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Abstract: We report on a new microscopic model for the description of
nucleus—nucleus collisions. Our methed is based oﬁ a kinematical trans-
fermation to s&mmetrical ceordihates, which at the same time descriﬁe

the relative motiqn in all different two~-body partitions of the A-nucleon
system. Thereby the treatment of antisymmetrizatibn and rearrangement
collisions'becemes‘trivial from the'kinematical poiht of view. The fully -
" antisymmetrized Schroedinger equation for nﬁcleus-nucleus écattering is
explicitiy traﬁeformed toxsymmetrical coordinates. It centains no non-
local potentials for the relative motion even in the region of deep
interpenetration end provides a basis for the application of the two
center shell model (TCSM) to the description of nucleus-nucleus collisions.
The price to be paid.for this simplification is the occurence of a
coupling betWeeh relatiﬁe and internal motion. Numerical estimates
indicate that the effects of this coupling as well as errors inherent

in the phenomenclogical TCéM will often be small in fhe

outer interaction region, where quasielastic reactions proceed.
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I. Introdncfion

Consider a system of A nucleons, divided into two fragment nucleivAa, Ba'
The usﬁal_microScepic description of their relative motion employs the
vector

= L o5 _‘_
S~ ‘\a. \€J\(~ Ba

”d

which connects thelr mass centers. It has the advantages that the klnetlc
energy separates exactly 1nto a relatlve and an lnternal part and that

the mass assoc1ated w1th the ra—motlon is coordlnate 1ndependent and

equal to the'reduced mass Mg .

The definition of r, specifies what we call a "partition" & = (A, ,B,).

It implies a_certain distribution of the A nucleons among the fragments,

e.g. nucleons.l '.;; sAyg maklng up A . In contrast to this, because of

the 1dent1ty of nucleons, actual physical states are always 'fragment—

ations" (A »B ), i.e. only the nature of the fragments is spec1f1ed

Describing physical states in terms of partitions is unnecessarily detailed

and leads to well known complications. ry being defined differently for

-different partitions, antisymmetrization introduces non-local interactions.

The interaction kernel contains as many terms as there are different
partitions in & fragmentation, i.e. A!/Aa!Ba! terms. This gives 70 terms
already in the case of d‘+&x-scattefing;.which is still feasible,r but

becomes compietely impractical for heavier systems. Also, the description



of rearrangement collisions is difficult, because different relative

motion coordinates are involved.

While.there are approximate ways to deal with these.difficultiés we set

out to avoid them altogether. To do this one must introducé rélativé_motioh
coordinatesmwhich apply directly to physical Sﬁates, i,e. fragmentations.
These coordinates must then be symmetriéal with réspect to nucieoh perm-
utation:%s;hey would not contain any refereﬁce to a specific partition

of the A-nucleon system. From this ﬁe conclude that,vif’such coordinates.

do indeed exist, théy‘would be applicable to describe the relative motion

in all rearrangement channels simultaneously.

In the phenomenological two center shell model (TCSM)Q’6—lo o

ne

describes relative motion with the vector R joining the potential

centers. }3 is a mere parameter of the model and does nof

depend upon any nucleon coordinates. The TCSM gives a local interaction

' pdtential. However, the use of R = (R9¢) as rélative ;ﬁdtion coordinates.
is made in an ad hoc fashion and has no basis in scaﬁfering theory. The
application of the TCSM has been restricted t§ elastic scattering so far,
because one does not know hbw to relate the separation parameters for

different fragmentations.

It is the aim of this paper to provide a basis for the application of

the TCSM to quasielastic (rearrangement) reactions;



TI. KinematicallTransformétion.

1. Symﬁétriéél Relative Motion Coordinates.

The most generai coordinates which dépend upon the.nucleon indices in a
Syﬁmetrical and linear way are the center of mass coordinates of the
A-nucleon system; Therefore the desired coprdinates are necessarily ﬁonf
linear functioqsvof the laborétory coordihateg, Thus, in general, coordinate
dependept mas;és will be,assbeiated with them..

Symmetrical relative motion coordinates can

N ‘ -

the quadrupole tensor Qt@ =‘g; xirxis; Here XiF= ri*e

be defined on the basis of
x.(X'= X,¥,2) are the
,nucleon-cobrdinaﬁes referred to a cm-frame Ex;gjggz, which we treat as

independent coordinates for convenience.

The principal axis of Q define an intrinsic coordinate frame suA(u = 1,2,3)
and three Euler angles Cg. They sre clearly invariant with respect to
nucleon permutations and can be used to describe the relative angular motion

of two nuclei. -

In oraer to define a symmetrical relative distance.coorainatevappropriate
for the fragmentation ﬁ = (Aa,Ba) note that theldoncept Qf felétivev
distance is well defined only in the asymptotic region of well separated
nuclei. The ambiguity present in the overlap region will be exploited to

define a convenient distance coordinate.

Let Ra denote the distance between nuclei Aa and Ba’ which as yet has a



meaning only in the asymptotic region. Asymptétically one has for the

intrinsic components X T Es°8y of the nucleon position vectors, taking

' the 3-axis to point from Ba to Aa’

.Rq' . E"\u. | ) B (Q')

where

S — o (3
- ' vﬁ‘ "'Ao_ V4 Léiii‘ )
Therefore V - -

A D
Qs = 2xs ~ TeRD (W

One could simply define Ra by requiring this asymptotic identity to hold

throughout'configuration space. It is more convenient, however, to choose
. . . result o '

a more symmetrical form, which gives the samefasymptotically. We have

investigated two possibilities

R mwq | e ()

Mq
SR ET A | (e

W
A > A ' , '
where Q = é;xiX" Q33 = 2Q33 - Q11 - Q22. Ra is clearly invariant with

respect to nucleon permutations.

We‘define the following coordinate transformation.
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Xg = Zep@x,  (a)
o A -
t!u = va = ,thvxiw ' - ' C’ 6')

1

- Mg pL , :
h‘f Q - T? Ro. ' @ C)
or, alternatively,

By = ,Qf“ - ::““R{ I (d)
(i = Iyeoeshy §= X,¥,2; 5 = 1,2,3; u = 1,2,3; u,v,¥ = 1,2,3 and cyclical

permutations; €yu = €y-€, is the rotation matrix. )

The first\3A equations express the . I xir"in ﬁerms of three
Euler angles QS' ¢@¢‘l’ and 34 "intrinsic" particle coordinates Xlu The
intrinsic fra.nle is d‘e‘,f‘ined.by requiring the prodﬁcts of_inertia to vanish,
i.e. t’u = 0. The lfour symmetrical relative motion coordinates B,a = (Ra§¢‘k)
are part of a redundant set of 3A+4 coordinates "(xiulia). The four con-
straints existing among these coordinates are expresseq ‘as E‘c =0

(c =1,2,3,4). These equations could be used to eliminate 4 coordinates
from the-(xiuRa), to obtain a-non-;‘edux_'idant set‘. In ordef to apply shell
model ideas, hOWeyer, ;we want to keep all X0 .and' give them the status of
independent variables. This cz;.n be achieved with the method of spurious
coordinates, ‘a_.sv-eyxpla..ined in refs. -4 | 1e all (xiuljé) are allowed to
vary independen‘cly we ﬁill have %c £ 0 in general. We appendvthe gc to

the cm-coordinates x, and treat them as if they were true coordinates

iy



of the syétem. The constraints'cg = 0 can be fulfilled by integrating
: | 2 | ‘
matrix elements over S&xCSItQ. ;ractically, this can only be achieved on

the average, as will be discussed in sect. III.1l.

A cqmplication arises from the fact that the transformation eq.A(7) does

not have a uniqﬁe inverse. There are 2h;different ways of Iabeling the
principal.axis in a right handed way. This ambiguity hasbto be met by an
appropriate symmetrization of the wave function. As this is well known

from thevunified model of'nuclear rotations it will>not be further discussed

lu,Is

here.

It is convenient to take, as part'of fhe channel specifications, the
3-axis as the axis along which the nuclei move. Then the Eﬁler angles
correspond directly to the usual polar angles. The third Euler angle

is not needed in ﬁhe practically important case of axial symmetry.

The nucleonic motion may as well be described in terms of cdordinates Xiﬁ
referred to the nuclei instead of the X0 which are referred tc the common

mass center.
)

s — o : ,

Kw = Xw = & Re ' _ (8)
The coordinates (x. R ) or (xiéRa) offer the following advantages for a
~ ’ ~S

description of nucleus-nucleus scattering:

(i) The relative motion coordinates Ea commute with the
antisymmetrization operator, [Jgfa] = 0. Therefore

antisymmetrization becomes a trivial matter as far as



 the relative motion is concerned. It generates no

,non;locél interactions with respect to Ea' Tt will still

(11)

(i11)

affect the interhal,motion, however, .and thereby modify

the local potential to which the Eﬁ—motion is subjected.

Relative distance coordinates for‘different'two-body
fragmentations are identical except for a trivial multi- -

plicative factor.

R _,,!vnq} S ( )
The angular coordinates for different fragmentations are

idéntiéal. Hence the Eﬁ-coordinates are well suitéd for

‘a- deseription of rearrangement reactions.

The intrinsic coordinates X, , are appropriate for two

“center—, the xT&'for one centér-shell models,

(iv)

If the spin states are written in terms of scalar variables

'(projeétions onto the intérnal 3-axis) the Euler angles

&’
~ associated with them will be the total.angilar momentum.

will rotate the whole system. Then the angular momehtum

I

Therefore, no explicit,coupling»of orbital and internal

angular momentum will be necessary in order to achieve

& separation into JM-subspaces.
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2. Hamiltonian in Symmetrical Coordinates.

~In order to write down the many-body Schroedinger equaﬁion_in terms of
the (xiuRa) -representation the potential and kinetic energies have to be

transformed. Replacing xir_by (xiuRa) via eq. (7)‘we>find for the former

Vix;,R)) = i Z’\’T(:’-—;(xm'x&“)&‘*)- o ([0)
The transformation of the kinetic energy is also straightforward, although
somewhat tedious. The method consists in expressing the momenta p., = -i‘l‘i'D/axir

squaring them, and summing syer i andy
in terms of derivatives with respect to the (XiuRg . In the final expressions

we drop terms which contain a factor gc to the left and‘ﬂemfcm would vanish
upon integrating ngcgfge).'This amounts to adding spurious energies of

: Ling . L o .
the form Cc34/3§°, which will not altogether vanish in practical calcul-
ations, because therecgc = 0 can only te fulfilled approximaﬂely (see sect.
III.1). It is necessary, however, to obtain a Hermitean form for the radial

kinetic energy, és will be shown below.

We shall merely quote the results here; details of the calculations may be

found in ref.l6. We obtain

T o= Tt * Tey + T o

where

{



00w U440 4573

\.'- 11 -

1. . -f_f‘_, Soe L3 | (13)
ot m, 0 RR, |

c\\\ = x‘“gtu + g;:.ux‘\k QL})
ll' . . : ‘t‘l ,__ ')

T = - ?‘““ g kW)
m{ = W\é_ Q(D)
W R‘ B (”)

" . "“(3Q33'*'Q)

Tc,wa +TM | = "i 'Li"" (.]ww -Jw)

+3Z 75 [N i) #Gn g Vo)

L I (1)
The va:.ius: s;:m::z /ar"aexciif:.n.ned. as- follows‘ | v': : | | v‘(ﬁq’)
Cde = Z._(xm?w Xew Pru) o (11¢)
Yuw . v (Qua = Que?Y/ (QW+QW) o (90
B T R (7)
Naw = Z‘.(ktusz+sz Pin) . | _ _v {He)

. N
}‘w are the components of the operator of total angular momentum, expressed

5

in terms of Euler angles.
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If one employs the primed particle coordinates, eq. (8’), one gets an

4 excent for the sign and for

%/aRa everywhere replaced by‘B/QXk; = 2:8233/3xi& (here X«ﬁ =Qm/m§2:gg3xi&).

additional term, which is identical to T o

In T + T x. then has to be replaced by x.' + £ R , except in
ang. part “iu _ iu iu a ‘ v

derivatives.

T + T contains the (total) angular and (intrinsic) nucleonic motion
ang part _ v _
as well as couplings between the two. It is identical to the kinetic energy
obtained in the unified théory of nuclear rotations. This operator has been
extensively discussed by Villars and Cooper, and the reader is-feferred to
their paper, ref.l%; The treatment of Villars and Cooper, although only
intended to describe rotations of a deformed nucleus, fully'applies to the
angular motion of two colliding nuclei. We should point out, however,
that the last term of T + T has been omitted in refs. || I4 and was
' ang part _ J

given in ref. 11 with the wrong sign.

In what follows ﬁe SHall focus our attention on the radial kinetic energy.
Note the remarkable fact that the mass associated with the radiﬁl motion
turns out to be cqmpletely coordinate independent for ﬁfépéformation I,
althbugh it was not especially designea to achieve this very convenieﬁt
pfoperty. The radial mass is coordinate depeﬁdent for transformation II,

as was to be generally expected for non-linear transformations.

There appears a couplihg between radial and nucleonic motion. Tcoupl has

the same form for primed and unprimed internal motion coordinates.
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As xiu/Ré’\'E;u’ x;&/Rarv 0 in the "importanﬁ" regions of cénfiguration
space (where the particle wavevfunqtiohs;have non-negligible amplitudes)

the content of fhé coupling appears to'bé'different‘in'both céséé. In ref.
6 it is shown,‘howe#ef, that the coupling,term for the unprimed coordinates
may be decompoéed into a term identical to the primed coupling plus a term

which in fact acts entirely on the'particle coordinates. Hence the coupling

always refers to the centers at (Ba/A)Ré and e(Aa/A)Ra.

The parﬁicle éart of the coupling operator may be expressed in terms of
the usual phonon cfeatibn and annihilation operators of the harmonié
6écillator. » o ':l. v »

| Cw= ol - L (20)
v Henéé the'cquplinéiconnecﬁs statés differing by +2 oscillator phonons. We

shall discuss it further in sect. III.2.

It may come somewhat unexpectedly that the radial part of the kinetic energy
does not take on the form §2/9Ra2 + (e/RaXQ/QRa as in ordinary 3-dimensional
space. This can be understood from the fact that the volume element in

: . ' 2 S e
(xiuR:g) -space does not_equal_ 'dxiudnadRaRa . Calculating the Jacobian J. o‘f

the coordinate transformation (x

irﬁc) — (xiuﬁg) in g straightforward way

we find instead

d—'t= d-*{u d-\g"]'gc. =."~1:T°: ixh& d.ﬂtd.ga&(Q,"Qu)(in.Qﬁ)(QSlel) é-c' ‘ % ((:.[-‘I; (?' l)

It has the same form for the (xi&Ra)-coordinates;
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Using this volume element we find that Trad is not separately a Hermitean
operator, although the complete T certainly is. The latter can be seen

immediately if the Hermitean property of T(xix’a/gxif) is written down

fixpd SEILTE = fopdg ST Q1)

and this equation transformed to the (xiuRa)-representation.'

We wish to treat the xiu’as Cartesian éogrdinétes and the Eﬁ as sphericalv
components of a vector. This can bé achieved by the following transformation
-of the voluﬁe_eiement. : | : |

dr —> dT = dxwdRRE @)
using the identity ' '

SR JSETE = (dRREEFE QY

‘s 3] - (25%)

~ ='E-llz (l{-ll‘l . (95t
TQR:) TiE) - @s¢)

In order‘to give a mééning to 81/2 we replace
- 5 Q-&‘Is’* o K
§C — (8) = A ' 16
(6) (5 em | )

with the understanding that in final expressions £€~>»0. Taking €& 0 is a

way of introducing approximations, as we shall discuss in sect. IIT.1.

Carrying out the above transformation we obtain, absorbing all terms
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~

without derivatives with respect to Ra'into E;

N A ~ { lern wibtoud derinabunts
o B R (e @

+
ng Tpart’

R (28)

s B IR @

e Lo end
T = T TQes-cu-cnl(ghirRt) (30

P, is the usual (Hermitean) radial momentum. The operators iﬁciu, hence

'E , are also ﬁérmitean_.
coupl _

The main result of our paper is contained in egs. (1) - (30). E;ad turns

out to be separately a Hermitean operator (so that T - %' =T + T

_ _ A ~rad ang = part

- has the same property). It is, except for the coupling between radial and
particle motion; identical in form to the radial part bf the usualv3-dimens-
ional kinetic energy. This result was certainly not to be expected a

priori. It allows to interpret the R -motion as being a redial motion in

ordinary 3-space, and hence to identify it with the radial motion in

phenomenological models, such as the TCSM (see»sects. III.1,3).

We should mention that the transformation eq. (23) introcuces singular
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terms of the form %ékéc)/éxiu into'E which, however, operate only on the
particle coofdinates and give finite contributions to matrix elements!GOne
could avoid suchvsinguiar terms if in deriving'¥ the.complete T were used
without explicitiy making use of the constraint equations ﬁc = 0, since
then T commutes‘with functions of @C. However,?the fadial part of'¥ turns
out to be not in itself a Hermitean operator in this case. Instead one
obtains | | |

2 (o]

remch o R

III.-Equations of Motion.

1. Coupled Equations for Relative Motion.

In order to derive coupled channel equations for relative motion we

: a complete set of
expand the scattering state ¥ in terms oflinternal motion states ¢b ’

to be_more fully. specified later.
Here {3 denotes a partition and other channel quantum numbers For the

transformed wave function, eq. (%), we have :
~ S '”Rq . . . . o
‘:t(xiu&q) = Z.QD (X;\J’K_&(%q.) - (32)
where Cb = (JS/R 2)1/‘2 ¢R._ . The superscript R, denotes a p0551b1e
parametric dependence of a%“ which we may allow for in the spirit of the
TCSM. The physical significance of parametric dependent channels as

opposed to conventional (asymptotic) channels will be further discussed

in sect. III.3..



It is important to absorb'the. const_raints 61/2 appéaring in§ completely
inf.o the internal 'mo_tion. Whereas 'the(t’ have to be tranélatioﬁ and rotation
invariant, the $ theh share the ihvariance' properties of sﬁell model

states apd therefore may be expanded e.g. in the ‘I‘CSMv. _»Th‘is amouhts to
approximating the § -func‘tions by spurious .motions (;iﬂéar and rotation
dsciliatiOns) éontained in shell model stvates. They are sharply peaked

~ functions 'conce’;}traﬁ;ed -around C;c = 0. :.In the case of two center oscillator
functions this&é‘.mounts to putting €'= (’ﬁ/maco)l/e asymptptical_ly iﬁ eq. (W),
which _is'.:0.6__vfmi in the ca_se- of l60 + 160 ;<scatt6ring. Physically this

means that‘ matrix elements are not taken anymore at % = 0, but at (f; >R=

implying an average over a small region A%’ (R) = —q <& 1>‘R - <& )R

around E; 0 (R denotes the TCSM separatlon parameter).

Eqs. (led) then give a relation between thé radial coordinate R_ and the

TCSM separation para.meter R. ‘ v _
Ra(R) =\ <@y (33)
REGR) = *Q%f@@{- | 84)

The ra.nge of averaglng is - R

ARL(R) = ‘\]zkx\o <x‘3>°’ * <OGxEI) - <x“+x‘-.)°‘) (35)

The equation for A‘K;differs from this by a factor 1/4 i_n front of the
terms ;nvolvlng Xsq and Xioe | |
" We have performéd some calculations in the TCSM, the results of which

are given in table 1. It is seen that ARa« Ra except for very deep inter-

penetration in case of transformation II. Also, ARa varies little over the
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region where quasielastic interactions take place.

Néte that the radial motion, which by definiticn is the motion associated
with the Ra-coordinate, goes over into-deformation and compression modes
for large overlap of the colliding nuclei (small R), as is apparent

from egs. (33)\(34).

The symmetry axis of the TCSM has to be taken as the 3-axis, so that
.<<&“>R =0 (u=1,2,3). The positive direction of fhe 3-axis 1s part of

the channel specification.

An additidnal‘effect of the spurious motions arises because the spurious‘
part of the kinetic energy vanishes only if E;cv= 0 is rigorously fulfilled.
Averaging over (small) nonfzero gc introduces spurious energies into

matrix elements, whiéh for the &%—motion are.determined.by the Hermitean

. . , i , ¢
operator (for mQ - m R —_m&h £ 0)

F o= 2 lflime)® 23]

¥ ama | \' MR R TR IR
B _ R@EwAswmRY)
2mQ-maRY) TwIREY @G)

A practical method to correct for spurious energies is presented in ref.|7,

The Schroedinger equation in terms of symmetrical redundant coordinates

~is written as

S fd dR.RY T RA-B A FR) = 0 1)
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Substituting eq. (32) and carrying out the variation acqording to

§E = Tosx | (38)
we obtain the follow1ng set of coupled equatlons

2 Y R ~ L '
B [E % RJ6R) + [ERATW-ERRI X (R

-, Zcm;l%vmﬁm)x(,(ga BN

The round b??ckets indicate matrix elements of 1nternal states at flxed
Ao
Q.
R s with | d( iu) = (thdRa). In the second term on Fhe left hand side
~ the 3-/9Rafoperators of 'f act only upon the internal motion, ‘which we have

- indicatéd.with curly brackets. To simplify the wiiting-wé have assumed

that thelgRQform‘an orthonormal set for each Ra'

Tt is seen that all terms of egs. (39) are local with respect to R_.
. AN

Antisymmetrization affects only the internal motion.

One may likewise obtain effectlve equations for a few qua§ -) elastlc

19-20

channels only, using Feshbach's projectlon technigue. The effective =
many-channel interactions will still in principle be non-local with
respect to Ra’ buf for not too low energy a local‘épproximatibn will hold

. ~ " 20,6
because of random phases. )
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In order that a_solution to egs. (39) be physically interpretable as a
Y

scattering state the wave function must satisfy the boundary conditions

'ft(x.uRJ E(P X \J{g-qs e&“&me %Ra io.o(e@} (’-I'O) |

Here a denotes the entrance:channel fragmentation. The total energy of

the state eq. (40) may be written

_ RS iy 1,(“4,_: | .

where Ea 5 is the asymptotic internal energy in fragmentation a,b,

H]
respectlvely The wave number for. fragmentatlon b is not k.b but kb Wf_—___’&
Using eq. (9 ) we have kbR kbRb’ as it must. The differential cross

section for the transition a —» b is given by the usual expressioh

o <t iggent ()

To pfove that indeed eq. (4) is an asymptotic solution we now show that
the additional terms produced by the coupling between radial and particle
motion, which appears in the T of eq. (39), vanish as l/Ra2 or faster

asymptotically.

ol

2. Coupling between Radial and Particle Motion.

The coupling is of purely kinematical origin. While this is-clear from our
method in geheral it is most obvious from the fact that, because of the
coupling, egs. (39) do not have one-channel solutions even in the complete

absence of interactions.
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Technically the coupling arises from the fact that internal and relative
motion codrdinetes are not rigorously orthogoual, being connected by the
constraints gc = 0, From eqs. (7 ) and (§ ) we find for the components of

the usual relative motion vector Ty (transformation’I)

SN , . _ -
o= m R, z;- X x‘\)s - ’ - » Q+3)
T = = m,R Zx\,_xn o o - )

T o= Ra - img Zx‘“ - (“)
in physical space (: . The difference between 12 =‘{E;Fijahd R,
becomes very small asymptotically In the important reglons of conflguratlon
space we have k '/R ~ 0 and R - g*vls approx1mately glven by the ratlo
of the average of the rms-radll of the scattered fragments, divided by the

macroscopic dlstance between them. The effects of thls dlfference are never

negligible, however, because it depends upon R_ and vanishes as slowly as

l/Ra' From the fact that r, # 0, 7y # 0 it is seen that also the angles

onga differ from those of ry » This difference vanlshes as l/Ra asympt-
~S ~ _ : '

otically.

The physical significance of the coupling is also evident from eq. (4s).
If two classical nuclei were in a state of free relative motion,_§x3(t) = vt,
" their symmetrical distance Ra would appreech a linear‘time dependence-

only asymptotically. Hence their internal motion, referred to coordinate
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frames at (Ba/A)Ra and -(Aa/A)Ra, would be described in non-inertial
freames. All thesc effects disappear if the nuclei wouid be shrinked to

° ]
a point, xiu—>0.

‘The coupling‘is in fact an unescapable consequence 6f1thé'use of éymmetrical
coordinateé tovdescriﬁe the relative motion.vSuch coordinaﬁes must ﬁecessarily
contain a residual depehdencé upon @he internal_coordinafes-(spatiél '
extension) of the_fragéments, otherﬁisé fheybwould.not depend upoﬁ all

nucleons in a symmetrical way.

Thus it is seen that, in order fo avoid the disadvantages of'the -
description concerning antisymmetrizetion and reafrangemeﬁt, one'must.
necessarily give'up the advantage of a rigorous separatioﬁvbetweeh internal
and relative motidn.‘Whether'this will be a.favourable thing-tp do depeﬁds
upon the possibiiiﬁy to handle the (xiu<§—;»Ra)-coupling.'We have as yet
only achieved a partial solution_té this mathematical problem. It iﬁdicates
that‘the coupling_effects will be small in the physically interesting

Ra-range, as will now be showm.

We shall con51der transformatlon I and a much simplified fogn of eqs. (37),
drcpping all angular momentum terms and treatlng only one partlcle explicitly,

but keeping the exact form of the coupllng ,ea- (Qﬁ ).

A |
- & ze(JRenk)  Hee -E TR0 -0 (1)
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_As a further simpl-if_ieation the particle

Hamiltonian will be assumed of oscillator form.

L, i . * .

»with- x2 = %xuz. The effect of the coupling, 'when acvfing upon an oscillator

state ¢n€m’ is

%._,Cu Q‘em = [QX,S-;‘-!'?:] (b“em = '-N“c. 1\412M+Nu.\( e Q,(,g)

- where o I .
| C Ny = WO (ne&e3ay i 49)

II

(For transformation II the coupling is much morebcomp:].icat_;ed, with Tcoupl

 also changing the angular momentum £.)

We shall now obtain a solution to eq. (4 ) in the form of an asy'mptotie

-expa«msien 1n terms of 1/R . Censider a "parent" state '(eikaRa/R' )(P o
a : . ' a’ Tném

which would solve eq (W) were it not for the COupling. The requii‘ed .

ex‘tensmn of the parent state can be 1nferred from the fact that each

actlon of Tcoupl generates + 2 phonons and at the same tlme pvoduces a

factor l/R . . ,
This suggests to ook for a solutlon to eq. (1&6), in: the_‘_iform[""J )
v - R R
antm Ro. VA R: nvem | ( )

(A=0,...,00; -n&VE s0; A = 0 if A<Iv].)

This may be 'generalized to A particles, in whic_h case the solution may be

wrltten 1n the sa.me form where nowvy = (vl""’vA)" ¢n+\v€m '=:ﬂ-;¢n+v e

and A)v 0 if A( Zlv\ . We expect that in the general case of non-zero
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. angular momentum an analogous form for ¥ will hold.

Substituting eq. (S0) into eq. (4§) we obtain zu eigenvalue equation

. . 20 % '
Eane = oit + (me€+32)ho (sn

and the féllowing' recursion relation for the A’:, (here v = 4k /m )
' - ‘'a Ta'a

y A v, A H(A-2(2-1) 22
v A = 2 (1=-2\) £ + -
v f_lca AV b, A"

[ A ’ a-l |
}%- (Av-l va.-lc o A an()
e (BN = A2 N, (62

S,
(l=0l.|,~"l°0jv"—-n. £V oo ; AV=O v )\<\V\;)

It is rea.dily seen that they are solvable in a unique way There are 22+ 1
equations for eachl determlnlng the 24+ 1 coeff1c1ents Ao, ; 0<vig)

-
A;\o does not occur .in l-th order, in which lnstead AO is determl_ned from

the equation for%v;= 0. Ag, the amplitude of the paz:eﬁt state, is arbitrary

(non-zero, of course).

We have not yet obtained closed-form solutions for A;:, ;-except in a few

’

cases. _ | _ A | . |
A'A = t-"\'\);o.)?‘ '_ l(‘*\-}l)l TN(n+ {+'A+'3l?j' ’ | - (5-3)

A 2w Al us 'l‘('n+€+"/1) ' -

A - -w&)“ U | @i o)’ [ R0

A=t 2w/ QD) m! T(mea32) 4waw

- %‘(Qnﬂ, +A +"{z?] | | (\SL{-)



For ¢)—» ® , which corresponds to spatial extension —» 0, all coefficients
Ak\, —> 0 for v # 0. The same haprens for va-—ao. Thus only the parent state .

survives in these limits, as was to be expected.

We propoée fc treat thel coupiing in an approximaté fa_shion; retaining c_>nly'
the fifst fgw_ térms. - | Wé have explicitly evaiuated coefficients

A;}, /R: ”fori a number of parent states, at a rglative distance of 10 fm
(which is supposed to be "large"). Table 2 shows that the admixtures to

the parent state are small and that successive orders decrease fast.

The. coupl'ing can be avoided» altogether if one goes to tvh'e approximations
of the particle-core model .Q' Then only A' =.A - "core"-nucleons would
be included in th,eb definition of R, and qh’ egs. (§)  -—- (F). The p
"valepcg'_'—nucleons would only be subjected to transformation eq. (la,0),
so that their motion is not kinematically .coupled to Ra:. Upon dropping
all microscopic degreeé of freedom of flﬁe cores from the kinetic energy

one would then get rid of the (xiu@ Ra)-coupling.
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3. Two Center Shell Model.

Eqs. (39) (rather their effective elastic form with V—V + Veff) in
conjunction with eq, (33) furnish a basis for the TCSM. In what follows.
we shall give a brief qualitative outline of the method to be followed to

"derive" the TCSM.

~

The internal elastic motion ¢f‘must be expanded in terms of TCSM-states.
The real part of the complete effectivé interactions has to be written as
'a TCSM~-potential plus a residual interactioﬁ; The réquirement that, for
each Ra’ the residual interaction becomes as sméll-as possible theh ﬁould
lead to variational equations from which the geometrical parameters of

the instantaﬁeoﬁs (Ra—dependent) TCSM—pqtential.could be calculated in
terms of the basic nucleon-nucleon interaction in a completely microscopic
way. Also, the instanténeous occupation scheme would bexdetermined; All
_parameters wou;d depend upon the integrals of motion, E,J;M;ﬂ. The internal
elastic motion would be modified as compared to the asymptotic internal
motion of the free nuclei in suéh a way, that the ﬁon-quasielastic channelé
become decoupled on the average (except, of coﬁrse,~f6rrabsorption). This
is the usual.assumption of the "never come back”—apéroximation;zz/6 It is
by no means automafically fulfilled, but is a requirement which at all
determines fhe paramefric dependence of the TCSM-potential and the internal

~Ra

state ¢L .

~

' Re
"Physically, the parametric dependence of the channel states qa upon Ra

represents what we call "interaction polarization". When two nuclei
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approach eachhother one will not only encounter changes in the ocoupation
scheme of siogle‘particle or quasiparticle states (inelastic excitations,
traosfer). Also, the individual aéymptotic states themselvea'may change
under the influence of the shell model potential of the reSpeotive approach-
ing nucleus in a‘reversible way, i.e. without changes in.the occupation
scheme. The extent to which this oceurs will depend upon the time scaiev
-involved, oeing 100 % in the adiabaticrlimit and dacreasing with incfeasing'

radial motion velocity.

In terms of asymptotic states of free nuclei IP (interaction polarization)
will introduce viftﬁal states off the energy shell into the elastic wave.
. function'in an_ga-dependent way. Thesevstates muat d;sappéar outaide the
interaction region.'In‘this picture rearrangement reactions.will.occur'
between configurations which differ from the asymptotic entrance:and exit
channels. The states'invol§ed will be the instanfaneous statos, modified

- from the asymptotic states by the presence of the shall model potential of
.the(respecfive othar nucleus. The TCSM ma& be regafded as a_natural way to
parameferizovthe Rg—dependent admixture of virtual Staﬁes. In.fact; if
properly chosen the TCSM-wave funotions_should contain the ¢losed channel
componentsaof'the actual scattering problem (at least an important part

of them).

The specific heavy-ion effect of "interaction polarization” has been ignored

in the current descriptions of transfer reactions, except that it is



accounted for to some extent b& empirical optical potentials..Qua;itatiVely,
we expect that it wiil effectively increase both the interaction radius

and theidiffﬁsgneés éf the interaction region. This effect will become
stroﬁger with‘incréasing éxcitation of the participating states. It will
shift grazing peaks forward éﬁd enhance transfer at forward angles. This

‘ is what 1is required tofrésolVe some systematic_discrepanéie; bétween

recent DWBA-calculations and experimen£%3A quantitative investigation

of this point, using the TCSM and the constrained Hartree-Fock model,

is in progress.

IV. Conclusion.

In this paper we have attempted to provide a foundation for a unified

model of scattering of complex nuclei.

The.ﬁasis of our approach has been to use microscopically defined symmetric
relative'motion‘coordinates. There still remain a number of problems

- coupling between intefnal and relative motiqn, spurious energies,
singular effectng potentials ;vwhich must bé solved before éne can

definitely'conclude that the method has been successful.

Emphasis has also been given to the use of two-center shell model ideas
and in particular interaction polarization, which should be useful in more

phenomenological approaches,
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Footnotes.

tl] Properly speaiing, the ém—motiOn should be freated by the Samé method
'as‘wé shall usé for the_reiative motion,inaﬁelf; By means of redundant
.coordinatés and appropriate constraints. This introdﬁdes no compli-
”cations;,bﬁf will be omitféd here fO‘keep all'expreséions'as simple

as possible. See refs. 11 - 14 on this point.

[2] Here and in what follows we abbreviate notationally products over
coordinate differentials and § -functions by just-vriting one'term‘

with an appropriate multiplication index.
[3] For simplicity we have not written out the Coulomb distortion.

[4] If one starts from a "parent” state »(e-lkaRa/Ra)q)nlm one
obtains a solution which asymptotically corresponds to incoming

spherical waves.



16, , 16, | 400a 4+ 40, 40, + 165
' II ' - II II
I I I I I . I
R Ry ARy Ry AR, I m | Ra ARaT RaII ARa;I»ﬂg RaI Ry I ma

1.0 | 6.25 0.33 1.71 0.93 0.14| 7.69 0.25 1.41 0.98 0.07] 7.65 2.29 0.16
2.0 | 6.41 0.34 2.61 0.67 0.28| 7.89 0.25 2.92 0.5l 0.24| 7.92 3.45 0.32
3.0 | 6.64 0.35 3.21 0.6l 0.38| 8.17 0.27 3.90 0.46 0.37| 8.17 4.08 0.40!
4.0 | 7.12 0.40 4.68 0.56 0.60| 8.44 ~0.29 4.46 0.48 0.43| 8.49 4.71 0.47|
5.0 | 7.55 0.43 5.32 0.56 0.66| 8.86 0.30 5.40 0.44 0.54| 8.95 5.82 0.60
6.0 |-8.12 0.45 6.10 0.57 0.72] 9.32 .~ 0.33 6.23 0.46 0.62| 9.43 6.52 0.65
7.0 | 8.81 0.47 6.99 0.57 0.77| 9.91 0.35 7.25 0.45 0.70/10.01 7.30  0.70
8.0 | 9.60 0.49 7.97 0.57 0.82(10.53 0.36 8.08 0.45 0.74{10.68 8.15 0.74
9.0 [10.46 0.50 8.98 0.56.0.85{11.26 0.37 9.00 0.45 0.78/11.42 9.06 0.77
10.0 |11.34 0.51 9.99 0.56 0.87[12.05 0.38 9.98 0.45 0.81{12.21 10.03 0.81
11.0 [12.24 0.51 11.00 0.56 0.89{12.90 0.39 10.98 0.45 0.84|13.04 11.02 0.83
12.0 {13.14 0.52 12.00 0.56 0.91}13.77 0.40 11.99 0.45 .0.86|13.90 12.02 0.86
13.0 {14.06 0.52 13.00 -0.55 0.92]14.65 0.40 13.00 0.44 0.88[14.77 13.02 0.88
14.0 [14.99  0.52 14.00 0.55 0.93|15.55 0.41 14.00 0.44 0.90|15.66 14.01  0.89
15.0 [15.93  0.53 15.00 0.55 0.94|16.45 0.41 15.00 0.44 0.91/16.56 15.01  0.90
16.0 |16.87 0.53 16.00 0.55 0.95/17.37 0.41 16.00 ©0.44 0.92/17.47 16.01  0.91
17.0 |17.82 0.53 17.00 = 0.55 0.95[18.29 0.41 17.00 0.44 0.93[18.39 17.01. 0.92
18.0 [18.78 0.53 18.00 0.55 0.96]19.23 0.42 18.00 0.44 0.93/19.31 18.01 0.93

&

A1l lengths are in fermi. The calculations were made for the TCSM as described in ref 7. The:

. ‘ R . : b
potentials were chosen to be of pure oscillator form, with fiw = 13.00 MeV .for l60,2 10.90 MeV
Lo, 25 - _

for Ca; the spin-orbit parameter was taken as % = 0.08. No spin—orbit force has been included
in the calculation of ARa. The numerical evaluation of ARa is more difficult for'asymmetric

fragmentations and has not yet been made. An approximate calculation indicates that ARa is

Lo 16 ' Lo hoca

about 50 % larger for Ca + ~ O than it is for "“Ca +

. ’ . »
. - 3 ¢ . ¢ T

"WSOT 9U% UT SO[3BWSUTY SATA09110D ‘1 @148l
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Table 2: Coupling Coefficients for 16O + 160_-ScatteringL '

Parent state -‘Aﬁ‘/R: for (A,v)

Q) @0 @) (22 () (3,3) ()

18 , .09k ;115 0 0081 L0176 *.00067 .000055
1p 122 192 .0 o .0321 00117  .000105
25 " 172 ";269 .09k .0214-  .05%6 . 00205 . 000206
14 - .1by 1269 .0 L0166 .oh9§ .00173  .000169
2p . .203 .36 a2 . .0288  .084k9  .003U6  .000379
1r i' 163 346 .0 .0208 Qo6éi-» 00235 000247
3s - .2kg 423 1712 L0kOT .1235  .00546  .000655
2 .23l 23 bk 0361 1143 .00MTL  .00055k
- lg‘ .180 ‘;hé3' 0 .0250' .089%  .0030k  .000340

; 7 . : = \ 2 ~ . = on ?'.+ o= )
Parameters: E, , = 80 MeV (= vah,.lc), fw = 13.22 MeV; Rm_-‘lo fw,
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