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Abstract: We report on a new microscopic model for the description of· 

nucleus-nucleus collisions. Our method is based on a kinematical trans­

formation to symmetrical coordinates, which at the same time describe 

the relative motion in all different two-body partitions of the A-nucleon 

system. Thereby the treatment of antisymmetrization and rearrangement 

collisions becomes trivial from the kinematical point of view. The fully 

antisymmetrized Schroedinger equation for nucleus-nucleus scattering is 

explicitly transformed to symmetrical coordinates. It contains no non­

local potentials for the relative motion even in the region of deep 

interpenetration and provides a basis for the application of the two 

center shell model (TCSM) to the description of nucleus-nucleus collisions. 

The price to be paid for this simplification is the occurence of a 

coupling between relative and internal motion. Numerical estimates 

indicate that the effects of this coupling as well as errors inherent 

in the phenomenological TCSM will often be small in the 

outer interaction region, where quasielastic reactions proceed. 
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I • Int reduct ion 

Consider a system of A nucleons, divided into t1·i..) fragment nuclei A , B . 
. a . a 

The usual microscopic description of their relative motion employs the 

vector 

(t) 

which connects the~r mass centers. It has the advantages that the kinetic 

energy separates exactly in~o a relative and an internal part, and that 

the mass associated with the ;:,o~. -motion is coordinate independent and 

equal to the reduced mass l'n.a.• 

The definition of ra( specifies what we call a "partition" r;.. = (Ao<,B<:lC) . .... 

It impli.es a certain distribution of the A nucleons among the fragments, 

e.g. nucleons 1, . :. ,At:J. making up Aa. In contrast to this, because of 

the identity of nucleons, actual physical states are always "fragment-

at ions" a = (A B ) · i.e. only the nature of the fragments is specified. · a' a ' 

Describing physical states in terms of partitions is unnecessarily detailed 

and leads to well known complications. r~ being defined differently for 
""" 

-different partitions, antisymmetrization introduces non-local interactions. 

The interaction kernel contains as many terms as there are different 

partitions in a: fragmentation, i.e. A!/A !B ! terms. This gives 70 terms 
a a 

already in the case of d. +~-scattering, wh:lch is still feasible, 
1 

but 

becomes completely impractical for heavier systems. Also, the description 
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of rearrangement collisions is difficult, because different relative 

motion coordinates are involved. 

While there are approximate ways to deal with these difficulties we set 

out to avoid them altogether. To do this one must introduce relative motion 

coordinates __ _w.hich apply directly to physical states, i .. e. fragmentations. 

These coordinates must theh be symmetrical with respect to nucleon perm­
:l.-5' 

utations. They would not contain any reference to a specific partition 

of the A-nucleon system. From this we conclude that, if such coordinates 

do indeed exist, they would be applicable to describe the relative motion 

in all rearrangement channels simultaneously. 

. 2 6-10 
In the phenomenological two center shell model (TCSM) ' one 

describes relative motion with the vector~ Joining the potential 

centers. R is a mere parameter of the model and does not ,..., 
depend upon any nucleon coordinates. The TCSM gives a local interaction 

potential. However, the use of t = (R9~) as relative motion coordinates 

is made in an ad hoc fashion and has no basis in scattering theory. The 

application of the TCSM has been restricted to elastic scattering so far, 

because one does not know how to relate the separation parameters for 

different fragmentations. 

It is the aim of this paper to provide a basis for the application of 

the TCSM to quasielastic (rearrangement) reactions. 
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II. Kinematical. Transformation. 

1. symmetrical Relative Motion Coordinates. 

The most general coordinates which depend upon the nucleon indices in a 

symmetrical and linear way are the center of mass coordinates of the 

A-nucleon system. Therefore the desired coordinates are necessarily non-

linear functions of the laboratory coordinates. Thus, in general, coordinate 

dependent masses will be .associated with them •. 

Symmetrical relative motion coordinates can be def.ined on the basis of 
~ A 

the quadrupole tensor Qo#or = L x. x.r-. Here x. = r.•e.,. (+ = x,y,z) are the 
oo ""'' ~r ~o ~r ""~ -o o 

nucleon coordinates referred to a em-frame e ,e ,e , which we treat as 
""X ... y ..;z: 

. (I) 
independent coordinates for convenience. 

The principal axis of Q define an intrinsic coordinate frame e (u = 1,2,3) 
"'11 

and three Euler angles 0s. They are clearly invariant wi~h respect to 

nucleon permutations and can be used to describe the relative angular motion 

of two nuclei. 

In order to define a symmetrical relative distance coordinate appropriate 

for the fragmentation a = {A ,B ) note that the concept of relative 
a a 

distance is well defined only in the asymptotic region of well separated 

nuclei. The ambiguity present in the overlap region will be, exploited to 

d.efine a convenient distance coordinate. 

Let R denote the distance between nuclei A and B , which as yet has a 
a a a 
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meaning only in the asymptotic region. Asymptotically one has for the 

intrinsic component:s x. = r.•e of the nucleon position vectors, taking 
~u -~ -u 

the 3-axis to poin.t from B to A , · a a 

"'~~ ~ - .rv. £\u. 'R.Q, (l) 

where 

ell. cf"-'l e .. ~ ;. E: Ar~.. £,"" = -. 
A - Ao.. .\t \. €. B" 

('3) 

Q"33 
A ~ 

~'R2. = ~Xi~ rv 
L•l ~ 0.. 

Therefore 

(lt) 

One could simply define R by requiring this asymptotic identity to hold . a 

throughout configuration space. It is more convenient, however, to choose 

result 
a more symmetrical form, which gives the samefasymptotically. We have 

investigated two possibilities 

l S") 

= 

A 2 ,., 
where Q = {;; xi

0 
, Q

33 
= 2Q33 - ~l - Q22 • Ra is clearly invariant with 

respect to nucleon permutations. 

We define the following coordinate transformation. 

,, 
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1 

L. e~-u.. (9~) x,,.. 
'\l::' 

-.. 

Q'\)'~ 

Q.-

A 
= LX ,,x,w 

\=l 

'Wta.. 'RI. 7.. -~ Q. 

;.,,.,. 

7 :;) 

ll Q.) 

llt-) 

(J c) 

(i = l, ••. ,A; o= x,y,z; s = 1,2,3; u = 1,2,3; u,v,w = 1~2,3 and cyclical 

permutations; et\.\. = er-. e\.\.. is the rotation matrix.) - -
The first 3A equations express the xit"' in terms of three 

Euler angles es .;: e¢1t- and 3A "intrinsic II particle coordinates xiu. The 

intrinsic frame is de,fined by requiring the products of inertia to vanish, 

i.e. ;u = 0. The four symmetrical relative motion coordinates ~ = (Ra0~"t) 

are part of a redundant set of 3A+4 coordinates· (x. R ) . The four con-
lu_a 

straints existing among these coordinates are expressed .as ~ = 0 c 

(c = 1,2 ,3 ,4). These equations could be used to eliminate 4 coordinates 

from the (x. R ), to obtain a non-redundant set. In order to apply shell 
· · 1u a -

model ideas, however, we want to keep all x. and give them the status of 
lU 

independent variables. This can be achieved with the method of spurious 

coordinates, as explained in refs. II - 14- . If all 

vary independently we will have ~c ~ 0 in general. 

(x, R ) are allowed to 1u a 
. ~ 

We append the ~ c to 

the em-coordinates x . .,.. and treat them as if they were true coordinates 
l. 
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of the system. The constraints ~c = 0 can be fulfilled by integrating 
. [2.1 

matrix elements·over s~~c[C~J. Practically, this can only be achieved on 

the average, as will be discussed in sect. III.l. 

A complication arises from the fact that the transformation eq. (7) does 

not have a unique inverse. There are 24 different ways of labeling the 

principal axis in a right handed way. This ambiguity has to be met by an 

appropriate symmetrization of the wave function. As this is well known 

from the unified model of nuclear rotations it will not be further discussed 

h 
14}1$" 

ere. 

It is convenient to take, as part of the channel specifications, the 

3-axis as the axis along which the nuclei move. Then the Euler angles 

correspond directly to the usual polar angles. The third Euler angle 

is not needed in the practically important case of axial symmetry. 

The nucleonic motion may as well be described in terms of coordinates x.' 
lU 

referred to the nuclei instead of the x. , which are referred to the common 
lU 

mass center. 

(8) 

The coordinates (x. R ) or (x. 'R ) offer the following advantages for a 
lU~ lU,Jl. 

description of nucleus-nucleus scattering: 

(i) The relative motion coordinates R commute with.the 
,..a 

antisymmetrization operator, [J-,R ] = 0. Therefore 
,.Ji 

antisymmetrization becomes a trivial matter as far as 
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the relative motion is concerned. It generates no 

non-local interactions with respect to R . It will still 
--.a 

affect the internal-motion, however, and thereby modify 

the local potential to which the R -motion is subjected. 
,.Ji 

(ii) Relative distance coordinates for different two-body 

fragmentations are identical except for a trivial multi-

plicative factor. 

(9) 
The angular coordinates for different fragmentations are 

i.dentical. Hence the ~-coordinates are well suited for 

a description of rearrangement reactions. 

(iii) The intrinsic coordinates x. are apurouriate for two 
~u - -

center-:-, the x .. ' for one center-shell models. 
~u 

(iy)_ If the spin states are written in terms of scalar variables 

·(~rejections onto the internal 3-axis) the Euler angles 

will rotate the whole system. Then the angular momentum 

~·.. 14-associated with them will be the totaL ane ·uar momentum. 

Therefore, no explicit coupling of orbital and internal 

angular momentum will be necessary in order to achieve 

a separation into JM-subspaces. 
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2. Hamiltonian in Symmetrical Coordinates. 

In order to write down the many-body Schroeding10:r equation in terms of 

the (x. R ) -representation the potential and kinetic energies have to be 
~u a -

transformed. Replacing x. by (x. R ) via eq. (l) we find for the former . ~r ~u..g 

(lO) 

The transformation of the kinetic energy is also straightforward, although 

somewhat tedious. The method consists in expressing the momenta p. = -iofld/Clx. 
squaring them' and summing i/er i and(!" ]. r ~t 

in terms of derivatives with respect to the (x. R) . In the final expressions 
~u a ,._ 

we drop terms which contain a factor ~ c to the left andtheTefote would vanish 

upon integrating Jd~cd(qc). This amounts to adding spurious energies of 

the form ~cd~d~:, which will not altogether vanish in practical calcul­

ations, because there ~c = 0 can only be fulfilled approximately (see sect. 

III.l). It is necessary, however, to obtain a Hermitean form for the radial 

kinetic energy, as will be shown below. 

We shall merely quote the results here; details of the calculations may be 

found in ref.l,, We obtain 

T = Tncl. + T~ + T~ c ll) 
where 

T'M! = f.~ [ 'il"-
- ~~ 'd'R!: 

I ~·.· J 
- Ra. )Ra_ + T ~ (ll) 

• 



• 
. 

0 0 0 u ~ 4 0 ~ ~ 7 J 

- 11 -

TI -· 1t't I. c. l.. 1.. (13) --~ 
2-nta.. ;. "' \ u. 'R 0. () 'R (\. 

Ct~ -- d ') X . {J4-) x,,_, ~ + ~ l\.\ Xt"' X;"' 

-y:Jr ~1. 
L_{lch- c\, - c,~) l l_ \IS") = --~ 4-~Q. t ~~)~~ 

·r (JCo) 'Yrl:o.. ::: 'W\.Q. ... 

'n\.lr It '\'\1. ~ 'R ir 2 Ql)-- 0.. 0.. Q. 

" 
~t3Q33 + Q) 

To.AA& + T~ = t !;. i 1,.-; ( J,.., -~-i" 

+ i ~ 2~"'~ (N'W tl\(v -~1 + CJ~" -~) N~ 

The various symbols are defined as follows. 

P(v.. : - i'\ d { 'd X;v.. 

J.v.v- :: L. (x,~ f'~ - x,'\t P•~) . • 
~ ... v- = Yt\. { Q'\('14 - Q~ 1 ~I c Q~ + Q~) 

l)'\A.'\)' :: ~ ( Q'\A. - Q'\)") 

N\W = 2;:. ()(hot. f,,. T Xt'\t ~ ,,.) -
" 

. ;.. 
·'. 

" 

(18) 

(l~ o.,) 
~l~ (r) 

(19 t) 

~9d] 

lt ~e.) 
I are the components of the operator of total angular momentum, expressed 
c:JV.."'T . 

IS 
in terms of Euler angles. 
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If one employs the primed particle coordinates, eq. ( 8), one gets an 

additional term, which is identical to T d exce')t for the sign and for ra ·· 

~/dR everywhere replaced by "d /'dx.}3 = L £~ 3'd /dx. 1 (here X_, l = \m/m )L. s:-~3x. 1
). 

a . "' ~ ~u .... u a "1. ~u 

In T + T t x. then has to be replaced by x. 1 + €~ R, except in ang par ~ u ~ u ~ u a . 

derivatives. 

T + T contains the (total) angular and (intrinsic) .nucleonic motion ang part 

as well as couplings between the two. It is identical to the kinetic energy 

obtained in the unified theory of nuclear rotations. This operator has been 

extensively discussed by Villars and Cooper, and the reader is referred to 

their paper, ref. I~. The treatment of Villars and Cooper, although only 

intended to describe rotations of a deformed nucleus, fully applies to the 

angular motion of two colliding nuclei. We should point out, however, 

that the last term of Tang + Tpart has been omitted in refs. 11, llt and was 

given in ref. \J. with the wrong sign. 

In what follows we shall focus our attention on the radial kinetic energy. 

Note the remarkable fact that the mass associated with the radial motion 

turns out to be completely coordinate independent for transformation I, 

although it was not especially designed to achieve this very convenient 

property. The radial mass is coordinate dependent for transformation II, 

as was to be generally expected for non-linear transformations. 

There appears a coupling between radial and nucleonic motion. T 1 has coup 

the same form for primed and unprimed internal motion coordinates. 

• 
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As x. /R ,..._E.~ , x. '/R ,..._ 0 in the "important" regions of configuration 
~u a ~u ~u a 

space (where the i)article wave functions have non-negligible a.."llplitudes) 

the content of the coupling appears to be different in both cases. In ref. 

IG it is shown, however, that the coupling term for the unprimed coordinates 

may be decomposed into a term identical to the primed coupling plus a term 

which in fact acts entirely on the particle coordinates. Hence the coupling 

always refers to the cehters at (B /A)R' and -(A /A)R . 
· a a a a 

/ 

The particle part of the coupling operator may be expressed in terms of 

the usual phonon creation and annihilation operators of the harmonic 

oscillator. 

--
Hence the coupling connects states differing by +2 oscillator phonons. We 

shall discuss it further in sect. III.2. 

It may come somewhat unexpectedly that the radial part of the kinetic energy 

does not take on the form d2/aR 2 + (2/R )d/dR as in ordinary 3-dimensional . a a a 

space. This can be understood from the fact that the volume element in 

(x. R ) -space does not equal dx. d..Q dR R 2 . Calculating the Jacobian I of 
~u a · ~u a a a <f ,., 

the coordinate transformation (x. ~ ) ~ (x .. R ) in a straightforward way 
lt" C lU ~ 

we find instead 

d.'t' = clx,u ci~ J.d", = ~ clxlv. d.!la.d.~ ~ {Q,;Qu.XQu-Qn1CQ3l-Qu1 de. · ( ~ ~i; 
It has the same form for the (x. 'R )-coordinates. 

l.U a 
"' 

(?.1) 
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Using this volume element we find that T d is not separately a Hermitean · ra 

oper~tor, although the complete T certainly is. The latter can be seen 

immediately if the Hermitean property of T(xit'd/Jxif) is written down 

and this equation transformed to the (x. R )-representation. 1u a 
"' 

We wish to treat the x. as Cartesian coordinates and the R as spherical 
lU ~ 

components of a vector. This can be achieved by the following transformation 

of the volume element. 

cl..'t 
using the identity 

cl-'t "') 

T = ~rT(~ft 
I d t . . t (:1/2 1 n or er o g1ve a mean1ng o o we rep ace 

- f:, '"I(. 'l. 
f(t,) ~ dL(~) = -~-­

efif' 

with the understanding that in final expressions ( ~ 0. Taking £ ~ 0 is a 

way of introducing approximations, as we shall discuss in sect. III.l. 

Carrying out the above transformation we obtain, absorbing all terms 

• 
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7 5 

- -without derivatives with respect to R into T + T part t a ang ,.., r.~ -Ttd.. - Q. 

+ T~ + (~~~~~ 
~n\Q. ~:,..f_. '1'"~:1(1-U • .\. ~ 'R C.. 

where 

'PQ. ~ d = - 1R.o._ R~ Ro. 

te.:~ -~ ( I .L ) 
.:!:.___ L. c,"" 'R 'Pa. + r~ 'R 
~ \.v... Q. ~ 

fX - \.t.· L. ('J.c,3 - c,,.- c \'2.) c~ 'PQ. + 'Pa. t ) - -~ a~a. ; a. ~ 

\ll) 

\~) 

(2~) 

~30) 

P is the usual (Hermitean) radial momentum. The operators i~c. , hence 
a ' . ru ,.., . 

T 
1

t are also Hermitean. coup · 

,.., 
The main result of our paper· is contained in eqs. (ll ) - (30) . T 

rad 

out to be separately a Hermitean operator (so that T- T d = T . :t'a ang 

turns 
..., 

+ T part 

has the same property). It ist except for the coupling between radial and 

particle motiont identical in form to the radial part of the usual 3-dimens-
I 

ional kinetic energy. This result was certainly not to be 'expected a 

priori. It allows to interpret the R -motion as being a radial motion in 
a 

ordinary 3-space, and hence to identify it with the radial motion in 

phenomenological modelst such as the TCSM (see sects. III.lt3). 

We should mention that the transformation eq. (lS) introQuces singular 
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terms of the form do(J• )/dx. into T which, however, operate only on the '7c ~u 
fG 

particle coordinates and give finite contributions to matrix elements. One 
,.., 

could avoid such singular terms if in deriving T the complete T were used 

without explicitly making use of the constraint equations ~ = 0, since 
c 

e ,.., 

then T commutes with functions of ~c. However, 'the radial part of T turns 

out to be not in itself a Hermitean operator in this case. Instead one 

obtains 

-T'NAl = 

III. Equations of Motion. 

1. Coupled Equations for Relative Motion. 

In order to derive coupled channel equations for relative motion we 
a complete set of ~ 

expand the scattering state~ in terms of/internal motion states <Pp J 

to be more fully specified later. 
Here ~ denotes a part~tion and other channel quantum numbers. For the 

transformed wave function, eq. (2S~), we have 

~ .~~ ' 

~Uc,u..R~) = .L. cp(l tx,\41 A.g CRo..) 
#W ~ .- '\)" -

~Ro.. 1/2 ~ 
where 't'~ = ('J.6 /Ra 2) ¢\?> • The superscript Ra denotes a possible 

parametric dependence of ~ which we may allow for in the spirit of the 

TCSM. The physical significance of parametric dependent channels as 

opposed to conventional (asymptotic) channels will be further discussed 

in sect. III.3. 

• 
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It is important to absorb the constraints d1/
2 

appearing in i completely 

into the internal motion. Whereas the~ have to be translation and rotation 
,., 

invariant, the <t> then share the invariance properties of shell model 

states and therefore may be expanded e.g. in the TCSM. This amounts to 

approximating the 0 -functions by spuriOus motions (linear and rotation 

oscillations) contained in shell model states. They are sharply peaked 

functions concentrated around ~c = 0. In the case of two center oscillator 

functions this amounts to putting ·E'= (~/maU))1 / 2 asymptotically in eq. (~); 

which is~0.6 fm in the case of 16o + 16o - scattering. Physically this 

means that matrix elements are not taken anymore at ~ c = 0, but at (~c)R = 0, 

implying an average over a small region ll ~c (R) = l (~c~)'R - <'i:,c.)i
1 

around ~c = 0 (R denotes the TCSM separation parameter). 

Eqs. {1e,d.} then give a relation between the radial coordinate R and the a 

TCSM separation parameter R. 

The equation for Ai:. differs from this by a factor 1/4 in front of the 
Q. 

terms involving xil arid xi 2 . 

We have performed some calculations in the TCSM, the results of which 

(33) 

are given in table 1. It is seen that 6R << R except for very deep inter-
. a a 

penetration in case of transformation II. Also, AR varies little over the 
a 
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region where quasielastic interactions take place. 

Note that the radial motion, which by definition is the motion associated 

with the R -coordinate, goes over into deformation and compression modes a 

for large overlap of the colliding nuclei (small R), as is apparent 

from eqs. (33), ( '3'+). 

The symmetry axis of the TCSM has to be taken as the 3-axis, so that 

(~u,)R = 0 (u = 1,2 ,3). The positive direction of the 3-axis is part of 

the channel specification. 

An additional effect of the spurious motions arises because the spurious 

part of the kinetic energy vanishes only if E; c = 0 is rigorously fulfilled. 

Averaging over (small) non-zero ~ c introduces spurious energies into 

matrix elements, which for the ~~-motion are determined by the Hermitean 

operator (for mQ ~ m R 2 = m~4 f 0) a a · 

-~ [ (1 -~ ) ~'1. 
~~ Wl.Q.~ ~ 

A practical method to correct for spurious energies is presented in ref. 17. 

The Schroedinger equation in terms of symmetrical redundant coordinates 

is written as 

= 0 

• 

.. 
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Substituting eq. (3~) and carrying out the variation according to 

(38) 
we obtain the following set of coupled equations 

+ { C ~ R .. l 'f+ V -E I-*;. R .. 1}Xj~ .. 1 

-- - L cd: Ra.l 1- + v ~~~ Ro.) x~ CRQ.1 f . ~ ~ 
(39) 

The round brackets 
"-'Ro.. 

indicate matrix elements of internal states at fixed · 

Ra; with <Po( (xiu) -- ,., . 

(x. \c<.R ) . In the second term on the 'left hand side 
~u a . 

the 'd/dR -operators ofT act only upon the internal motion, which we have a 

indicated with curly brackets, To simplify the writing we have assumed 

that the I~RJform an orthonormal set for each Ra. 

It is seen that all terms of eqs. (3~) are local with respect to R . 
~ 

Antisymmetrization affects only the internal motion. 

One may likewise obtain effective equations for a few (qual~) elastic 
12-W 

channels only, using Feshbach's projection technique. The effective 

many-channel interactions will still in principle be non-local with 

respect to R , but for not too low energy a local approximation will hold 
,.._a . 

20 ,, 
because of random phases. 1 
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In order that a solution to eqs. (3q) be physically interpretable as a 
[31 • 

scattering state the wave function must satisfy the ,boundary conditions -

- ~ ~ca. r r '~Ra.~e i.~(TRa. ] fl ) ~tx,\4~ca.1 ~ jl 't'fJ tx,\4)\ o"fl e + e 'Ra. f~~te¢) \4-0 
Here a denotes the entrance channel fragmentation. The total energy of 

the state eq. ('+0) may be written 

E -- + £~ 

where e b is the asymptotic internal energy in fragmentation a,b, a, 

respectively. The wave number for fragmentation b is not ~ but ~ = iJ~f'Y';\~ ~(,. 

" Using eq. ( Cf ) we have ~Ra = ~Rb, as it must. The differential cross 

section for the transition a~ b is given by the usual expression 

To prove that indeed eq. (40) is an asymptotic solution we now show that 

the additional terms produced by the coupling between radial and particle 

motion, which appears in the T of eq. (39), vanish as 1/R 2 or faster 
a 

asymptotically. 
, ....... : 

2. Coupling be~ween Radial and Particle Motion. 

The coupling is of purely kinematical origin. vfuile this is clear from our 

method in general it is most obvious from the fact that, because of the 

coupling, eqs. (3Cf) do not have one-channel solutions even in the complete 

absence of interactions. 
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Technically the coupling arises from the fact that internal and relative 

motion coordinates are not rigorously orthogOL:io.l, being connected by the 

constraints F- = 0. From eqs. ( l ) and ( 8 ) we find for the components of 
~c . 

the usual relative motion vector r~ (transformation I) -
"tell = \4-3) 

-- -

-- -
in physical space (~c = 0). The difference between~ =lt"tt!,and Ra 

becomes very small asymptotically. In the important regions of configuration 

space we have xi~/Ra rv 0 and Ra - r~ is approximately given by the ratio 

of the average of the rms-radii of the scattered fragments, divided by the 

macroscopic distance between them. The effects of this difference are never 

negligible, however, because it depends upon R and vanishes as slowly as 
a 

1/Ra. From the fact that r~ 1 ~ 0, r~ 2 + 0 it is seen that also the angles 

of ·.R differ from those of roe.. This difference vanishes as 1/R 2 asympt-
~ - a 

otically • 

The physical significance of the coupling is also evident from eq. (ltS). 

If two classical nuciei were in a state of free relative motion, r(;)(
3
(t) = vt, 

their symmetrical distance R would approach a linear 'ti.ln~ dependence a . 

only asymptotically. Hence their internal motion, referred to coordinate 
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frames at (B /A)R and -(A /A)R , would be described in non-inertial 
a a a a 

frames. All the~c effects disappear if the nuclei would be shrinked to 

a point, x.' ~0. 
~u 

The coupling is in fact an unescapable consequence of the use of symmetrical 

coordinates to describe the relative motion. Such coordinates must necessarily 

contain a residual dependence upon the internal coordinates (spatial 

extension) of the fragements, otherwise they would not depend upon all 

nucleons in a symme'trical way. 

Thus it is seen that, in order to avoid the disadvantages of the ~-,., 

description concerning antisymmetrization and rearrangement, one must 

necessarily give up the advantage of a rigorous separation between internal 

and relative motion. Whether this will be a favourable thing to do depends 

upon the possibility to handle the (x. ~ R )-coupling. We have as yet -- ~u a 

only achieved a partial solution to this mathematical problem. It indicates 

that the coupling effects will be small in the physically interesting 

R -range, as will now be shown. a 

We shall consider transformation I and a much simplified f~' of eqs. (3~), 

dropping all angular momentum terms and treating only one particle explicitly, 

but keeping the exact form of the coupling 
1 
eq. ( ':L ~ ) • 

0 

• 
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. As a further simplification the particle 

Hamiltonian will be assumed of oscillator form. 

H~ = \4-1) 
with x2 = Lx 2 • The effect of the coupling, when acting upon an oscillator 

'\A. u 

state <Pntm.,. is 

where N .. 
1\( -.-

--

{For transformation II the coupling is much more complicated, with TII 
coupl 

also changing the angular momentum l.) 

We shall now obtain a solution to eq. (lt6) in the form of an asymptotic 

expansion in terms of 1/R . Consider a "parent" state (eikaRa/R )'*' 
a a ~~m 

which would solve eq. (4b) we~e it not for the coupling. The required 

extension of the parent state can be inferred from the fact that each 

action of T generates + 2 phonons and at the same time produces a coupl 

factor 1/R • 

This sugge:ts to look for a solution to eq. (46) in the form[«t-] 

(so) 

This may be generalized to A particles, in which case the solution may be 
A 

where now V = {v
1

, ... ,vA), A-. .. D = 1f tf... 
't' n+n;,. m i.= 1 't'l'l;+\1;, ei. ~;, written, in the same form, 

A 
= 0 if).<["'''. 

\c\ 
and }\I We expect that in the general case of non-zero 
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angular momentum an analogous form for:±:. will hold. 

Substituting eq. (SO) into eq. (4b) we obtain ::H eigenvalue equation 

-n'"~: 
. 2 'Wto.. 

~ 
and the following recursion relation for the Av (here v = 1lk. /m ) 

a . a a 
l 

" Av = iva. (l-}JA~-1 
:2. cu v 

+ 1;(~-:nc:>t-n A~-2 

4-mo.. cu " 

l • ) 
j Av = 0 i{ A < IV\ • 

(s-1) 

It is readily seen that they are solvable in a unique way. There are 2). + 1 

equations for each). , determining the 2}! + l coefficients l~1, A~ l 0 < lvl :S,). 
). . . 

A
0 

does not occur in 
. ~-1 . 

A-th order, in which instead A
0 

is determined from 

0 
the equation for 

1 
'V = 0. A

0
, the amplitude of the parent state, is arbitrary 

(non-zero, of course). 

. ~ 

We have not yet obtained closed-form solutions for Av , except in a few 

cases. 

(""f\+~)! T' bt+ {+ ~ +~lt) 

"\'\.~ T' (~+(-t"lJ:t) 
(S3) 

('Yl+~-JJ ~ T' ( t'tt(t ~ .... 'h) 
~ ~ T' ( "Y\.-t t-t "l(2,) 

\Slt) 

• 
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For tJ ~ oo, which corresponds to spatial extension ~ 0, all coefficients 

A~ ~ 0 for v f 0. The same happens for v ~0. Thus only the parent state 
a 

survives in these limits, as was to be expected. 

We propose to treat the coupling in an approximate fashion, retaining only 

the first few terms. We have explicitly evaluated coefficients 

A). /R). for a number of parent states, at a relative distance of 10 fm v a 

(which is supposed to be "large"). Table ~ shows that the admixtures to 

the parent state are small and that successive orders decrease fast. 

The. coupling can be avoided altogether if one goes to the approximations 

of the particle-core model ?·1 Then only A' = A - p "core"-nucleons would 

be included in the definition of Ra and ~ 4, eqs. ( 5 ) - ( 1- ) . The p 

"valence"-nucleons w6uld only be subjected to transformation eq. (1q1(,.), 

so that their motion is not kinematically coupled to R .. Upon dropping 
a 

all microscopic degrees of freedom of the cores from the kinetic energy 

one would then get rid of the (x. ~ R )-coupling. . ~u a 
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3. Two Center Shell Model. 

Eqs. (3Cf) (rather their effective elastic form -with V4V + Veff) in 

conjunction with eq. (33) furnish a basis for the TCSM. In what follows 

we shall give a brief qualitative outline of the method to be followed to 

"derive" the TCSM. 

The internal elastic motion ~;must be expanded in terms of TCSN-states. 

The real part of the complete effective interactions has to be written as 

a TCSM-potential plus a residual interaction. The requirement that, for 

each R , the residual interaction becomes as small as possible then would a 

lead to variational equations from which the geometrical parameters of 

the instantaneous (R -dependent) TCSM-potential could be calculated in 
a 

terms of the basic nucleon-nucleon interaction in a completely microscopic 

way. Also, the instantaneous occupation scheme would be determined. All 

parameters would depend upon the integrals of motion, E,J ,M,1L The internal 

elastic motion would be modified as compared to the asymptotic internal 

motion of the free nuclei in such a way, that the nori-quasielast ic channels 

become decoupled on the average (except, of course, for absorption). This 

is the usual assumption of the "never come back".,...approximation ?-;;., b It is 

by no means automatically fulfilled, but is a requirement which at all 

determines the parametric dependence of the TCS!-1-potential and the internal 
,.,.Rca. 

state ¢d. . 

-~ 
Physically, the parametric dependence of the channel states ¢ upon R 

J. a 

represents what we call "interaction polarization". When two nuclei 

• 
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approach each other one will not only encounter changes in the occupation 

scheme of single farticle or quasiparticle states (inelastic excitations, 

transfer). Also, the individual asymptotic states themselves may change 

under the influence of the shell model potential of the respeCtive approach-

ing nucleus in a reversible way, i.e. without changes in the occupation 

scheme. The extent to which this occurs will depend upon the time scale 

involved, being 100 % in the adiabatic limit and decreasing with increasing 

radial motion velocity. 

In terms of asymptotic states of free nuclei IP (interaction polarization) 

will introduce virtual states off the energy shell into the elastic wave 

function in an R -dependent way. These states must disappear outside the .. a 

interaction region. In this picture rearrangement reactions will occur 

between configurations which differ from the asymptotic entrance and exit 

channels. The states involved will be the instantaneous states, modified 

from the asymptotic states by the presence of the shell model potential of 

the respective other nucleus. The TCSM may be regarded as a natural way to 

parameterize the R -dependent admixture of virtual states. In fact, if 
a 

properly chosen the TCSM-wave functions should contain the· Uosed channel 

components of the actual sc~ttering problem (at least an important part 

of them). 

The specific heavy-ion effect of "interaction polarization" has been ignored 

in the current descriptions of transfer reactions, except that it is 
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accounted for to some extent by empirical optical potentials. Qualitatively, 

we expect that it will effectively increase both the interaction radius 

and the diffuseness of the interaction region. This effect will become 

stronger with increasing excitation of the participating states. It will 

shift grazing peaks forward and enhance transfer at forward angles. This 

is what is required to resolve some systematic discrepancies between 
'J-3 

recent DWBA-calculations and experiment. A quantitative investigation 

of this point, using the TCSM and the constrained Hartree-Fock model, 

is in progress. 

IV. Conclusion. 

In this paper we have attempted to provide a foundation for a unified 

model of scattering of complex nuclei. 

The basis of our approach has been to use microscopically defined symmetric 

relative motion coordinates. There still remain a number of problems 

- coupling between internal and relative motion, spuriou~ energies, 

singular effective potentials - which must be solved before one can 

definitely conclude that the method has been successful. 

Emphasis has also been given to the use of two-center shell model ideas 

and in particular interaction polarization, which should be useful i.'"\ more 

phenomenological approaches. 

• 
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Footnotes. 

[1] Properly speaking, the em-motion should be treate,d by the same method 

as we shall use for the relative motion, namely, by means of redundant 

coordinates and appropriate constraints. This introduces no compli-

cations, but will be omitted here to keep all expressions as simple 

as possible. See refs. ll - 14 on this point. 

[2] Here and in what follows we abbreviate notationally products over 

coordinate differentialS and 6 -functions by just writing one term 

with an appropriate multiplication index. 

[3] For simplicity we have not written out the Coulomb distortion. 

[4] If one starts from a "parent" state ( -ik R <P e a a/R ) 
1 a n m 

one 

obtains a solution which asymptotically corresponds to incoming 

spherical waves. 
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I 6R I 
II II II II 
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II rna Ra I 6Rai R II 6Ra II rna R I RII rna R Ra a Ra Ra rna a ma a a I'lla 

-----

o' ...... 
CD 

...... 
1.0 6.25 0.33 1. 71 0.93 0.14 7.69 0.25 1.41 0.98 0.07 7.65 2.29 0.16 .. 

(') 

2.0 6.41 0.34 2.61 0.67 0.28 7.89 0.25 2.92 ·o. s1 0.24 7.92 3.45 0.32 0 
...... 

3.0 6.64 0.35 3.21 0.61 0.38 8.17 0.27 3.90 0.46 0.37 8.17 4.08 0.40; 
...... 
(1) 
() 
r.-

4.0 7.12 0.40 4.68 0.56 0.60 8.44 0.29 4.46 0.48 0.43 8.49 4.71 0 .. 47 t-'· 
<: 
CD 

s.o 7.55 0.43 5.32 0.56 0.66 8.86 0.30 5.40 0.44 0.54 8.95 5.82 0.60 ::-;: 
t-'• 

6.0 /8.12 0.45 6.10 0.57 0. 72 9.32 0.33 6.23 0.46 0.62 9.43 6.52 0.65 ::l 
CD s 

7.0 8.81 0.47 6.99 0.57 0.77 9.91 0.35 ?-25 0.45 0.70 10.01 7.30 0.70 II' 
c+ 
t-'• 

8.0 9.60 0.49 7.97 0.57 0.82 10.53 0.36 8.08 0.45 0.74 10.68 8.15 0.74 () 

en 
' 

o.56 - o.85-9.0 10.46 0.50 8.98 11.26 0.37 9.00 0.45 0.78 11.42 9.06 o. 77 t-'· 
::l 

10.0 11.34 0.51 9.99 0.56 0.87 12.05 0.38 9.98 0.45 0.81 12.21 10.03 0.81 c+ 
::T 
ro 

u.o 12.24 0.51 11.00 0.56 0. 89- 12.90 0.39 10.98 0.45 0.84 13.04 11.02 0.83 t--3 
(') 

12.0 13.14 0.52 12.00 0.56 0.91 13.77 0.40 11.99 0.45 0.86 .13. 90 12.02 0.86 [/) 

:s: 
13.0 14.06 0.52 13.00 0.55 0.92 14.65 0.40 13.00 0.44 0.88 14.77 13.02 0.88 

14.0 14.99 0.52 14.00 0.55 0.93 15.55 0.41 14.00 0.44 0.90 15.66 14. Ol 0.89 

15.0 15.93 0.53 15.00 0.55 0.94 16.45 0.41 15.00 0.44 0.91 16.56 15.01 0.90 

16.0 16.87 0.53 16.00 0.55 0.95 17.37 0.41 16.00 0.44 0.92 17.47 16.01 0.91 

17.0 17.82 0.53 17.00 0.55 0.95 18.29 0.41 17.00 0.44 0.93 18.39 17.01 0.92 

18.0 18.78 0.53 18.00 0.55 0.96 19.23 0.42 18.00 0.44 0.93 19.31 18.01 0.93 
---- - ~---- - -----

lF 
---- ---- -- -· -

All lengths are in fermi. The calculations were made for the TCSM as described in ref. 7. The 

potentials were chosen to be of pure oscillator form, with 'fie,.,= 13.00MeV for 16o,l'-+10.90 MeV 

for 
40

ca;J.S the spin-orbit paramete.r was taken as~= 0.08. No spin-orbit force has been included 

in the calculation of M\ • The numerical evaluation of AR is more difficult for asymmetric · a a · 
fragmentations and has not yet been made. An approximate calculation indicates that ~R 

40 16 . -. 40 40 · · a 
about 50 % larger for Ca + 0 than 1t 1s for Ca + Ca. 

is 

.. ( ) 

w 
0 
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Table 2: Coupling Coefficients for 16o + 16o -Scattering. 

Parent state \_0 l /R~ v a for (~ ,'IJ) 

. (1 ,1) (1 ,o) (1 ,~1) (2,2) (2,1) (3 ,3) (4 ,4) 

1s .094 .115 .o ·• 0081 .0176 ····.ooo67 .000055 

1p ·122 .192 .o .0124 .0321 •. 00117 . 000105 

2s .172 .269 .094 .0214· .0586 .00205 .000206 

1d .144 ·.269 .o .0166 .0490 .00173 .000169 

2p .203 .346 .122 .0288 .0849 .00346 .000379 

1f .163 .346 .0 .0208 .0681 .00235 .000247 

3s .249 .423 .172 .0407 .1235 .00546 .000655 

2d .231 .423 .144 .0361 .1143 .00471 .000554 

lg .180 .423 .o .0250 .0894 .00304 .000340 

Parameters: Elab = 80 MeV (~ ) 1i . -~'t 
va~.lc ; w= 13.22 MeV; R~-:. 10 ~. 

\ 
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