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Abstract

We investigate the optimality of linear interference alignment (allowing symbol extensions)
for 3-user MT × MR MIMO interference channel where MT and MR denote the number of
antennas at each transmitter and each receiver, respectively, and the channel coefficients are
held constant. Recently, Wang et al. have conjectured that interference alignment based on
linear beamforming using only proper Gaussian codebooks and possibly with symbol extensions,
is sufficient to achieve the information theoretic DoF outer bound for all MT ,MR values except
if |MT −MR| = 1, min(MT ,MR) ≥ 2. A partial proof of the conjecture is provided by Wang
et al. for arbitrary MT ,MR values subject to a final numerical evaluation step that needs to
be performed for each MT ,MR setting to complete the proof. The numerical evaluation step
is also carried out explicitly by Wang et al. to settle the conjecture for all MT ,MR values up
to 10. For |MT −MR| = 1, min(MT ,MR) ≥ 2, Wang et al. show that interference alignment
schemes based on linear beamforming with proper Gaussian signaling and symbol extensions
are not sufficient to achieve the information-theoretic DoF outer bonds. In contrast, in this note
we show, for all MT ,MR values up to 10, that interference alignment schemes based on linear
beamforming over symbol extensions are enough to achieve the information theoretic DoF outer
bounds for constant channels, if asymmetric complex signaling is utilized. Based on this new
insight, we conjecture that linear interference alignment is optimal for achieving the information
theoretic DoF outer bounds for all MT ,MR values in the 3 user MT ×MR MIMO interference
channel with constant channel coefficients, except for the case MT = MR = 1 where it is known
that either time/frequency-varying channels or non-linear (e.g., rational alignment) schemes are
required.

1 Background

Recently, a new concept called Subspace Alignment Chains is introduced by Wang et al. in [1] to de-
termine the degrees of freedom (DoF) of the three-user MT ×MR MIMO interference channel where
MT and MR denote the number of antennas at each transmitter and each receiver, respectively
and MT 6= MR. As the length of the subspace alignment chains characterizes the DoF bottleneck,
it is interesting to observe that the DoF value per user is a piecewise linear function of MT , MR.
In [1], while the information theoretic DoF outer bound is presented for all MT , MR values, it
is shown that for constant valued channels, linear interference alignment schemes employing the
notion of subspace alignment chains are sufficient to achieve the DoF outer bound for all (MT ,MR)
pairs such that 2 ≤ min(MT ,MR) < 10, except for |MT −MR| = 1. For these exceptional cases,



non-linear schemes such as the rational alignment scheme in [3], or even linear schemes over time-
varying channels, can still achieve the optimal DoF value, such that we fully establish the DoF
results. However, if we restrict ourselves to linear schemes as well as require channel coefficients
to be constant valued over symbol extensions, can we still achieve the information theoretic DoF
outer bound? In this note, we will show that the answer is yes, and the key of the solution relies
on interference alignment with asymmetric complex signaling, which is first introduced in [4] for
three-user SISO interference channel, and then applied to two-user X channel, cellular networks
[4], compound broadcast channel [2], etc.

Remark: Note that the feasibility of linear interference alignment is already settled by Wang
et al. in [1] for constant channel realizations under the constraint that symbol extensions are not
allowed. While this formulation of the feasibility question without symbol extensions is originally
proposed by Cenk et al. for analytical tractability and is the most commonly studied setting,
including recent work by Bresler et al. and by Razaviyayn et al., clearly the assumption of no
channel extensions is overly restrictive. Our goal here is to settle the linear inerference alignment
feasibility question for constant channel realizations allowing symbol extensions. Clearly, while in
the former formulation we are limited to only integer DoF values, the latter formulation incorporates
fractional DoF values as well.

1.1 Asymmetric Complex Signaling

Consider a point to point channel with a complex channel coefficient h and a complex noise term z.
If we distinguish the real and imaginary parts of each complex dimension as two real dimensions,
then the channel can be written as[

yR
yI

]
=

[
hR −hI
hI hR

] [
xR
xI

]
+

[
zR
zI

]
(1)

where subscripts R and I denote the real and imaginary part of the complex number, respectively.
That is, we convert the original complex scalar channel to a real MIMO channel. This operation
does impose special channel structure, i.e., the 2 × 2 channel matrix in (1) is a rotation matrix.
The conversion from symmetric to asymmetric complex signaling can be similarly applied to MIMO
settings. Reference [4] provides a detailed exposition.

1.2 System Model and Metrics

The system model and metrics are identical to that in [1] with the restriction that the channel
coefficients are held constant across symbol extensions. For the sake of completeness, we briefly
summarize them here again.

We consider a fully connected three-user MIMO interference channel where there are MT and
MR antennas at each transmitter and each receiver, respectively. Each transmitter sends one
independent message to its own desired receiver. Denote by Hji the MR ×MT channel matrix
from transmitter i to receiver j where i, j ∈ {1, 2, 3}. We assume that the channel coefficients are
independently drawn from continuous distributions, and once drawn, they remain constant during
the entire transmission. Global channel knowledge is assumed to be available at all nodes.

At time index t ∈ Z+, Transmitter i sends a complex-valued MT × 1 signal vector Xi(t),
or equivalently, a 2MT × 1 real signal vector X̄i(t), which satisfies an average power constraint
1
T

∑T
t=1 E[‖X̄i(t)‖2] ≤ ρ for T channel uses. At the receiver side, User j receives a 2MR × 1 real



signal vector Ȳj(t) at time index t, which is given by:

Ȳj(t) =
3∑

i=1

H̄jiX̄i(t) + Z̄j(t) (2)

where Z̄j(t) an 2MR × 1 real column vector representing the i.i.d. real additive white Gaussian
noise (AWGN) at Receiver j, each entry of which is an i.i.d. real Gaussian random variable with
zero-mean and 1/2-variance. In addition, we use H̄ji to denote the 2MR × 2MT channel matrix
obtained from Hji using asymmetric complex signaling.

Note that the user index k is interpreted modulo 3 so that, e.g., User 0 is the same as User 3.

2 DoF Achievability: Interference Alignment with Asymmetric
Complex Signaling

For three-user MT ×MR MIMO interference channel where |MT −MR| = 1 and min(MT ,MR) ≥ 2,
since we have shown the information theoretic DoF outer bound in [1], we only need to provide
the achievable schemes in this section. The achievable schemes are based on the linear interference
alignment scheme with asymmetric complex signaling. Due to the reciprocity of the linear scheme,
without loss of generality, we only consider the case when MT = MR − 1, so that MT = M and
MR = M + 1.

Theorem 1 For the 3-user MT×MR MIMO interference channel with constant channel coefficients
and max(MT ,MR) ≤ 10, linear beamforming schemes achieve the information theoretic DoF outer
bound for all cases except MT = MR = 1.

Since all other cases are established in [1], we will show the proof of the achievability in the next two
subsections for all (M,M + 1) cases with M + 1 ≤ 10. The proof argument requires a numerical
validation step (to establish the linear independence of desired signal from interference in the
almost surely sense) that needs to be performed for each MT ,MR setting to complete the proof.
We explicitly perform the numerical validation step for all MT ,MR up to 10 to arrive at Theorem
1. In general, for arbitrary values of MT ,MR, the reader can perform the numerical validation step
to complete the proof. Based on all cases considered so far, we have the following conjecture.

Conjecture 1 For the 3-user MT ×MR MIMO interference channel with constant channel coeffi-
cients, linear beamforming schemes achieve the information theoretic DoF outer bound for all cases
except MT = MR = 1.

Figure 1 is the updated version of the corresponding figure from [1] incorporating the results of
Theorem 1.

2.1 Example: (MT ,MR) = (2, 3)

We will first consider the 2 × 3 setting, and then generalize the scheme to other cases in the next
subsection. Recall that since we utilize asymmetric complex signaling, each complex dimension is
equivalent to two real dimensions.

Let us start with the 2 × 3 setting. Applying the invertible linear transformation introduced
in [1], we can obtain the resulting channel connectivity as shown in Figure 2. In Figure 2 there
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Figure 1: DoF per User Achieved by Linear Interference Alignment Schemes (without space-
extensions) for the Three-User MT ×MR MIMO Interference Channel

Figure 2: Normalizing the Interference-carrying Links of the 2× 3 Setting to Identity Matrices

are three open chains, denoted as blue, green and red colors, each implying a subspace alignment
chain with length 2. Because they are open loop, we can normalize the channel coefficient of each
segment to be one. As a result, we can write the cross channel matrices as follows,

Hk(k+1) =

 0 0
1 0
0 1

 Hk(k−1) =

 1 0
0 1
0 0

 . (3)

If we use asymmetric complex signaling to convert each complex dimension to two real dimensions,



then the the cross channel matrices are given by:

H̄k(k+1) =



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 H̄k(k−1) =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 . (4)

For simplicity, we still use Hkk to denote the direct 3× 2 channel matrix of User k after the change
of basis operations, and H̄kk to denote the associated 6 × 4 channel matrix utilizing asymmetric
complex signaling. As described in [1], the achievable scheme for M/N = 2/3 is directly inherited
from M/N = 3/5. For the 2 × 3 setting, our aim is to achieve 6/5 DoF per user, and this can be
done by send 12 real symbols over 5 time slots, i.e., 10 real dimensions. With 5 symbol extensions,
the effective channel matrix becomes

H[ji] = I5 ⊗ H̄ji (5)

where I5 is the 5 × 5 identity matrix. To ensure each user can separate 12 real desired signal
vectors from the interference in its 30 real dimensional signal space, the dimension of the space
spanned by 24 real interference vectors cannot be more than 18. Therefore, at each receiver, we
need to align 6 interference vectors. Note that in the signal space at each receiver, there is a 10
real dimensional subspace that can be accessed by two interferers. Then we can randomly choose
6 dimensional subspace in this common subspace as the subspace where the 6 interference vectors
align. Mapping this 6 dimensional subspace back to the interferers determines the beamforming
matrix at the transmitter. Since each transmitter interferes with 2 receivers, each of two unintended
receivers will determine 6 beamforming vectors, for a total of 12 beamforming vectors per user.

With this intuitive understanding, on the symbol extended real channel, we write the 20 × 12
beamforming matrix of user i, V[i], as V[i] = [Vi,1 Vi,2] where Vi,1 and Vi,2 are 20 × 6 matrices.
Then at Receiver 1, we align the first 6 beams from Transmitter 2 with those from Transmitter 3.
Mathematically, we have

H[13]V3,1 = H[12]V2,1 ⇒
[
H[13] −H[12]

]
︸ ︷︷ ︸

Ā

[
V3,1

V2,1

]
︸ ︷︷ ︸

ā

= 0 (6)

Since Ā is a 30×40 matrix, ā can be obtained as 6 linearly independent vectors in the 10 dimensional
null space of Ā. Notice that the 10 basis vectors of the null space of Ā are columns of the matrix
I5 ⊗V1 where V1 are a 8 × 2 matrix whose column vectors are the basis of the null space of the
6× 8 matrix [H13 −H12], i.e.,

[H13 −H12]V1 = 0 (7)

where

[H13 −H12] =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

 . (8)



Therefore, we let the two columns of V1 be its two orthogonal basis and it can be written as:

V1 =

[
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0

]T
. (9)

Then, we obtain three columns of ā as

ā = (I5 ⊗V1)a (10)

where a = (aij) is a 10 × 6 combining matrix. For simplicity, we let it have a block diagonal
structure, i.e., a = diag([a1 a2]) where each block is a 5× 3 matrix with i.i.d. randomly generated
real entries.

Similarly, at Receiver 2, we align the first 6 beams from Transmitter 1 with the last 6 beams
from Transmitter 3. Mathematically,

H[21]V1,1 = H[23]V3,2 ⇒
[
H[21] −H[23]

] [ V1,1

V3,2

]
︸ ︷︷ ︸

b̄

= 0 (11)

Then we can choose b̄ as

b̄ = (I5 ⊗V2)b (12)

where V2 is a 8× 2 matrix whose column vectors are the basis of the null space of the 6× 8 matrix
[H21 −H23], and we let V2 = V1. Also, b = (bij) = diag([b1 b2]) is a block diagonal 10 × 6
matrix, and each block is a 5× 3 matrix with i.i.d. randomly generated real entries.

At Receiver 3, we align the last 6 beams from Transmitter 1 with those from Transmitter 2,
hereby we have the equation:

H[32]V2,2 = H[31]V1,2 ⇒
[
H[32] −H[31]

] [ V2,2

V1,2

]
︸ ︷︷ ︸

c̄

= 0 (13)

Then we can choose c̄ as

c̄ = (I5 ⊗V3)c (14)

where V3 is a 8× 2 matrix whose column vectors are the basis of the null space of the 6× 8 matrix
[H32 −H31]. Again we let V3 = V1, and c = diag([c1 c2]) is a block diagonal 10× 6 matrix, and
each block is a 5× 3 matrix with i.i.d. randomly generated real entries.

After aligning interference, we ensure that the dimension of the space spanned by interference
is small enough. In order for each receiver to decode the desired message, it remains to be shown
the desired signals and interference do not overlap at each receiver. Specifically, we need to see
if the 30 × 30 matrix consisting of 12 desired real signal vectors and 18 effective real interference
vectors has full rank. Due to the symmetry of the signaling, let us consider Receiver 1. The 30×30
matrix at Receiver 1 is given by:

G =
[
H[11]V1,1 H[11]V1,2 H[12]V2,1 H[12]V2,2 H[13]V3,2

]
(15)



where H[13]V3,1 does not appear above because it already aligns with H[12]V2,1 at Receiver 1. Now
let us substitute the channels matrices as well as beamforming matrices into the equation above,
and rearrange the rows and columns, then we obtain:

G =



h12Ra1 −h12Ia2 h11Rb1 −h11Ib2 0 0 0 0 a1 0
h12Ia1 h12Ra2 h11Ib1 h11Rb2 0 0 0 0 0 a2

h22Ra1 −h22Ia2 h21Rb1 −h21Ib2 0 0 c1 0 0 0
h22Ia1 h22Ra2 h21Ib1 h21Rb2 0 0 0 c2 0 0
h32Ra1 −h32Ia2 h31Rb1 −h31Ib2 b1 0 0 0 0 0
h32Ia1 h32Ra2 h31Ib1 h31Rb2 0 b2 0 0 0 0

 (16)

where hij = [H̄11]ij , hijR = <{hij}, hijI = ={hij}, and 0 is a 5× 3 zero matrix.
It is straightforward to verify that the matrix G has full rank almost surely when we randomly

pick the entries of a1, a2, b1, b2, c1 and c2 from a continuous distribution.

2.2 General Cases: (MT ,MR) = (M,M + 1)

For the M × (M + 1) setting, Theorem 1 implies that we can achieve M(M + 1)/(2M + 1) DoF
per user. Specifically, by utilizing asymmetric complex signaling, we will show that each user is
able to send 2M(M + 1) real symbols over 2(M + 1)(2M + 1) time slots, i.e., 2(M + 1)(2M + 1)
real dimensions. The remaining work of the achievability is only to follow the achievable schemes
that we introduced in Section 8.3.2 in [1]. Specifically, we randomly generate a 2M(2M + 1) ×
2(M + 1)(2M − 1) matrix with real entries at each transmitter independently and multiply it
to the equivalent channel seen at each transmitter, such that each transmitter effectively has a
2(M + 1)(2M − 1) real dimensional space. As a consequence, we have an effective (2(M + 1)(2M −
1), 2(M +1)(2M +1)) setting, for which interference alignment schemes introduced in Section 8.1.3
in [1] can be applied directly. Again, the only remaining task is to verify that the desired signal and
interference are linearly independent almost surely. This is equivalent to the statement that the
polynomial corresponding to the determinant of the matrix comprised of desired and interference
vectors is not the zero polynomial. As usual, this is readily established if the polynomial evaluates
to a non-zero value for any chosen realization of channel coefficients. Thus, the remaining step to
complete the proof is simply to choose a channel realization and verify that the polynomial takes
a non-zero value for this realization, thereby establishing that it is not the zero polynomial, and
therefore that it must be non-zero for almost all channel realizations. Performing this step explicitly
for all MT ,MR upto 10, we establish the result of Theorem 1. In general, we conclude with the
conjecture that in all M × (M + 1) cases, the DoF outer bound value is tight and can be achieved
with linear interference alignment with asymmetric complex signaling.
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