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ABSTRACT OF THE THESIS

An Application of a Structured Mixture Rasch Model to Computer Adaptive Data:

An Example in Early Kindergarten Geometry

by

Meredith Lindsay Langi

Master of Science in Statistics

University of California, Los Angeles, 2021

Professor Chad Hazlett, Chair

In the field of education, understanding differences in student performance by content

area subdomains, and classifying students based on these differences, is of interest for

differentiating instruction. Structured mixture item response theory (IRT) models offer

a unique opportunity to achieve these goals within a confirmatory modeling approach.

However, to date, there have been no known applications of this type of model to computer

adaptive testing (CAT), a common test design in large-scale educational assessments. This

thesis fills this gap by demonstrating the application of a particular structured mixture

IRT model to early kindergarten geometry data. Results suggest the model is useful in

CAT applications for understanding how students differ by domain, but that the test

design must follow certain specifications for student classifications.
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CHAPTER 1

Introduction

Item Response Theory (IRT) is a modeling framework that is widely used in educational

contexts for estimating student ability on important academic and non-academic con-

structs. Under this framework, IRT models explain observed responses on an assessment

as a function of student ability and assessment item properties. Most IRT models assume

that students are from a homogeneous population, but this assumption may be violated

either through known or unknown clustering (Jeon, 2018). For example, due to a variety

of circumstances, students often enter kindergarten with different levels of mathematics

achievement (Kuhfeld, Soland, Pitts, & Burchinal, 2020; Reardon & Portilla, 2016; von

Hippel, Workman, & Downey, 2018; Wolf, Magnuson, & Kimbro, 2017). This could be due

to different opportunities and varying exposure to different areas of mathematics, making

some domains of mathematics more difficult for some groups student. When group

membership is unknown and inferred from the data, mixture IRT can be used to model

potential heterogeneity. Specifically, mixture IRT models assume that students are drawn

from multiple latent populations and these differences impact the relationship between

the items and the observed responses. Several applications of mixture IRT models exist

in the education literature (e.g., Bolt, Cohen, & Wollack, 2002; Mislevy & Verhelst, 1990),

but this paper focuses on a mixture IRT model that uses item information to differentiate

between latent classes. This model was originally termed the Saltus model (Wilson, 1989)

and has been extended and applied across a variety of contexts (e.g., Jeon, 2018; Jeon,

Draney, & Wilson, 2015; Mislevy & Wilson, 1996). A key feature of this model is that the

item information allows for the exploration of heterogeneity in students by important

curricular areas. This makes it very useful in exploring differences among students
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based on instructional areas, and thereby providing curriculum relevant feedback that

can be used to support instruction. To date, there are no known applications of this

structured mixture IRT model to computer adaptive data. This thesis demonstrates the

application of this model to CAT data by exploring differences in early kindergarten

geometry ability based on a widely used education assessment, the MAP Growth K-2

mathematics assessment.

This thesis is organized as follows. In this first chapter, I briefly discuss the importance

of early kindergarten geometry skills, as well as introduce the details of the MAP Growth

K-2 math assessment. In the second chapter, I briefly review other psychometric models

that have been, or could be, applied in similar contexts. In the third chapter, I review the

methods used in the analysis. In the fourth chapter, I present results. Finally, I present a

discussion of the implications in the fifth chapter.

1.1 Early Kindergarten Geometry

Math skills in a variety of domains at early childhood have been shown to be an important

predictor of future mathematics performance and are essential foundational skills that are

necessary for math development (e.g., Newcombe & Frick, 2010; Verdine, Irwin, Golinkoff,

& Hirsh-Pasek, 2014; Watts, Duncan, Siegler, & Davis-Kean, 2014). As mentioned, students

enter kindergarten with different levels of mathematics exposure and knowledge, which

results in differing instructional needs for students. Since teachers’ views of children’s

math skills are not always aligned with student performance (Abry, Latham, Bassok, &

LoCasale-Crouch, 2015), assessments should provide instructionally actionable feedback

regarding individual student’s knowledge on key instructional areas. The structured

mixture IRT model is a useful tool in supporting differentiated instruction because it can

link items to instructional areas and provide insight into domains that differ most among

early kindergarteners.

This thesis focuses on student performance in geometry and its subdomains at
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kindergarten entry. Specifically, this paper uses the classification of geometry subdomains

by the Common Core State Standards (CCSS). CCSS are a national set of standards

that states can choose to adopt and adjust for their own contexts. Most US states (41),

territories (4), and the District of Columbia have adopted these standards, meaning

that the majority of educators in the United States use them to guide instruction. In

CCSS, kindergarten geometry has two subdomains: (1) identifying and describing shapes

(referred to as identifying shapes for brevity), and (2) analyzing, comparing, creating, and

composing shapes (referred to as analyzing shapes). Table 1.1 shows these subdomains

and the associated standards. Since there is a CCSS-aligned MAP Growth K-2 assessment

that contains item linkages with these standards, we can make use of this information by

applying the structured mixture IRT model to understand how students may differ on

these two subdomains.

1.2 MAP Growth K-2 Assessment

This study uses data from NWEA’s MAP Growth K-2 interim math assessment, an

assessment that is administered on a computer or tablet to students in kindergarten to

second grade. The assessment typically takes students less than 30 minutes and provides

audio support since reading skills vary widely at this age. MAP Growth utilizes a “cross-

grade vertical scale that assesses achievement according to standards-aligned content”

(NWEA, 2019, p.9). The assessment is typically administered 3-4 times per year to allow

for tracking student growth, although only one test occasion is used for this study. Three

key components of the assessment design are important to review for this analysis: (1)

the test blueprint, (2) the psychometric model, and (3) the adaptive approach. While

some of the details discussed in this section are specific to this particular assessment,

the overarching issues are typical in large CAT assessments and would apply to other

applications of this structured mixture IRT model.
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Table 1.1: CCSS Kindergarten geometry subdomains and associated standards

Subdomain Standard

Identify and

Describe Shapes

CCSS.MATH.CONTENT.K.G.A.1: Describe objects in the

environment using names of shapes, and describe the

relative positions of these objects using terms such as

above, below, beside, in front of, behind, and next to.

CCSS.MATH.CONTENT.K.G.A.2: Correctly name shapes

regardless of their orientations or overall size.

CCSS.MATH.CONTENT.K.G.A.3: Identify shapes as

two-dimensional (lying in a plane, ”flat”) or

three-dimensional (”solid”).

Analyze, compare,

create, and

compose shapes

CCSS.MATH.CONTENT.K.G.B.4: Analyze and compare

two- and three-dimensional shapes, in different sizes and

orientations, using informal language to describe their

similarities, differences, parts (e.g., number of sides and

vertices/”corners”) and other attributes (e.g., having sides

of equal length).

CCSS.MATH.CONTENT.K.G.B.5: Model shapes in the

world by building shapes from components (e.g., sticks and

clay balls) and drawing shapes.

CCSS.MATH.CONTENT.K.G.B.6: Compose simple shapes

to form larger shapes. For example, ”Can you join these

two triangles with full sides touching to make a rectangle?”

4



1.2.1 Test Blueprint

A test blueprint is a guide to determine the structure and content of the assessment. This

blueprint is used to determine the appropriate number of items within each domain to

administer to the student during the test occasion. In the CCSS-aligned MAP Growth

K-2 math assessment, there are four domains: (a) Operations and Algebraic Thinking, (b)

Numbers and Operations, (c) Measurement and Data, and (d) Geometry. The blueprint

specifies the number of items per domain that each student will see. However, each

domain is further divided into subdomains, and the test blueprint does not specify the

number of items per subdomain. In other words, there is a set number of geometry items

that students are required to take, but there is no determination as to how many of these

items will be of each subdomain. Additionally, items are carefully linked to the common

core standards by content specialists, but these items were not specifically designed to

measure each standard or CCSS subdomain. The implications of this design will be

discussed further in Chapter 3.

1.2.2 Psychometric Model

The MAP Growth K-2 assessment is designed using a specific IRT model, the Rasch

model (Rasch, 1960). In the Rasch model, the probability of a correct response on item i

for student j is given as,

P(Yij = 1|θj) =
exp(θj − βi)

1 + exp(θj − βi)
, (1.1)

where θj is the latent math ability for student j and βi is the item difficulty for item

i and is equal to the point on the ability scale at which a student would have a 50%

probability of responding correctly. Importantly, it is assumed that θj is a continuous,

normal distribution with a single mean and variance (θj ∼ N(µ, σ2)). The benefit of

using this model is that the latent ability and item difficulty are on the same scale. The

difference between two student ability scores is the same regardless of the difficulty of
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items that the student is administered. The difference between two item difficulties is

also the same throughout the entire scale (NWEA, 2019).

The scale of θj (latent ability) and βi (item difficulty) is on the logit metric, which

is not necessarily interpretable in common educational settings. Therefore, a linear

transformation is used where,

RITj = (θj × 10) + 200. (1.2)

The RIT (Rasch unIT) score is used on all MAP Growth tests and ranges from 100 to 350

(NWEA, 2019). In this paper, both scales will be used in the presentation of results.

1.2.3 Computer Adaptive Design

Computer adaptive testing is an assessment approach that allows for shorter tests and

more accurate estimates of student ability (Linden, van der Linden, & Glas, 2000). The

basic idea is that a student’s correct response leads to a more difficult follow-up question,

whereas an incorrect response leads to an easier follow-up question. Two key components

in an adaptive assessment are the ability estimate and the item selection procedure. In

this assessment, the ability estimate is updated after each item response following an

approximate Bayes procedure proposed by Owen (1975). For each estimate, all items

up to that point are used in the estimate (NWEA, 2019). Once the ability estimate has

been updated, a new item is selected from the item pool that is the appropriate level

and fits within the blueprint design. The test ends when the ability estimate meets a

pre-established threshold for measurement precision and the number of items satisfies

the blueprint specifications. For a more detailed discussion of CAT assessments and the

technical components of NWEA’s assessment, see Van der Linden and Pashley (2009) and

NWEA (2019), respectively.

As a result of the item selection process, students are administered some items but

not others. This leads to a rather large and sparse data matrix that presents challenges
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for future item analysis. The adaptive nature also means that students at differing levels

of ability are administered items with differing levels of difficulty.

1.3 Chapter Conclusion

Strong kindergarten geometry skills provide an important base in developing future

math skills. Understanding how students differ on these skills is important for differen-

tiating instruction, and tying these differences among students to specific instructional

standards allows teachers to make the necessary adjustments. Any modeling process

for understanding differences based on subdomains of geometry must take into account

the original assessment design. In the case of computer adaptive tests, it is important to

consider the test blueprint, the psychometric model used for test development (which

is most often an IRT-based model), and the adaptive nature of the assessment. The

next chapter reviews possible psychometric models and their strengths and limitations,

and emphasizes how the specific structured mixture IRT model is well suited for this

particular context.
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CHAPTER 2

Review of Psychometric Classification Models

In the field of psychometrics, there are several possible models that can be used to explore

differences in student performance on subdomains of kindergarten geometry. Each of

these models (or groups of models) offers different interpretations to the question of

differences in student performance. However, due to the adaptive design of the MAP

Growth assessment, many of these models are not appropriate in this application. This

section briefly reviews some common groups of psychometric models and discusses their

strengths and limitations in the context of this research. These strengths and limitations

are summarized in Table 2.1.

2.1 Diagnostic Classification Models

Diagnostic Classification Models (DCMs, often called Cognitive Diagnostic Models or

CDMs) are a type of latent class model. Latent class models classify students into

classes based on students’ responses to test items. In other words, the latent classes

are unobservable and are inferred from the data. DCMs impose specific confirmatory

constraints so that students can be assigned to latent classes based on (typically) mastery

or non-mastery of important subdomains (Rupp, Templin, & Henson, 2010). For example,

were a DCM to be applied to this context, we would learn which students have mastered

the relevant CCSS domains, and which students need more targeted instruction in certain

domains. This is clearly useful information for teachers to have at the time of Kindergarten

entry, however, several limitations prevent DCMs from being applicable in this way in

the context of MAP Growth. First, DCMs function best when test items are specifically
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Table 2.1: Summary table of strengths and limitations of model groups for application in

current analysis

Model Type
Classifies

Students

Models Sub-

domains

Maintains

key

assumptions

of MAP

Growth

Manageable

with large

data

Used in CAT

applications

Latent Class

Models
Yes Yes Yes Yes

Explanatory IRT

Models
Yes Yes Yes

Exploratory

Mixture
Yes Yes Yes

Confirmatory

Mixture IRT
Yes Yes Yes Yes
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designed to test the domains, referred to as attributes, of interest (Rupp & Templin, 2008).

In the MAP Growth assessment, a continuous, unidimensional latent math construct is

assumed, whereas DCMs are multidimensional in nature. Relatedly, the information

linking the items to the CCSS was developed retroactively, meaning the items may not

clearly measure a specific domain or attribute. Second, DCMs are built on the assumption

that latent classes are categorical and that there is no variation within the classes. This

is very different from the assumption of a continuous latent trait that underlies the

development of MAP Growth and many other CAT assessments. Taken together, these

limitations of DCMs in this context would lead to unsatisfactory and inaccurate student

classifications (Gierl, 2007; Gierl, Leighton, & Hunka, 2007). While some authors argue

that there may be contexts where retrofitting is acceptable (e.g., Liu, Huggins-Manley, &

Bulut, 2018), DCMs are not considered an ideal approach for student classifications in

this context.

2.2 Explanatory IRT Models

Explanatory IRT (De Boeck & Wilson, 2014) is a useful approach to understanding how

performance differs by subdomains or other item characteristics. While these models

do not classify students based on performance, they are still included in this review as

they model how differences in probability for a correct response to an item based on

subdomains. (Note that Wilson and De Boeck also discuss person explanatory models,

but those differ from the goals of this analysis and are not included here.) One specific

example of an item explanatory model that is relevant for this paper is the Linear

Logistic Test Model (LLTM; Fischer, 1973). This model is similar to the Rasch model in

Equation 1.1, except the item difficulty parameter, βi, is considered a linear combination

of the contributions of various item properties. This model was an important step in

developing psychometric models that connect the theoretical cognitive constructions (item

characteristics) with the empirical measurements (Embretson & Gorin, 2001). However,

the contribution of specific item characteristics to the item difficulty does not vary by
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person or latent classes, and as such, there is no classification of students based on

performance (Hartz, 2002; Stout, 2007; von Davier, Xu, & Carstensen, 2009). This means

that the results from an analysis using LLTM, as well as other item explanatory models,

are less useful for teachers interested in directly targeting instruction based on differences

in performance on subdomains or item characteristics.

2.3 Exploratory Mixture IRT

Broadly, mixture IRT combines classification models with item response theory by in-

corporating latent classes into the item response theory measurement model allowing

the IRT model to vary across classes (Gnaldi, Bacci, & Bartolucci, 2016; Rost, 1990; Smit,

Kelderman, Flier, et al., 2000). Mixture IRT is most often applied using an exploratory

approach. In other words, the number of latent classes is unknown and the goal of

the analysis is to determine the number of latent classes represented in the data. The

flexibility of mixture IRT allows for differentiating among students not only at different

performance levels, but also across different response patterns. However, the exploratory

nature of the latent classes makes the substantive interpretation of the classes difficult for

practical applications. Additionally, mixture IRT with large samples is extremely difficult

to estimate, making it difficult to apply in the current study.

2.4 Confirmatory Mixture IRT

The difference between confirmatory mixture IRT and exploratory mixture IRT is that the

number of latent classes is defined a priori based on theoretical or practical considerations.

Confirmatory mixture IRT is less common than the exploratory approach but a few

examples do exist. For example, Bolt, Cohen, and Wollack (2001) use mixture Rasch

modeling to explore test speededness in respondents and Mislevy and Verhelst (1990)

use mixture IRT to identify solution strategies employ by test takers. The benefit of

confirmatory mixture IRT is that it allows for the flexibility of the measurement model
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across latent classes, while reducing the estimation burden by defining the number of

latent classes based on theoretical or practical considerations. The Saltus model is an

example of a confirmatory mixture IRT model. It was initially developed in order to

understand cognitive leaps in development and to assign students to Piagetian type

stages, although its use can be extended beyond this original purpose (Jeon, 2018; Jeon

et al., 2015). It incorporates latent classes based on an a priori defined theory, making

the interpretation of student classifications useful for instructional interventions, as well

as making it easier to estimate. The Saltus model also incorporates item characteristics,

similar to the LLTM, such that the definition of the latent classes is tied to differences

in performance based on the specific item characteristics. The incorporation of the item

characteristics imposes a specific structure on the model, making it confirmatory in the

sense of its item structure. The Saltus model is an extension of the Rasch model, meaning

that it maintains the key assumption of a continuous latent math ability that the MAP

Growth assessment is built on. Taken together, these strengths of the Saltus model make

it particularly useful for this current study. Since the term “Saltus” was originally used

due to the jumps in cognitive growth (Wilson, 1989), we can instead refer to the model

as a structured confirmatory mixture IRT model. To date, no known applications of

this model to CAT exist, making this research a novel application. The details of the

parameterization of the structured confirmatory mixture IRT model used in this study

can be found in Chapter 3.

2.5 Chapter Conclusion

A structured confirmatory mixture IRT model offers a unique opportunity to understand

differences among early Kindergarten geometry subdomains. Other psychometric models

reviewed in this section, while having useful strengths, also have limitations that make

them less applicable in this context. This thesis aims to fill a gap in the psychometric liter-

ature by demonstrating the application of structured mixture IRT to computer adaptive

data. The following chapter details the specific research questions and methods used for
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this application.
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CHAPTER 3

Methods

3.1 Research Questions

The goal of this application of structured mixture IRT is to explore differences in early

kindergartener performance on the CCSS subdomains of geometry on the MAP Growth

K-2 interim assessment. The specific research questions addressed in this analysis are:

1. Are there three substantively different groups of students in terms of geometry

ability at kindergarten entry? In other words, is there evidence of three latent classes

that represent low-performing, average-performing, and high-performing students?

2. Do these latent classes differ in their performance on the geometry subdomains?

In other words: Do “analyze shapes” items differentiate students? Do “identify

shapes” items?

3.2 Data

The sample for this study includes students who took the MAP Growth K-2 CCSS-aligned

assessment in August or September of kindergarten in 2018. To study differences in

geometry performance in different subdomains of interest, the sample is reduced to

include only students who were administered items that are linked to the CCSS geometry

standards in Kindergarten1. The final sample includes 125,668 students and available

1A small number of students, approximately 400, are removed because they are administered CCSS
geometry linked items that are linked to standards at grades other than Kindergarten.
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Table 3.1: Student demographics CCSS Geometry Samples

CCSS Geometry Sample

N 125,668

Male 0.51

Race/Ethnicity

Asian 0.04

Black 0.16

Hispanic 0.15

Other 0.18

White 0.47

demographics for the sample are presented in Table 3.1.

3.3 Structured Confirmatory Mixture IRT Model

In order to work with the current design of this mathematics assessment, a structured

confirmatory mixture IRT model is used. As mentioned, one of the main benefits of this

model is that it can be thought of as an extension of the Rasch model that is used in the

original design of the assessment. Specifically, the structured confirmatory mixture IRT

model that is used here incorporates latent classes and structured item group information

(Jeon, 2018; Wilson, 1989). By extending the Rasch model, the model also estimates

students’ mathematics achievement on a continuous latent scale. However, by including

latent classes, the it offers the opportunity to model latent heterogeneity which can serve

to identify student’s latent class (von Davier & Rost, 2006).

3.4 Formulation

The structured confirmatory mixture IRT model utilizes theory to set an a priori definition

of the number of latent classes and item groups. For example, if there are two latent
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classes representing average performing and below-average performing students at

kindergarten entry (Cj = h, where h = [1, 2]). The item groups, a = [1, 2], are defined as

two subdomains of geometry. The probability of a correct response on item i for student

j is conditional on overall latent geometry ability θj(h) and latent class assignment. It is

modeled as,

P(Yij = 1|θj(h), Cj = h) =
exp(θj(h) − βi + τhgbia)

1 + exp(θj(h) − βi + τhgbia)
, (3.1)

where θj(h) is overall latent geometry ability for student j in class h. Note that we are

estimating the overall latent geometry ability, as opposed to overall math ability as in

Equation 1.1, since only geometry items are included in this analysis. βi represents

the item location for item i. The item location can be interpreted similarly to the item

difficulty in the Rasch model, but is referred to as the location, as oppposed to difficulty,

since the overall item difficulty in this model is a combination of βi and τha (discussed

more fully in Section 3.6). The τha parameter is the unique aspect of this model. This

parameter represents the effect of subdomain a on item responses for students in latent

class h. Lastly, bia is an indicator variable denoting whether item i belongs to subdomain

a. More details on the interpretation of this parameter are discussed below.

Latent ability is assumed to follow a normal distribution for each latent class (θj(h) ∼

N(µh, σ2
h)). Typically, the mean for one latent class is fixed to 0, making it the reference

class. Variances can be fixed or estimated, depending on the goal of the analysis and

identification. In this analysis, variances are freely estimated for each latent class.

3.5 Model Assumptions and Identification

Two sets of constraints are used in the model for model identification, as well as for

aiding in the interpretation of parameters. The constraints used in this analysis follow

those used in the original Saltus model (Mislevy & Wilson, 1996; Wilson, 1989). First,

one latent class is set as the reference class. Typically, the mean of the ability estimate
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for the reference class is set to zero. In this analysis, the mean of the reference class

was set to the average score of kindergarten students at the fall test occasion after four

weeks of instructional exposure (Thum & Kuhfeld, 2020), making the interpretation of

the reference class, the “average” class. The analysis was conducted on the logit scale

(without the linear transformation from Equation 1.2) and centered around the mean of

the reference class.

Second, a set of constraints are set on the τha parameter. One subdomain is considered

the reference subdomain, such that the value of τha for that subdomain is set to zero

for all latent classes. Additionally, the value of τha is set to zero for the reference class.

Taken together, these constraints mean that for the reference class, it is assumed that

no subdomains have higher or lower difficulty, and for the reference subdomain, that

there are no differences between latent classes (Jeon, 2019). These assumptions are shown

clearly when representing the τha parameter in matrix form. Following the example in

setting up Equation 3, with 2 latent classes (h = [1, 2]) and 2 item groups (a = [1, 2]), the

τha parameter matrix can be shown as,

τ11 τ12

τ21 τ22

 .

After incorporating the stated constraints, the τha parameter matrix is,

0 0

0 τ22

 ,

where τ22 can be interpreted as the difference in item difficulty for students in the

non-reference class, compared to the reference class, on the subdomain of interest.

Now imagine that we have want to estimate three latent classes (h = [1, 2, 3]), below-

average performing students, average performing students, and above-average performing

students. If three latent classes are considered, the τha parameter matrix can be shown as:
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
τ11 τ12

τ21 τ22

τ31 τ32


and with the constraints as:


0 0

0 τ22

0 τ32

 .

In this three-class case, τha is estimated for the two non-reference latent classes and

can be interpreted as the difference in item difficulty for that latent class, compared to

the reference class.

3.6 Interpretation of τha parameters

Jeon (2018) provides an in-depth discussion of how the τha parameters can be interpreted

as the difference in item difficulty for each latent class, compared to the reference group.

Briefly, Equation 3.1 can be rewritten as:

logit(P(Yij = 1|θj, Cj = h)) = θj(h) − βi + τhabia︸ ︷︷ ︸
β∗ih

. (3.2)

When Equation 3.2 is rewritten with β∗ih, it gives:

logit(P(Yij = 1|θj, Cj = h)) = θj(h) − β∗ih. (3.3)

Note that Equation 3.3 is similar to that of Equation 1.1, with β∗ih as the item difficulty

for latent class h. Since latent class one is the reference class, β∗i1 = βi − τ11 − τ12 =

βi − 0− 0 = βi, and the item location is equal to the item difficulty for this class. For

latent class two, β∗i2 = βi − τ21 − τ22 = βi − 0− τ22 = βi − τ22, and τ22 can be interpreted
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Figure 3.1: Item Response Function plots for an item with βi = 0 in the focal item group

(left) and in the reference item group (right), by latent class.

as the difference in item difficulty between latent class two and latent class one. The same

interpretation also applies to latent class three, where β∗i3 = βi− τ31− τ32 = βi− 0− τ32 =

βi − τ32. For more details, see Jeon (2018).

Figure 3.1 shows hypothetical item response functions (IRF; probability plot for a

correct response at various levels of ability) for an item with βi = 0 that is in the focal item

group and one that is in the reference item group, by latent class in the three-class scenario.

The left plot shows the IRF for items in the focal item group and the corresponding

estimates of τha. The solid black line is the IRF for the reference latent class. Since τ21 is

fixed to zero, the item difficulty is equal to the item location. For latent class two, imagine

that τ22 is estimated as 1.5, which shifts the IRF curve to the left for this class. In other

words, the items in the focal item group are easier for students in latent class two. For

latent class three, τ32 is estimated as -1.5, which shifts the IRF to the right. For this class,

the items in the focal item group are more difficult. The plot on the right side of Figure

3.1 shows the IRF for items in the reference item group, where the item location (β∗ih) is

the same as the item difficulty (βi) for all latent classes.
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Table 3.2: Item group assumptions for Models 1 and 2

Model 1: Analyze Shapes Model 2: Identify Shapes

1. There is a difference in item location

on analyze, compare, create, and

compose shapes items.

1. There is a difference in item location

on identify and describe shapes items.

2. There is no difference on identify and

describe shapes items.

2. There is no difference on analyze,

compare, create, and compose shapes

items.

3. No difference in item difficulty for

any item group for the reference group.

3. No difference in item difficulty for

any item group for the reference group.

3.7 Analytic Approach

Two sets of models were estimated, with a different focal item group for each model.

In Model 1, the focal item group is analyze, compare, create, and compose shapes (and

identify and describe shapes is the reference item group). In Model 2, identify and

describe shapes is the focal item group. The assumptions that stem from the constraints

on the τha parameter matrix for each of these models are shown in Table 3.2. For each of

these sets of models, a two-class and three-class models are estimated. To select the best

model, two criteria are used. First, relative fit statistics are used to compare the fit of the

two-class and three-class models to a one-class model (that is the Rasch model). Second,

the tenability of the assumptions outlined in Table 3.2 is evaluated.

All models are estimated in Mplus version 8 (Muthén & Muthén, 2017) using maximum

likelihood estimation. Latent class posterior probabilities are estimated, and individual

class membership is based on the most likely class. The item location parameters are

fixed at the values based on the original MAP Growth K-2 item calibrations. The mean

of the reference group is set using the average value for Kindergarten entry, such that
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the reference class can be considered “average” students in both the two- and three-class

models. The mean for the non-reference class and the variances for both classes are

estimated.

21



CHAPTER 4

Results

4.1 Item Descriptive Statistics

Before fitting the structured confirmatory mixture IRT model, it is important to understand

the distribution of items across the CCSS geometry domain. Table 4.1 presents item

statistics for all CCSS geometry items, as well as broken down by subdomain. Overall,

there are 135 items linked to CCSS kindergarten geometry domain in the item pool.

92 of those items are identify shapes items and 43 are the analyze shapes items. Due

to the adaptive nature of the test and blueprint specifications, students differ in the

number of items they see by subdomain (but are more similar on overall geometry, as

this is specified in the blueprint). On average, students see more Identify Shapes items

(5.77 items) compared to Analyze Shapes items (2.34 items). One limitation is that a

small number of students were administered items only from one subdomain, and when

this is the case, students are typically administered identify items. This is due to the

blueprint specifications only existing at the domain level, and not the subdomain level.

The implication of this design is that individual student classifications should not be

utilized at this time. However, we are still able to explore the existence of latent classes

and differentiation by domain, at the aggregate level.

The average proportions correct are equal in each subdomain and across the full

domain. This is expected due to the nature of adaptive testing, where the items are

selected based on the item difficulty associated with an expected probability of 50% for

a student to respond correctly to the item. However, there are clear differences in the

spread of the proportion correct by item subdomain. Specifically, the standard deviation
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Table 4.1: Number of items and proportion correct for all CCSS geometry and by subdo-

main

Subdomain # of items

Average #

per

student

Average

Proportion

Correct

SD

Proportion

Correct

Average

Item RIT

SD Item

RIT

Identify and

describe shapes
92 5.77 0.55 0.24 139.07 7.70

Analyze,

compare, create,

and compose

shapes

43 2.34 0.55 0.38 138.38 12.03

All Geometry 135 8.11 0.55 0.19 138.76 10.16

on the proportion correct for analyze shapes items is quite large (0.38), compared to

identify shapes (0.24). Similarly, the average item RIT (item difficulty) is similar across the

subdomains but the standard deviation is largest for the analyze items. These differences

suggest that there are more differences among students on this subdomain of geometry.

4.2 Number of Latent Classes

Both models were estimated with two- and three-class solutions. Table 4.2 presents

AIC, BIC, and adjusted BIC statistics for the two- and three-class models, as well as the

one-class model. For both models, the three-class solution shows relatively the best fit.

The two-class solutions show better fit compared to the one class model for both models.

This suggests the existence of latent classes in terms of students’ geometry performance

on geometry subdomains at Kindergarten entry. Since the three-class solution is the best

fitting solution for both models, results from the three-class models are selected.
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Table 4.2: Relative fit statistics for 1, 2, and 3 class analysis for Models 1 and 2.

Model 1 Model 2

1 class 2 class 3 class 2 class 3 class

AIC 1491131.46 1490436.90 1480893.20 1490438.08 1480585.32

BIC 1491141.20 1490466.13 1480980.87 1490467.30 1480672.94

Adjusted BIC 1491138.02 1490456.59 1480952.27 1490457.77 1480644.39

4.3 Overall Probabilities

Before interpreting individual parameter estimates for the structured confirmatory mix-

ture IRT model, it is useful to look at the overall probability of a correct response for the

average student in each latent class. This provides context for understanding differences

between the two models and for viewing the tenability of the model assumptions.

Figure 4.1 shows the probability correct plotted against items of increasing item

difficulty for both geometry subdomains. Note that the probability plots are essentially

identical for both models. Class 1 (shown as circles) is the average class that is fixed as the

reference group. For this class, the overall probability of a correct response is the same

across both item groups (by design). Class 2 (shown as triangles) is an interesting class

because the average student in this class has a higher probability of a correct response

on analyze shapes items compared to class 1, but a lower probability on identify shapes

items. Class 3 (shown as diamonds) has the lowest probability of a correct response

on analyze shapes items, but no difference compared to the reference class on identify

shapes items.

4.4 Tenability of Model Assumptions

To determine which model is more appropriate, we can assess the tenability of the model

assumptions presented in Table 3.2 by looking at the overall probabilities. In Model 1,

the focal item group is analyze shapes items and the reference item group is the identify
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Figure 4.1: Probability of a correct response plotted against item location on the RIT scale

for Model 1 (top row) and Model 2 (bottom row). Class 1 is shown as circles, class 2

as triangles, and class 3 as diamonds. The large shape shows the average item RIT for

students in each latent class, on each subdomain.
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shapes items. This means that Model 1 assumes that there is no difference on identify

shapes items. In Model 2, the focal item group is the identify shapes items and the

reference group is the analyze shapes items. Model 2 assumes that there is no difference

on analyze shapes items. Since there is much less differentiation between latent classes on

the identify shapes items, the assumptions from Model 1 seem more tenable than those of

Model 2. For this reason, in addition to the fact that the overall story is the same across

models, results from Model 1 will be emphasized while differences in Model 2 will be

briefly discussed.

4.5 Latent Class Proportions

Counts and proportions for class assignment are based on the estimated model parameters.

In Model 1, 51% of students are classified in class 1 (the average class), 25% in class two,

and 24% in class 3. Almost all students who are classified in class 2 or 3 in Model 1 are

classified in the same class in Model 2. However, students who are classified as class 1

are classified more often in classes 2 and 3 in Model 2. One possible explanation is that

the impact of the blueprint design makes it difficult to classify students when the focus is

on analyze items. For this reason, individual student classifications should not be used at

this time.

4.6 Latent Class Parameter Estimates

Table 4.3 presents parameter estimates for the latent class distributions on both the latent

logit scale and the RIT scale. Parameter estimates are different across models, and at first

glance may seem to tell a different story. However, recall that when the parameters are

interpreted together, the probabilities of correct responses by latent class are the same

across models.
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Table 4.3: Estimated mean and variance for geometry ability on the latent logit scale,τha,

and mean and standard deviation on the RIT scale, by latent class.

Model 1 Model 1

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Latent logit scale

µ̂h
0.00 -0.64 -0.07 0.00 0.85 -1.36

– (0.02) (0.02) – (0.04) (0.04)

σ̂2
h

2.10 0.92 0.88 2.64 1.07 0.98

(0.11) (0.03) (0.03) (0.07) (0.03) (0.03)

τ̂ha
0.00 1.60 -1.54 0.00 -1.31 1.32

– (0.05) (0.04) – (0.04) (0.04)

RIT scale

mean 139.56 133.19 138.85 139.56 148.03 125.97

sd 14.48 9.60 9.38 16.26 10.34 9.91

4.6.1 Model 1: Analyze Shapes Model

Both classes 2 and 3 have statistically significant differences in estimated average ability

compared to class 1. The difference for class 2 is moderate in size (µ̂2 = −0.64, SE = 0.02)

and is equal to less than 6 points on the RIT scale. This small difference means that the

differences between class 2 and class 1 are not fully due to the analyze shapes domain.

Specifically, because there is only one other subdomain, we know that the difference in

average ability is coming from the identify shapes domain for class 2. For class 3, the

difference is statistically significant, but very small (µ̂3 = −0.07, SE = 0.02), equal to

approximately a point difference on the RIT scale. The lack of difference in estimated

ability suggests that the differences between class 3 and class 1 are captured in the analyze

shapes items. The left histogram in Figure 4.2 shows the distribution of geometry ability

for Model 1, with dotted lines for the mean of each class. The larger difference for class 2

is easily visible in this plot.

27



Figure 4.2: Histograms of geometry ability distributions for Model 1 (left) and Model 2

(right). Class 1 is shown in gray, class 2 in blue, and class 3 in yellow.

The estimated variance components for each class are also presented in Table 4.3. The

class with the largest spread is class 1 (σ̂2
1 = 2.10, SE = 0.11), suggesting that there are

large differences in overall ability within this class, but that these differences are attributed

to all geometry, not to a specific subdomain. The estimated variance components for

classes 2 and 3 are similar (σ̂2
2 = 0.92, SE = 0.03; σ̂2

3 = 0.88, SE = 0.03), suggesting

that there are moderate differences in overall ability within both classes, even after for

accounting for the performance on analyze shapes items.

The final parameter to interpret for this model is the estimate of differences in item

difficulty on analyze shapes items. For class 2, analyze shapes items are easier compared

to the reference class (τ̂2 = 1.60, SE = 0.05). The left plot of Figure 4.3 shows the IRF plot

for analyze shapes items in Model 1 for a sample item with the item location equal to

zero (βi = 0). The solid black line represents class 1 as the reference class. The dotted line

to the left represents the probability of a correct response for class 2 at different levels

of geometry ability (θj), and shows how students in this class can have a lower level of

estimated ability with an associated probability of a correct response equal to 0.50. For

class 3, the opposite is true. For students in this class, analyze shapes items are more

difficult compared to the reference class (τ̂3 = −1.54, SE = 0.04). The dashed, gray line to
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Figure 4.3: Item Response Function (IRF) plots for focal item groups Model 1 (left) and

Model 2 (right). Solid line represents reference class, dashed line is class 2, and dotted

line is class 3.

the right of the reference class in the left plot of Figure 8 shows how these students need

to have a higher level of estimated ability to have a 50% chance of responding correctly to

these items.

Taken together, we get the probabilities shown in Figure 4.1. The large and positive

difference in item difficulty for class 2 means that, despite the slightly lower mean

geometry ability, students in this class typically do better on analyze shapes items. In

fact, the slightly lower mean tells us that there is also a difference for these students on

identify shapes items, as well see in the slightly lower probability of a correct response

on those items for class 2. For class 3, the large and negative difference in item difficulty

means that students in this class typically perform worse on the analyze items. Since

there is no real difference in mean geometry ability between these classes, we know that

there is no real difference on identify shapes items for class 3.
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4.6.2 Model 2: Identify Shapes Model

Results for Model 2 are foreshadowed by the results in Model 1, and for that reason, they

are only briefly discussed here. Since we know from Model 1 that there are differences in

analyze items across latent classes, we expect that these differences will show up in the

mean geometry ability when not accounted for in the item difficulty. This expectation

proves true for both latent classes. For class 2, the estimated mean is slightly higher

(µ̂2 = 0.85, SE = 0.04), capturing the fact that the analyze items are somewhat easier for

these students. In class 3, the estimated mean is much lower (µ̂3 = −1.36, SE = 0.04),

capturing the fact that analyze items are much more difficult for this class. We also

expect to see estimates for differences in item difficulty for identify shapes items that

reflect the fact that there are differences in this domain for class 2 but not for class 3. For

class 2, the identify shapes items are more difficult (τ̂2 = −1.31, SE = 0.04). The large

estimate difference serves to balance out the higher estimated mean, bringing the overall

probability for this class on these items to a somewhat lower level compared to class 1,

(as shown in Figure 4.1). For class 3, the fact that the identify items are estimated to be

easier (τ̂2 = 1.32, SE = 0.04), in fact balances out the large mean difference that stems

from the analyze items. In other words, there are no differences on average for class 3 in

overall probability on identify shapes items, compared to class 1.

4.7 Item Statistics by Latent Class

With an understanding of differences across these three latent classes, we can return to

the item statistics presented in Table 4.1, but now broken down by latent class. Table 4.4

presents the average proportion correct for each latent class on the different subdomains

and overall. There are small differences in proportion correct between students in

classes 1 and 3 on identify shapes items, while students in class 2 shows a smaller

proportion correct on these items. On the other hand, class 2 does much better on

analyze shapes items, while class 3 students do quite poorly on this subdomain. None of

30



Table 4.4: Average proportion correct by latent class, for subdomains and total items for

Models 1 and 2.
Model 1 Model 2

CCSS Group Class Avg Prop SD Avg Prop SD

Identify and Describe Shapes

C1 0.57 0.25 0.64 0.33

C2 0.41 0.19 0.48 0.21

C3 0.62 0.19 0.60 0.2

Analyze, Compare, Create, and

Compose Shapes

C1 0.55 0.34 0.60 0.31

C2 0.90 0.20 0.79 0.28

C3 0.15 0.22 0.26 0.29

Total

C1 0.57 0.20 0.64 0.26

C2 0.55 0.15 0.56 0.17

C3 0.49 0.15 0.51 0.17

these large differences are clear when looking at proportions correct on the total items.

Without exploring latent classes defined by subdomains, we might miss the more nuanced

differences in geometry performance between these three latent classes.

We can also look at item difficulty and number of items by latent class to understand

whether there are differences in how items are administered to students across latent

classes. Table 4.5 shows the average number of items administered to students by specific

CCSS standard within each subdomain. For all standards, the differences in average

item RIT are small across latent classes. The largest differences are in the analyze shapes

domain, where standard B4 has a difference of about 4 RIT points, on average. Standard

B6 has a larger difference but students in all latent classes are seeing very few of these

items. The number of items per standard is similar across each class on each subdomain.

In the identify shapes domain, students in all classes are seeing the most items for

standard A2 and a moderate number for standard A1. This means that students in class

2 mostly differ on these two standards. In the analyze shapes domain, students are

primarily seeing items from standard B4. This means that differentiation among latent
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Table 4.5: Average number of items and average item RIT, by CCSS and latent class.

Model 1 Model 2

CCSS Group CCSS Class

Avg #

of

items

Avg

Item

RIT

Item

RIT

SD

Avg #

of

items

Avg

Item

RIT

Item

RIT

SD

Identify and

Describe Shapes

A1

C1 1.53 139.54 8.42 1.27 142.41 10.77

C2 1.53 138.18 7.93 1.58 138.69 7.83

C3 1.57 137.63 7.15 1.60 138.25 7.29

A2

C1 3.76 138.14 7.75 3.03 139.05 9.15

C2 3.87 137.14 7.58 3.90 137.67 7.49

C3 4.01 136.87 7.40 4.04 137.45 7.38

A3

C1 0.25 163.75 4.62 0.56 164.34 4.65

C2 0.19 162.70 4.09 0.19 162.96 4.34

C3 0.06 161.41 3.69 0.10 162.66 4.44

Analyze, Compare,

Create, and

Compose Shapes

B4

C1 2.75 139.19 12.08 3.41 139.75 13.56

C2 2.87 138.38 11.77 2.66 139.33 15.44

C3 3.12 135.53 11.28 2.81 136.75 11.31

B6

C1 0.08 139.11 14.76 0.10 148.38 15.44

C2 0.11 136.48 13.49 0.09 137.00 13.75

C3 0.07 131.87 9.06 0.07 132.45 9.84

classes comes from items measuring this particular standard.
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CHAPTER 5

Discussion

This thesis has presented an application of structured confirmatory mixture IRT model to

adaptive testing and demonstrated its potential in the context of supporting geometry in-

struction at kindergarten entry. Evidence from relative fit statistics supports the existence

of three latent classes of student geometry performance. However, these classes do not

necessarily represent low, medium, and high performing students, but instead present

a more nuanced picture of differences among early Kindergarteners. Both subdomains

of geometry differentiate among latent classes, but the identify shapes domain only

differentiates class 2, whereas the analyze shapes domain differentiates all three.

Since the assessment blueprint does not specify the number of items per subdomain

to administer to each student, individual classifications for students are not usable.

However, broad conclusions regarding differences among students on the subdomains

can be discussed. Specifically, one class of students (class 3) is comparable with average

students on identify shapes items, but struggle with analyze shapes items. This area of

relative strength for students in this class can be mostly attributed to standards related to

naming shapes and describing relative positions (see Table 4.5 for item numbers and Table

1.1 for standards details). The area of relative weakness for students in this class relates

to comparing and analyzing two- and three-dimensional shapes. Class 2, on the other

hand, shows an area of strength compared to average students on these items comparing

and analyzing two- and three-dimensional shapes, yet struggle somewhat with naming

shapes and describing relative positions. Taken together, these differences across latent

classes suggest that the acquisition of early geometry skills does not happen in a linear

fashion for all students. However, to more fully understand the implications of these
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conclusions, some additional areas of research are needed.

The first area of future research relates to the construct definition and subdomains.

First, a clear understanding of how items map to the construct and subdomains is

essential. In the context of MAP Growth K-2, the items are linked retroactively to only

a single CCSS standard, rather than being created to measure one specific area. It is

possible, even likely, that some items could be considered to measure more than one

specific standard. If this is the case, understanding and even modeling these cross-domain

items would provide further insight into the nature of early geometry skill acquisition.

Relatedly, future work should consider how the definition of the construct represented by

θjh shifts when accounting for differences in difficulty for some subdomains. This would

be an essential discussion when considering comparing results from this model to other

test results.

The second area of future research relates to individual classifications. In contexts

where individual classifications are appropriate, exploring future performance based on

these early kindergarten latent classes can provide insight into whether, and for how

long, these differences remain after exposure to formal instruction. Another area of

research on individual classifications could incorporate covariates for predicting latent

class membership as demonstrated by Jeon (2018), allowing for a better understanding of

the students within each class.
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