sharp drop to zero resistance, magnetic sus-

ceptibility measurements can reveal the superconductor to exhibit a diamagnetic response

by expelling the external magnetic field, and thermodynamic heat capacity measurements

can show the second-order phase transition at the critical temperature, Tsc. All of these

experimental signatures are shown in Fig. 2.1 and 3.23.

After these physical characteristics were discovered, many theoreticians started to develop

5



microscopic theories to cohesively explain this unique state. Eventually, this led to BCS

theory and the establishment of ’conventional superconductivity’ [7]. This theory built off of

previous discoveries and models and eventually led John Bardeen, Leon Cooper, and John

Robert Schrieffer to collectively win the Nobel Prize in Physics. The BCS theory established

that upon a material entering the superconducting state, an energy gap opens near the Fermi

level (Fig. 2.2). This energy gap differs in nature from an insulator’s energy gap because

the gap occurs due to the electron-lattice interactions in an insulator. In a superconductor,

however, the energy gap opens because of the condensation of electron-electron pairing.

BCS theory explains that this electron-electron coupling occurs indirectly through phonon-

mediated channels. When electrons pair (Cooper pairs), a small energy gap opens up and

makes the superconducting ground state more energetically favorable. Since electrons are

fermions, the pairs must anticommute either through the spin or orbital channel. The BCS

ground state has spin-singlet Cooper pairs between electrons of opposite spin and wavevec-

tors: (k ↑, −k ↓). Consequently, the antisymmetric spin-singlet state is also accompanied by

a symmetrical orbital wave function to preserve the antisymmetry of the total wave function.

This pairing symmetry leads to a total angular momentum of L = 0. Which then gives rise

to the colloquial name s-wave pairing for BCS superconductors [8]. Outside of successfully

explaining all aspects of BCS superconductors, another lasting consequence of this theory

is that it established the importance of electron-electron pairing and the associated Cooper

pairing and energy gap symmetry.

One effect of BCS theory was that the energy gap (∆) was found to be isotropic (nodeless)

in k-space and that the temperature dependence of the gap function ∆(t) (t = T/Tsc)

should be the same for each conventional superconductor (Fig. 2.2) [7]. Consequently all

conventional superconductors must have a BCS gap of 2∆/kBTsc = 1.76 [5, 7]. Since the
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Figure 2.2: Top: Schematic of energy band fillings at absolute zero for the normal and
the superconducting states. The conduction band in the normal state is completely full
and no energy state above the Fermi level is occupied. In the superconducting state the
energy gap, Eg, opens up at the Fermi level. Image was originally published in [6]. Bottom:
Universal temperature dependence curve of the energy gap, ∆(T ), for a conventional BCS
superconductor. At absolute zero, all conventional superconductors will have a gap value of
∆(0) = 1.76kBTsc. Plot recreated with tabulated data from [9].

superconducting state and the resulting energy gap lower the system’s thermodynamic free

energy (F ) an extension of BCS theory was that F (T ) should also develop the same for each

superconductor. Importantly it also showed that the free energy difference from the energy

gap at Tsc, ∆F = Fn − Fs, should also be consistent and that the same goes for the heat

capacity:

∆C = Cs − Cn = 1.76 ∗ γnTsc (2.1)

7



Figure 2.3: Basic schematics for (a) s-wave, (b) chiral p-wav, and (c) d−wave superconduct-
ing ∆(k) functions for a tetragonal lattice. Image was originally published in [10].

with γn as the Sommerfeld coefficient from normal state low-temperature heat capacity data.

In the end measuring ∆C at Tsc and the shape C(T ) provides experimentalists a quick and

easy way to determine whether a superconductor abides by conventional BCS theory.

Now we can start examining unconventional superconductivity. The easiest way to under-

stand unconventional superconductivity is that it does not follow conventional BCS theory.

As simple as that sounds, this can occur for many different reasons, such as the symmetry

of Cooper pairing, the existence of nodes in the superconducting gap, and/or multiple en-

ergy gaps. See Fig. 2.3 for basic schematics of a few ∆(k) functions. Note the difference

between the isotropic s-wave ∆(k) and the slightly more complicated ∆(k) functions of the

unconventional chiral p-wave and d-wave. Regardless of how a material breaks BCS conven-

tion, what is common across these condensates is that they contain a superconducting state

with less symmetry than the s-wave pairing. It is paramount to research unconventional

superconductors because there is not yet a cohesive microscopic theory that connects all of

the unique phenomena of unconventional superconductors, including predicting which sym-

metries are broken or preserved. Exhaustively examining the physical properties of unique

unconventional superconductors combined with novel comprehensive models will continue to

challenge our understanding of condensed matter systems.
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There are several experimental probes (e.g. penetration depth, NMR, NQR, µSR) to

determine whether and how a superconductor is unconventional. However, often this con-

clusion is most easily accomplished by examining the aforementioned heat capacity gap ∆C

and the shape of the low-temperature heat capacity curve, C(T ), in the superconducting

state. If a superconductor does not have the appropriate gap value ∆C/γnTsc = 1.76 and/or

does not follow the expected heat capacity curve, the material is clearly unconventional.

From the low-temperature heat capacity data, it is possible to elucidate the existence of

any nodal behavior in the superconducting gap ∆(k) [11] and/or multiple superconducting

gaps [12, 13]. For example, the superconducting electronic heat capacity data for LaNiGa2

is shown in Fig. 2.4 and Fig. 4.10(b). Fig. 2.4 shows the fittings for three possible single-gap

nodal behavior: Ce ∝ T for a nodeless gap, Ce ∝ T 2 for point nodes, and Ce ∝ T 3 for line

nodes [11]. Each of these fittings was modeled over the low-temperature (T << Tsc) region

and the experimental data quickly deviates from each fitting at the higher temperatures.

Instead, in conjunction with London penetration depth and upper critical field fittings [14],

Fig. 4.10(b) shows that a two-gap model more accurately matches the superconducting elec-

tronic heat capacity data.

Although examining heat capacity data is helpful to easily identify unconventional super-

conductors, it only provides a sliver of information about the full nature of the unconventional

superconductivity. Therefore by performing an array of experimental techniques on a par-

ticular unconventional superconductor, we can begin to understand the full characteristics

(e.g. Cooper pairing, shape of energy gap) of the superconducting state. By having a com-

prehensive picture of the unconventional superconductivity we can eventually begin to make

the connections about what symmetries are preserved or broken to advance the microscopic

models of unconventional superconductivity.
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Figure 2.4: Superconducting electronic heat capacity data for LaNiGa2. Overlaid are three
possible fittings which show evidence for nodal features: Ce ∝ T for a nodeless gap, Ce ∝
T 2 for point nodes, and Ce ∝ T 3 for line nodes. Each fitting quickly deviates from the
experimental data.

2.1.2 Symmetry and Unconventional Superconductivity

When researchers first used symmetry analysis to understand the properties of the 3He

superfluid state [15], theoreticians started exploring the role that symmetry plays on Cooper

pairing and the energy gap in unconventional superconductors [11, 16–18]. More specifically,

these researchers started applying Group Theory principles. Eventually, it was understood

that a material’s real-space crystal symmetry was a good predictor of possible Cooper pair

order parameters in single-gap superconductors. Wherein a crystal’s point group and the

respective character table could be employed to decode all possible symmetries that are

persevered or broken with each Cooper pairing iteration and the presence/type of nodal

features within the superconducting gap.

As an example, Tables 2.1-2.4 show the character table, possible singlet superconducting

states, possible triplet Cooper pairs with weak spin-orbit coupling (SOC), and possible triplet

Cooper pairs with strong SOC for the D2h point group [18]. When zero-field muon spin
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D2h basis Representation E Cz
2 Cy

2 Cx
2 i iCz

2 iCy
2 iCx

2

1 A1g 1 1 1 1 1 1 1 1
XY B1g 1 1 -1 -1 1 1 -1 -1
ZX B2g 1 -1 1 -1 1 -1 1 -1
Y Z B3g 1 -1 -1 1 1 -1 -1 1
XY Z A1u 1 1 1 1 -1 -1 -1 -1
Z B1u 1 1 -1 -1 -1 -1 1 1
Y B2u 1 -1 1 -1 -1 1 -1 1
Z B3u 1 -1 -1 1 -1 1 1 -1

Table 2.1: Group character table for the D2h point group. Table recreated from [18]

resonance (ZF-µSR) revealed that LaNiGa2 (original Cmmm space group and D2h point

group) breaks time-reversal symmetry with a single energy gap, these tables were employed to

deduce the possible Cooper pair order-parameters that would result in broken time-reversal

symmetry [19]. Since LaNiGa2 exhibited weak SOC behavior, these tables showed that

the only possible Cooper pair order parameters that could break time-reversal symmetry

were the nonunitary triplet states (↑↑) with weak SOC: 3A1u(b), 3B1u(b), 3B2u(b), or 3B3u(b).

Consequently, this symmetry analysis also showed that each of these order parameters would

contain superconducting gap nodes in the energy gap if the Fermi surface (FS) crossed the

node location. Since LaNiGa2 contains a total of 5 FSs and they collectively cross all three

k-space axes (kx, ky, and kz), it then follows that each of these order parameters would

expect to exhibit nodal features for LaNiGa2.

When experiments revealed that the low-temperature heat capacity and penetration

depth measurements showed no evidence for superconducting gap nodes, it became clear

that this point-group symmetry analysis was insufficient to completely predict the uncon-

ventional superconductivity in LaNiGa2 [14]. This discrepancy is further enhanced when the

heat capacity, penetration depth, and upper critical field data revealed multiband behavior.

Therefore, despite the strength of the point group method, it is clear that LaNiGa2 has a
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State g.s. order Residual Gap function Nodes: Nodes:
parameter group ∆(k) sphere cylinder Name

A1g 1 SO(3)×D2h×T 1 — — s-wave
B1g 1 SO(3)×D2(Cz

2)×i×T XY line line
B2g 1 SO(3)×D2(Cy

2)×i×T XZ line line
B3g 1 SO(3)×D2(Cx

2)×i×T Y Z line line

Table 2.2: Singlet superconducting states for the D2h point group. The columns indicate
the nomenclatures, the ground state (g.s.) order parameter, the residual symmetry group,
an example gap function, the gap nodes occurring on a spherical or cylindrical FS, and the
usual name. Table recreated from [18]

State g.s. order Residual Gap function Nodes: Nodes:
parameter group d(k) sphere cylinder Name

3A1u(a) (0, 0, 1) D∞(C∞)×D2×i(E)×T (0, 0, 1)XY Z line line
3A1u(b) (1, i, 0) D∞(C∞)×D2×i(E) (1, i, 0)XY Z surface surface
3B1u(a) (0, 0, 1) D∞(C∞)×D2(Cz

2)×i(E)×T (0, 0, 1)Z line line
3B1u(b) (1, i, 0) D∞(C∞)×D2(Cz

2)×i(E) (1, i, 0)Z surface surface
3B2u(a) (0, 0, 1) D∞(C∞)×D2(Cy

2)×i(E)×T (0, 0, 1)Y line line
3B2u(b) (1, i, 0) D∞(C∞)×D2(Cy

2)×i(E) (1, i, 0)Y surface surface
3B3u(a) (0, 0, 1) D∞(C∞)×D2(Cx

2)×i(E)×T (0, 0, 1)X line line
3B3u(b) (1, i, 0) D∞(C∞)×D2(Cx

2)×i(E) (1, i, 0)X surface surface

Table 2.3: Triplet superconducting states for the D2h point group, assuming weak SOC.
Same notation as table 2.2. Table recreated from [18]

more complicated unconventional superconducting state than initially thought.

Before moving on, it is worth highlighting that this type of point group analysis only

applies to symmorphic space groups. Space groups are direct products of the point group

operations and the translation symmetries [20]. Symmorphic space groups only contain

trivial Bravais lattice translations (no screw rotations or glide planes) and therefore these

space groups have identical symmetry operations to their respective point group. This then

makes the point-group analysis a good predictive model for single-gap symmorphic super-

conductors. Nonsymmorphic space groups, on the other hand, contain at least one screw

axis or glide plane. These symmetry operations contain translation symmetries and make
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State Order Residual Gap function Nodes: Nodes:
parameter group d(k) sphere cylinder Name

A1u 1 D2×i(E)×T (AX,BY,CZ) — — BW
B1u 1 D2(Cz

2)×i(E)×T (AY,BX,CXY Z) point —
B2u 1 D2(Cy

2)×i(E)×T (AZ,BXY Z,CX) point point
B3u 1 D2(Cx

2)×i(E)×T (AXY Z,BZ,CY ) point point

Table 2.4: Triplet superconducting states for the D2h point group, assuming strong SOC.
Same notation as table 2.2. Table recreated from [18]

the space group symmetry different from the point group symmetry. Consequently, the com-

plete space group symmetries need to be used to predict all possible superconducting order

parameters for nonsymmorphic superconductors. Theoreticians have recently started explor-

ing how these nonsymmorphic symmetries operations impact the resulting unconventional

superconducting gap structures at various parts within the Brillouin Zone (BZ) [21–33].

This work, both with point and space groups, shows the vital connection underlying unit

cell symmetries and the superconducting state. With continued work on nonsymmorphic

space groups, we can get to a point where it is possible to use a material’s unit cell as a

predictive model for individual superconducting states.

2.1.3 Topological Superconductivity

Initially a niche branch of mathematics to classify shapes, topology has become a pivotal con-

cept within condensed matter systems. At first, theoreticians applied topology to predict a

new state of quantum matter: two-dimensional topological insulators [34]. Experimental re-

alizations of this state displayed the quantum spin Hall effect [35], wherein the bulk material

exhibits an insulating gap but the surface states contain gapless Dirac band crossings [36–

38]. Shortly thereafter, topological classifications were applied towards other quantum states

with energy band gaps like superconductors [39, 40]. It is now understood that experimen-
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tal realizations of topological superconductivity could provide a promising pathway towards

discovering Majorana fermions (quasiparticles that are their own antiparticles) [41–43]. Dis-

covering and harnessing these quasiparticles could profoundly impact engineering reliable

fault-tolerant quantum computing devices [44, 45]. There are several articles on the theoret-

ical aspects of topological superconductivity [46, 47]. Here I will briefly discuss the materials

that exhibit topological superconductivity and the experimental signatures of this state.

Thus far, there are several routes towards topological superconductivity such as artifi-

cial heterostructures [41, 42, 47–49], unconventional superconductivity overlapping or in the

proximity of a magnetic ordering [50–55], inducing superconductivity within Dirac materi-

als [46, 56–65], and discovering topological features amongst unconventional superconduc-

tors [66–73]. One of the most promising methods is through single-material unconventional

superconductors (topological crystalline superconductors) because these materials do not

require special heterostructure engineering, the lack of magnetism makes studying the elec-

tronic behavior more accessible, and inducing superconductivity in known Dirac materials

is difficult to predict. The promise of single-material topological superconductors (TSCs)

is especially true when put in the context that many theoreticians are starting to explore

the symmetry connections between a material’s space group and the resulting topological

features (Dirac crossings) [32, 33, 52, 74–80]. This association could then provide an easy

avenue to predict topological behavior just from a unit cell and the resulting electronic

structure [81–83].

Several key identifying features develop from topological superconductivity. Possibly the

simplest way to identify a single material TSC is that the material contains Dirac band

crossings (in bulk or surface states) while also exhibiting unconventional superconductivity.

These Dirac crossings can take on various forms (nodal points/lines, surfaces), occur across
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a range of energy levels, be entirely accidental or symmetry-protected, and exist anywhere

throughout the BZ. Therefore, locating and verifying these features through DFT band

calculations and scanning tunneling microscopy or angle-resolved photoemission spectroscopy

(ARPES) measurements is critical to understanding the topological nature of unconventional

superconductors.

One possible consequence of topological superconductivity is that the superconducting

order parameter could induce Cooper pairs that break time-reversal symmetry [4, 47]. Ma-

terials with this exceedingly rare superconducting property (∼ 25 known systems) provide

a space for theoreticians and experimentalists to better understand the interplay between

topology, unconventional superconductivity, and crystal structure. In that context, our work

on LaNiGa2 provides a clear example of how a crystal structure can connect the underlying

topological features and the resulting time-reversal symmetry breaking superconductivity.

2.2 Concepts related to CeIn3

2.2.1 Magnetic Ordering

Since magnetism is so relevant to modern-day technology, much condensed matter research

has focused on the underlying physics behind magnetism over the past century. Why mag-

netism exists within certain compounds? What is the structure of a magnetic ordering

within a material? What happens when magnetism is suppressed to lower temperatures?

Answering these fundamental questions and constructing models to accurately predict these

interactions can ultimately help us better understand the world around us and construct

better technology for the future. Since magnetism is such a significant topic with hundreds

of books focused on this topic, I will have a brief overview of the types of magnetic orderings
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and then talk about the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction which can

influence the magnetic ordering of 4f ions. Since my magnetism work almost exclusively

focused on antiferromagnetic (AFM) systems, I will focus on these concepts. In section 3.3.2

I will discuss and show experimental signatures of paramagnetism and antiferromagnetism.

This overview will provide a bases for the physics relevant to CeIn3 and what happens

as magnetic orderings are suppressed. More details about magnetism and the microscopic

origins can be read up in several sources [6, 84].

Types of Magnetic Orderings

There are several types of magnetic orderings (e.g. ferrimagnetism and helical ordering);

however, I will first focus on the two most common types of magnetic ordering: ferromagnetic

(FM) and AFM. In the simplest case, FM materials have a spontaneous magnetization with

all magnetic moments aligned along a single direction. Whereas an AFM system has its

localized magnetic moments orientate so that they are antiparallel to their neighbors. First,

we will examine what happens to the magnetic material before entering the ordered state.

Above the transitions temperatures for the two magnetic orderings, TC for FM and TN

for AFM, typically a magnetic system is in a magnetically disordered state called param-

agnetism. There are several models of paramagnetism, but the most typical model for 4f

systems is the Cure-Weiss behavior. The localized magnetic moments are randomly orien-

tated throughout the material but can interact with an external magnetic field and internally

amongst other moments. The internal magnetic moments will begin to align when exposed

to increasing external magnetic fields. Nevertheless, the state remains disordered because

of thermal fluctuations. Then as the system cools down and the thermal vibrations of the

moments reduce, the moments increasingly align with the external magnetic field. Thus
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increasing the magnetic response. This paramagnetic behavior is well described by the fol-

lowing Curie-Weiss law:

χ(T ) =
C

T −ΘCW

(2.2)

where χ is the magnetic susceptibility (M/H), C is the Curie constant, and ΘCW is the

Curie temperature in Kelvin [6, 84]. With decreasing temperature, the disordered magnetic

moments will align more and the susceptibility will rise. Paramagnetic systems will follow the

Curie-Weiss law until a magnetic ordering occurs. In section 3.3.2 I will discuss experimental

signatures of Curie-Weiss paramagnetic behavior and what information can be extracted from

this state.

Simply put, in FM systems the magnetic moments all align in a particular direction.

The magnitude and specific direction of the ordering varies between materials and depends

on the unit cell and the magnetic atom(s). When a paramagnetic system becomes FM, the

susceptibility response should sharply increase because all the moments align along the same

direction.

AFM materials are a bit more complicated than FM ones. The basic description for

an AFM structure is that the magnetic moments within a system are aligned antiparallel

to its nearest neighbor. Since magnetic moments occur within 3D space, several different

possible AFM configurations could satisfy that basic definition (Fig. 2.5). To make matters

more complicated, within the more simplistic AFM orderings in Fig. 2.5 it is possible that

moments can align in any particular direction. Just so long as a neighboring moment aligns

antiparallel. Therefore studying AFM materials and understanding the magnetic structure

of these materials is considerably more complicated and than their FM counterparts.

In section 3.3.2 I will go over the experimental signatures of AFM materials in magnetic

susceptibility, but for now let us discuss how AFM structures can be determined. Deter-
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Figure 2.5: Possible AFM structures that can exist within a simple cubic (top four) and a
body-centered cubic (bottom three) lattice. The possible spin states are marked as + or −.
Image was originally published in [84]

mining an AFM ordering is more akin to solving a crystal structure. Therefore, just like

one would use diffraction to determine the unit cell, diffraction can be employed to elucidate

the AFM order. In unit cell determination, the most common diffraction source are X-rays

because they interact directly with the electron cloud of an atom and are readily available.

Despite an atom’s magnetic moment originating from the valence electrons, photons con-

tain no magnetic moment and therefore will not interact with the magnetic moment. So to

’observe’ the magnetic spins, the diffraction source needs a net magnetic moment, such as

neutrons. Hence neutron diffraction is the most common and powerful technique to elucidate
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Figure 2.6: The AFM ordering of CeIn3 determined to have a Q= (1/2, 1/2, 1/2) from
neutron diffraction experiments [86, 88]. Image was originally published in [89]

AFM magnetic structures [6, 85].

Generally, AFM structures can be placed into one of two categories: commensurate

or incommensurate modulation. AFM structures as a whole have a repeating ’wave’ of

magnetic oscillations throughout the crystal [85]. As a result, the periodic function of the

AFM ordering can be defined by a propagation vector called the Q-vector. Where the

wavelength of the periodic modulation is equal to 2π/Q. If the Q-vector contains rational

numbers then the AFM structure is defined as commensurate. In the case of CeIn3, through

neutron diffraction experiments, it was discovered that the AFM ordering has a propagation

vector Q = (1/2, 1/2, 1/2) and can be visualized in the cubic unit cell in Fig. 2.6 [86, 87].

Most often, like CeIn3, the AFM ordering and the associated propagation vector extends

beyond a single crystal unit cell to produce a supercell.

In short, commensurate AFM structures have rational numbers within the Q-vector,

while incommensurate have irrational numbers. Therefore a single periodic function can not

relay the necessary information about the magnetic moments. Instead incommensurate AFM

orderings need to have multiple or more complex functions to convey the periodicity [85].

Such an AFM ordering was discovered within the complicated magnetic phase diagram for
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NdIn3. In this material the first AFM transition coincides with the onset of an incommen-

surate ordering. As the system cools, two additional AFM structures are observed [90]. In

the end, a commensurate AFM ordering with a Q = (1/2, 1/2, 0) in NdIn3 stabilizes below

4.83K.

RKKY Interaction

As discussed above, magnetic ordering results from magnetic moments interacting with other

nearby moments. In highly localized 4f systems, this exchange interaction typically occurs

through indirect means, where the 4f moment couples with the conduction electron. Subse-

quently, the conduction electron then interacts with a neighboring 4f moment [6, 84, 91–93].

This interaction produces a spatial ’ringing’ effect in the magnetization with the following

function:

F (x) =
−x cosx+ sinx

x4
(2.3)

where x is proportional to the real space distance between magnetic moments. As a

result, the RKKY interaction produces a distance-based oscillatory coupling between the 4f

magnetic moments. Which in turn can dictate whether the resulting magnetic ordering of

the entire system is FM or AFM. Overall, this interaction shows that the distance between

4f ions can have a huge impact on the type of magnetic ordering.

2.2.2 Kondo Physics

Here I will briefly discuss an overview of Kondo effects through the example of tetragonal

CeMIn5 (M = Co, Rh). This overview will help us better understand the underlying physics

in cubic CeIn3. There are two main types of Kondo effects: Kondo impurities and Kondo

coherent lattices. Oftentimes, these effects are mistakenly and confusingly mixed up for one
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another. To make matters worse, the same terminology is often erroneously used for both

types of effects.

Kondo Impurity

Historically, the Kondo effect was first described as a way to rationalize a strange resistivity

uptick observed within metallic systems at low temperatures [94]. This phenomenon would

only occur in nonmagnetic metals alloyed with a very dilute concentration of magnetic ions.

In these materials is was discovered that the magnetic moments from the impurity atoms

would couple with the conduction electrons to form an opposite spin-polarization cloud.

Although this behavior was first discovered in metals diluted with magnetic transition metals,

Kondo physics is now most associated with heavy fermion materials (Ce, Yb, U) because the

4f electrons and resulting magnetic moments from these elements are localized and interact

with conduction electrons.

As a result, this coupling has two main consequences. First, the overall magnetization

decreases below the expected value from Curie’s law. Second, the electron scattering and

thus the resistivity (ρ(T )) increases proportional to Jkln(T ) [84]. Where Jk is the exchange

coupling (Kondo coupling constant) between the local moment and the conduction electrons

and commonly Jk < 0. This ρ(T ) upturn is only observed when a material is cooled to a

low enough temperature such that the phonon scattering behavior is no longer dominant.

From this model, the Kondo temperature, TK , is defined as a theoretical temperature

where ρ(T ) deviates from the −ln(T ) behavior [94]. At first, this temperature was thought

to be too low to observe experimentally; however, ρ(T ) was eventually shown to deviate

from the logarithmic behavior at very low temperatures (see Fig. 2.7). Furthermore, ρ(T )

was also shown to flatten completely at temperatures much lower then TK . Initially, this
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Figure 2.7: (a) In-plane ρmag per molar Ce for various x in Ce1−xLaxCoIn5. The red arrow is
roughly where TK ≈ 1.5K is located and where the −ln(T ) relationship slightly diverges for
the Kondo dilute systems x = 0.9, 0.944, and 0.99. Plot was originally published in [95]. (b)
Temperature dependence of ρmag per molar Ce in CexLa1−xCu6. The red arrow is roughly
where TK ≈ 3.5K [96] is located and where the −ln(T ) relationship slightly diverges for the
Kondo dilute systems x = 0.094 and 0.29. ©(1986) The Physical Society of Japan. Plot
was originally published in [97]. In both plots ρmag is labeled as ρm.

flattening was an issue with the original model but was then rationalized by the onset of

a Kondo singlet ground state between the local 4f magnetic moments and the conduction

electrons [98, 99]. From theoretical calculations, TK occurs before ρ(T ) flattens and is shown

to be proportional to:

TK ∝ De
−1

Jkn(EF ) (2.4)

where D is the band-width of the conduction band and n(EF ) is the density of states

at the Fermi level [100, 101]. From a theoretical perspective, TK also coincides with the

crossover from perturbative to non-perturbative Kondo coupling [101]. Experimentally, TK

can be observed in Kondo impurity systems where magnetic resistivity (ρmag(T )) deviates

from ρmag(T ) ∝ −ln(T ). Examples of this behavior can be observed in Fig. 2.7 where La-

substituted CeCoIn5 [95] and CeCu6 [97] both show slight divergences from low-temperature
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−ln(T ) behavior near their respective TK values.

The defined TK and the ground singlet behavior can be seen in the Fig. 2.8(a,c). Using

the labels from [101], the notation in Fig. 2.8 is defined as:

T onset
K = onset of incoherent spin-flip scattering − ln(T ) resistivity

T ′
K = resistivity minimum crossover from phonon-scattering to − ln(T ) resistivity

T h
K = effective Kondo temperature including the full sixfold degeneracy of the

J = 5/2 f-states

TK = Kondo temperature for groundstatef -level

theory crossover

T gs
K = onset of fully-screened Kondo singlet ground state

In the high-temperature region of the dilute system (T > 30K) there is another region

for heavy fermion materials that follows the −ln(T ) behavior. In this regime the higher-

energy crystal electric field (CEF) levels are populated and incoherent Kondo scattering

occurs because the higher degeneracy (N=6) increases TK . This feature is well described

by Cornut and Coqblin [102] and more will be discussed about these features separately

in section 2.2.3. Nonetheless, it is important to highlight that even in diluted Ce systems

this −ln(T ) behavior is observed at much higher temperatures than the traditional Kondo

impurity temperature regime [95].

Kondo Coherent Lattices

Aside from the low-temperature dilute phenomena, Kondo interactions can also be observed

in high-temperature regions of heavy fermion materials. In these systems the defining char-
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Figure 2.8: (a,b) Schematic magnetic resistivity profiles for (a) a dilute impurity and (b) a
Kondo lattice system. (c,d) Linear temperature scales of plots (a) and (b), respectively. All
of the T values are defined in the main text. Figure was originally published in [101].

acteristic is a broad maximum (denoted by T ∗) in ρmag(T ) (See Fig. 2.8(b,d)). As the

temperature lowers from room temperature, there is an initial scattering increase because

of the Kondo coupling between the f -bands and the conduction electrons. This increase

in ρmag(T ) also follows the −ln(T ) relationship until the broad crossover into a ’coherent’

system. At which point the resistivity begins to drop because the heavy fermion f bands

hybridize with the conduction bands. Hence the ’Kondo coherence’ label for the resistivity

maximum at T ∗. Again using the notation from [101], the notation used in Fig. 2.8 is defined

as:
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T ∗
onset = onset of lattice coherence

T ∗ = magnetic resistivity maximum, onset of the resistivity downturn

T ∗
gs = TFL = onset of ground state Fermi liquid T 2 resistivity behavior

It should be noted that this feature does not have a microscopically defined origin but

instead is strictly determined by the observed features in resistivity, magnetic susceptibility,

and heat capacity data. Another essential piece of information to highlight is that this

only occurs in a lattice with a dense periodic array of magnetic elements (Ce, Yb, or U).

That is because in materials with these elements, the f -level bands from these atoms are

energetically close to the Fermi level and can interact with the conduction electrons.

The proximity of these 4f bands to the Fermi level can also cause CEF interactions [102].

Therefore to comprehensively understand the consequences of each interaction it is essen-

tial to first isolate the Kondo lattice coherence from the CEF phenomena. This can be

achieved by driving the energy scale of the Kondo lattice coherence lower with chemical

substitution [95, 103–105]. However, sometimes it can be difficult to make broad conclu-

sions because chemical substitution can also change the CEF parameters and/or Kondo

coupling [106–108]. Alternatively, the system could not contain a Kondo coherent lattice

at all [109]. In the end, this difficulty can often lead to the wrong conclusions about the

underlying physics of a material.
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2.2.3 Crystal Electric Field

The CEF interactions impacts on a condensed matter system are best understood at the

molecular level with a general chemistry principle — Crystal Field Theory (CFT). This

model helps explain the orbital splitting observed from local symmetry and the resulting

physical characteristics observed for a single molecule. Here it is assumed that there are no

intermolecular interactions and, therefore, no periodic lattice effects.

CFT is best understood from a simple molecule with an octahedral geometry and a

3d metal center (Fig. 2.9). Before the formation of the molecule, all five 3d orbitals are

energetically degenerate. If one were to assume that the ligands form a uniform negative

electrical charge around the metal center, the energy level of all 3d orbitals would collectively

rise. The orbital degeneracy is only ruined when the ligand negative charges coalesce into

point charges to form an octahedron. Once in this geometry, the 3d orbitals with the most

direct interactions with the ligand point charges, dx2−y2 and dz2 , will increase. Whereas

the 3d orbitals with lobes off-axis from the ligands; dxy, dxz, and dyz; will slightly lower

their energy. The molecule’s resulting physical properties (e.g. magnetism and optical) will

then be determined by how the valence electrons from the metal center fill these orbital

energy levels. Overall this is a simple and straightforward example that shows that the local

geometry around an atomic center can have a significant impact on the energy levels and

resulting physical properties of a molecule.

When scaling the CFT interaction to a periodic crystalline solid, the picture is not quite

as simple. First off, the discrete energy levels of a single molecule smear together to form

bands. The energy of these bands are still associated with the discrete energy levels from the

individual molecules/atoms, so they are still impacted by the central element and the local

geometry. Second, for materials with heavy elements with localized f electrons, the strong
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Figure 2.9: Schematic of CFT splitting as a result of an octahedral molecule. Image was
originally published in [110].

SOC (coupling between electron and orbital spin) and the number of f electrons will split

energy levels before accounting for environmental splitting. For these elements/materials,

the total angular momentum quantum number, J , can describe the ground-state of energy

levels before accounting for CEF interactions. In the case of 4f heavy fermion ions with

one unpaired electron (4f 1 for Ce3+ and 4f 13 for Yb3+) we can determine the J value by

following Hund’s rules:

L = 3

S = 1/2

J = L± S = 7/2 and 5/2

where L represents the orbital angular momentum quantum number and S is the electron

spin quantum number. For systems with an f -shell that is less than half full, the primary

multiplet is J = |L− S|. While for systems with an f -shell that is more than half-filled the
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ground multiplet is J = L + S. Therefore, materials with Ce3+ ions have a ground state of

J = 5/2, and Yb3+ has a J = 7/2. With the appropriate J value determined, the actual

number of energy levels are determined by:

mj = −J,−J + 1,−J + 2, ...J − 1, J (2.5)

Which gives discrete mj values for Ce3+ as ±5/2, ±3/2, and ±1/2 and a sextet ground

state. While for materials containing Yb3+ have mj = ±7/2, ±5/2, ±3/2, and ±1/2 and

an octet ground state. Meaning that despite Ce and Yb ions only having one unpaired 4f

electron, the two elements have to be treated separately in regards to their SOC and CEF

interactions.

With the appropriate ground state determined, the CEF and local geometry around the

heavy fermion atom can be fully accounted. In cubic Ce systems, the J = 5/2 ground state

is split into a doublet and a quartet [102]. The energy level schematic within a cubic system

is then dependent upon the number of point charges and the geometry of these point charges

immediately around the Ce atom [111]. In the case of cubic CeIn3 the sextet splits into a

ground state doublet (Γ7) and a higher energy quartet (Γ8) [112]. While cubic CeAg, CeMg,

and CeZn (all CsCl structure type) each have a low lying Γ8 and a higher energy Γ7 [113].

For Ce systems with lower symmetry, tetragonal or hexagonal, the cubic quartet Γ8 is split

into two doublets to form three distinct doublets [84, 102, 114]. In these systems, the order

of the doublets can vary between different tetragonal/hexagonal structures and can even

vary between materials with the same structure [114].

To summarize the SOC and CEF energy level splitting in a tetragonal system, the

schematic is shown in Fig. 2.10. As it can be seen, the J = 7/2 energy level exists for

a Ce3+ system. However the energy difference between the J = 5/2 and J = 7/2 levels
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is estimated to be 0.3 eV. Which roughly equates to about 3000K. So this higher energy

branch is effectively empty because it is never appreciably thermally excited. Whereas the

CEF splitting, in this example, between the ground state doublet to the second doublet

is ∼ 5meV (∼ 50K). Therefore, in this tetragonal Ce3+ system the thermal transitions of

electrons (excitation or depopulation) can play a critical role in the observed electronic,

magnetic, and thermodynamic properties. This is especially true for any heavy fermion ma-

terial where the rare-earth bands are close to the Fermi level, as discussed in section 2.2.2.

For other 4f systems without bands near the Fermi level, these energy levels/gaps will not

impact the observed properties because they will either always be occupied or are so high in

energy that they are practically empty across all temperatures.

2.2.4 Combined Kondo and CEF interactions

This brings us back to the Kondo effect and the impact of CEF splitting on these heavy

fermion systems. In order to best understand how CEF interacts with the Kondo physics

discussed above, we will examine the impacts of CEF splitting and depopulation on resis-

tivity experiments. As first described by Cornut and Coqblin [102], the authors wanted to

understand the influence of CEF splitting on the Kondo effect in alloys and compounds with

Ce or Yb impurities. The calculations from this model are lengthy but well described. They

have been reproduced on several systems to understand how the CEF and Kondo interac-

tions develop with the evolution of pressure [109, 115, 116]. Although these systems (CeAl2,

CeAl3, and CeZn11) are not true Ce-dilute alloys, this model has successfully explained the

influence of CEF on the Kondo effect in these heavy fermion materials and countless others.

To summarize the calculations, it was found that several parameters impact the CEF

interactions and, ultimately, the resistivity curves. Overall this model showed that at suf-
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Figure 2.10: Schematic of energy level splitting for a Ce3+ ion in a tetragonal structure. The
splittings are exaggerated to easily observe each energy level. Image was originally published
in [84].

ficiently higher temperatures than the CEF splitting (T > kB∆CEF), all CEF states are

thermally populated and incoherent Kondo scattering increases ρmag(T ) ∝ −ln(T ). As the

temperature decreases, the excited CEF states begin to depopulate down to the lower energy

excited state and/or ground state. Thereby reducing the degeneracy of the occupied energy

levels. Following the depopulation of the CEF energy levels, ρmag(T ) is expected to drop.

Thereby forming a broad maximum in ρmag(T ) with TMax ∼ ∆CEF (in Fig. 2.8(b,d) this

feature is labeled as T ∗).

This CEF depopulation effect should occur for every well-separated ∆ij within a system.

So within a cubic system with one energy gap, ∆12, it is expected that one region with

30



 

 

!"!#$%&'$()*+",$%&'$(

-. !"#*//*0123

 !"#
 $%&'  $%&(

 

 

45674

-. !"#*//*0123

 !"#  $%&

 

 

 )*+

-. !"#*8*0123

 

 

 !"#

0123*//*-. !"#$9 49

69 :9

Figure 2.11: Schematics of the temperature dependence of the electrical resistivity for a
Kondo lattice (ignoring phonon contributions). a) the CEF splitting energy ∆CEF is smaller
than the Kondo coherence energy scale Tcoh. b) ∆CEF and kBTcoh are of similar magnitude. c)
and d) kBTcoh is smaller than ∆CEF. In cubic symmetry c), there are two resistivity maxima
associated with the coherence and CEF effects. In hexagonal or tetragonal symmetries d),
there can be a third maxima associated with the additional CEF energy splitting.

ρmag(T ) ∝ −ln(T ) and broad maximum will occur with TMax ∼ ∆12 [102, 115]. While for

tetragonal or hexagonal materials, two energy gaps, ∆12 and ∆13, exist and therefore, two

regions with ρmag(T ) ∝ −ln(T ) and broad maxima are expected [117–119].

However, in many systems the number of broad maxima in ρmag(T ) differs from the ex-

pected number of depopulation features. This difference can be directly attributed to the

Kondo lattice coherence or because of similar energy scales between different ∆ij gaps. The

difference between the expected and experimental maxima depends on the Kondo lattice

coherence energy scale (kBTcoh) relative to ∆CEF. For example, in cubic CeMg3 two broad
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maxima, each with a region ρmag(T ) ∝ −ln(T ), are observed even though there is only

one CEF splitting [120]. In such a system kBTcoh << ∆CEF so the high-temperature maxi-

mum is associated with the CEF depopulation effect, and the low-temperature maximum is

correlated with the Kondo lattice coherence (schematically shown in Fig. 2.11(c)).

Whereas the opposite, fewer maxima than expected, can also exist. Each of CeMIn5 (M

= Co, Rh, Ir) have two well-separated CEF splittings (∆High
CEF and ∆Low

CEF ) [114]. Hence one

would expect two regions with ρmag(T ) ∝ −ln(T ) and maxima associated with the two CEF

splittings. Plus, one more maximum from the Kondo lattice coherence if kBTcoh << ∆Low
CEF

(schematically shown in Fig. 2.11(d)). However, the resistivity curve from each compound

clearly shows only one maximum [121–123]. Revealing that that either kBTcoh ∼ ∆High
CEF or

kBTcoh >> ∆High
CEF for each of CeMIn5. As shown in Fig. 2.11(a,b) both scenarios would

result in a single maximum for any unit cell.

Ultimately this summary shows that it is inherently difficult to truly isolate the impacts of

Kondo and CEF interactions on any particular heavy fermion system. This is especially true

when kBTcoh ∼ ∆CEF. Although through the evolution of hydrostatic pressure or chemical

substitution it is possible to alter kBTcoh to either separate or conjoin the feature with the

CEF depopulation feature [95, 103, 117–119, 124–131].

2.2.5 Quantum Criticality

Over the past several decades studying quantum criticality in heavy fermion materials has

been incredibly important to the progress of the condensed matter community. To begin

to understand ’quantum criticality’ it is best to first examine the two underlying aspects

within the name. The first is ’quantum.’ Although quantum is used everywhere these

days, the specific usage, in this case, comes from ’quantum phase transition.’ Typically a
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phase transition occurs when a particular phase is destroyed or condensed by increasing or

decreasing thermal fluctuations, respectively. A quantum phase transition, however, occurs

when a phase transition is controlled by another nonthermal variable (such as pressure,

external magnetic field, or chemical substitution/doping) such that at some critical value

the phase transition is driven to occur at absolute zero [84, 132]. At a quantum phase

transition the phase change is no longer driven by thermal fluctuations but instead quantum

fluctuations.

The second part of this term, ’criticality,’ which comes from ’critical point.’ A critical

point is a unique point on a phase diagram where phase transition models (e.g. mean free

theory) break down. As an example, let us examine the most commonly known critical

point in the p − T phase diagram of water. The phase transition is well described as a

first-order transition along the boiling line (A-E in Fig. 2.12). At the critical point (point E

in Fig. 2.12), the liquid-gas transition shifts to a second-order phase transition and classical

phase transition models break down. Above the p and T values of the critical point the

liquid and gas phases cannot be distinguished. As the system approaches the critical point,

the fluid’s heat capacity and compressibility curves both diverge from their expected shapes

in the form of a power law.

So a ’quantum critical point’ is a particular point on a phase diagram where a criti-

cal point occurs at absolute zero. Systems with quantum critical points are expected to

display unusual phenomenon around the quantum critical point. This region is the zone

of quantum criticality, where phases are controlled by quantum fluctuations (Fig. 2.13).

Even systems without a true quantum critical point often reveal novel phenomena when

ordered systems are pushed towards a quantum phase transition. The research born out of

the search for quantum critical points has resulted in many exotic low-temperature phases
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Figure 2.12: P − T phase diagram of water. The critical point shows where the liquid-gas
transition shifts from being first-order (along red line) to a second-order transition at the
critical point. Above this pressure and temperature, both the liquid and gas phases exist
simultaneously. Image was originally published in [133].

such as heavy fermion superconductivity [134–136], coexisting magnetism and supercon-

ductivity [55, 137–139], reentrant superconductivity [140–143], winged ferromagnetic phase

diagrams [132, 144–148], and non-Fermi liquid behavior [149–152]. Overall, studying these

low-temperature phase diagrams by tuning pressure, magnetic fields, and/or chemical substi-

tution has revealed novel low energy states which have immensely progressed the condensed

matter physics community.

Heavy fermion metals have been the focus in many studies searching for quantum critical

points [154]. Specifically, Ce-based fermion systems have been extensively studied in search

of quantum criticality. One such system is CeIn3. Where countless studies have examined the

phase diagrams of CeIn3 when tuning with pressure [88, 89, 155–160], magnetic fields [161–

164], and chemical substitution [104, 165–171]. Overall it appears that CeIn3 does not exhibit

a quantum critical point as the AFM phase is suppressed with magnetic fields, chemical

substitution, or pressure (Fig. 2.14). CeIn3, however, does show a small superconducting
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Figure 2.13: A generic phase diagram of an ordered state as the nonthermal parameter
r is used to tun the system towards a quantum critical point. The solid line marks the
temperature boundary between order and disordered phases. The dashed lines indicate the
boundaries of the quantum critical region. Figure was originally published in [153].

dome near the quantum phase transition as the AFM ordering is tuned with pressure [89, 156–

158].

2.2.6 Percolation Limit

Percolation theory is a mathematical and statistical model that describes the behavior of

networks. Much of this work focuses on the connectivity of networks as the individual com-

ponents making up the network are gradually removed or replaced. Within this theory are

percolation limits (or thresholds) which are mathematically defined values or concentrations

that destroy a network’s long-range connectivity [172]. This concept has be applied to vari-

ous topics such as wildfire propagation and magnetic ordering in crystalline systems. In the

latter, magnetic atoms are systematically replaced from the magnetically ordered network to

understand the forces that drive the phase transition towards absolute zero. The particular

concentration where phase transition becomes a quantum phase transition is called the criti-

cal concentration, xc, (percolation limit). To better understand this concept we can examine
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Figure 2.14: (a) Magnetic field phase diagram of CeIn3 when the external magnetic field is
aligned along various directions of the CeIn3 crystal. At high fields, µ0H ≈ 40T, the phase
diagram when µ0H ∥ [100] separates from the other directions. Plot was originally published
in [163]. (b) Pressure phase diagram of CeIn3. TM indicates the resistivity maximum, TN

the Néel temperature, and T1 the crossover temperature to the Fermi-liquid regime. The
superconducting transition Tc is scaled by a factor of 10. Plot was originally published
in [158].

an example of La substituted into the CemRhnIn3m+2n (m = 1, 2;n = 0, 1) family [104].

Each of the three structurally related compounds, CeIn3, CeRhIn5, and Ce3RhIn5, con-

tain an AFM ordering at low temperatures. By systematically substituting Ce with a non-

magnetic ion, La, we can understand the driving forces that suppress the AFM order by

comparing the experimental La xc with the theoretical percolation limit. For the tetragonal

systems, CeRhIn5 and Ce3RhIn5, xc of La extrapolated to x = 0.41(5) and for the cubic

unit cell, CeIn3, xc extrapolated to x = 0.63(5) [104]. At first glance, this difference might

seem odd because the theoretical percolation limit for a simple 3D cubic system xc ∼ 0.7,

which was in reasonable agreement with CeIn3 [172]. This discrepancy was ultimately ra-

tionalized by the structural differences between the tetragonal and cubic unit cells. The
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Figure 2.15: Normalized TN values to show the dependence in the (Ce1−xLax)mRhnIn3m+2

(m = 1, 2;n = 0, 1) compounds. Figure was originally published in [104]

two tetragonal systems contain planes of Ce atoms and therefore are more akin to a 2D

system. The xc values for these two systems are now in good agreement with the percolation

limit for a 2D xc ∼ 40% [173]. Since all of the materials agree with their respective per-

colation limits, it was concluded that no additional mechanisms were suppressing the AFM

ordering beyond percolation interactions. However, in Nd substituted CeRhIn5 the critical

concentration extrapolates to x = 0.2 [105]. The difference between La and Nd critical con-

centrations in substituted CeRhIn5 indicates that the Nd substitutions have an additional

mechanism suppressing the AFM ordering of CeRhIn5. The authors of this work suggest the

additional mechanism to be crystal-field induced magnetic frustrations stemming from the

AFM ordering difference between CeRhIn5 and NdRhIn5 [105]. Performing these substitu-

tion studies provides insights into the mechanisms that suppress an ordered state and allows

us to determine the existence of a quantum critical point and/or novel condensed matter

states.

37



Chapter 3

Overview of Experimental Techniques

Copyright permission has been obtained and granted to use Figures 3.1, 3.6, 3.8, 3.9, 3.20(a),

3.22, and 3.23. Figure 3.16 was obtained from an open access source. Figure 3.15 was

published within [174] and figures 3.18 and 3.19 were published within [175]. For both

articles I was a participating author.

3.1 Sample Synthesis

3.1.1 Flux Growth

Within the condensed matter physics and solid state chemistry communities there are a

variety of methods to grow materials in various morphologies. For the purposes of this

research, the samples are best studied when grown as high-quality single crystals. As the

case before, there are several general methods towards growing single crystals. The most

widely applicable method to grow single crystals is through the flux technique. The general

mechanisms behind this technique have been well studied and established [176–181]; with

38



countless examples of materials grown through this method. Here I will describe a brief

overview of the mechanisms behind flux growth, how to determine whether a material can be

grown via the flux technique, how to go about performing a flux growth, and some precautions

to note during the preparation and growth periods. Then I will provide examples of how I

performed flux growth syntheses to grow CeIn3 and LaNiGa2. Since the flux technique can

grow a wide variety of materials, I will focus on how this technique can be used to grow

intermetallic compounds specific to our research in the Taufour group. More details of this

technique can be found in a variety of resources [176–181]. Additionally, more information

about phase diagrams can be found directly in the ASM handbook [182].

Mechanisms of Flux Growth

Before talking about how a flux technique is performed, let us first focus on how the crystals

are grown. One of the most important driving forces for crystals to grow with this technique

is supersaturation [181]. At a particular temperature when any solution is formed there

is a thermodynamically-stable maximum concentration of a particular solute that can be

achieved. Once the solution reaches this concentration it is said to be saturated. For most

solutions when the temperature increases, the saturation concentration also increases. When

the temperature is lowered for a saturated solution the solute does not immediately drop

out to lower the concentration. Instead the solution enters a metastable state called super-

saturation. Where the supersaturation can be quantified as: σ = (C0 −C)/C with C0 being

the saturation concentration at a particular temperature and C the current concentration of

the solution.

Even within a supersaturated state the crystals will not immediately form. It is not

until a particular threshold of σ will crystals begin to nucleate to drive σ down and form a
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thermodynamically stable solution. Therefore, to maintain the driving force behind crystal

nucleation and/or growth, the solution must remain in a supersaturated state.

When σ reaches a particular threshold and enough atoms randomly cluster together at a

critical size, the compound will start to nucleate. Theoretically, nucleation occurs randomly

throughout the solution. However, in real syntheses, with crucibles and impurities, the nu-

cleation energy barrier is lowered by the heterogeneous growth medium; leading to clusters

nucleating on the imperfections. It should be noted that in general nucleation requires a

higher supersaturation state than attaching additional atoms to a nucleated crystal. There-

fore to reduce the number of nucleation sites and grow larger crystals the supersaturation

state must be slowly changed. A slow supersaturation change can be achieved by slowly

cooling the reaction temperature. Additionally, slow cooling can have the additional benefit

of reducing disorder and imperfections within a crystal.

It should be noted that supersaturation concentrations, rates of nucleation, and rates

of crystal growth are extremely difficult to experimentally determine for any given system.

Therefore, these concepts are good to qualitatively understand as a guide to performing flux

growth.

How to Determine if a Material can be Grown via Flux Growth

There are two main types of flux growths that can be performed: a self-flux and an external

flux. The self-flux technique uses a specific atomic percentage of elements from the desired

compound (e.g. using 97% In and 3% Ce to grow CeIn3 as will be discussed later). While

an external flux growth uses another element to dissolve the starting reactants of the desired

phase. Regardless of the which flux method is used the basic premise of the technique

remains the same: force the elements into the liquid phase to create a solution, lower the
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temperature to create a supersaturated solution, and continue slowly cooling down to allow

crystals to nucleate and grow.

Starting with the self-flux technique, I will use a case study with CeIn3 to show all the

necessary steps. To avoid blindly attempting to grow the material it is best to first look

up the phase diagram between the elements within the desired material [182]. The general

technique can also be used on ternary and quarternary materials. Although there are much

fewer of these phase diagrams, making the self-flux growth of these materials much more

challenging.

The Ce-In phase diagram acquired from [182] is shown in Fig 3.1. This phase dia-

gram shows all of the known binary compounds as the atomic percentages shifts from 0% In

(100%Ce) to 100% In (0%Ce). The vertical lines (solidus lines) represent all of the materials

between Ce and In. As can be seen, some vertical lines show a width (e.g. (Ce) ht1, and

Ce3In) which represents a solid solution where the specific material has range of possible

atomic compositions. The shaded blue region at the top of the figure shows where the el-

emental mixture forms a liquid and the line at the edge represents the liquidus line where

a solid starts to nucleate. In the case of CeIn3, this material has a exact composition of

25%Ce and 75% In. Between solidus lines (e.g. CeIn2 and CeIn3 and below 1120 ◦C) both

phases would exist concurrently and there would be a mixture of the two phases. A mixture

of phases also occurs in regions between solidus and liquidus lines. For example, the white

region to the right of CeIn3, excess In region, where a wide range of atomic percentages will

result in mixture of CeIn3 and a liquid (T = 157− 1180 ◦C).

As can also be seen, pure CeIn3 congruently melts straight into a liquid. Thus CeIn3

could be grown by mixing exact atomic percentages of Ce and In and heating above the

melting point, 1180 ◦C, and allowing the system to cool down. However, in this scenario
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upon dropping below the melting point there will be a rapid transition from liquid to solid

and result in a polycrystalline sample of CeIn3. Therefore, to grow high-quality single crystals

it is imperative to form a supersaturated solution and then slowly cool down the reaction.

For the self-flux growth technique this is done by going off stoichiometry of the desired phase

and heating above the liquidus line. The liquid is then cooled down below the liquidus line

to induce nucleation of the desired phase. Once nucleation starts, the reaction then contains

a mixture of the desired phase and the supersaturated solution.

Going off stoichiometry of CeIn3 there are two possibilities: excess Ce or excess In. Given

the small temperature window (T = 1120− 1180 ◦C) where a mixture of CeIn3 and a liquid

exists, it is difficult to grow large single crystals in this region. Whereas, when the system

has excess In, there is a large temperature window where the mixture exists which provides

a large region to grow single crystals. Therefore, to grow single crystals of CeIn3 via the

self-flux technique one would set up a reaction with excess In (75% − 100% In), heat the

system above the liquidus line, and then slowly cool down as the system drops below the

liquidus line to form single crystals (see below for exact temperature profile to grow CeIn3).

Once the single crystals have been formed, it is important to isolate them to more easily

access the samples and subsequently measure their properties. If one were to continue cooling

down the reaction to room temperature, the crystals would continue to grow until the freezing

point of the flux is reached. This would encase the samples and make them very difficult to

extract. So to avoid this disaster, a porous barrier can be added to the reaction vessel and

with the help of a centrifuge the molten flux can be forced through the barrier to separate

the desired single crystals and the liquid. More will be discussed in the section 3.1.1 on the

setup to achieve this.

Since experimentalists are not perfect (although some may disagree) and in-situ centrifug-
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Figure 3.1: Ce-In phase diagram that ranges from an atomic percentage of 0% In (100%Ce)
to 100% In (0%Ce). The vertical lines represent the known binary compounds between Ce
and In. Figure was originally published in [182].

ing is extremely difficult, we can not centrifuge the sample directly at the freezing point of

the flux (157 ◦C for the CeIn3 growth). Therefore, a temperature buffer must be built into

the reaction temperature profile. This allows for the reaction vessel to be removed from the

furnace and immediately placed into a centrifuge. Typically this buffer is about ∼ 50 ◦C.

This temperature buffer again verifies that the Ce excess route to grow CeIn3 is prohibitively

difficult and not the preferred method to grow the desired phase.
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If a self-flux growth proves futile, then an external flux growth could be attempted. In

these scenarios the external flux is an element or compound that is not part of the desired

phase. For these reactions the external flux is used to dissolve the reactants. Forming a

solution with the reactants enables them to interact in the liquid phase and form a super-

saturated solution.

For successful growths, the external flux must exhibit three key properties. One, the

chosen flux must have a low melting point and a high boiling point to maximize the temper-

ature range where the flux is a liquid. This large temperature range thus provides a large

growth window for the desired phase. Two, the external flux must be able to dissolve the

reactants of the desired phase. Three, the external flux must not produce any undesirable

side-reactions with any elements of the desired phase. In general it is also desirable to use

external fluxes that are cheap and nontoxic.

It is possible to use a compound or eutectic mixture for external flux growths (e.g.

single crystal FeSe flux growth [183–185]), however I will focus on elemental fluxes to grow

intermetallic compounds. The first desired property really limits the number of possible

elements down to five main ’usual suspects’: Ga, In, Sn, Pb, and Bi. Each of these elements

have relatively low melting points (< 350 ◦C) and boiling points above the temperature limit

for quartz ampoules (> 1200 ◦C). See Table 3.1 for melting and boiling points of the ’usual

suspect’ fluxes. These large temperature differences between the melting and boiling points

provide a large growing window for the desired phase. Other elements can be used as possible

fluxes, however these have much narrower temperature windows where they are a liquid or

have other potential problems (e.g. Al attacking quartz) [176, 178, 181].

It is usually difficult to predict exactly which flux will produce the best results but the

options can be further limited by checking the binary phase diagrams between the flux and
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Flux Tmelt (◦C) Tboil (◦C)
Ga 30 2400
In 157 2072
Sn 232 2602
Pb 327 1749
Bi 272 1564

Table 3.1: Melting and boiling temperatures of the ’usual suspect’ metallic fluxes. Table
adapted from [181]

the reactants. These binary phase diagrams will indicate whether the metallic flux is miscible

with the solute or if there are any possible side reactions to form an undesirable phase. Along

these lines it should be noted that these growths are typically prepared with heavily excess

amounts of solvent (> 90% metallic flux) to minimize the possibility of side reactions. After

examining the phase diagrams and it appears that multiple metallic fluxes could be options,

it can sometimes be beneficial to try several different growths to best determine which is

optimal for the desired phase.

Setting up the growth

To create a uniform growing environment, the elements are placed in an alumina Canfield

crucible set (see Fig. 3.2(a)) [186]. This setup has been specifically designed and optimized

for flux growths. The bottom crucible acts as the ’synthesis crucible’ where the single crystals

are grown, the middle frit acts as the porous barrier that allows for the molten flux to be

removed during centrifuge, and the ’catch crucible’ is where the liquid is pushed into during

centrifuging. Therefore, prior to centrifuging the ampoule must be inverted in order for the

flux to be separated from the single crystals.

Once the elements have been weighed and placed in the synthesis crucible, the setup

must then be placed within a vessel to contain the crucible set. Additionally, since many of
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Figure 3.2: (a) Alumina Canfield crucible set which contains the synthesis crucible (bottom)
where the elemental mixture is placed, the frit, and the catch crucible [186]. (b) The crucible
set sealed within an evacuated quartz ampoule.

the elements and compounds oxidize at high temperatures, the most important aspect when

performing an intermetallic flux growth is to ensure that the environment is oxygen free.

Both of these necessities can be achieved by sealing the reaction within an evacuated sealed

quartz ampoule as shown in Fig. 3.2(b). This can be accomplished by using a torch (using

either natural gas or hydrogen as the fuel) to carefully create and seal the quartz ampoule.

Once the ampoule has been sealed, it is placed within a larger crucible to hold the reaction

vertical. Subsequently it is placed within a furnace which has been pre-programmed with the

previously planned reaction profile (see below for examples). Once the furnace has completed

the reaction cycle the ampoule must be centrifuged. While wearing the proper PPE, you can

quickly and carefully remove the larger crucible, containing the ampoule, from the furnace
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with tongs. Then in a swift motion the larger crucible is inverted to slide the ampoule into

the centrifuge. Once the ampoule is in place the centrifuge is turned on and the molten flux

is separated from the crystals. In the end, the ampoule can be broken open to reveal crystals

in the synthesis crucible.

Precautions

There are a variety of precautions that need to be taken into account when performing a flux

growth. Some are small tricks that can ultimately improve the single crystal quality. While

others are more dire and if not properly accounted for can result in catastrophic failure and

potential injury.

Starting from the beginning, some elements are inherently more hazardous due to innate

health properties (e.g. arsenic, cadmium, beryllium). So if these elements are used within

growths, additional precaution must be taken throughout the entire synthesis. Such safety

measures include weighing the reactants in a glovebox and using a furnace within a fumehood.

Others elements are dangerous because of their melting and boiling points. Since these

reactions are performed within a closed environment and the elements are ultimately melted,

under certain circumstances vapour pressures can cause the ampoule to explode. This could

lead to the vapours escaping into the room and potentially causing severe health issues while

also damaging the furnace. To avoid this situation, the vapour or gaseous pressures from

elements with low boiling points (e.g. phosphourous, sulfur, selenium) or that sublimate

(e.g. arsenic, iodine) should be calculated at the highest temperature. Although the quartz

ampoule can withstand a small amount of positive pressure, it is best practice to use atmo-

spheric pressure as the maximum pressure. With the maximum temperature and pressure

the amount of starting material from these elements can be calculated for these reactions.
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Additionally, if there is ever a possibility of an explosion the reaction should be placed within

a furnace in a fume hood or have a setup that allows for the vapours to quickly be evacuated

from the room.

On the other end of the temperature spectrum, are elements which do not melt under

the temperature limits of the quartz ampoule. Quartz does not have well defined melting

point, but rather begins to soften around 1250 ◦C. Therefore, the upper limit that the quartz

ampoule can be taken is 1200 ◦C. Which means that several elements will not form a liquid

at this temperature and subsequently would be omitted from flux growth reactions.

There are a couple methods to get around this dilemma. One is to arc-melt some or

all of the elements to form a eutectic mixture with a lower melting point (a necessary step

to synthesize single crystals of LaNiGa2, see below for more details). Another method is

to use a powder of the high-melting point element. Using a powder increases the surface

area interactions between the high-melting point and the liquid flux. So during the synthesis

set up, this powder is dispersed throughout the synthesis crucible and encased by the lower

melting flux. With enough time at the maximum temperature and having correctly chosen

a flux, the powder will eventually dissolve entirely into the molten flux. Ultimately forming

a solution and allowing for the desired phase to precipitate out.

For certain reactions, the alumina crucible and/or quartz ampoule can prohibitively cause

undesired side reactions. Some elements (e.g. yttrium) can react with the alumina crucible

(Al2O3) to induce the highly exothermic thermite reaction:

M + Al2O3 −→ MxOy + Al (3.1)

This reaction only takes place with elements with really high oxidation-potentials where the

alumina crucible oxidizes the element and in the process releases an extreme amount of heat.
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To combat this, the alumina crucible can be replaced with a highly stable metal like tantalum

or platinum. In a similar regard, the silica quartz ampoule can react with certain elements

that are highly reactive and also have high-oxidation potentials (e.g. Al, alkali metals). In

these scenarios the reaction would deteriorate the structural integrity of the quartz ampoule.

Although this can generally be avoided by using a synthesis crucible as a barrier between the

reaction and the quartz. For growing both CeIn3 and LaNiGa2, it was discovered that an

alumina crucible works perfectly well and neither of the syntheses react with the alumina.

Lastly, once the flux growth is underway the temperature gradient within the furnace

itself can have a dramatic impact on the growth of the crystals. Although the temperature

control system may state that entire volume of a furnace is at a uniform temperature,

convection currents and temperature gradients will always occur and vary between furnaces.

These factors do not really play an impactful role on the safety of a growth but they can

greatly influence how the crystals grow and the properties of said crystals. More will be

discussed later on the specific synthesis of LaNiGa2 single crystals but it was discovered that

the furnace gradient greatly impacts how the single crystals grow. Fig. 3.3 shows the growth

difference between batches grown at the same time, within the same furnace, and with the

same starting atomic percentages. The high-quality crystals in Fig. 3.3(a) (batch JB386)

come from an ampoule that was positioned in the center of the furnace and these crystals

exhibited properties that comport with the best crystals. Whereas the terraced and stacked

crystals in Fig. 3.3(b) (batch JB389) were grown near the furnace door in the front and

shown to exhibit worse physical properties (lower RRR and Tsc values).
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Figure 3.3: (a) High quality crystals of LaNiGa2 grown from an ampoule that was positioned
in the middle of the furnace. (b) Terraced and stacked LaNiGa2 crystals grown from an
ampoule that was positioned near the front door of the furnace. Both ampoules were set up
and ran together at the same time and in the same furnace.

Self-Flux Growth for CeIn3

All self-flux growths for CeIn3 were performed with 97% In (99.99%) and 3% Ce chunks

(99.996%). This atomic percentage was selected because it lowered the melting point of

the mixture such that sample did not need to be heated up to 1200 ◦C while providing a

large temperature growing temperature, reduced the amount and cost of Ce needed, and

increase the size of the crystals by reducing the amount of nucleation. After weighing the

appropriate atomic percentage, the metals were placed together in the bottom crucible of

a Canfield crucible set [186]. For each synthesis, the alumina crucible set was sealed in an

evacuated quartz ampoule and then heated up to and held at 1050 ◦C for 5 hours. After

which the reaction was slowly cooled down to 300 ◦C over a period of 80−100hours to allow

for adequate growth of large single crystals. Once at 300 ◦C the ampoule was then quickly

centrifuged to remove the excess In-flux. After breaking open the ampoule and shiny, silver,

block-like single crystals ranging from 1−3mm were grown in the bottom crucible (Fig. 3.4).
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Figure 3.4: Single crystals of CeIn3 on millimeter paper.

3.1.2 Arc-Melting

As mentioned in section 3.1.1, the primary goal of this research centers around growing

single crystals. Although arc-melting is a standard method to grow polycrystalline samples,

it nonetheless is a a crucial technique that can ultimately lead to growing single crystal

samples.

Typically arc-melting is performed by taking stoichiometric amounts of elements for the

desired phase and placing them on a water-cooled copper hearth in a vacuum-tight chamber.

The chamber is then purged and vented with argon gas several times to knock off adsorbed

gas molecules and remove all of the oxygen within the system. Once purged of the oxygen the

chamber is backfilled with argon gas to create an oxygen-free environment for an arc to form.

Employing a welding power supply an arc is first struck with the water-cooled tungsten tip

on a zirconium button. When molten, the zirconium acts as an oxygen-getter and further

removes any residual oxygen from the environment. After completely removing all oxygen,

an arc is then struck over the reaction to melt the elements of the desired reaction. Since

there is no way to control the cooling of the reaction, a polycrystalline boule will form. Once

cooled, the boule should be flipped and melted again. This flipping ensures the elements are
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evenly dispersed to form a homogeneous mass.

For synthesizing single crystals, the arc-melting technique can be employed to form a

eutectic mixture with really high-melting point elements. As discussed earlier, dispersing

powders of the high-melting point elements throughout the flux material could coax the

high-melting point element to dissolve into the liquid phase. However, this method is not

full-proof. Arc-melting the reactants together, if the elements are miscible, will almost

always cause the elements to mix and react. Since there is a hard temperature limit to the

quartz ampoules, arc-melting a precursor boule with the high-melting point element can be

a beneficial step for single crystal synthesis. This can cause the high-melting point element

to mix with the other element(s) to form a eutectic mixture with a melting point below

the 1200 ◦C limit. In the end, this lower melting point eutectic mixture can allow for a

subsequent flux growth to occur.

As mentioned earlier, this was done for the single crystal synthesis of LaNiGa2. Since

nickel has very high melting point (2913 ◦C) it was arc-melted to form a precursor boule

with lanthanum and gallium. After some tests it was determined that the melting point of

the eutectic mixture is below 1150 ◦C. Allowing for the self-flux technique to be used to grow

single crystals of LaNiGa2. More will be discussed on the exact stochiometry and reaction

profile of this synthesis later.

A couple notes to that should be taken into account when performing an arc-melting

growth. Since a high-voltage arc is used to melt the starting elements, the reactants must be

able to conduct electricity. In some cases innate semiconductors (e.g. silicon, germanium)

may be included in the arc-melted mass. Although precaution must be taken and a well

thought out plan must be followed, otherwise the semiconducting material might cause small

’explosions’ like popcorn on a stovetop. This would contaminate the arc-melting chamber
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and ruin the stoichiometry of the reaction. One method to alleviate this issue is to use

powder starting materials and press a pellet containing both the metallic and semiconducting

elements. This ensures that there is a conductive path for the current to follow while also

heating up the semiconducting reactants. Once the semiconductor mixes with the metallic

elements, typically there is no further issue re-arc-melting the boule because an electrically

conductive intermetallic phase(s) is/are formed.

Another area of concern are when using elements with ’low’ boiling points. Given the

nature of this technique, it is difficult to get a precise maximum temperature that be achieved.

Since the arc-melting technique is able to melt almost every single element, the samples are

exposed to extreme temperatures. So when using elements with relatively ’low’ boiling points

(< 2000 ◦C e.g. Zn, Cd, alkali metals) the arc should be used long enough for the elements

to mix. Otherwise you run the risk of boiling off the element and forming a thin layer of

said element throughout the chamber when it condenses.

Lastly, since hot metals (at least when they are not glowing) look no different than cold

metals it is often difficult to know the exact temperature of the boule after arc-melting.

Therefore, to avoid any cross-contamination with the tungsten electrode it is extremely

important to allow both the boule and the tip to completely cool down (minimum 5 minutes)

prior to flipping it. This minimizes the possibility of any side products from forming in the

boule. This is also true before removing the sample from the chamber entirely. If the vacuum

chamber opened preemptively then you run the risk of oxidizing the sample and ruining your

work.
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Arc-melting and Flux Growth for LaNiGa2

Single-crystalline samples of LaNiGa2 were grown with a Ga deficient self-flux technique. Ga

(99.99999%) atomic composition ranged from 32−36% Ga and the remaining percentage was

equally split between La (99.996%) and Ni (99.999%). Precursor ingots were first synthesized

by arc melting all the elements in an argon environment. The ingots were subsequently loaded

into an alumina Canfield crucible set [186] and sealed in an evacuated quartz ampule. The

material was heated up to 1150◦C and held at temperature for several hours. The reaction

was then slowly cooled down to 800◦C over 100 hours and then quickly centrifuged. In the

end high-quality single crystals were synthesized and characterized (see Figs. 3.3,3.5).

It was noted that different starting Ga percentages did not produce a noticeable differ-

ence in crystal quality, as evaluated by the residual resistivity ratio (RRR). However, larger

single crystals (up to 7mm) were obtained in the more Ga deficient syntheses. It was also

discovered that the superconducting properties were highly sensitive to oxidation through-

out the reaction. Additionally, as discussed above, growths were extremely susceptible to

small changes of the thermal gradient within a furnace. For the most successful growths of

LaNiGa2, the reactions were performed in the furnace ’Haddock’ and the ampoule was placed

precisely in the middle of the furnace. If the ampoule was place centimeters (roughly 5 cm)

closer to the door, then the crystals would come out terraced, as discussed above. Lastly, in

more Ga deficient growths, below 32%, no crystals were obtained when the reactions were

centrifuged at 800 ◦C

3.1.3 Vapor Transport

Oftentimes when a flux growth proves to be futile, alternative synthesis routes can provide

a pathway towards growing the desired material. The vapor transport method can be one
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Figure 3.5: Single crystals of LaNiGa2, including one that looks like the shape of the United
States of America.

fruitful method to grow materials which have difficult flux approaches as a result of a complex

phase diagram, like β-FeSe (See Fig. 3.6) [187–191]. Or when the flux method produces single

crystals with poor quality samples, in the case of UTe2 [53, 55, 192]. This method is also quite

common to grow materials which contain nonmetals, such as chalcogenides and pnictides,

where low boiling points or sublimation can be prohibitive barriers for flux growth.

The optimized synthesis described by Böhmer et al. [191] was replicated here at UC Davis

and ultimately provided the samples for collaborative work with Nick Curro [193]. Below

will be a brief overview of the vapor transport method. More details about this method can

read up in the following sources [194–197].

There are several necessary components to a vapor transport growth: a solid source,

vapor transport agent, chemical reaction, deposition site (sink), and most importantly a

thermal gradient. These reactions take place within a closed system, making a sealed quartz

ampoule of sufficient length a perfect vessel to contain the reaction (see Fig. 3.7(a)). The

basic premise is that during the reaction, the source side, containing stoichiometric amounts

of elements for the desired phased, is heated up such that a chemical reaction occurs between

the transport agent, typically a halide or halogen, and the source materials. This chemical
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Figure 3.6: Fe-Se phase diagram that ranges from an atomic percentage of 0%Se (100%Fe)
to 100%Se (0%Fe). This phase diagram shows that it is not possible to use the self-flux
technique to grow β-FeSe (FeSe rt). Figure was originally published in [182].

reaction produces the gaseous transport effective species. The thermal gradient of the reac-

tion then causes the transport effective species to travel to other end of the quartz ampoule

and another chemical reaction occurs. This reaction deposits the desired material onto the

surface of the quartz and the vapor transport agent cycles back to source side, perpetuating

the reaction cycle. With sufficient time, single crystals can start to protrude from the quartz

wall (Fig. 3.7(b)).
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Figure 3.7: (a) Several ampoules set up for β-FeSe vapor transport growth. The reactants
and eutectic flux are placed on the right side of the ampoule at the hot end (390 ◦C). The
transport effective species travels to the cold end (350 ◦C) to deposit the β-FeSe single
crystals at the sink. (b) Close up view of the crystals within the ampoule after the growth.
(c) Extracted single crystals of β-FeSe on millemeter paper.

Given the inherent nature of this synthesis method and the number of controllable param-

eters, it is often extremely difficult to know the exact details about the chemical reactions.

Consequently making this method a bit more challenging to plan and prepare relative to

the flux growth. This is especially true when determining the proper transport agent and

the exact thermal gradient. Despite these hurdles, there are countless examples of successful

vapor transport growths.

For the synthesis of β-FeSe the exact reaction differs slightly from the prototypical va-
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por transport growth. The first reported method to grow single crystals of β-FeSe was

through an external flux growth using an eutectic mixture of NaCl and KCl as the flux [183].

Although this method was successful, the synthesis additionally produced the undesirable

hexagonal phase and the resulting tetragonal phase crystals showed lowered superconducting

and physical property values. After it was discovered that β-FeSe can be grown via a vapor

self-transport method [187], Böhmer et al had the insight to combine the two methods by us-

ing a eutectic halide mixture, KCl and AlCl3, as the vapor transport agent. [189]. Typically

halogens (Cl2, Br2, and I2) or halide compounds make great vapor transport agents, however

eutectic mixtures have mostly been used for horizontal liquid transport growths [198–202].

What differentiates this growth from other vapor transport methods is the eutectic mix-

ture. Traditionally, the transport agent and effective species remain entirely in the gas phase

when heated up to the reaction temperatures. However, in this case the eutectic mixture

melts to form a liquid and dissolves the elemental reactants. Which then evaporates to

produce the transport effective species. This intermediate species then condenses at the

sink and slowly deposits the desired phase. Since the transport agent condenses back to the

liquid phase, the furnace and quartz ampoule must be performed at an angle during the

reaction. Additionally, the reaction is extremely sensitive to the thermal gradient because

the transport agent condenses into a liquid [191].

3.2 Structural Characterization

After a successful growth and single crystals are obtained, the first step is to confirm the

phase of the material. Phase identification can be achieved through several different meth-

ods, but I will focus on the three main techniques done in the Taufour group: powder X-ray

diffraction (PXRD), single-crystal X-ray diffraction (SCXRD), and energy dispersive spec-
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troscopy (EDS). For each of these techniques, I will cover what information can be gained

from the experiments, how to perform the measurements, and a summary of what analyses

can be performed from the data. Both PXRD and SCXRD are very detailed techniques with

a lot of nuances, where an entire Ph.D.’s worth of research can be focused just on perfecting

one or both of these methods. Therefore it is best to read up on each technique before to

performing an analysis [85, 203–207].

3.2.1 Powder X-ray Diffraction

What information can be gained?

For intermetallic materials that we grow in the Taufour group, the first and best technique for

structural characterization on these materials is PXRD. Using this technique, one can confirm

every phase produced in a growth, including the desired phase and any possible undesirable

side products. This information can ultimately provide vital insights on any possible changes

that need to be made about a particular growth, like starting atomic percentages or altering

the growth medium.

Once it has been confirmed that the desired phase has been grown, either amongst

several phases or isolated, further details can be obtained about the material’s structure

from X-ray diffraction as a whole. At the core of X-ray diffraction is Bragg’s law (Fig. 3.8).

Wherein X-rays are diffracted off of repeating layers of atoms. The exact angle (θ) of the

diffraction is then based on the distance between the layers. This fundamental principle

can inform experimentalists about the exact location of atoms and symmetry within a unit

cell. Moreover, since the X-rays interact with an atom’s electron cloud, it is also possible to

discern the elements of the diffracted atoms.

These fundamental principles make X-ray diffraction an extremely powerful tool for de-

59



Figure 3.8: Geometrical illustration of Bragg’s law. Image was originally published in [85].

termining the studied materials’ atomic location and composition. Both PXRD and SCXRD

are critical techniques to determine the structural properties of materials. Nevertheless, each

method has its niche about what information can be obtained, how fast that data can be

acquired, and then how fast can the analysis be performed. PXRD specializes in quickly con-

firming structures of known materials and can provide insight on bulk structural properties

from large amounts of material. The barrier to perform higher-level PXRD analysis is lower

than that of SCXRD. However, these analyses still require in-depth knowledge about the

technique. Although PXRD is best used to confirm known materials and give some atomic

information, it can be used to elucidate structures of unknown materials. However, this does

require deep expertise and understanding of the technique as a whole.

The essence of PXRD is in the name. That X-ray diffraction occurs on polycrystalline

(powder) samples. When X-rays are exposed to a nearly infinite number of randomly ori-

entated polycrystalline unit cells, the incident light diffracts off of parallel planes of atoms

within each unit cell. The angle (2θ) of the diffracted light is then determined by the dis-

tance between these planes (d-spacing) — Bragg’s law. In PXRD, the diffracted photons
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Figure 3.9: Schematic of powder diffraction cones produced in PXRD. The location (2θ) of
the cone is dependent upon Bragg’s law and the d-spacing of the atomic layers. Image was
originally published in [85].

form concentric cones (Fig. 3.9).

The d-spacing of atomic planes within each crystalline sample is determined by the ma-

terial’s space group and unit cell parameters. The intensity of each diffraction then contains

information about the atomic positions within the unit cell and the elemental composition

of the atoms. By cutting through the cones and scanning 2θ these cones are turned into

peaks with a particular peak shape (see Fig. 3.10(a) for a PXRD pattern of CeIn3), provid-

ing information about crystallinity, disorder, and defects within the powder. For example,

nanoparticle samples tend to have broad peak shapes because there are few repeating atomic

planes within the particles.

Since this technique is highly sensitive to atomic positions and elemental compositions,

PXRD is perfect for substitution studies. As previously mentioned, chemical substitution can
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Figure 3.10: (a) PXRD patterns of Ce1−xNdxIn3 syntheses confirming the presence of
Ce1−xNdxIn3 single crystals and In flux. Si powder was added to act as an internal stan-
dard. (b) Vegard’s law applied towards Ce1−xNdxIn3 alloys. This shows that the unit cell
parameter a shifts linearly as Nd incorporates into CeIn3.

be a fantastic way to understand low-temperature phenomena near quantum critical points

or quantum phase transitions. PXRD is a technique that can be employed to determine

whether the substituted atom incorporates into the parent structure and the substitution

concentration. If the PXRD pattern does not reveal a new phase and the unit cell parameters

shift slightly, it can be confirmed that the external atoms are successfully incorporating into

the parent structure. Vegard’s law states that as the compounds are increasingly alloyed

from one parent structure to the other, the unit cell parameters should be linearly dependent

on the substitution concentration [208]. This principle can be used to experimentally and

directly determine the concentration of the substituting atom. This was accomplished in

Ce1−xNdxIn3 alloys (Fig. 3.10(b)).

How to perform the measurements?

To quickly gain the information listed above on freshly grown single crystals, the first step to

performing a PXRD measurement is to convert a batch of single crystals into a powder. This
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Figure 3.11: Preparing single crystals for PXRD by first grinding them in a mortar and
pestle. Once ground to a sufficient powder, a small layer of Vaseline is applied to the puck
and subsequently the powder is sprinkled onto puck.

process can easily be accomplished by grinding the crystals in a mortar and pestle until they

become a fine powder. Because this increases the surface area of the material, sometimes

this action needs to be performed in an inert environment to limit oxidation. If studying a

sample from a polycrystalline growth it is still best practice to grind the starting material

to ensure uniform particle size and shape.

After grinding the crystals into a powder, the powdered sample can be transferred to a

sample puck. Since the sample puck spins during the measurement — this increases intensity

statistics — an adhesive is needed to bind the powder to the puck. This can be achieved by

applying a thin layer of Vaseline to the sample puck (Fig. 3.11). Once the powder and puck

are prepared, the measurement is then ready to be performed.

In order to run a PXRD measurement, a constant wavelength X-ray source is needed.

Nowadays, in benchtop PXRD instruments, this is achieved by using a Cu source where the

Kβ emission is filtered out to give a high-intensity Kα1 emission X-ray with a λ = 1.54Å.

In a Bragg-Brentano configuration (most common benchtop configuration), both the Cu
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source and the detector collectively travel in the same arc at the same rate. It is good

practice to perform the measurements over a wide range (2θ = 5 − 100◦) to ensure that

as many diffraction peaks are observed. Along these lines and depending upon the sample

quality, it is generally good to run slower measurements (∼ 3 hours) to observe the best

possible intensity statistics. However, quick measurements (∼ 15minutes) may be run if

only performing phase identification.

What analysis can be done?

As mentioned above, PXRD can be used as the primary tool for phase identification. For

these simple analyses using software (PDXL by Rigaku) that can compare predicted PXRD

patterns from known phases and the experimental data is all that is needed. If the predicted

pattern matches that of the data, then it can be confirmed that that phase is present. As

shown in Fig. 3.10(a), this was accomplished to ensure that the resulting single crystal alloys

of Ce1−xNdxIn3 matched the expected pattern for the Cu3Au structure type. However, if

there are multiple phases and/or some of the phases have overlapping peaks, this can make

the analysis much more difficult to confirm all phases confidently.

To acquire more potent structural information about the material, it is possible to compu-

tationally create a structural model and compare it to the PXRD data (Rietveld refinement).

This method is quite challenging and does require expertise to ensure the analysis is per-

formed correctly [85]. Rietveld refinement is accomplished by comprehensively modeling

every aspect of the PXRD measurement. Such parameters include but are not limited to

wavelength of the X-ray source, Gaussian and Lorentzian peak shapes originating from the

instrument, atomic positions, unit cell parameters, strain within the crystallites, and sample

displacement. Understanding how each parameter affects the resulting data is imperative
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to perform a successful Rietveld refinement. Although this refinement is challenging, this

method can provide beneficial structural information about the sample.

If only unit cell parameters are needed —in the case of determining substitution concentration—

then performing a simpler whole-pattern Pawley or LeBail fitting is all that is needed. Since

the peak locations contain all of information about unit cell parameters these are the only

features that are modeled. Therefore the peak intensities are treated as free parameters and

contain no actual information about the atomic parameters. This shortcut then simplifies

the analysis. For these types of refinements, often, it can be helpful to include one or multiple

peak shape parameters to better fit the modeled data to the PXRD data. As an example,

whole-pattern refinement was performed on the PXRD patterns of the Ce1−xNdxIn3 alloys

to produce the plot in Fig. 3.10(b).

3.2.2 Single Crystal X-ray Diffraction

What information can be gained?

As mentioned, information gained from PXRD can also be acquired from SCXRD experi-

ments because both PXRD and SCXRD employ the same diffraction principles. The main

difference between the two techniques, aside from sample type, comes down to the ultimate

goal of doing a structural experiment and ease of analysis. If the goal is to confirm the

structural data of a known system, then PXRD is quick and the analysis is much easier. It

does not make much sense to perform this type of analysis using SCXRD because of how

much longer these experiments and subsequent analysis require. However, if the structural

data of a material is unknown, it can be much easier to determine all the nuances of the unit

cell from the SCXRD experiments. Even though SCXRD analysis typically requires more

time and expertise to perform successfully.
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This conclusion is directly tied to the dimensionality of the resulting diffraction data.

As previously highlighted, the diffracted light in PXRD experiments takes the shape of

concentric cones. Thus, by scanning across 2θ the resulting peaks merely indicate the d-

spacing of repeating planes, making the data one-dimensional, in a sense. However, in

SCXRD, the resulting data is three-dimensional. This difference is because diffraction in

SCXRD experiments occurs on a collection of unit cells that are all cohesively connected

and aligned in the same direction. The diffracted light off of a single crystal produces a

single spot for each Miller plane rather than cones (Fig. 3.12). Rotating the sample across

3 angles (ϕ, χ, and 2θ), makes it possible to map three-dimensional diffraction space. In

the end, these extra dimensions contain more information that allows us to determine small

structural nuances that are not possible with PXRD data.

For example, prior to our work on LaNiGa2 all previous structural experiments were

completed on polycrystalline samples [14, 19, 209, 210]. The results from the original Rietveld

refinement produced a unit cell with a Cmmm (#65) space group [209]. All subsequent

experiments on polycrystalline LaNiGa2 used PXRD experiments and the original structure

to confirm that LaNiGa2 was successfully grown. When we pioneered the single crystal

growth method for LaNiGa2 we performed SCXRD measurements on a small single crystal

to confirm the original structural work. As it turns out, the resulting diffraction data pointed

towards a Cmcm (#63) space group. The slight symmetry difference between the two unit

cells is almost indistinguishable in PXRD, as evidence by the successful whole-pattern LeBail

fittings using both the Cmmm and Cmcm space groups (Fig. 4.6). This example shows the

power of SCXRD work and how it can discern small structural details that can be overlooked

in PXRD experiments.
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Figure 3.12: SCXRD data showing the diffraction spots. This is a compiled precession image
of the hk0 plane from a SCXRD experiment on LaNiGa2. Each diffraction spot originates
from a particular Miller plane in the LaNiGa2 unit cell.

How to perform the measurements?

The key to performing a SCXRD measurement is growing a single crystal. After successfully

growing single crystals, the first step to performing a SCXRD experiment is to find a crystal

with the appropriate size. Since we typically grow compounds containing heavier elements

and our crystals often ’large’ (∼ 1mm×1mm) we most often need to break a small piece off

from the original crystal. This size restriction is because heavier elements (i.e. elements with

more electrons) absorb X-rays at a much higher percentage than lighter elements, which is

ultimately why lead blankets are used as shields during medical X-ray scans. Therefore to

avoid significant absorption issues, it is best to use the smallest crystal that gives sufficient

diffraction intensity. Nevertheless, the size needed for sufficient intensity varies between

systems.

Once a sample has been selected, it must first be aligned in the X-ray beam. A proper
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alignment can be determined by capturing a couple of quick diffraction images. These frames

can also be used to determine whether the sample provides sufficient intensity to run a whole

experiment and whether it is single crystalline. Once the sample has been aligned and deemed

sufficient, a couple of fast sweeps (∼ 15minute) can be collected. These diffraction frames

can then be used to calculate a preliminary unit cell. At which point the built-in software

(APEX3) can calculate a complete sequence that is needed to collect a sufficient diffraction

dataset to resolve the structure conclusively.

What analysis can be done?

After collecting a complete dataset, all of the single crystal’s unit cell details can be deter-

mined by creating a model that matches the observed data. This is first achieved by scanning

through all of the collected frames to harvest all of the spots. Through this harvesting process

the software (APEX-3) will collect the intensity and location of each spot. A recreation of

the crystal’s three-dimensional diffraction space can then created from the library of diffrac-

tion spots (Fig. 3.13). At which point the Bravais lattice and lattice parameters of the unit

cell can then be determined.

With an initial guess for the unit cell, the spot intensity from the frames needs to be

collected into a set of integrated and scaled intensities. After which the intensities need to

be scaled to account for the crystal’s X-ray absorption. With absorption corrections, the

space group can then be determined and ultimately refined to find the atomic coordinates

and elemental composition.

The process described above is a very short summary of overall analysis and like Reitveld

refinement, this procedure takes an advanced knowledge of the technique and controllable

parameters to perform a successful refinement. But once this mastery has been achieved
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Figure 3.13: Screenshot of the diffraction space of LaNiGa2 from a SCXRD experiment. The
software APEX-3 was used to harvest and record the location of each spot. The coordinates
of each diffraction spot represents a specific Miller index originating from a set of real world
crystal lattice planes.

this method is an extremely powerful tool to comprehensively elucidate most details about

a single crystal’s unit cell. More can be learned about SCXRD refinement techniques in the

following books [204–207].

3.2.3 Energy Dispersive Spectroscopy

What information can be gained?

What differentiates EDS from the X-ray diffraction techniques is that EDS can not help

determine any details about symmetry or atom positions. Instead, EDS is a powerful tool
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to help determine the elemental composition of a material. Elemental composition can be

determined by bombarding the material with a high-energy beam and ejecting inner-shell

electrons. Then as an electron from a higher-energy level relaxes into the vacancy, a photon

is emitted (typically an X-ray). By counting photons across various energies, it is possible

to build an emission spectrum, which could then be used to identify each element within the

sample. Typically the high-energy beam is made up of X-rays, but in the instrument at UC

Davis, the EDS is attached to a scanning electron microscope (SEM). So the high-energy

beam is an electron beam. If the incident electrons have a large enough energy, they can act

identically and eject inner-shell electrons from the bombarded atoms.

Not only can this technique be used to qualitatively determine the elements within the

material, but it is also possible to quantitatively determine the composition of all the ele-

ments. Quantitative analysis can be accomplished by comparing the ratios of peaks within

the resulting spectrum. Typical spectra for CeIn3 and Ce0.7Nd0.3In3 are shown in Fig. 3.14.

Since Ce and Nd are very close to one another on the periodic table, their respective emission

spectra are very similar. Nonetheless, in Fig. 3.14(b) the ratio between the Ce and Nd peaks

produced a substitution concentration of xEDS = 0.342, which is in good agreement with the

nominal value xNom = 0.3.

Since the EDS at UC Davis is attached to an SEM, it is possible to take zoomed-in

images of a material’s surface and produce elemental maps. Elemental maps were used

to show an uniform Ti substitution and O doping across the CeGe3 parent structure in

(Ce0.85Ti0.15)Ge3O0.5 (Fig. 3.15) [174]. It should be noted that this measurement technique

struggles to quantitatively determine the atomic percentage of lighter elements like O. There-

fore, after normalization, the average formula unit across all the EDS spectra is calculated

to be (Ce0.89Ti0.11)Ge3Ox. Overall the EDS work was vital to show that the only way to
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Figure 3.14: EDS spectra for (a) CeIn3 and (b) Ce0.7Nd0.3In3. By comparing the ratio of the
Ce and Nd peaks, the measured value of xEDS = 0.342 which is very close to the nominal
value of xNom = 0.3.

stabilize CeGe3 at ambient pressure was through Ti substitution and O additions.

How to perform the measurements?

To perform these measurements, you simply need to attach the samples onto pieces of carbon

tape which are taped on a mountable metal puck. Before running the measurements, you

must first know the material’s ability to conduct electricity at room temperature. Since

the sample is bombarded with a beam of electrons, an electrical charge will build up if

the material cannot efficiently conduct electricity (semiconductors or insulators). To avoid
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Figure 3.15: SEM image of a bulk crystal with an elemental mapping performed over a
selected area, orange rectangle, to determine the uniformity of Ce, Ti, O, and Ge. The
arrow shows the pebble (white spot) on the surface of the crystal with a slight excess of O.
From the selected area, an EDS spectrum shows the successful identification of each element.
Figure was included in the following article [174].
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damaging semiconducting or insulating samples, one could build in time breaks to allow

the electron build-up to disperse to the surroundings. This issue does not apply to metallic

samples as these materials can easily move electrons to quickly dissipate any charge build-up.

What analysis can be done?

As seen in Fig. 3.14 the software produces spectra that can be used to identify the elements

within the samples. Additionally, the software also produces quantitative atomic percentages

for each element based on the intensity of each element’s spectrum. To obtain a formula unit,

to determine substitution percentages in Ce1−xNdxIn3, you need to normalize the atomic

percentages. In Ce1−xNdxIn3 this was accomplished by normalizing the atomic percentages

to the sum of the Ce and Nd amounts.

3.3 Physical Property Characterization

Throughout the previous chapter, there were scattered references to a variety of physical

property characterization techniques. In the Taufour group, besides the structural tech-

niques just presented, we specialize in three main methods: electrical resistivity, magnetic

susceptibility, and heat capacity. In this section, I will discuss fundamental concepts about

each technique, how to set up a measurement, and some basic analyses that can be per-

formed. Obviously, there are a variety of small details contained in the data for each system.

Still, by understanding the basics, you can better understand why specific systems deserve

to be studied for their uniqueness.
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3.3.1 Electrical Resitivity

Basic Concepts

The basic premise for electrical resistivity (ρ) measurements is that they provide insight

into a material’s electrical conductivity, where the electrical conductivity and resistivity are

inversely proportional. In the most basic sense, electrical resistivity is directly related to the

scattering of electrons as they move through the sample. However, the scattering rate (τ−1)

within a sample is affected by several different factors such as lattice vibrations, magnetic

ordering, band structures, and impurities. Therefore to understand the temperature depen-

dence of electrical resistivity (ρ(T )) at the atomic level, it is vital to connect it back to the

sources of electron scattering.

One of the key characteristics of a metal is that it can conduct electricity well (low

resistance). This low resistance occurs because metals have free electrons (’sea of electrons’)

that can easily travel throughout the material. From band theory, this low resistance is due

to the overlapping of the valence and conduction bands at the Fermi level (Fig. 3.16). Since

metals have no energy gap between the occupied (valence) and unoccupied (conduction)

bands, it requires very little energy to excite electrons within the conduction band. Meaning

that thermal fluctuations can easily excite electrons into the higher energy states, and current

can flow through the sample with little resistance. Thereby making the conduction electrons

act more like free particles in the solid. This simplified view of band structures can also

help predict thermal behavior. As temperature decreases and thermal fluctuations slow

down, semiconductors and insulators (materials with an energy gap between valence and

conduction bands) are expected to show increased resistivity values because fewer electrons

have enough energy to overcome the energy gap. In contrast, metals do not have a band

gap, so resistivity is expected to drop as the temperature lowers because electron scattering
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Figure 3.16: Simplified schematics of band structures for metals, semimetals, various semi-
conductors and insulators. Image was originally published in [211].

across the variety of sources will reduce (more on this in a bit).

The Drude model builds on this free electron concept to explain the transport properties

of electrons in metals. By applying a voltage to a system, the electrons are attracted to

the positive end of the electric field. As an electron travels through the sea of electrons, it

will undergo collisions with phonons from the lattice, other electrons, and defects within the

lattice. The scattering rate of an electron will then define the electrical resistivity by:

ρ =
m

ne2
τ−1 (3.2)

where m is the effective mass of the conduction electrons, n is the density of conduction

electrons, −e is the electronic charge, and τ−1 is the average scattering rate of electron

collisions [5].
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According to Matthiessen’s rule, τ−1 can be thought of as the sum of all scatting processes:

τ−1 = τ−1
def + τ−1

e−−e− + τ−1
e−−ph (3.3)

where τ−1
def is the defect scattering rate, τ−1

e−−e− is the electron-electron scattering rate,

and τ−1
e−−ph is the electron-phonon scattering rate. Combining 3.2 and 3.3 gives the total

resistivity from these three scattering sources:

ρ =
m

ne2
(τ−1

def + τ−1
e−−e− + τ−1

e−−ph) = ρdef + ρe−−e− + ρe−−ph (3.4)

Understanding how each resistivity source can develop as a function of temperature

will then determine the thermal dependence of resistivity ρ(T ). Defect resistivity, ρdef ,

is practically temperature independent and simply a function of a sample’s innate defects.

This aspect is ultimately why the residual resistivity ratio (RRR=ρ(300K)/ρ(0K)) is a great

indicator of sample quality. High-quality samples will have few defects, and therefore, ρdef

will be small. Thus making RRR values high. On the other hand, ρe−−e− and ρe−−ph are

proportional to T 2 and T 5, respectively. The Bloch-Grüneisen model can accurately model

both effects with the following equation:

ρ(T ) = A(
T

ΘD

)n
∫ ΘD/T

0

tn

(et − 1)(1− e−t)
dt (3.5)

where A is a material-dependent constant and ΘD is the Debye temperature [212, 213].

The value n is an integer that is dependent upon the dominant scattering mechanism with

n = 2 for electron-electron collisions and n = 5 for electron-phonon collisions. Overall, these

models reveal that the defect and electron-electron scattering only really impact a material’s
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resistivity at low temperatures (generally T < 10K). Above this temperature threshold,

the resistivity is dominated by the electron-phonon scatting term. These simple resistivity

models for ρ(T ) have been shown to accurately predict temperature-dependent resistivity

curves for countless nonmagnetic metals [212].

It is worth noting that some transition metals have interband s − d electron-electron

scattering that deviates from the T 2 relationship. For these systems, the electron-electron

resistivity (ρs−d(T )) term is better modeled by an integer of n = 3 for the similar Bloch-

Wilson equation:

ρs−d(T ) = A(
T

ΘD

)3
∫ ΘD/T

TE/T

t3

(et − 1)(1− e−t)
dt (3.6)

where TE is the Einstein temperature [214]. Fig. 3.17 shows the combination of the

s − d electron-electron scattering from the Bloch-Wilson equation and the electron-phonon

scattering of the Bloch-Grüneisen model to fit the normal state resistivity data for LaNiGa2.

The fitting parameters of ΘD = 271K and TE = 380K are within reasonable agreement with

the values obtained from the high-temperature heat capacity fittings in Fig. 3.24(b).

Modeling the low-temperature normal state behavior can also provide vital insights about

non-Fermi liquid behavior near a quantum critical point [151, 215]. For example, Fermi liquid

behavior predicts that low-temperature resistivity curve can be simplified to:

ρ(T ) = ρ0 + AT 2 (3.7)

Materials that develop non-Fermi liquid behavior have a different power-law relationship

than T 2. This fitting was done in Fig. 4.8(c) on LaNiGa2 to show that the low-temperature

resistivity data follows Fermi liquid behavior. Therefore tracking the power-law relationship

T n across a non-thermal parameter phase diagram can provide critical insights as a system
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Figure 3.17: Normal state resistivity data of LaNiGa2 which was fit to the s − d electron-
electron scattering from the Bloch-Wilson equation and the electron-phonon scattering of
the Bloch-Grüneisen model. From the fitting ΘD = 271K and TE = 380K were obtained.

approaches quantum-critical phenomena [151].

The behavior described above is for metals in the normal state without any magnetic

ordering. Oftentimes magnetic orderings or magnetic interactions can also impact electron

scattering. Such as the Kondo interactions described in section 2.2.2. To isolate ρmag(T ) for

any material, the electron-lattice and electron-electron scattering need to be removed from

ρ(T ). This separation can be achieved by subtracting out ρ(T ) from a non-magnetic coun-

terpart with an identical structure. The key assumption is that the non-magnetic analogue

has the same electron-lattice and electron-electron scattering as the studied material. For

example, the ρ(T ) curves from LaIn3 and La0.55Nd0.45In3 were subtracted out from CeIn3

and Ce0.55Nd0.45In3 to show the regions where ρmag(T ) ∝ −ln(T ) (Fig. 5.4(b)).

Electrical resistivity measurements are also a great tool to easily identify transitions. Such

experiments were used to identify both the ambient pressure and high-pressure structural

transition of β-FeSe [183, 184, 216–218], superconducting transitions in β-FeSe (Fig. 2.1(a))

and LaNiGa2 (Fig. 4.9), AFM ordering transitions in Ce1−xNdxIn3 (Fig. 5.4(a)), and FM
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Figure 3.18: (a) Temperature-dependent ρ(T ) measurements of Eu11Zn4Sn2As12 at applied
fields of µ0H = 0 (orange), 0.2, 0.4, 0.6, 0.8, 1, 3, 5, 7, 9T (green). The inset shows the zoomed
in data from 2 − 50K at different applied magnetic fields. (b) ln(ρ) vs T−1 for the same
fields showing the fit to determine the activation energy. Figure was included in the following
article [175].

ordering in Eu11Zn4Sn2As12 (Fig. 3.18). These measurements also provide vital insights

on how these transitions can develop with increasing applied magnetic fields. By carefully

aligning a LaNiGa2 sample I was able to construct the anisotropic Hc2 phase diagrams when

the applied magnetic field was aligned along the a, b, and c-axes (Fig. 4.11 and Fig. 4.8(b)

for the setup). Applying magnetic fields to Eu11Zn4Sn2As12 allowed us to estimate the FM

activation energy and observe colossal magnetoresistance.

From 70 − 170K Eu11Zn4Sn2As12 shows a linear dependence at 0T in ln(ρ) vs. T−1

(Fig. 3.18(b)). This linear behavior indicates that the resistivity can be can be described

by a simple activation energy relation ρ ∝ e∆/kBT . From the linear region the fitting gives

a ∆ = 19.8meV, leading to an estimated band gap of 0.04 eV which was in reasonable

agreement with the band calculations [175]. Colossal magnetoresistance, |ρ(µ0H)−ρ(0)|
ρ(µ0H)

, was

observed at µ0H = 9T where a 2690-fold decrease was observed at TC = 14K (Fig. 3.19(a)).
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Figure 3.19: (a) Magnetoresistance of Eu11Zn4Sn2As12 at applied fields of µ0H = 0 (orange),
0.2, 0.4, 0.6, 0.8, 1, 3, 5, 7, 9T (green). (b) ρ(µ0H) at various temperatures above and below
TC . The inset shows low-field region. Figure was included in the following article [175].

It is also clear that even applying small magnetic fields to Eu11Zn4Sn2As12 quickly suppresses

electrical resistivity. Where ρ decreases by nearly 4 orders of magnitude at 14,K with the

application of a µ0H = 1T field (Fig. 3.19(b)).

Setting Up the Measurement

To perform an electrical resistivity measurement, a current needs to flow through the sample

and then the voltage needs to be measured. Then by Ohm’s law (V = IR) the resistance

values from the measurement can be calculated. An electrical resistivity measurement can

be accomplished in various ways; but the most straightforward technique is the four-point

probe method. For this method, two wires connect the sample to a power source that can

supply a current and two voltage wires are attached to the sample inside of the current

wires. Examples of the four-point probe technique are shown on single crystals of LaNiGa2

in Fig. 4.8(a) and Fig. 3.20(b) and Ce0.55Nd0.45In3 in Fig. 3.20(c).

Attaching the wires to the samples is a different story. Theoretically, just pressing the
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wires onto the surface of the sample should work to perform the measurements. However,

practically, this does not work because the wires will move during the measurement and thus

break the electrical pathway. Like the overall measurement, there are several different meth-

ods to attach the four wires to a sample. Such strategies include indium pressed contacts,

wire-bonding, or spot-welding. The most reliable and widely applicable technique is to use

silver epoxy to adhere platinum wires to a crystal’s surface. Unfortunately, the platinum

wires need to be laid by hand, but with practice samples as small at 0.5mm wide can be

measured using this technique.

The first step to laying contacts with silver epoxy is to practice ’mise en place.’ To

prepare for laying contacts by hand, the two-part silver epoxy (EPO-TEK H20E) needs to

mixed with equal parts by weight, the platinum wires (� 25µm) need to be annealed and

cut, and the sample needs to have a clean surface where the wires will be placed. Before

placing the wires, the crystal should be placed onto a microscope slide to avoid altering the

contacts when it is transferred into an oven to cure the epoxy. Next, with the crystal and

everything in place, the wires are dipped into the silver epoxy and then the wire and epoxy

are carefully placed onto the crystal’s surface. The sample can then be placed into an oven

after placing all four wires. Ideally, the curing process should be completed in an oxygen-free

environment to prevent any possible sample oxidation. So the sample should be placed in a

vacuum oven and heated up to 120 ◦C for 30minutes.

Once the epoxy is cured, the crystal then needs to be attached onto a measurement puck.

A DC resistivity puck should be used if the sample is expected to have semiconductor or

insulating behavior. But if the sample is expected to be metallic, then an AC transport puck

(which uses an AC current supply) is better suited to handle the low resistance values. With

the puck in hand, the wires should then be soldered onto their respective pads (voltage and
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current) on the puck. After the wires have been soldered onto the puck, a small amount of DC

current (∼ 1− 10mA) should be run through each contact to anneal away any defects from

the epoxy or the soldered joints. If you intend to perform low-temperature measurements

(down to 0.35K) with the 3He probe, then the sample needs to be in good thermal contact

with the puck. Thermal contact can be achieved by applying a small amount of Apiezon N

grease on the puck’s surface and then carefully pressing the crystal into the grease.

Analyzing the Data

Once a sequence has been completed and the entire dataset collected, we can analyze the

data. The most important thing to note about the outputted data is that it only reports

the resistance values of each measurement. So calculating resistivity values can be achieved

with the following equation:

ρ =
RA

L
(3.8)

where R is the resistance value, A is the cross sectional area of the sample, and L is the

distance between the two voltage wires (Fig. 3.20). Therefore, performing these calculations

requires that the A and L values be measured for each sample and measurement. Measuring

these values can be achieved by taking pictures of the cross-sectional area of the sample before

laying contacts and the voltage lead distance after curing the epoxy. By having millimeter

paper in both pictures then both geometric values can easily be measured with software.

Since both A and L are required to obtain resistivity values, this influences which samples

should be selected to run these measurements. The ideal sample shape is a rectangular prism

because this shape minimizes any errors associated with the measured A and L values,

thereby reducing the error of the calculated ρ values.
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Figure 3.20: (a) Ideal sample shape for an electrical resistivity measurement. A and L are
shown in this figure and these values constant throughout the rectangle prism. Image was
originally published in [219]. Contacts laid and annealed on single crystals of (b) LaNiGa2
and (c) acid-etched Ce0.55Nd0.45In3. Both crystals are on millimeter paper so the resistivity
geometry of the measurement can be measured.

3.3.2 Magnetic Susceptibility

How the Measurement Works and Setting up the Measurement

To understand a material’s magnetic behavior at a particular state, it is best to first under-

stand what we are trying to measure and then some basic mechanisms behind the measure-

ment. Understanding basic concepts will then inform how to set up a magnetic susceptibility

measurement to make conclusions about material’s magnetic behavior and ordering. Since

magnetism units are quite confusing, I will use SI units unless specified.

A magnetic material is first defined as a solid consisting of many individual magnetic

moments. Understanding the macroscopic magnetic behavior of the material can then inform

us about how these magnetic moments microscopically interact with one another, if at all.

A material’s magnetization, M , is defined as the magnetic moment per unit volume (J T−1

m−3). The net magnetic flux density, B, of a system is related to a material’s magnetization

by:

B = µ0(H +M) (3.9)
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where H is the applied external magnetic field. H is the field applied by the superconduct-

ing magnet from the Magnetic Property Measurement System (MPMS) in real magnetic

measurements. Setting H to a particular value and measuring B with the superconducting

detection coil can isolate M at a particular applied field and temperature. Measuring B is

achieved by moving the material through the sample space to induce a current in the detec-

tion coils. By measuring the amount of induced current, we can then relate this directly to

B of the measurement and, ultimately, the magnetic moment of the sample.

Understanding how the MPMS measures magnetic moments can inform us how to set

up a magnetic susceptibility measurement. Since the MPMS moves the sample through the

detection coils, any difference in magnetic flux over the scanning range (typically 6 cm) will

induce a current in the detection coils. Therefore the sample holder must have a uniform

magnetic moment throughout the scanning range. This necessity is most easily achieved

by using simple plastic straws (see Fig. 3.21(a)). These naturally have a small magnetic

moment, can easily be manipulated to hold a small crystal, and provide a long scanning

range. For the setup, it is essential to ensure that the 6 cm scanning range around the single

crystal is free of any other material with a magnetic moment, intended or unintended.

When performing a measurement, the MPMS reports values of the magnetic moment

(m) in CGS units - electromagnetic units (e.m.u)= 10−3 J T−3 - after each scan. Across

different systems we may use m to report a material’s magnetism in a variety of other CGS

units such as magnetization per volume (e.m.u./cm3), magnetization per mass (e.m.u./g),

or magnetization per mol (e.m.u./mol). The unit chosen is dependent upon the quality of

the measured sample and the accuracy of volume. In certain circumstances, it could be

beneficial to report the magnetism per a formula unit (µB/f.u.) or a particular atom (µB/Ce

atom) to better compare to other materials. It is also widespread to display the magnetism
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as magnetic susceptibility χ = M/H. Since M and H contain the same units, χ is actually

unitless. Confusingly, e.m.u. is actually used to display χ per volume (e.m.u./cm3), per

mass (e.m.u./g), or per mol (e.m.u./mol). Especially for superconductors, it is beneficially

to display the magnetic susceptibility in SI units. This can be achieved by multiplying the

CGS magnetic susceptibility (volumetric) by 4π to produce SI magnetic susceptibility. Using

χ, in either CGS or SI units, allows us to easily compare the magnetic behavior to theoretical

models such as Curie-Weiss Paramagnetism.

Paramagnetism

As mentioned in section 2.2.1, before entering a magnetically ordered state, most 4f sys-

tems are in the magnetically disordered paramagnetic state. There are several origins of

paramagnetism (e.g. Pauli and Van Vleck), but the most common model for 4f systems is

the Curie-Weiss paramagnetism. In this paramagnetic state, the magnetic moments are ran-

domly oriented by thermal fluctuations and interact internally. 2.2 shows the equation that

defines the magnetic susceptibility temperature dependence for a Curie-Weiss paramagnet.

Taking χ−1 and fitting it to the Curie-Weiss susceptibility 1/χ(T ) = (T − ΘCW )/C allows

us to compare the experimental data to this model more easily (see Fig. 3.21).

From fitting χ−1 two values can be extracted: the effective moment µeff of the paramag-

net and ΘCW which gives the type of interactions between the moments. The slope for molar

χ−1 in CGS units is equal to 1/C and C can be used to calculate the effective moment:

µeff =

√
30kBC

µ2
BNA

(3.10)

where kB is Boltzmann’s constant, µB is Bohr NA is Avogadro’s number. Typically µeff

is reported in units of Bohr magnetons (µB). By determining the experimental effective
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Figure 3.21: (a) Straw setup for a magnetic susceptibility measurement. The red arrow
shows the sample. (b) Shows the χ paramagnetic curve of CeIn3 until the onset of the AFM
state. The inset better shows the sharp downturn associated with the AFM ordering. The
temperature at the peak is TN. (c) χ−1 data for CeIn3 from (b). The dotted black line
shows the Curie-Weiss χ−1 fitting of the paramagnetic region. Values of µeff = 2.58µB and
ΘCW = −45.9K were obtained from the fitting.

moment from the χ−1 fitting, it is then possible to compare this value to the calculated

effective moments. For CeIn3, this calculation resulted in a value of µeff = 2.57µB. This

experimental value matches well with that of the calculated value, µeff = 2.6µB, for a Ce3+

free-ion [84].

The other insight that can be obtained from plotting χ(T )−1 are the types of interactions

between the magnetic moments. If ΘCW > 0 then there are net FM interactions. On the flip

side, if ΘCW < 0, then there are net AFM interactions. If ΘCW happens to equal zero, then

there are no dominant interactions between the magnetic moments, and the material is said

to be a Curie paramagnet. Plotting χ(T )−1 and examining the sign of the x-axis intercept

indicates the types of interactions: positive indicates FM and negative indicates AFM. It

is important to distinguish these types of paramagnetic interactions from a magnetically

ordered state.
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Antiferromagnetism

When a system enters, the AFM ordered state the magnetic moments align in the opposite

direction to their neighbors. As discussed in section 2.2.1 this magnetically ordered state

can take on many different iterations. Regardless of how the magnetic moments align in any

particular system, the experimental signatures of the AFM state should be similar. Wherein

the paramagnetic curve shows a sharp drop at TN with the onset of the AFM state. This

behavior can best be seen in the inset of Fig. 3.21(b) for CeIn3.

Frequently it is good to think about the AFM state as the combination of two antiparallel

FM sublattices (M+ and M−). By thinking about an AFM material in such a manner, we

can understand the consequences of anisotropic experiments. For example, if a small external

magnetic field aligns parallel to one of the sublattices, M+, it must therefore align antiparallel

to the other sublattice, M−. At which point, if we assume that the external magnetic field

is too small to flip M− to align parallel with H, when all thermal fluctuations are removed,

the net magnetization of this AFM state should be zero: χ∥ = 0. This result is because

at T = 0K, both sublattices M+ and M− are fully and equally saturated. However, if H

is aligned perpendicular to one or both sublattices, then the net magnetization should no

longer equal zero: χ⊥ ̸= 0. This difference is because the external magnetic field will slightly

tilt the magnetic moments within the sublattices towards the applied magnetic field. In both

cases, the resulting χ(T ) curves are shown in Fig. 3.22.

If we assume an AFM state to be completely antiparallel at T = 0K such that the

M = 0 with no applied field, let us understand what happens as a magnetic field is first

applied and then increases. When the applied magnetic field is aligned with M+ and small,

the sublattices should remain antiparallel. Then, at a particular magnetic field strength,

the M− lattice should rapidly flip to start to align parallel with H. If the M− moments
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Figure 3.22: The χ(T ) curves if the applied magnetic field is aligned along the same direction
of the M+, χ∥ or perpendicular to one of the sublattices, χ⊥. Figure was originally published
in [84]

completely align with H then the AFM state undergoes a spin-flip, and the state transitions

to a saturated FM state. If the M− moments become canted and are not perfectly aligned

with the applied magnetic, the AFM state has undergone a spin-flop. After a spin-flop,

if the applied magnetic field continues to increase, the magnetization should also increase

until the system becomes completely saturated with all the moments from both sublattices

aligned. However, if the applied magnetic field is not perfectly aligned with either sublattice

or perpendicular to either sublattice, then the magnetization should gradually increase as

the applied magnetic field increases. That is until the moments are entirely aligned.

Superconductivity

Although not a magnetically ordered state, magnetic susceptibility is one of the critical tools

for characterizing superconductors. As shown in Fig. 2.1(b) in section 2.1.1 a diamagnetic

response is exhibited when a material enters the superconducting state. Since applied mag-

netic fields suppress superconductivity (see Fig. 4.11), it is imperative to perform magnetic

88



susceptibility measurements with the smallest possible field (typically 20Oe). This ensures

the highest Tsc.

As can be seen in Fig. 2.1(b), there is a large difference in the magnitude of the dia-

magnetic response between zero-field cooled (ZFC) and field-cooled (FC). For an ideal and

type-I superconductor, this should not be the case. But in a type-II superconductor, this

difference is attributed to vortices. For ZFC measurements, cooled below Tsc without an

applied magnetic field, when the magnetic field is turned on, the superconductor will shield

the external magnetic field and produce a diamagnetic response. If same material is cooled

below Tsc with a small magnetic field, FC, then below Tsc the superconductor will first

enter the Abrikosov state (vortex state). Here some of the magnetic field will penetrate

the superconductor through a vortex and produce a smaller diamagnetic response than the

ZFC one. Even as the system continues to cool down into the Meissner regime (below the

Hc1(T ) curve), the penetrative magnetic field can remain trapped. Therefore the weakened

diamagnetic response of the FC curve remains.

Another interesting aspect of performing magnetic susceptibility measurements on su-

perconductors is that the magnitude of the diamagnetic response can provide insights into

the sample quality. An ideal superconductor should exhibit perfect diamagnetism wherein

the entire volume of the sample screens the magnetic field. It should then follow that the

magnetic response should equal the strength of the magnetic field. By displaying volumet-

ric susceptibility in SI units, we should see that χSI = −1 for an ideal superconductor.

Therefore plotting the volumetric magnetic susceptibility curves for a superconductor in

SI units provides insights into how close a sample gets to perfect diamagnetism. As can

be observed in Fig. 4.7 a near-perfect diamagnetic response is observed for this particular

sample of LaNiGa2. Although plotting the volumetric susceptibility in SI units is helpful
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to understand the shielding fraction of a superconducting sample, keep in mind that this

measurement only indicates what percentage of the surface is superconducting. Measuring

the magnetic susceptibility of a superconductor does not provide insights into the bulk of

the sample. Thus magnetic susceptibility needs to be coupled with electrical resistivity and

heat capacity measurements to understand the superconducting state better. It should be

noted that it is possible to get a diamagnetic response less than χ = −1. This response

results from demagnetization fields due to a sample’s shape.

Running field-dependent magnetic susceptibility measurements can also be vital to un-

derstanding whether a superconductor is type-I or type-II. Type-I superconductors do not

have a vortex state. So the magnetic response should have a −1 slope as H increases. That

is until the critical field, Hc, at which point the superconducting state is destroyed, and the

material enters the normal state. For a type-II superconductor, the magnetic response will

also initially have a −1 slope. However, in a type-II superconductor, there are two critical

fields: the lower critical field Hc1 and the upper critical field Hc2. Once the applied magnetic

field reaches Hc1 then the superconductor will enter the vortex state. At which point, the

magnetic response will no longer follow the −1 slope and start to increase back to zero.

While in the vortex state, the superconductor will continue to have a diamagnetic response

until Hc2 is reached, and the superconducting state is destroyed. These magnetic responses

for both types of superconductors can be observed in Fig. 3.23.

It should also be noted that while determining whether a superconductor is type-I or

type-II is important, this determination does not indicate whether the superconductor is

conventional or unconventional. While nearly all conventional superconductors are type-

I, some type-II superconductors are well described by conventional theory like Nb, Nb-Ti,

V3Si, and MgB2 (both V3Si and MgB2 show multiband behavior, but both have conven-
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Figure 3.23: Magnetization versus applied magnetic field for a (a) type-I and a (b) type-II
superconductor. Both superconductors display perfect diamagnetism with a slope of −1 until
Hc is reached for a type-I or Hc1 is reached for a type-II. At which point the superconducting
state is destroyed for a type-I. While the type-II enters the vortex state. Not that minus
4πM is plotted as the vertical axis. Figure was originally published in [6]

tional phonon-mediated Cooper pairs). Conversely, most unconventional superconductors

are type-II. Therefore, magnetic susceptibility measurements are best to identify whether

the superconductor is type-I or type-II and not necessarily whether it abides by conventional

BCS theory.

3.3.3 Heat Capacity

Mechanisms Behind the Measurement

Heat capacity measurements are a fantastic tool to obtain information on the lattice, elec-

tronic, and magnetic properties of a solid. Temperature-dependent heat capacity measure-

ments on metals are well described by theory. Comparing the experimental data to these

models is critical to a comprehensive understanding of a condensed matter system. Perform-

ing these thermodynamic measurements also provides insight into the bulk of the sample

(e.g. order of a transition). The nature of heat capacity measurements is ultimately due to

how these experiments are performed.
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There are several different measurements techniques, such as the classic coffee cup calorime-

ter used in general chemistry and physics labs. In the PPMS, the heat capacity option uses

the relaxation technique. For this technique, the sample, grease, and the platform undergo

a short burst of heat from small built-in heaters and then all materials are allowed to cool.

The thermal relaxation of the system is then modeled, and a heat capacity value (amount

of energy it takes to warm one degree: J/K) can be obtained. By previously measuring

the heat capacity response for the sample holder and the grease (called an addenda), the

background’s response can be subtracted out to isolate the sample’s heat capacity. This

mechanism also indicates that the heat capacity of the entire sample on the platform will

be measured. Knowing this and how long it takes to perform a complete heat capacity

experiment, the measurement should be performed on a well-known and phase pure sample.

For successful measurements, there are several vital aspects. One of which is thermal

isolation. Small metal wires are attached to the bottom of the platform. These wires then

provide an electrical pathway between the heaters, platform thermometer, and sample puck.

These wires, as intended, also act as thermal links to the surrounding bath. After a small

burst of heating, the excess heat from the sample and platform dissipates through the wires

during the thermal relaxation period. Therefore, to obtain the highest quality data, it is

imperative to minimize the heat that is lost to the surrounding environment. Reducing heat

loss can be obtained by performing the measurements in a high-vacuum state (10−5 Torr).

Another important aspect of heat capacity measurements is ensuring good thermal con-

tact between the sample and the platform. If there is not a sufficient thermal pathway for

the heat, the sample will not be thoroughly heated, and poor data will ensue. This dilemma

can easily be averted by applying a thin layer of grease to the platform and carefully pressing

the sample into the grease.
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Setting up the Measurement

The first step to perform a successful heat capacity measurement is to run an addenda. This

initial run collects the heat capacity data for the platform and the grease so that the data can

be subtracted out from the final run with the sample. Before applying the grease it is crucial

to know the temperature range of the final measurement because this will determine which

grease to use. If performing a high-temperature scan (T > 200K) then it is recommended

to use Apiezon H grease, and for a low-temperature measurement (T < 220K) then it is

recommended to use Apiezon N grease. This recommendation is because below 200K H

grease tends to spontaneously pop off, and above 220K N grease melts and heat capacity

measurements in this temperature range are unreliable. After selecting the appropriate

grease, it must then be applied to the sample platform. To collect the best data on your

sample, it is essential to use just enough grease to ensure that the sample is in good thermal

contact with the platform. If too much grease is applied, the addenda’s heat capacity data

could mask small changes in the sample’s heat capacity data.

After completing the addenda then the sample must be carefully placed onto the platform.

A special mounting contraption is required to load the sample onto the platform (and apply

the grease). Since the four metal wires (see Fig. 3.24(a)) are very delicate, you can not simply

place the sample onto the platform by hand. Instead, by mounting the heat capacity puck

onto the mounting contraption, the platform can rest onto a flat mounting post that can

provide support for placing the sample (and applying grease). This mounting contraption

also has a small vacuum that ensures the platform sits completely flat on the mounting post.

Once the sample has been thoroughly yet carefully pressed into the grease, the measurement

is ready to run. The complete setup of the sample and grease can be seen in Fig. 3.24(a).
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Figure 3.24: (a) Sample mounted onto the platform with a small amount of grease. The
four metal wires send electricity to the platform heater and thermometer. These wires also
provide a thermal pathway for the heat to dissipate into the thermal bath. (b) Zero-field
high-temperature data of LaNiGa2. The data fits well to the high-temperature weighted
Einstein-Debye model (black line) defined by 3.11. (c) Zero-field low-temperature data of
LaNiGa2. In addition to the second-order superconducting transition (sharp jump) the
normal-state data fits well to the low-temperature Debye model (black line) defined by 3.13.

High-Temperature Information

As just mentioned, temperature-dependent heat capacity measurements of metals are well

defined by theoretical models. I will first discuss the high-temperature models, and then

subsequently, I will talk about the low-temperature model. Previously highlighted was that

heat capacity data can provide insights into a solid’s lattice, magnetic, and electronic prop-

erties. In high temperatures, like in electrical resistivity, the heat capacity is dominated

by phonons. In fact, at sufficiently high enough temperatures, the heat capacity is entirely

dominated by phonons, and the Dulong-Petit value of 3nR (n is the number of atoms in a

formula unit) is a good approximation for the heat capacity. As the sample is cooled down

and phonon branches begin to depopulate, the heat-capacity data can be defined by the
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weighted Einstein-Debye model [220]:

C(T ) = γnT + nxCDebye

(
T

ΘD

)
+ n(1− x)CEinstein

(
T

TE

)
(3.11a)

CDebye

(
T

ΘD

)
= 9R

(
T

ΘD

)3 ∫ ΘD
T

0

x4ex

(ex − 1)2
dx (3.11b)

CEinstein

(
T

TE

)
= 3R

z2ez

(ez − 1)2
, z =

TE

T
(3.11c)

where n is the same as above, R = NAkB is the gas constant, and x is the fractional

contribution of the Debye model. At first, the Einstein model was a method for estimating

the phonon contribution in a solid by assuming that the lattice vibrations were a collection

of many non-interaction harmonic oscillators. Each of which was oscillating at the same

frequency. While this first model was primarily successful in describing the shape of the heat

capacity curve, it struggled to predict low-temperature behavior accurately. Debye improved

upon this initial model by allowing the phonon frequency to vary. This model improved the

low-temperature behavior (see next section) but can sometimes struggle to accurately define

the intermediate temperature regions. Later it was discovered that a weighted sum of the two

models more accurately predicts the heat capacity data over a wide temperature window.

Within the weighted sum, the Einstein model approximates the optical phonons [6] and the

Debye model approximates the acoustic phonons.

Therefore, to best model the heat capacity data over a wide temperature range, the first

step is to calculate the number of optical branches. It then follows that the percentage of

the acoustic phonons will be equal to x in 3.11. To calculate the number of each phonon

branches, one must first determine the number of atoms, Np, within the primitive unit cell.

With Np, there are 3Np total phonon branches with 3 acoustic and 3Np−3 optical branches.

For LaNiGa2 this was achieved and plotted in Fig. 3.24(b). With 8 atoms in the primitive
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cell, there are 24 phonon branches. The effective Debye model contribution should then be

x = 12.5%. The black line in Fig. 3.24(b) shows the fitting of the function, which gives a

Debye temperature, ΘD = 83K, and an Einstein temperature TE = 200K.

Low-Temperature Information

While a weighted sum of two models best defines the high-temperature heat capacity data,

low-temperature heat capacity can be well described by just the Debye model because at

these temperatures, only acoustic modes are thermally excited [6]. Therefore, at these tem-

peratures the Debye model can be simplified to show that C ∝ T 3:

C =
12π4

5
NAkB(

T

ΘD

)3 (3.12)

In addition to acoustic phonons contributing to the heat capacity at low temperatures,

electronic behavior can also influence the heat capacity. Thus, the combination of the Debye

model simplification and the electronic heat capacity can be combined to show the experi-

mental linear relationship between C/T and T 2:

C

T
= γn + β T 2 (3.13)

where γn is the Sommerfeld coefficient and γnT corresponds to the electronic heat capac-

ity. The parameter β then contains the Debye temperature:

ΘD = 3

√
12π4NAkB

5β
(3.14)

Since only the acoustic phonons are thermally populated at these temperatures, the Debye
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temperature from this experimental fit is often considered more accurate than the high-

temperature fitting. As with the high-temperature region, the normal state low-temperature

data for LaNiGa2 was fit to 3.13 and shown in Fig. 3.24(c). Values of γn = 14.1mJ/molK2

and ΘD = 166K were obtained from this fitting.

Since the Sommerfeld coefficient represents the residual electronic heat capacity, this

can provide us a nice insight into the ’weight’ of the conduction electrons. Where γn ∝ m.

Therefore low-temperature heat capacity measurements are a great way to determine whether

a system qualifies as a heavy fermion material (i.e. materials with ’heavy’ electrons). For

heavy fermion materials, the Sommerfeld coefficients are typically two or three orders of

magnitude larger than for usual metals. Examples of this are CeIn3 and UTe2 which have

normal-state γn values of 130 and 110mJ/molK2, respectively [53, 112]. Therefore it is clear

that LaNiGa2 is not a heavy fermion material, which is expected for La-based materials with

no 4f electrons.

Superconductivity

As mentioned a couple of times, heat capacity measurements are critical to identifying and

understanding a superconducting state. Not only does the onset of the superconducting state

coincide with a second-order phase transition (Fig. 3.24(c)), but heat capacity measurements

can also indicate sample quality. Since the entire mass on the platform is measured, it is

possible to observe impurities or if the sample does not exhibit bulk superconductivity. In

such cases, the heat capacity of the superconducting state would not approach zero because

the entirety of the sample is not superconducting. However, there are cases where the heat

capacity of pure superconducting samples does not approach zero [53].

Heat capacity measurements are also beneficial for determining the nature of an uncon-
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Figure 3.25: (a) Heat capacity data from the superconducting state of LaNiGa2 and the
extrapolated low-temperature Debye fitting representing the normal state heat capacity. (b)
the entropy data calculated from the superconducting and normal states in (a). (c) The
Hc(T ) curve calculated from 3.15 and the Taylor expansion fitting from 3.18. From the
fitting Hc(0) = 23mT was obtained.

ventional superconductor, as discussed in section 2.1.1. From heat capacity measurements,

it is possible to deduce the presence of any superconducting gap nodes and the form of the

gap nodes. It is also possible to elucidate how many energy gaps are present within the su-

perconducting state [12, 13]. As can be seen for LaNiGa2 Fig. 4.10(b), the superconducting

heat capacity data reveal evidence for two superconducting energy gaps.

In addition to elucidating information about the unconventional nature of the super-

conducting state, it is also possible to understand the development of the thermodynamic

critical field Hc(T ) [5, 221]. The following equations achieve this:

−1

2
µ0VmH

2
c (T ) = ∆F (T ) = ∆U(T )− T∆(T ) (3.15)

where µ0 is the permeability of free space and Vm is the molar volume. The difference in

internal energy, ∆U(T ), can be obtained by integrating the difference of the heat capacity
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between the superconducting Cs(T ) and the normal state Cn(T ):

∆U(T ) =

∫ T

T=0

[Cs(T
′)− Cn(T )]dT

′ (3.16)

and the difference in entropy, ∆S(T ), can be obtained by taking the difference of entropies

between the superconducting and normal states. The entropy for each state can be obtained

by integrating C(T )/T for each state:

∆S(T ) =

∫ T

T=0

Cs(T
′)− Cn(T )

T ′ dT ′ (3.17)

When combined together Hc(T ) can be fit to a Taylor expansion to determine Hc(0):

Hc(T ) = Hc(0)[1− b(T/Tsc)
2 + (1− b)(T/Tsc)

4] (3.18)

where b is a fitting parameter [222]. It should be noted that this critical field Hc is purely

a thermodynamic value and different than either Hc1 or Hc2 for a type-II superconductor.
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Chapter 4

Discovery of Dirac Lines and Loop in

Time-Reversal Symmetry Breaking

Superconductor LaNiGa2

This work was performed in collaboration with Yundi Quan, Matthew Staab, Shuntaro

Sumita, Antonio Rossi, Kasey Devlin, Kelly Neubauer, Daniel Shulman, James Fettinger,

Peter Klavins, Susan Kauzlarich, Dai Aoki, Inna Vishik, Warren Pickett, and Valentin Tau-

four. The manuscript is currently under review for publication but has been posted on

the pre-publishing database arXiv [223]. All band structure calculations were completed

by Yundi Quan and Warren Pickett. The ARPES work was performed by Matthew Staab,

Daniel Shulman, and Inna Vishik. Both band structure calculations and the ARPES work

are included in this chapter to have a comprehensive and complete story about LaNiGa2.

The gap structure and nonsymmorphic symmetry analysis performed by Valentin is omitted

from this chapter. Copyright permission has been obtained and granted to use figures 4.1
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and 4.2.

4.1 Background on µSR for spin-triplet Cooper pair Iden-

tification

When a spin polarized positive muon (spin 1
2
) becomes impregnated within a sample, the

muon spin precesses with an angular frequency (ωµ) proportional to the magnetic field ωµ =

γµB, where γµ is the gyromagnetic ratio for the muon [224]. After a muon decays with a

mean lifetime of τ = 2.2µs, a positron is then emitted. The length of the muon’s lifetime

and precession frequency will then determine the direction that the positron is emitted (see

Fig. 4.1(a) for a schematic). In the end the internal magnetic behavior of a sample can

be elucidated by counting the positron emission as a function of direction and time. More

specifically, by performing the measurement with zero external magnetic field (ZF-µSR),

this then provides experimentalists a great tool to probe subtle changes (like an additional

magnetic source) in a sample’s magnetic behavior. The nature of this technique, along with

Polar Kerr effect measurements, then makes it one of the most powerful tools to investigate

for spin-triplet Cooper pairs within a superconducting state [4].

An additional small internal magnetic moment should coincide with the onset of spin-

triplet Cooper pairing. Therefore, in this scenario ZF-µSR measurements should show the

muon spins precessing with a higher frequency. However, in polycrystalline samples, with a

random static Gaussian distribution of fields, each muon will be exposed a different inter-

nal magnetic field magnitude. Therefore, instead of producing a typical oscillatory curve,

the normalized decay positron asymmetry function (G(t)) will yield a Kubo-Toyabe type

function, where the relaxation rate is directly proportional to the magnitude of internal
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Figure 4.1: (a) Schematic illustration of a µSR experiment. A spin-polarized beam of muons
is implanted in a sample S. The muons impregnated within the sample S will then precess
when they are exposed to a magnetic field, either with an internal and/or a transverse exter-
nal magnetic field. Following the muon decay, positrons are then detected in either a forward
detector F or a backward detector B. (b) The time evolution (t) of the normalized decay
positron asymmetry function (G(t)) for muons exposed to various internal magnetic field
magnitudes. (c) The averaging of terms from (a) yields the Kubo-Toyabe relaxation func-
tion [225], where the relaxation rate is dependent upon the average magnetic field strength.
Image and plots were originally published in [224] and can be found on the journal’s web
site: www.tandfonline.com.

magnetic field (Fig. 4.1(c)) [225]. As a result, plotting and fitting the ZF-µSR data to the

Kubo-Toyabe model above and below the superconducting transition will provide direct in-
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sight as to whether there is an additional magnetic moment from spin-triplet Cooper pairing

within a superconducting state. This G(t) behavior is also expected within ZF-µSR exper-

iments on single crystals with randomly orientated spin-triplet Cooper pairs or randomly

orientated single crystals [226]. It should be noted that there is a slight difference between

the magnitude of the relaxation rate when Pµ ∥ c and Pµ⊥ c in ZF-µSR experiments on

single crystals of Sr2RuO4 [227], however the nature of this material is still hotly debated to

this day [228]. Yet to this day, there is no clear example of a superconductor with direction-

ally dependent spin-triplet Cooper pairs. If a material were to exhibit this behavior then

it could be determined by anisotropic ZF-µSR experiments. Overall, more can be learned

about this technique and the experimental setup in the following sources [4, 84, 224].

4.2 Background and Motivation on LaNiGa2

Interest in LaNiGa2 started when a previous report on a polycrystalline sample used ZF-µSR

experiments to show the onset of an additional magnetic source within the superconducting

state [19]. Fig. 4.2(a) shows the modest shift of the ZF-µSR curves from LaNiGa2 above

and within the superconducting state. Since the strength of internal magnetic field is pro-

portional to the Gaussian relaxation rate (σ) in the Kubo-Toyabe model [4, 224], Hillier et

al. used these ZF-µSR results to show that with the onset of superconductivity (Tsc ≈ 2K)

there is an additional source of magnetism within LaNiGa2 (Fig. 4.2(b)). In the end it was

calculated that the internal magnetic field increases by 0.02mT between the normal and

superconducting states [4]. The broken time-reversal symmetry was then rationalized by the

formation of spin-triplet Cooper pairs within the superconducting state. Similar conclusions

were drawn from ZF-µSR experiments on other well-studied condensed matter systems such

as UPt3 [229], Sr2RuO4 [227], Sr0.1Bi2Se3 [230], and LaNiC2 [231].
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After this ZF-µSR result, the D2h characters tables in tables 2.1-2.4 were employed

to originally propose four possible nonunitary spin-triplet order parameters [19]. Each of

these possible order parameters could only occur with weak SOC (Table 2.3). Extending

from each order parameter was that the single superconducting energy gap should contain

nodal features. However, subsequent studies showed evidence for nodeless multigap be-

havior (Fig. 4.2(c)) [14], in contradiction with originally proposed single-band spin-triplet

order parameters. Following these experimental results, an interband pairing model was pro-

posed [14], wherein Cooper pairs form between electrons with the same spin but originating

from different bands. This model was eventually expanded upon in the internally antisym-

metric nonunitary triplet pairing (INT) state proposed by Ghosh et al. [232]. It was noted

that for this pairing state to stabilize, the pairing amplitude between the electrons has to

overcome the small band splitting of the quasi-degenerate FSs. As a result the Bogoliubov-

deGennes (BdG) quasiparticle bands showed a small energy gap between electrons with the

same spin but originating from different bands (Fig. 4.2(d)). Overall this INT state was

shown to account for both the broken time-reversal symmetry and the nodeless two energy

gaps within the superconducting state.

All previous experimental investigations were limited to polycrystalline samples and the-

oretical considerations were based on the previously reported symmorphic Cmmm (#65)

space group [209]. We reveal that single crystal X-ray diffraction (SCXRD) analysis im-

proves upon previous powder X-ray diffraction (PXRD) work and properly assigns LaNiGa2

to a nonsymmorphic Cmcm (#63) unit-cell. Difficulty discerning the difference between

Cmmm and Cmcm from PXRD data has historical precedent [233–235].

We now report that the time-reversal symmetry breaking superconductor LaNiGa2 de-

rives its unconventional superconducting pairing from the previously unknown existence of
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Figure 4.2: Compiled plots of previous experiments on LaNiGa2. (a) The ZF-µSR spectra
of LaNiGa2 collected at 56mK (blue circles) and at 3.0K (red squares). Each spectra was
fit to a least squares fitting (solid lines). The slight shift from 3.0K→ 56mK indicates
an additional source of magnetism within LaNiGa2. Plot was originally published in [19].
(b) Shows the temperature dependence of the Gaussian relaxation rate (σ) in zero-field.
σ is associated with the internal magnetic field strength and each value was calculated
from a Kubo-Toyabe function [225]. The sharp and distinct uptick at the superconducting
transition (vertical blue line) shows the onset of spontaneous fields as LaNiGa2 enters the
superconducting state. Plot was originally published in [19]. (c) Superfluid density (ρs(T ))
against the normalized temperature (T/Tc). The solid line shows the fitted two-band model,
while the dashed and dashed-dotted lines show p-wave models with point and lines nodes,
respectively. The inset shows the individual components of the two-band model. Plot was
originally published in [14]. (d) BdG quasiparticles from the INT state for the + and −
bands for ↑ and ↓ spins. Plot was originally published in [232].
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Dirac lines and Dirac loop in the normal state. The nonsymmorphic symmetries of this new

unit cell transform the kz = π/c plane, of the Brillouin zone (BZ) into a node-surface which

hosts four-fold degenerate bands [236]. Here, the band degeneracies form two distinct Dirac

crossings between two sets of Fermi surfaces (FSs) precisely at the Fermi level, independent

of chemical potential position. There are fluted lines closed by BZ periodicity and a closed

loop. Of special note is that the Dirac loop contains two points which are protected against

splitting from spin-orbit coupling (SOC). These features are pinned at the Fermi energy

where they impact low energy properties including superconductivity. The rich topology

of the electronic structure originates from the nonsymmorphic symmetry that guarantees

band degeneracies, which in turn, enable interband and/or complex superconducting order

parameters that can break time-reversal symmetry.

These “touchings” are shown from our band structure calculations, along with ARPES

data. We note that, among non-magnetic materials and outside of intercalated Bi2Se3, no

other time-reversal symmetry breaking superconductor has been shown to exhibit a topolog-

ical band structure (see Table 4.4), thus making LaNiGa2 unique amongst this small set of

bulk superconductors. We also discuss the impact of the topology of LaNiGa2 as a natural

platform for interband pairing and/or complex superconducting order parameter that can

break time-reversal symmetry.

As discussed in section 2.1, the combination of superconductivity with topology is ex-

pected to exhibit new types of quasiparticles such as non-Abelian Majorana zero modes [237,

238], or fractional charge and spin currents [239], and provide new platforms for quantum

computation technologies [240]. Topological superconductivity can be artificially engineered

in hybrid structures [48, 241–244] or it can exist intrinsically in certain unconventional su-

perconductors [52, 53, 57, 71, 245, 246]. In most intrinsic TSCs, the unconventional nature
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of superconductivity originates from the proximity to magnetic instabilities or strong elec-

tronic correlations [53]. Our results illustrate a novel method towards realizing intrinsic

(single-material) topological superconductivity wherein the underlying space group symme-

try intertwines the topology with the unconventional superconductivity.

4.3 Methods

4.3.1 Electronic Structure Methods

Density functional based electronic structures were produced by the precise linearized aug-

mented planewave code Wien2k using the generalized gradient functional for exchange and

correlation. The sphere sizes were, in bohr: La, 2.50; Ni, 2.40; Ga, 2.12. The plane wave

cutoff Kmax was determined by RKmax = 7, and the k-point mesh for self-consistency was

14 × 14 × 14. These calculations were completed by our collaborators Yundi Quan and

Warren E. Pickett.

4.3.2 ARPES Measurements

ARPES measurements were performed at Stanford Synchrotron Radiation Lightsource Na-

tional Laboratory beamline 5− 2 using a Scientia DA30 electron spectrometer. The crystal

for ARPES was cleaved in the a − c plane using the natural platelet shape of the crys-

tals and a top post. Samples were cleaved in-situ at 20K and with a pressure better than

5× 10−11 Torr. These experiments were completed by our collaborators Matt C. Staab and

Inna M. Vishik.
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4.4 Physical and Superconducting Properties

4.4.1 Structural Characterization

Single Crystal X-ray Diffraction and Unit Cell

SCXRD data were collected on several samples and each dataset resolved to a LaNiGa2

unit cell with a Cmcm space group. Given the inherent similarities between the previously

reported Cmmm structure [209] in real space, nearly all diffraction spots within the reciprocal

space are predicted by both structures. This is especially true for the most intense, low-angle

diffraction spots. There are, however, a few observable differences amongst the weakly-

diffracting high-angle spots that are sufficient to differentiate the two structures, as shown

from the compiled hk0 precession image in Fig. 4.3(a).

These discrepancies are highlighted by the differing expected intensities along the nor-

malized h9̄0 line, red arrows in Fig. 4.3(a), between the two structures (Fig. 4.3(b)). It

should be noted that all peaks along this line from both models are displayed, regardless of

intensity. The insufficient intensities for the Cmmm model at these high-angle spots reveal

that the previously reported structure inadequately matches the observed diffraction data

for this material. The data indicates that the more accurate structure for this material is

that of the Cmcm space group.

The new crystal structure retains a Z value of four (with two f.u. in the primitive cell) and

contains four unique atom positions comprised of one La, one Ni, and two Ga. Details of the

SCXRD experiment are highlighted in Table 4.2 and atomic positions in Table 4.3. When

observing the crystal structure projected down the a and c-axes (Fig. 4.4), the structure

can be viewed as layers of each element stacking along the b axis. These layers can be

described as centrosymmetrically sandwiched together with (1) body-centered planes of Ga
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Figure 4.3: (a) Compiled precession image of the hk0 plane from a SCXRD data set of
LaNiGa2. Overlaid are the predicted diffraction spots with a normalized intensity above 0.1.
The diffraction spots which are expected for both the original Cmmm [209] and our newly
proposed Cmcm structures are denoted by the teal squares. While the spots which are only
expected for the Cmmm and Cmcm structures are shown by the purple circles and orange
diamonds, respectively. (b) A normalized linear cut of the hk0 precession image along the
h90, shown by the red triangles in (a). All intensity data, raw and theoretical, from (a) and
(b) are normalized to the 131 peak. (c) Picture of representative single crystal samples of
LaNiGa2. The plate-like samples have the b-axis normal to the surface of the crystals.

atoms encasing the motif. Moving inward there are planes of (2) Ni atoms, (3) La atoms,

and (4) Ga atoms; each of which are transitionally offset from their respective counterpart

plane by (0, 0, 1
2
). These structural projections also show the symmetry elements associated

with the Cmcm space group, as highlighted by the colored lines. These operations include

the reflection and translation of the c glide plane.

This structure as a whole is bound together by interlayer bonding between the (1) Ga
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Figure 4.4: Projection of the new LaNiGa2 structure along the a) a and b) c axis. The
numbers denote the layers within the structure: (1) body-centered Ga plane, (2) Ni, (3) La,
and (4) Ga. The vertical red and blue lines represent the location of the mirror planes, while
the dashed green lines denote the c glide plane perpendicular to the b axis.

- (2) Ni, (2) Ni - (4) Ga, and the inner (4) Ga planes. The Ga-Ni bonds allow for the (1)

body-centered Ga planes to form tetrahedral sheets with the (2) Ni atoms as the end caps.

This motif is the same as in β-FeSe layers, except with the 3d and 4p elements swapped

between the two structures. Differing from β-FeSe, the capped (2) Ni atoms bond to the

inner (4) Ga layers. The (4) Ga is bonded to its offset counterpart to form a Ga-Ga zigzag

chain extending in the c direction. Additionally, all these bonds between two (1) planes

come together to form hexagonal sheets, which are shifted by (1
2
, 0, 0) every-other sheet
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Figure 4.5: Comparison of the normalized slabs between the new Cmcm (left) and the old
Cmmm (right) structures. The black lines represent the border of every present unit cell.
The inversion center within each unit cell is denoted by the blue # symbol. The referenced
axes apply to both structures.

along the b direction. In whole, these bonds allow for the formation of La channels both

between the stacked hexagonal sheets along the c direction and within each hexagon along

the a direction.

One feature of note is that within the (2), (3), and (4) layers the intraplanar atoms

combine to form planar rectangular primitive cells. Despite the different elements, each of

these planar cells have separations that are equivalent to the a and c-axes. In addition

to highlighting the aforementioned layered motif, these structural projections also show

the symmetry elements associated with the Cmcm space group, the colored lines. These
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operations include the reflection and translation of the c glide plane perpendicular to the

b-axis.

Not surprisingly, there are many structural features that overlap between the Cmcm

and Cmmm unit cells. Beyond the obvious similarities in unit cell dimensions and point

group, both structures comprise of the previously mentioned layers and slabs. The planes

within these repeating motifs appear in the same sequence and the interlayer distances are

very similar. When normalized, the largest difference is 0.2Å. Since both structures contain

these slabs and every other (1) body-centered Ga plane is positionally identical within the

a − c plane, we can easily compare the contents of the two structures. When these layers

are normalized to the same positions, as can be observed in Fig. 4.5, we see that within

the Cmcm slab every other section of the (2), (3), and (4) is shifted by (1
2
, 0, 1

2
), denoted

by the starred numbers. While the Cmmm slab does not exhibit any shifting. This simple

translation is the only structural difference and is sufficient to cause the border of the unit

cells to shift and subsequently the center of inversion to shift from the central Ga atom

within (1) plane in Cmmm to half-way between the (4) layers in Cmcm. With regards to

the bonding, these shifted atoms transform the Ga-Ni tetrahedral sheets into pseudo-square

planar atom sites and eliminate the translation shift between the hexagonal sheets.

Additionally of note, the Cmmm to Cmcm structures contain the same number of Ni and

La sites, but a different number of Ga sites. Transforming from the Cmmm to Cmcm, the

first and second Ga site locations, comprising the (1) plane, converge to a single site location.

Although there is an additional site location in Cmmm, both the first and the second sites

fall on a Wyckoff position with a multiplicity of 2. In contrast, the converged site in Cmcm

falls on a Wyckoff position with a multiplicity of 4, thus retaining the stoichiometry between

the two structures.
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When thinking about the structural identification saga of LaNiGa2, we could not help but

be fascinated by the similarities with that of the superconducting ferromagnet UGe2 [234,

235]. The initial structural misidentification of the two materials follows in nearly the same

path, except in opposite directions. Originally thought to have a Cmcm space group, it was

not until single crystal structural experiments were performed on UGe2 that the true Cmmm

space group was properly identified [233–235]. Beyond similar difficulties with identifying

the proper space group, the structural framework of UGe2 and LaNiGa2 (ignoring Ni) would

be identical if they were both Cmmm. However, this new space group identification changes

the two structures in the manner previously mentioned.

Overall, while this new space group remains centrosymmetric, it adds nonsymmorphic

symmetries: a c glide plane perpendicular to the b-axis and a 21 screw axis, Sz
2 , along the

c-axis. First we will discuss the physical properties of the single crystals of LaNiGa2 then

discuss the influence of the new symmetry operations on the electronic structure and the

ramifications on the superconducting pairing state.

Powder X-Ray Diffraction

Fig. 4.6 shows the powder X-ray diffraction (PXRD) results with a LeBail refinement using

the previously reported structure [209, 247] and the new Cmcm structure. The fittings were

made using GSAS-II [248]. In addition to LaNiGa2, there was a small amount of impurity flux

that is either the LaNiGa or LaNi3Ga2 phase (blue triangles Fig. 4.6). The refined unit-cell

parameters from the Cmmm structure are a = 4.278Å, b = 17.436Å, and c = 4.271Å. The

refined unit-cell parameters from the Cmcm structure are a = 4.273Å, b = 17.412Å, and

c = 4.268Å. Since both the Cmmm and Cmcm structures model well onto the PXRD data

(wR= 7.026% and 7.084%, respectively), SCXRD is the best technique to experimentally
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Figure 4.6: Background subtracted PXRD pattern of LaNiGa2 that was collected from
ground single crystals (black dots). The overlaid lines are the calculated models from GSAS-
II using the (a) previously reported Cmmm and the (b) new Cmcm structures. The blue
triangles denote the peaks from the unidentifiable flux.

distinguish the correct structure.

4.4.2 Magnetic Susceptibility

Magnetic susceptibility with a magnetic field of 1mT along the b-axis is shown in Fig. 4.7.

Temperature dependence was collected under zero-field cooled (ZFC) and field cooled (FC)

conditions. A clear diamagnetic response is observed, with an almost complete expulsion

of the external magnetic field for the ZFC curve. The superconducting transition, TM
sc , is

selected when the material reaches a 90% shielding fraction, at 1.92K. The combination of a

sharp transition, ∆T = 0.1K, and the magnitude of the diamagnetic response is consistent

with the bulk superconductivity confirmed from heat capacity measurements. The transition

temperature is in good agreement with what had been previously reported from both AC

and DC susceptibility measurements [14, 210]. The separation of the ZFC and FC curves

indicates a moderate presence of flux pinning in a type-II superconductor, and the scale of
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Figure 4.7: The temperature dependence of the zero-field cooled (ZFC) and field-cooled (FC)
magnetic susceptibility (4πM/H) curves for LaNiGa2 with a field of 1mT.

difference is less than previous polycrystalline measurements, which is expected for high-

quality single-crystal susceptibility measurements with reduced pinning centers.

4.4.3 Electrical resistivity

Electrical resistivity measured in zero-field for a single crystal is shown in Fig. 4.8. The

complete superconducting transition is observed with a T ρ
sc = 2.06K in the inset, while no

other anomalies are observed. Fitting the normal state low-temperature region (3 − 10K)

by a Fermi-liquid behavior: ρ(T ) = ρ0 + AT 2 leads to ρ0 = 5.20µΩ cm and A = 2.54 ×

10−4 µΩ cmK−2. The residual resistivity ratio (RRR) for this sample is 9.57. Both ρ0

and the RRR indicate a higher sample quality than data on polycrystalline samples [210].

Additionally of note, there is a slight negative curvature in the high-temperature region which

has been observed in other La-Ni compounds [249, 250], and can arise from s− d interband

scattering [251]. The fitting for this scattering was modeled and is shown in Fig. 3.17.

Resistivity measurements under field were conducted to construct the anisotropic upper-
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Figure 4.8: (a) Example of a LaNiGa2 crystal with the four-point probe setup and the labeled
wires. (b) The same crystal in (a) set up and aligned (µ0H ∥ c-axis) for anisotropic ρ(T ) and
ρ(H) measurements using the 3He probe. (c) Normal-state and superconducting transition
in ρ(T ) for a representative sample of LaNiGa2. The solid black curve is a fit from the Fermi
liquid behaviour of the normal state between 3− 10K. The inset shows the superconducting
transition.

critical-field phase diagram. Measurements were completed by performing three sets of

temperature-and field-sweeps. Each set had the external magnetic field aligned along a

different crystallographic axis. Fig. 4.9 shows the resistivity data when the magnetic field ia

aligned parallel to the c-axis.

4.4.4 Heat Capacity

Fig. 4.10(a) shows the heat capacity superconducting transition for LaNiGa2 in zero-field

and a suppressed transition down to 0.4K with a magnetic field of 0.3T. The normal-state

low-temperature specific heat (C/T ) shows a T 2 relationship and is fit according to the for-

mula C/T = γn + β T 2. From the fit, a Debye temperature ΘL
D = 166K and a Sommerfeld

coefficient γn = 14.1mJ/molK2 are obtained. These values indicate that LaNiGa2 does not

exhibit strong electronic correlations, as expected for a La-based material. Additionally, the

high-temperature data is well fit to a weighted high-temperature Einstein-Debye model 3.11.
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Figure 4.9: Low temperature resistivity data showing the superconducting transition with
ρ(T ) (a) and ρ(H) (b) sweeps. The ρ(T ) sweeps have a constant magnetic field µ0H = 0−
0.9T in increments of 0.1T. The ρ(H) sweeps have a constant temperature T = 0.5−2.25K
and 0.4K. These representative measurements were complected with H ∥ c and j ∥ c.

In both models, CDebye and CEinstein, there is a single refineable parameter of ΘD and TE,

respectively. Since the Einstein model is used to approximate the optical phonon contribu-

tions [6], it is best to calculate the total number of phonons branches to better estimate the

weighted contribution of each heat capacity model. With the new structure, the primitive

cell volume of LaNiGa2 is half that of the unit cell, thus 8 atoms in the primitive cell. It

follows that there are 24 phonon branches, three of which are acoustic and will have strong

contributions from the heavy La atom. The effective Debye model contribution should be

x = 12.5%. The inset of Fig. 4.10(a) shows the fitting of the function which gives a Debye

temperature, ΘD = 83K, and an Einstein temperature TE = 200K.

A complete bulk superconducting transition is observed and shown in Fig. 4.10(b). The

midpoint of the transition is TC
sc = 1.96K. When normalized with the γn value from the

low-temperature fit, this specific heat jump equates to ∆C/γnT
C
sc = 1.33, slightly higher

than previously reported value from [14] on polycrystals. Though the specific heat near
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Figure 4.10: (a) Zero-field specific heat (C/T ) against T shows the complete superconduct-
ing transition. The purple curve shows that a 0.3T external field is sufficient to suppress
superconductivity below 0.4K in heat capacity measurements, a lower value than in resis-
tivity measurements. The dashed black line is the low-temperature T 2 phonon contribution.
The inset shows the high-temperature heat capacity, which is fitted to the weighted high-
temperature Einstein-Debye model, Eq.3.11. (b) Comparison of the electronic heat capacity
measured on polycrystal [14] with our measurement on single crystal. The single gap BCS
and a two-gap model based on Ref. [13] (γ-model) are shown. The parameters used for the
γ-model are n1 = 0.95, λ12 = 0.1, λ11 = λ22 = 0.45.

Tsc seems to be well described by the single-gap BCS theory, the low temperature data

can be better described by a two-gap model [13] (see Fig. 4.10(b)) as already reported

for polycrystals [14]. We note that the heat capacity is reported down to 0.4K, which is

significantly higher than the reported penetration depth measurements down to 0.05K upon

which the nodeless multigap behavior was inferred [14]. Heat capacity measurements at

lower temperatures are necessary to better assess the superconducting gap structure.

The Kadowaki-Woods ratio (KWR)[252, 253] calculated as A/γ2
n is equal to

1.28µΩ cmmol2 K2 J−2 confirming that LaNiGa2 is not a strongly correlated material.
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Figure 4.11: Anisotropic field-temperature µ0Hc2 phase diagrams of LaNiGa2 when H is
applied along each of the three crystallographic axes.

4.4.5 Upper Critical Field Phase Diagram

The anisotropic Hc2 phase diagram is constructed by tracking the superconducting transition

across resistivity and heat capacity temperature- and field-sweeps for an aligned LaNiGa2

crystal. These measurements were collected with an external magnetic field carefully ori-

entated along particular crystallographic axes (Fig. 4.11). Regardless of the orientation,

there is a clear upward curvature of the Hc2, which is a common feature for multiband

superconductivity and was previously noted on polycrystalline samples of LaNiGa2 [14].

Additionally, from the Helfand-Werthamer model the critical field at 0K can be approx-

imated for a single band system:

µ0Hc2(0) = −ATsc
dµ0Hc2(Tsc)

dT
, (4.1)

where A = 0.73 and 0.69 for the clean and dirty limits, respectively [254]. Estimated

values of Hc2(0) from the slope near Tsc are lower than 0.275T for all three field directions,
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and lower than the experimental values near 0.4K. Thus indicating that a single band model,

either in the clean or dirty limit, cannot accurately model this system. This is further

evidence for the suggestion that multi-band effects are important. The experimental and

calculated superconducting properties are summarized in Table 4.1. Additionally, from the

critical temperature, TC
sc , the Pauli paramagnetic limit is calculated by µp

0Hc2(0) = 1.84TC
sc =

3.66T [255]. Since all three axes have critical fields below this limit, an orbital pair-breaking

mechanism may be operating. As shown in section 4.4.4, LaNiGa2 is not a heavy fermion

material (γn = 14.1mJ mol−1 K−2) and interband pairing is suppressed by the application

of a strong magnetic field. Thus the upper-critical field in LaNiGa2 remains orbital limited,

even though time-reversal symmetry breaking superconductivity was observed at zero field

in µSR experiments.

4.4.6 Superconducting and Physical Properties

Within the superconducting state, we can start by calculating the anisotropic Ginzburg-

Landau (GL) coherence lengths, ξGL, by using the relation:

d(µ0H
a
c2(Tsc))

dT
=

−Φ0

2πξbGLξ
c
GLTsc

(4.2)

where Φ0 is the quantum flux, µ0H
a
c2 is the of the µ0Hc2 curve when field is parallel

to the crystallographic a-axis, and ξbGL andξcGL are the coherence lengths along the b- and

c-axes [5, 256]. Given the orthorhombic nature, by measuring the slope of Hc2 along each

axis near Tsc we can find the corresponding coherence lengths. From this linear system of

equations, ξaGL, ξbGL, ξcGL are calculated out to 51.5, 17.6, and 47.3 nm, respectively.

With the Hc(0) and the anisotropic ξGL values, the anisotropic penetration depths can

be calculated with [5, 256]:
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Property (Unit) Value
Tsc (K) 1.96
γn (mJmol−1 K−2) 14.1
ΘD (low temp.) (K) 166
ΘD (K) 82.7
TE (K) 200
∆C/γnTsc 1.33
ρ0 (µΩ cm) 5.20
A (µΩ cmT−2) 2.54× 10−4

µ0H
HW
c2 (0) (Clean limit) (T) 0.275, 0.094, and 0.253

µ0H
HW
c2 (0) (Dirty limit) (T) 0.260, 0.089, and 0.239

µ0H
p
c2(0) (T) 3.66

µ0Hc(0) (mT) 23
ξGL (nm) 51.5, 17.6, and 47.3
λGL (nm) 174, 509, and 189
κ 3.37, 28.9, 4.00
KWR = A/γ2

n (µΩ cmmol2 K2 J−2) 1.28

Table 4.1: Measured and calculated relevant normal and superconducting-state properties
for LaNiGa2. All anisotropic parameters have entries in the following order: a-, b-, and
c-axis. The Tsc was selected as the mid-point from the heat capacity transition.

µ0Hc(0) =
Φ0

2
√
2πξaGLλ

a
GL

From this λGL for each crystallographic axis is calculated to 174, 509, and 189nm for

the a-, b-, and c-axes, respectively. When averaged across the three penetration depths

λavg
GL = 291 nm, which is in great agreement with the previoulsy reported penetration depth

λ0 = 350 nm [14]. Lastly, with λGL and ξGL, the κ ratio can be determined along each axis:

κa = 3.37, κb = 28.9, and κc = 4.00.

Using both the normal and superconducting-state heat capacity data, the isotropic ther-

modynamic critical field, Hc(T ), can be calculated using equations 3.15, 3.16, and 3.17.

The Hc(T ) curve can be fit to a Taylor expansion equation 3.18 to give a Hc(0) = 23mT
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(Fig. 3.25(c).

Lastly, the Kadowaki-Woods ratio (KWR) [252, 253] calculated as A/γ2
n is equal to

1.28µΩ cmmol2 K2 J−2 confirming that LaNiGa2 is not a strongly correlated material. All

of these superconducting and physical properties are highlighted in Table 4.1.

4.4.7 Electronic Structure

Despite the new structure, Fig. 4.12(a) shows that there remain 5 FSs [232, 257]. Highlighted

with the previous space-group, there are several regions within the BZ where pairs of FSs are

parallel and quasi-degenerate [14, 232]. A crucial difference now is that the nonsymmorphic

symmetry operations force the previously quasi-degenerate FS pairs to “touch” on the kz =

π/c plane (red plane) in the absence of SOC, turning this plane into a node-surface [236].

The combination of Sz
2 , parity operation, and time-reversal symmetry force bands on the

node-surface to be 4-fold degenerate. This symmetry enforced degeneracy results in two

disjoint sets of Dirac crossings directly at the Fermi level. Both are between bulk bands

crossing the node-surface: fluted lines across the BZ face between FS4/5 and a closed-loop

between FS2/3 (highlighted lines top panel Fig. 4.12(a)). That these crossings occur at the

Fermi level make LaNiGa2 uncommon compared to other superconductors with topologically

non-trivial band structures [57, 63–65, 67–69, 71–73] (see 4.4)

The Dirac crossings can be observed in the linear band dispersion plots without SOC along

k⃗ = (0, 0.516π
b
, kz) (green arrow) for the Dirac loop (Fig. 4.12(b)) and k⃗ = (0.232π

a
, 0, kz)

(blue arrow) for the Dirac lines (Fig. 4.12(d)). We note that small shifts of the Fermi energy

will shift the k-space location of the Dirac lines and loop. However, these features will persist

at the Fermi level as long as the FSs cross the node-surface. When accounting for SOC, most

band crossings become gapped (by a few to 40meV), as pictured in Fig. 4.12(e). Remarkably,
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Figure 4.12: (a) Fermi surfaces within the BZ that highlight the Dirac lines (blue lines) and
Dirac loop (green line) on the node-surface. The crossings along Z − T (magenta dots) are
protected from SOC. Below is the BZ showing several high symmetry points and highlights
the node-surface (red plane). The green arrow, ky = 0.516π/b, shows where FS2/3 become
degenerate on the node-surface. The Dirac crossing is shown to remain with (c) and without
SOC (b), where the SOC contribution to anticrossing is seen to be very small. The blue
arrow shows the dispersion along kx = 0.236π/a without SOC (d) shows the Dirac lines
between FS4/5. Once SOC is added (e), the crossing becomes gapped at the node-surface.

the Dirac points between FS2/3 survive along the Z−T symmetry line under SOC, as seen in

Fig. 4.12(c), creating two true-Dirac points at the Fermi level. This protected feature results

from the presence of the mirror reflection, Mx, along the Z − T line, therefore, remaining

4-fold degenerate even when accounting for SOC (see Supplementary Information in [223]

for derivation), illustrating that this degeneracy lies precisely at EF , and is robust rather
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than accidental.

To provide a clear picture of the effect of the nonsymmorphic symmetry operations on the

band structure, we show both (without SOC) the band structure from the previous Cmmm

space group (bottom panel) and the updated Cmcm unit-cell for LaNiGa2 (top panel) in

Fig. 4.13. As previously highlighted both band structures have several bands which cross EF

to produce five FSs. The key difference can be observed at and between the high-symmetry

points on the kz=π/c plane. For example, along Γ−Z−A in Fig. 4.13 the bands in the Cmcm

structure become degenerate on the node-surface (Z and A points). Whereas in the Cmmm

structure the bands remain separated on this plane. In the Cmcm electronic structure, the

bands ‘stick together’ as a direct result the previously undetected nonsymmorphic symmetry

operations.

4.4.8 ARPES

For ARPES experiments, the crystal was cleaved in the a—c plane along the natural platelet

shape of the crystals. With this cleavage plane, photon energy dependence probes the

electronic structure along the ky axis [258]. Fig. 4.14(a) shows a section of a photon energy-

dependence sweep from 100 to 184 eV in steps of 2 eV along the BZ diagonal (k∥), in the

kz—kx plane. Each spectrum was integrated ±50meV around the Fermi energy for each

photon energy. The ARPES data can be compared to calculated dispersions along the same

cut and yield qualitative agreement (Fig. 4.14(b)). Although we note that photoemission

matrix elements can be a function of photon energy and can cause features to be weaker

or absent at some photon energies. Both data and theory have consistent features that

largely do not disperse as a function of photon energy or ky for the chosen cut geometry,

corresponding to FS3 and FS4. Near these minimally-dispersing features, but closer to the
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Figure 4.13: Band structure of nonsymmorphic Cmcm (top panel) versus symmorphic
Cmmm LaNiGa2 (bottom panel), on a fine scale near EF . See Fig. 4.12 for symmetry
points. Fermi level band crossings are different for Cmcm, resulting in different Fermi sur-
faces than those shown by Singh [257] Although 5 FSs remain for both structures.

zone corner, is FS5, which moves closer to surfaces FS3 and FS4 at the ky = 0 plane, and

further away at the edge of the BZ. FS2, which is closer to the zone center, also moves closer

to the minimally-dispersing surfaces at the ky = 0 plane. This is one way we identify 144 eV

as the ky = 0 plane. The other way we correspond photon energy with ky value is at the

BZ boundaries. In the DFT calculation, there is more spectral weight at the BZ boundaries

at k∥ = 0, which is consistent with the enhanced intensity observed at 122 and 166 eV in

ARPES data near k∥ = 0. The ky = 0 (144 eV) plane is schematically shown in Fig. 4.14(a)
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Figure 4.14: Comparison of ARPES to DFT. (a) Photon energy dependence of ARPES
intensity along the Γ-A diagonal, k∥, through the BZ. (b) DFT calculation of spectral weight
A(k⃗, ω) along the same plane as (a). Comparing the structure of (a) and (b) indicates that
the ky = 0 plane of the BZ can be accessed with a photon energy of 144 eV. (c) Shows the
overlay of Fig. 4.12(a) and (b) to visualize the agreement of the DFT with the measurements.
The white dashed line in (c) shows the corresponding cut location from (a) and (b)

and (b) by the white dashed line. The overlaid data of Fig. 4.15(a) and (b) is shown in

Fig. 4.14(c) and the white dashed line in this plot corresponds to the BZ diagonal k∥.

Single crystals of LaNiGa2 do not naturally cleave perpendicular to the crystallographic

c-axis, making a direct observation of the Dirac dispersion by ARPES measurements chal-

lenging. However, with a photon energy of 144 eV we can probe the ky = 0 plane and confirm

the presence of the band touchings. Fig. 4.15(a) shows the constant energy map centered

at EF and reveals the most prominent features of the spectra: the ruffled cylindrical bands

centered on the BZ corners. Given that, near the corner of the BZ, the calculated FSs are

very close to each other (see Fig. 4.15(b)), it is difficult to discern which bands are observed

in the ARPES measurements from just this plane. Overlaid on Fig. 4.15(c) are the respec-
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tive DFT band calculations (dashed lines) which reveal that the most prominent bands in

the ARPES data originate from the bands associated with FS2 and FS3. The three parallel

horizontal cuts on and near the node-surface show the band dispersion plots at and below EF

(Fig. 4.15(c)). The green line, spectrum 2, represents the cut exactly on the node-surface,

while the blue, spectrum 1, and red, spectrum 3, lines are parallel cuts in the first and second

BZs, respectively.

Each of these linear cuts was integrated within 50meV of EF to produce momentum

distribution curves (MDCs) shown in Fig. 4.15(d). On the node-surface, spectrum 2 shows

a single clear peak representing the degeneracy of FS2/3. Off the node-surface, the MDCs

for spectra 1 and 3 show that FS2 and FS3 separate and are no longer degenerate. Thus

providing direct evidence for the band degeneracy between FS2/3 on the node-surface. As

mentioned above, we expect SOC to split the FS2/3 crossing on the ky = 0 plane of the node-

surface. We note, however, that the SOC gap cannot be resolved because the peaks have a

smaller calculated momentum separation than the fitted experimental widths. This result is

further evidence for the minimal impact of SOC on the electronic structure of LaNiGa2 in

the normal state.

In the normal state and in the absence of SOC, the Cmcm space group makes LaNiGa2

a topological nodal line metal. The line (or loop) is topological [259]. Nodal lines (lines or

loops of degeneracies) in band structures have been found to be rather common [260, 261].

However, LaNiGa2 is so far unique in having the nodal lines lie precisely at the Fermi level.

However, this confluence of bands will occur in any nonsymmorphic metal with Fermi surfaces

crossing the node-surface where bands are guaranteed to be orbitally degenerate.
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Figure 4.15: ARPES characterization of LaNiGa2. (a) Constant energy map an integration
window of ± 10meV around EF . The black line indicates the boundary of the BZ in the ky =
0 plane. The colored curves within the BZ are the calculated FSs, with colors corresponding
to 4.12(a). The blue, green, and red solid vertical lines indicate cuts (1), (2), and (3) in panel
(b), respectively. (b) Energy vs momentum spectra along cuts indicated in (a). The dotted
lines are the overlay of DFT calculations and the colors show which FSs are associated with
each band. The grey bands are low energy bands which do not cross EF . (c) MDCs at
EF from the cuts in panel (b). Spectra are fit to one (two) Lorentzian peaks (dotted black
curve) for cuts 2 (1,3), with a Gaussian background centered on kx = 0 (red). The black
curves below the experimental data are the individual Lorentzian peaks marking where the
bands cross EF . The peak width for the Gaussian fit on 2 is a free fitting parameter and
fixed width for cuts 1 and 3.

4.5 Pairing model and quasiparticles

Now we will examine the consequences of the Cmcm space group assignment for the su-

perconducting state. LaNiGa2 has low symmetry and previous symmetry analysis based

on the D2h point group revealed only 4 possible gap functions that break time-reversal

symmetry [18, 19]. All of them have nodes inside the BZ, which is incompatible with ther-

modynamic measurements on polycrystals [14], as well as our heat capacity measurements

on single crystals which indicate nodeless fully gapped superconductivity (Fig. 4.3(d)). The

presence of nonsymmorphic symmetries modifies the nodal behavior on the kz = π/c plane
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with or without SOC (see Supplementary Information in [223] for our classification), but

does not provide a scenario for the absence of nodes inside the BZ. The five FSs in Fig. 4.12

indicate that the full FS is large and pervasive throughout the zone, thus any superconduct-

ing gap nodes in a direction k̂ would produce a gap node on the FS and thus be detectable in

thermodynamic measurements. This observation limits the possible superconducting states

to A1g with or without SOC, but these states do not break time-reversal symmetry. The

superconducting properties of LaNiGa2 cannot be understood without involving interband

pairing [14, 232]. The topological properties of the normal state now provide a natural

platform for such unconventional superconductivity.

As mentioned earlier, the Dirac lines and Dirac loop are gapped by SOC, except for

the true-Dirac points surviving on the Z − T line where SOC vanishes. A feature of more

interest for the superconducting phase is that, unlike the case for conventional FSs, in Dirac

(or Weyl) metals interband transitions persist all the way to zero energy. Any single band

model breaks down, and a two-band model is a minimal model [262]. LaNiGa2 thereby

becomes an intrinsically two, degenerate and topological, band superconductor.

If the interband pairs are symmetric in the band index, then the Cooper-pair wave func-

tion will have the same symmetry as the intraband pairs do, s-wave will be spin-singlet

and p-wave will be spin-triplet. But if the interband pairs are antisymmetric in the band

index, we can have s-wave spin-triplet, or p-wave spin-singlet pairing while still satisfying

the overall fermionic nature required for a superconducting order parameter [263]. If both

symmetric and antisymmetric pairing exists simultaneously on the node surface (weak SOC)

or on the true-Dirac points on the Z − T line (strong SOC), time-reversal symmetry could

be broken in two ways: the band (orbital) channel or the spin channel.

In the band-orbital channel, two gap functions (for example s-wave spin singlet As
1g
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and s’-wave spin-triplet At
1g) could form a complex combination similar to s + is′ to break

time-reversal symmetry. Another possibility is to combine several triplet components. For

example, the Bt
1g triplet will be split by SOC into Ag, B2g, and B3g. The complex combina-

tion could also break time-reversal symmetry. However, a first order transition or multiple

transitions are expected in these cases [14], but there is no such evidence in our heat-capacity

measurements (Fig. 4.12(d) and Fig. 4.10). Time-reversal symmetry breaking in the band-

orbital channel is therefore unlikely.

Because of the possibility of s-wave spin-triplet pairing on the Dirac lines, loop, or points,

time-reversal symmetry could also be broken in the spin-channel from the INT state [232].

The power of symmetry analysis is remarkable in the sense that, even with the incorrect

space group, the correct point group (D2h) already led to the conclusion that the INT

pairing is the only reasonable solution [14, 232]. However, the necessary degeneracy was not

identified because of the wrong space group. An orbital-singlet equal-spin pairing has also

been proposed for doped Dirac semimetals [264].

The INT model has also been proposed to explain time-reversal symmetry breaking and

fully gapped superconductivity in LaNiC2 [232, 265, 266]. While LaNiGa2 and LaNiC2

are compositionally related, our results on LaNiGa2 highlight new significant differences

between the two compounds. LaNiC2 has a symmorphic and non-centrosymmetric space

group (Amm2, #38), and thus far no topological band-crossing have been reported [265, 267–

272]. In addition, electrical resistivity measurements under pressure showed the proximity

to a different state characterized by a high-energy scale [273], and magnetic penetration-

depth measurements under pressure suggested the proximity of a quantum critical point in

LaNiC2 [274]. Further studies remain needed on both materials to confirm the validity of

the INT model, and the mechanism of time-reversal symmetry breaking. Our discovery of
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symmetry imposed band crossing, even under SOC, in LaNiGa2, reinforce the relevance of

the INT model for this compound, as well as for other nonsymmorphic superconductors.

Breaking of time-reversal symmetry requires a nonunitary triplet pairing potential ∆̂ =

i(∆oη̃ · σ̃)σy ⊗ iτy where the tensor products include the first (spin, σ matrices) channel

σ =↑, ↓ and the second (band, τ matrices) channel, with the bands labeled by m = ± being

degenerate along the Dirac loops, taken to be at k⊥=0.

Note that the spontaneous vector field ∆oη⃗ couples to spin like a magnetic moment.

The pairing matrix describes triplet pairing but is antisymmetric in the band channel (iτy)

to ensure the fermionic antisymmetry of the pair wavefunction [14]. The experimentally

observed time-reversal symmetry breaking is ensured by the nonunitarity, which is char-

acterized by a nonvanishing real vector ω⃗ = i(η⃗ × η⃗∗) which satisfies |ω⃗| ≤ |η⃗|2 = 1. A

noteworthy difference with previous INT proposals [14, 232] is that the true two-band sit-

uation in LaNiGa2 is enforced by symmetry, and persists in the BdG quasiparticle bands.

Accounting for the linear band coupling βk⊥ away from the node-surface, the dispersion of

the eight BdG quasiparticles (two bands, two spins, electrons and holes) becomes

εk = ±
[√

{vk⊥ − µ}2 + |∆o|2(1± |ω⃗|)± βk⊥
]

(4.3)

with degenerate eigenvalues on the node-surface of |∆o|
√
1± |ω⃗|.

The spectrum, shown in Fig. 4.16, illustrates the 8-band behavior versus the strength

of nonunitarity. The nonsymmorphic operations guarantee that pairs of BdG quasiparticle

bands persist in “sticking together” on both sides of the gap at k⊥=0, thereby retaining topo-

logical character. However, now massive points of degeneracy arise in the BdG band struc-

ture, unlike the bands of Ghosh et al. [232] which retain no degeneracies and hence no topo-

logical character. The linear band mixing results in the gap edges lying slightly away from
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Figure 4.16: BdG quasiparticle bands near the Dirac point for three values of the |ω⃗| =
0.1, 0.8, 1.0. Left to right: gapped, weakly nonunitary to the gapless fully nonunitary limit.
Energy units correspond to ∆o = 0.7meV, v = 500 and β = 100, see Eq.4.3.

the plane k⊥ = 0. Unit values of |ω⃗| lead to gaplessness, with unusual Weyl dispersion of the

BdG quasiparticles. The measured magnetic moment of 0.012µB, if from spin, corresponds

to a small conventional band exchange splitting ∆ex = m/N(EF ) = 1.8meV. This split-

ting is comparable to (larger than) the superconducting gap 2∆o ∼ 3.5− 4kBTc ∼ 0.7meV,

suggesting it may be central to the exotic pairing mechanism.

In contrast to the INT state, conventional p-wave spin-triplet superconductivity is ex-

pected to lead to high upper critical fields, because equal spin-pairing is not subject to Pauli

limiting, and because most proposed p-wave superconductors are heavy fermion systems

with high orbital limit [55, 140, 142, 275–277]. LaNiGa2, however, is not a heavy fermion

material (γn = 14.1mJ mol−1 K−2) and interband pairing is suppressed by the application of

a strong magnetic field. Thus the upper-critical field in LaNiGa2 remains low (see Fig. 4.11),

even though time-reversal symmetry breaking superconductivity was observed at zero field

in µSR experiments.

Our findings reveal that LaNiGa2 is a topological nonsymmorphic crystalline supercon-

ductor [77, 79, 80, 278]. The normal state electronic structure features Dirac lines and Dirac
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loop at the Fermi energy enforced by nonsymmorphic symmetries, as well as true-Dirac points

that retain their degeneracy under SOC. These findings are expected to be common to a

large number of materials with similar crystalline symmetries. In general, when topological

materials become superconducting, the superconducting state is unconventional. LaNiGa2

was previously reported as a time-reversal symmetry breaking superconductor with evidence

for a fully gapped superconducting state, but the topological properties were unknown. The

topological character now provides a natural platform for the INT state to exist. Further

experiments and theoretical proposals are necessary to further elucidate the time-reversal

symmetry breaking mechanism.

4.6 Outlook

As discussed in section 2.1.3, realizing topological superconductivity in candidate hosts is

critical towards potentially discovering Majorana fermions within condensed matter systems.

Also mentioned is that single-material TSCs are especially promising because they do not

require special heterostructure engineering, they lack an overlapping magnetic ordering, and

inducing superconductivity in known Dirac materials is difficult to predict. Our work on

LaNiGa2 now shows a predictive model towards discovering other single-material TSCs which

break time-reversal symmetry.

Overall our work shows that nonsymmorphic symmetry operations are critical towards es-

tablishing a robust connection between the crystal structure, the topological properties, and

the unconventional superconducting state. Therefore future work should focus on discovering

other unconventional superconductors with similar properties or characterizing other non-

symmorphic topological metals for superconductivity [81–83]. To do this, one needs to first

find focus on superconductors with nonsymmorphic unit cells. Since LaNiGa2 was initially
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thought to be a conventional BCS superconductor, it is important to include overlooked

conventional superconductors with nonsymmorphic space groups.

This will yield an extremely lengthy list, so the candidates can be narrowed down by

examining their electronic band structures. As highlighted above, the topological features

of LaNiGa2 are consequences of multiple bands crossing the node-surface. Therefore the

focus should be on materials that contain multiple bands that cross a node-surface in their

first BZ. Since there is currently not a definitive list of space groups that contain node-

surfaces, immediate work should focus on materials that crystallize in space groups with

known node-surfaces. Thus far some known examples include P63mmc (No. 194) [236],

P 4̄213 (No. 114) [279], and of course Cmcm. Although a deeper examination into the recent

work done by Yu et al. could provide more space groups to examine [280].

An initial search for known superconductors with the same Cmcm space group as LaNiGa2

yields two promising candidates: LaRhSi2 (Tsc = 3.42K) and LaIrSi2 (Tsc = 2.03K) [281].

These materials should now be synthesized and fully characterized, including ZF-µSR and

Kerr effect experiments to check if time-reversal symmetry is broken. Additionally, there

are several other superconductors with different Cmcm structure types that should also be

examined such as CaBi2 [282]. And lastly, as shown by UTe2 [53], materials with the ap-

propriate space group and electronic behavior but do not exhibit superconductivity down

to 2K, should be reexamined below that temperature threshold to see if low-temperature

superconductivity exists.
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4.7 LaNiGa2 Appendix

4.7.1 Crystallography Tables

Tables 4.2 and 4.3 show the results from the SCXRD results on the LaNiGa2 crystals.

4.7.2 Comparison with other potential intrinsic topological super-

conductors

Table 4.4 is a compiled list of potential intrinsic (single material) TSCs. We indicate whether

the topological features are reported for bulk bands and/or for surface states, if Band-

crossings (BC) are located at EF , if time-reversal symmetry breaking (TRS) is broken (B)

or preserved (P) upon entering the superconducting state or if a magnetic (M) state preceded

the superconductivity, if the space group is centrosymmetric (CS) or non-centrosymmetric

(NC). As can be seen, LaNiGa2 is unique in that it is the only intrinsic TSC which breaks

time-reversal symmetry in the superconducting state and has topological features at EF

without any overlapping magnetic state/fluctuations - antiferromagnetic (AFM) or ferro-

magnetic (FM). Additionally with our work, LaNiGa2 is thus far the only material in this

list to show experimental evidence for both broken time-reversal symmetry and topological

features.
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Identification code JB10M4FMI (JF3040)
Empirical formula Ga2 La Ni
Formula weight 337.04 g mol−1

Temperature 100(2)K
Wavelength 0.71073Å
Crystal system Orthorhombic
Space group Cmcm
Unit cell dimensions a = 4.2818(14)Å

b = 17.468(6)Å
c = 4.2582(15)Å

Volume 318.48(19)Å3

Z 4
Density (calculated) 7.030Mg/m3

Absorption coefficient 35.380mm−1

F(000) 588
Crystal size 0.159 x 0.112 x 0.081 mm3

Crystal color and habit Silver Block
Diffractometer Bruker Photon100 CMOS
Theta range for data collection 2.332 to 27.464◦

Index ranges −5 ≤h≤ 5, −21 ≤k≤ 22, −5 ≤l≤ 5
Reflections collected 1017
Independent reflections 234 [R(int) = 0.0216]
Observed reflections (I > 2σ(I)) 232
Completeness to theta = 25.242◦ 100%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.0326 and 0.0072
Solution method SHELXT (Sheldrick, 2014)
Refinement method SHELXL-2017/1 (Sheldric,2017)

Full-matrix least-squares on F2

Data / restraints / parameters 234 / 0 / 18
Goodness-of-fit on F2 1.345
Final R indices [I > 2σ(I)] R1 = 0.0222, wR2 = 0.0620
R indices (all data) R1 = 0.0223, wR2 = 0.0621
Extinction coefficient 0.0025(4)
Largest diff. peak and hole 2.287 and −1.393 e. Å−3

Table 4.2: Crystal data and structure refinement for LaNiGa2.

136



Atom Wyckoff Sites x y z U(eq)
La(1) 4c 1 0.3903(1) 0.75 15(1)
Ga(1) 4c 0.5 0.2495(1) −0.25 19(1)
Ga(2) 4c 0.5 0.4593(1) 0.25 16(1)
Ni(1) 4c 0.5 0.3216(1) 0.25 16(1)

Table 4.3: Atomic coordinates and equivalent isotropic displacement parameters (Å2x103)
for LaNiGa2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 4.4: Compiled list of intrinsic (single material) TSC materials. All properties are ex-
hibited at ambient pressure. NP: nodal point, NL: nodal line. The highlighted red rows are
materials with band-crossings at EF , the orange rows show the U-based materials which have
overlapping magnetic ordering/fluctuations and superconductivity, the blue rows show ma-
terials which breaks time-reversal symmetry, and the purple row shows LaNiGa2 as the only
material to date with broken time-reversal symmetry and band-crossings at EF . †FeTe1−xSex:
recently reported to break time-reversal symmetry using a method other than µSR or Polar
Kerr effect [283]. *K2Cr3As3: possible very weak internal field (0.003G) [284].

List of Single Material Topological Superconductors

Material Bulk or

SSs?

at

EF ?

TRS? CS? Refs. Comments

LaNiGa2 Bulk ✓ B CS [19]

UPt3 Both ✓ B CS [227, 278,

285–289]

AFM

fluctuations

UCoGe, URhGe Bulk ✓ M CS [54, 55,

290]

FM

URu2Si2 Bulk × M CS [291–294] Hidden

Order

UTe2 - - B? CS [295–298] FM-AFM

fluctuations
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List of Single Material Topological Superconductors

Material Bulk or

SSs?

at

EF ?

TRS? CS? Refs. Comments

HfRuP Bulk ✓ - NC [299] NLs cross

EF

NbIr2B2,TaIr2B2 Bulk ✓ - NC [300] NLs at EF

NaAlSi Bulk ✓ P CS [301, 302] NLs cross

EF

TaOsSi Bulk ✓ - CS [303] NP at EF

MgB2 Bulk ✓ P CS [72, 304] NL crosses

EF

CaSb2 Bulk ✓ - CS [305, 306] NLs cross

EF

SnTaS2 Bulk ✓ - CS [307, 308] NL crosses

EF

PbTaS2 Bulk × - CS [309]

Sr2RuO4 - - B CS [47, 227,

246, 310]

SrxBi2Se3 SS × B CS [230, 311]

CuxBi2Se3,

NbxBi2Se3

SS × - (P for

Nb)

CS [57, 312–

315]

TlxBi2Te3 SS × - NC [316]

α-PdBi2 SS × - CS [317]
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List of Single Material Topological Superconductors

Material Bulk or

SSs?

at

EF ?

TRS? CS? Refs. Comments

α-BiPd SS × - NC [69, 318,

319]

β-PdBi2 SS × P CS [67, 320]

FeTe1−xSex SS × P† CS [71, 321,

322]

LiFeAs Both × P NC [321, 323]

(Li0.84Fe0.16)OHFeSe SS × - NC [324]

CaKFe4As4 SS × - CS [325]

InxTaS2, InxTaSe2 Bulk × - NC [326, 327]

CuxZrTe1.2 Bulk × - CS [328]

NiTe2, PdTe2 Both × - (P for

Pd)

CS [329–333]

PbTaSe2 Both × P NC [68, 334–

337]

NbC, TaC Bulk × P CS [338, 339]

Mo2C, W2C SS × - CS [340]

CaSn3, BaSn3 Bulk × - CS [341, 342]

YRuB2, LuRuB2 Bulk × P CS [73, 343]

YIn3 (M=In,Pb,Tl) SS (Both

for Tl)

× - CS [344]
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List of Single Material Topological Superconductors

Material Bulk or

SSs?

at

EF ?

TRS? CS? Refs. Comments

NbAl3 Bulk × - CS [345]

TaSe3 SS × - CS [346, 347]

Ta3Sb, Ta3Sn SS (Both

for Sn)

× - CS [348–350]

Nb3M

(M=Al,Os,Au)

Bulk × - CS [350–352]

LaNiSi, LaPtSi,

LaNiGe

Bulk × P NC [353–355]

TlBiTe2 SS × - CS [356]

Tl5Te3 SS × - CS [357]

YPtBi, LuPtBi SS × - (P for

Y)

NC [358–362] other half-

Heuslers

KV3Sb5, CsV3Sb5 Both × - CS [363–365]

Sn1−xInxTe SS × P CS [62, 366–

369]

MoTe2 Bulk × - NC [370–373] Td phase

WS2 SS × - CS [65] 2M phase.

A2Cr3As3

(A=Na,K,Rb,Cs)

Bulk × - (P*

for K)

NC [284, 374]

ZrInPd2, HfInPd2 Bulk × - CS [375]
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List of Single Material Topological Superconductors

Material Bulk or

SSs?

at

EF ?

TRS? CS? Refs. Comments

MM’2Al (M=Zr,Hf;

M’=Ni,Pd)

Bulk × - CS [376]

MPd2Sn

(M=Sc,Y,Lu)

Both × - (P for

Y)

CS [376–378]
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Chapter 5

Separation of Kondo Lattice Coherence

from Crystal Electric Field in CeIn3 with

Nd substitutions

This work was performed in collaboration with Rumika Miyawaki, Zach Brubaker, Peter

Klavins, Rena Zieve, Tatsuma Matsuda, and Valentin Taufour. The manuscript is currently

under review for publication. Copyright permission has been obtained and granted to use

figures 5.1 and 5.2.

5.1 Background and Motivation

Explorations of heavy fermion phase diagrams through chemical substitution, hydrostatic

pressure, and/or magnetic fields have revealed interesting low-temperature physics like su-

perconductivity, quantum criticality, and non-Fermi liquid behavior [53, 55, 379, 380]. Fur-

thermore, the phase diagrams of some Ce-based heavy fermion materials also reveal an
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interplay between Kondo lattice coherence and crystal electric field (CEF) physics. Unfortu-

nately, both phenomena result from the proximity of the Ce f -bands to the Fermi level and

therefore make it quite difficult to conclusively discern the origin of one or both features in

any particular system.

The CeMIn5 (M = Co, Rh, Ir) family contains many examples of tunable ground states.

In these cases the heavy fermion unconventional superconductivity or quantum criticality

could result from the different energy scales of the heavy fermionic Kondo lattice coherence

and CEF interactions. Inelastic neutron studies have found that these tetragonal materials

have two clear and well separate CEF splittings [114]. ρmag(T ) measurements on CeMIn5

samples only show evidence for a single maximum (Fig. 5.1(a) and (c)) [121–123]. Al-

though it should be noted that in anisotropic ρ(T ) measurements, there does appear to be

limited evidence for at least two separate −ln(T ) regions [131]. Either way the one clear

ρmag(T ) maximum observed in these materials has been attributed to the Kondo lattice

coherence [101, 103, 105, 128, 381].

Within other tetragonal materials with well separated Kondo lattice coherence and CEF

resistivity features, it has been well established that the evolution of hydrostatic pressure can

change the Kondo lattice coherence energy scale (kBTcoh) [118, 119, 125, 130, 135, 382, 383].

In many of these cases kBTcoh increases to converge with a CEF depopulation scattering max-

imum to form a single broad feature. Pressure studies on the CeMIn5 have also shown that

kBTcoh and the associated maximum in ρmag(T ) can shift to higher temperatures (Fig 5.1(a)

and (b)) [121, 131, 384, 385]. Yet there is no clear evidence that it is possible to separate

the Kondo lattice coherence and CEF depopulation features through hydrostatic pressure.

Another way to alter kBTcoh in CeMIn5 is by chemical substitution (Fig. 5.1(c)) [95, 103–

105, 127, 128, 386–388].
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Figure 5.1: (a) ρ(T ) curves for CeCoIn5 at various pressures. These curves show how the
single maximum TM and the superconducting transition TC (inset) develop as a function of
pressure. (b) The T -P phase diagram for CeCoIn5 which shows TM increasing and the dome
shape of TC as a function of pressure. Plots (a) and (b) were originally published in [384]. (c)
Normalized ρ(T ) curves for La substituted CeCoIn5. These curves show the single maximum
Tmax decreasing as a function La concentration. The inset shows the T − xLa phase diagram
for Tmax. Plot was originally published in [103].

In the base compound of the CeMIn5 — CeIn3 — ρmag(T ) experiments also reveal a

single broad maximum, Tmax ∼ 50K. However, this feature has been attributed to the

combination of both the Kondo lattice coherence and the CEF depopulation effects [158,

165, 169, 389], wherein the Kondo lattice coherence is only achieved when the 4f electrons

condense from a high energy Γ8 quartet to the Γ7 doublet ground-state (∆CEF ∼ 100 −

200K) [86, 87, 112, 390]. Similar to CeMIn5, pressure and substitution studies on CeIn3

have shown that this single maximum can be driven to higher (Fig. 2.14) [88, 89, 155, 158]

and lower (Fig. 5.2) [165, 167, 170] temperatures, respectively. What remains constant

throughout each of these experiments is that only a single resistivity maximum is observed

for CeIn3.

Here we report a thorough exploration of Ce1−xNdxIn3 to reveal the separation of the

Kondo lattice coherence and the CEF depopulation features. Similar to Nd substitutions

in CeRhIn5, we argue that the substituted Nd atoms act as Kondo holes and weaken

kBTcoh [105]. However, in CeIn3 this results in the Kondo lattice coherence maximum to
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Figure 5.2: ρ(T ) curves for various concentrations of Gd substituted CeIn3. From xGd =
0 → 0.5 the maximum in ρ(T ) can be seen decreasing to lower temperatures as xGd increases.
Plot was originally published in [170].

be driven to lower temperatures. This results in two distinct −ln(T ) regions, along with

two broad humps, in ρmag(T ). Where the low- and high-temperature features stem from the

weakened kBTcoh and the persistent CEF energy splitting (∆CEF), respectively. The Kondo

lattice coherence of CeIn3 also seems to follow percolation theory principles because the

Nd concentration (x = 0.65) that suppresses the Kondo lattice coherence matches with the

theoretical percolation limit of a simple 3D cubic system [172]. While a double maximum

ρmag(T ) curve has been experimentally observed in other cubic Ce-based materials [106, 120],

this is the first time the Kondo lattice coherence and CEF depopulation features have shown

to separate in the well studied CemMnIn3m+2n (m = 1, 2;n = 0, 1) family.

Previous reports have found that both CeIn3 and NdIn3 have AFM ordering transitions

around 10.1K and 5.9K, respectively [86, 390–392]. The AFM ordering within CeIn3 has
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a propagation vector of Q = (1
2
, 1
2
, 1
2
) where the Ce atoms are ferromagnetically aligned in

the (111) plane and anti-parallel amongst adjacent planes [86]. Investigations of the NdIn3

magnetic ordering reveal a complex magnetic phase diagram with several different AFM

structures. Upon the first AFM transition, the Nd moments align in an incommensurate

structure. After two additional transitions a commensurate structure with a propagation

vector of Q = (1
2
, 1
2
, 0) stabilizes below 4.83K [90]. It is also well established that the cubic

crystal field of CeIn3 splits the Ce J = 5
2

into a ground-state Γ7 doublet and Γ8 quartet with

a CEF splitting, ∆, of the order 120K [86, 87, 112, 390]. As highlighted in section 2.2.5,

CeIn3 exhibits heavy fermion superconductivity when the AFM state is suppressed with

hydrostatic pressure [89, 156–158] and strange magnetic behavior when exposed to large

external magnetic fields [163] (Fig. 2.14).

Through powder X-ray diffraction (PXRD), energy-dispersive spectroscopy (EDS), mag-

netization, and electrical resistivity measurements we construct a comprehensive phase di-

agram, including two antiferromagnetic (AFM) regions. We also discuss the interactions

between the two different AFM structures of CeIn3 and NdIn3. Lastly, in the low concentra-

tion region of Nd, x ≤ 0.4 we show how the paramagnetic signal from the Nd3+ ions mask

the small AFM signature in magnetic susceptibility measurements.

5.2 Results and Discussion

Phase identification for each PXRD pattern is shown in Fig. 5.3(a). Regardless of the nominal

Nd concentration, xNom, each synthesis produces single crystals that fit to the cubic Cu3Au

structure. The PXRD patterns reveal nearly phase pure products with the only other phases

consisting of trace amounts of In flux and the internal Si standard. Unit-cell parameter a,

obtained from Pawley refinements, shows a smooth linear decrease as a function of xNom,
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Figure 5.3: a) PXRD patterns for single crystals when xNom = 0, 0.3, 0.6, and 1. b) Cubic
lattice parameter a as a function of xNom within the Ce1−xNdxIn3 series. The unit-cell
parameter a for CeIn3 and NdIn3 are from [393] and [394], respectively. The inset shows the
relationship between xNom and xEDS. The two dotted lines are the ± 5% error region.

in agreement with Vegard’s law (Fig. 5.3(b)). This linear relationship indicates that the

Nd and Ce atoms homogeneously incorporate into the parent structures at the ends of the

substitution range.

Atomic compositions were also obtained from EDS spectra on selected crystals. The

substitution percentages obtained from these measurements, xEDS, show good agreement

with xNom (inset of Fig. 5.3(b)). However, the two values can differ by up to about 5%, as

shown by the dotted lines. Since xEDS and xNom are in good agreement with one another,

henceforth, all values of xNd will refer to xNom.

In Fig. 5.4(a) we present the temperature dependence of the normalized electrical re-

sistivity, ρ(T )/ρ(300K), for single crystals from representative batches of Ce1−xNdxIn3. As

previously highlighted, the resistivity curve for CeIn3 shows a maximum, Tmax ∼ 50K, which

has been associated to the combination of the Kondo lattice coherence and the CEF depopu-

lation effects [158, 165, 169, 389]. Tracking Tmax across the Ce1−xNdxIn3 alloys, we find that

this feature shifts slightly to lower temperatures with increasing Nd concentration (orange
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Figure 5.4: a) Normalized temperature dependence of ρ(T )/ρ(300K) for representative single
crystals of Ce1−xNdxIn3. The red arrow shows the low-temperature maximum Tcoh for x =
0.45. The inset shows examples of the peak associated with the AFM transition in the first-
derivative curve, dρ(T )/dT , from CeIn3 and NdIn3. The arrows show the mid-point that
was selected for T ρ

N . b) ρmag(T ) for CeIn3 and Ce0.55Nd0.45In3. The log scale is used to show
the regions with a −ln(T ) relationship (dashed black lines) indicating the CEF depopulation
and/or the Kondo lattice coherence effects. The inset shows the zoomed-in low-temperature
region for Ce0.55Nd0.45In3 where the second maximum, Tcoh, and −ln(T ) region are more
easily observed.

crosses in Fig. 5.7). This is similar to other substitution studies on CeIn3 [165, 166, 169, 170].

Nd substitution, however, differs because in the most disordered region, x = 0.4−0.5, a clear

and distinct second maximum arises, T ∗ shown by the red arrow in Fig. 5.4(a), and then

sharply drops in temperature.

This double maximum behavior can more easily be observed in Fig. 5.5, where ρ(T ) and

M(T )/H curves are shown for x = 0.4−0.5. Interestingly, we find that the low-temperature

maximum (black arrows in Fig. 5.5) sharply decreases in temperature and seems to approach

0K near the theoretical percolation threshold for a simple 3D cubic system (x = 0.65)

(solid black line in Fig. 5.7) [172]. Often an enhancement in resistivity is observed because

of magnetic scattering, however Fig. 5.5 makes clear that the low-temperature maximum
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x = 0.4 − 0.5 is distinct from the magnetic ordering (denoted by the purple vertical lines).

By contrast, the maximum resistivity in the range x = 0.6− 0.8 corresponds to a magnetic

transition for the Nd ordering, which is shown in Fig. 5.5 for x = 0.6.

Fig. 5.4(b) shows ρmag(T ) for CeIn3 and Ce0.55Nd0.45In3 where the phonon scattering was

subtracted out by their respective La analogues: LaIn3 and La0.55Nd0.45In3. By substitut-

ing Nd into the CeIn3 structure, the high-temperature −ln(T ) relationship and Tmax are

preserved. While for the most disorder substitution concentrations (e.g. Ce0.55Nd0.45In3)

a second maximum, T ∗, arises which also contains a temperature region with the −ln(T )

relationship (inset Fig. 5.4(b)). These −ln(T ) regions in ρmag(T ) are expected for both

features [101, 102].

Here we argue that this double maximum occurs due to the separation of the Kondo lattice

coherence and CEF depopulation features. More specifically the Nd ions act as Kondo holes

and lower kBTcoh [395, 396]. The Nd substitution drives the Kondo lattice coherence crossover

of CeIn3 to lower temperatures until this feature disjoins from the CeIn3 CEF depopulation

feature. Meanwhile the incoherent Kondo scattering from the CEF interaction operates at

the local level on the Ce ions, so ∆CEF is not expected to change much with varying the Ce

concentration. Therefore, the persistent Tmax remains associated with the CEF depopulation

effect feature and the second maximum, T ∗ = Tcoh, at lower temperature is attributed to the

weakened Kondo lattice coherence. Overall this data shows that the Kondo lattice coherence

and the CEF depopulation effects are independent and can be separated by Nd substitutions.

In the parent compound CeIn3, the overlap of the two features results from the accidental

similarity of the two energy scales. Additionally, since Tcoh is completely suppressed near

the theoretical percolation limit for a simple 3D cubic system it then follows that the Kondo

lattice coherence follows percolation theory principles.
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Figure 5.5: ρ(T ) (lines) and M(T )/H (squares) for x = 0.4 (green), 0.45 (red), 0.5 (blue),
and 0.6 (orange). The purple vertical lines show the location of the TN from ρ(T ) data and
the black arrows shows the location of Tcoh.

In Fig. 2.11 we show different schematics of ρmag(T ) curves for Ce-based systems, with

each schematic representing one of the possible scaling iterations between kBTcoh and ∆CEF.

Panels (c) and (d) show the difference between a cubic and tetragonal/hexagonal system

when kBTcoh << ∆CEF, respectively. If a system, like CeIn3, has ∆CEF ∼ kBTcoh then

the ρmag(T ) curve has one maximum (label Tmax in Fig. 2.11(b)). When kBTcoh << ∆CEF

(like in CeAl2 [106] or CeMg3 [120]) then each ∆CEF should be observed as a depopulation
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maximum and the lowest temperature maximum can be associated with the Kondo lattice

coherence (Fig. 2.11(c) and (d)). These curve shapes could also be achieved by lowering

kBTcoh with chemical substitution. But this can only be achieved if the parent compound

had ∆CEF ∼ kBTcoh. However, if kBTcoh >> ∆CEF then only one maximum is expected

when the system undergoes a Kondo lattice coherence crossover (Fig. 2.11(a)). Given the

similarities between the curves of Fig. 2.11(a) and (b) it is not possible to infer the relative

nature of kBTcoh and ∆CEF in a Ce-based compound from just a resistivity measurement

on the parent compound. However, by performing chemical substitution it is possible to

elucidate the relative nature of the two.

We can use tetragonal CeMIn5 as an example. In all compounds amongst this family

only one maximum is observed in ρ(T ) [121–123]. Based on our schematics this would then

indicate that either ∆CEF,high/∆CEF,low << kBTcoh or that ∆CEF,high ∼ kBTcoh. In the latter

situation performing chemical substitution would weaken kBTcoh and eventually give rise to at

least one additional well-separated maximum in ρmag(T ). Since this has not been observed

in any Ce site chemical substitution study on these tetragonal systems it indicates that

the former situation (∆CEF,high/∆CEF,low << kBTcoh) is the most likely scenario [95, 103–

105, 128, 388, 397]. Hence, as previously suggested, the single maximum in ρmag(T ) observed

in CeMIn5 can be attributed to the Kondo lattice coherence [101, 103, 105, 128]. It should

be noted that this assessment does appear to be in conflict with the large ∆2 values in

these materials [114]. However, in many systems the Kondo exchange makes it such that

∆CEF ̸= kBTCEF . So it is also possible that in CeMIn5 the Kondo exchange lowers TCEF

below Tcoh.

Ultimately our work shows that it is possible to separate the Kondo lattice coherence

and CEF features within the CemMnIn3m+2n family. We highlight that a double maximum
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Figure 5.6: a) Temperature dependence of M(T )/H from selected samples in the
Ce1−xNdxIn3 series. These measurements were collected in a µ0H = 1T field. Given
the cubic nature of structure, crystal orientation was not accounted for. Inset shows the
low-temperature region of the susceptibility curves for xNd = 0.2 − 1. b) The experimental
data for xNd = 0.1, 0.2, and 0.3 are shown by the lines with triangles. The solids lines
represent the simulated data for the respective values of xNd. For these simulations, the cal-
culated µeff for a Nd3+ of 3.62µB and a Curie-Weiss constant of θ = −5K were employed
to represent the Nd magnetic contributions. The arrow shows the slight kink where the Ce3+
AFM transition is experimentally observed from Ce0.9Nd0.1In3.

feature has been observed in previous substitution studies on CeIn3 and our work makes

clear the underlying mechanism behind this unique feature [167, 169].

It should be noted that previous Kondo holes were strictly associated with nonmagnetic

atoms [395, 396]. Although it is well established that Nd3+ ions produce magnetic materials,

from a Kondo/CEF physics perspective these ions act more similar to their nonmagnetic

counterparts, La3+. This is due to the low-lying 4f Nd bands [398] and their inability to

induce the Kondo effect with the conduction electrons. Similar arguments have been made

about magnetic substitution studies on CeMIn5 [105, 387, 399, 400].

Evidence for the AFM ordering transition is observed as a downward kink in the resistivity

(inset Fig. 5.4(a)) and magnetic susceptibility, M(T )/H, curves (inset Fig. 5.6(a)). The
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Figure 5.7: Observed features from ρ(T ) and M(T )/H curves as a function of xNd for
Ce1−xNdxIn3. The two AFM regions, AFM1 and AFM2, show the Nd concentrations where
the CeIn3 and NdIn3 AFM structures, respectively, are dominant. The dotted black line is
the linear fit of T ρ

N and TM
N for the CeIn3 region when xNd ≤ 0.4. The solid black line is the

linear fit of the second maximum, Tcoh, for x = 0.4, 0.45, and 0.5.

mid-point of the first-derivative peak, dρ/dT , matches well with the magnetic susceptibility

AFM transitions. For the two parent compounds, CeIn3 and NdIn3, the transitions, T ρ
N

and TM
N , match the TM

N temperatures from previous reports: TM
N = 10.2K and 5.9K,

respectively [86, 390–392].

Interestingly, unlike the magnetic data, ρ(T ) data shows evidence for a single T ρ
N in the

Nd dilute region, xNd ≤ 0.4. This T ρ
N is then suppressed to lower temperatures as a function

of xNd until the transition temperature is reduced down to ∼ 2.5K when xNd = 0.45. Above

this concentration of Nd, both resistivity and magnetic susceptibility measurements reveal a

clear single AFM transition which increases with xNd. Samples with low Nd substitution show

no obvious AFM transitions in magnetization measurements. Rather samples within this

region appear to have a large paramagnetic signal at low temperatures. The lone exception,

when xNd = 0.1 there is a small kink around 8.5K, as denoted by the arrow in Fig. 5.6(b).
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Similar magnetic susceptibility results — lack of AFM transition — were observed when

Gd, Tb, and Dy were separately alloyed into CeIn3 at low concentrations [170]. In the

Ce-concentrated regions of these materials, however, electrical transport measurements also

revealed the continued presence and suppression of the CeIn3 AFM transition. The authors

did not directly comment on this discrepancy in the Gd, Tb, and Dy alloys. However,

when substituted with nonmagnetic La atoms, clear CeIn3 AFM transitions are observed in

magnetic susceptibility measurements with similar Ce concentrations in Ce1−xLaxIn3 [167].

Therefore, to explain the absence of a visible AFM anomaly from our samples, we hypothesize

that the large magnetic signal from paramagnetic Nd3+ ions dominates the smaller signal

associated with the antiferromagnetic ordering of the CeIn3 lattice.

To test this hypothesis we calculated theoretical curves by taking a weighted sum between

the antiferromagnetically aligned CeIn3 lattice (with the same TN) and the paramagnetic

Nd ions. These calculations require two key assumptions about these alloys: (1) the Ce

moments aligned antiferromagnetically in accordance with the CeIn3 lattice and (2) the Nd

moments are too dilute to order magnetically and thus remain paramagnetic throughout the

temperature region. Using the raw data of CeIn3 and the theoretical µeff of Nd, a weighted

sum was applied across the entire temperature range (Fig. 5.6(b)). When xNd = 0.1, both the

simulated and experimental curves show a slight kink in the upward susceptibility curves,

originating from the CeIn3 AFM ordering. The simulated curves for xNd = 0.2 and 0.3

appear in reasonable agreement with the experimental data and show that the CeIn3 AFM

transitions are indiscernible. Therefore, across this region, xNd ≤ 0.4, we conclude that

the Nd ions do not participate in the magnetic ordering of CeIn3 and remain paramagnetic,

leading to the larger Nd paramagnetic signal masking the magnetic signature from the CeIn3

AFM ordering.
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The AFM transitions from the magnetic susceptibility and electrical transport measure-

ments are combined with the resistivity features discussed above to create a comprehensive

T −xNd phase diagram (Fig. 5.7). Instead of adopting the other’s AFM structure, the CeIn3

and NdIn3 AFM orderings appear to be in competition with one another and each weakens

the magnetic ordering of the other lattice. Similar to the La substituted system, there is

a linear dependence of TN with xNd in the Ce-concentrated region which extrapolates to

give a critical concentration of xc ∼ 0.6 (dotted black line Fig. 5.7) [104]. Like the critical

concentration for the Kondo lattice coherence, xc is in good agreement for the percolation

threshold, x = 0.65, for a simple cubic lattice [172]. However, the slight drop from xc = 0.65

to 0.6 indicates that there could be an additional mechanism at play like magnetic frustra-

tion due to the different AFM structures of CeIn3 and NdIn3. This behavior was observed

in the Nd-substituted CeRhIn5 system [105].

5.3 Conclusions

We have shown that Nd can successfully substitute into the parent CeIn3 compound via a

self-flux technique with excess In. Our PXRD and EDS results reveal a direct relationship

between the nominal and actual substitution concentrations as Nd homogenously incorpo-

rates into the structure until it becomes fully NdIn3. Our electrical resistivity measurements

reveal that as Nd incorporates into the CeIn3 structure, the Kondo lattice coherence and CEF

depopulation features disjoin to reveal double maximum curves with two distinct −ln(T ) re-

gions. We argue that the high-temperature maximum results from CEF depopulation effect

from the splitting ∆CEF in CeIn3 and in the most disordered region (x = 0.4− 0.5) the Nd

ions act as Kondo holes to weaken kBTcoh and push the Kondo lattice coherence crossover

to lower temperatures. It appears that the Kondo lattice coherence feature disappears near
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the theoretical percolation limit for a simple 3D cubic system, which suggests that this

Kondo lattice coherence abides by percolation theory principles. This is the first time the

Kondo lattice coherence and CEF depopulation phenomena have been shown to separate for

a material within the CemMnIn3m+2n (m = 1, 2;n = 0, 1) family. Magnetic and resistivity

measurements also reveal that across the substitution values, there is an interesting compe-

tition between the magnetic orderings of the two parent structures CeIn3 and NdIn3. Rather

than adopting the AFM structure of the end parent structures Ce and Nd ions act as free

paramagnets, when in dilute concentrations. The comprehensive phase diagram reveals a

xc ∼ 0.6 which is slightly lower than observed for non-magnetically substituted CeIn3. Fu-

ture neutron diffraction and pressure studies on Ce1−xNdxIn3 would be valuable to further

understand the interplay between these two AFM orders.
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