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Early Warning Signals for Critical Transitions: A
Generalized Modeling Approach
Steven J. Lade*, Thilo Gross

Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

Abstract

Critical transitions are sudden, often irreversible, changes that can occur in a large variety of complex systems; signals that
warn of critical transitions are therefore highly desirable. We propose a new method for early warning signals that integrates
multiple sources of information and data about the system through the framework of a generalized model. We demonstrate
our proposed approach through several examples, including a previously published fisheries model. We regard our method
as complementary to existing early warning signals, taking an approach of intermediate complexity between model-free
approaches and fully parameterized simulations. One potential advantage of our approach is that, under appropriate
conditions, it may reduce the amount of time series data required for a robust early warning signal.

Citation: Lade SJ, Gross T (2012) Early Warning Signals for Critical Transitions: A Generalized Modeling Approach. PLoS Comput Biol 8(2): e1002360. doi:10.1371/
journal.pcbi.1002360

Editor: Mercedes Pascual, University of Michigan and Howard Hughes Med. Inst., United States of America

Received July 15, 2011; Accepted December 9, 2011; Published February 2, 2012

Copyright: � 2012 Lade, Gross. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Max Planck Society. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: slade@pks.mpg.de

Introduction

Critical transitions are sudden, long-term changes in complex

systems that occur when a threshold is crossed [1]. Many systems

are known to be at risk of such transitions, including systems in

ecology [2], climate research [3], economics [4], sociology [5] and

human physiology [6]. Examples of critical transitions in ecology

include shifts in food web composition in shallow lakes [7],

degradation of coral reefs [8], degradation of managed rangelands

[9], and desertification [10].

Warning signals for impending critical transitions are highly

desirable, because it is often difficult to revert a system to the

previous state once a critical transition has occurred [2,11]. If an

accurate mathematical model of the system is available then

critical transitions can be predicted straight-forwardly, either by

numerical simulation or by direct computation of the dynamical

thresholds. For real world complex systems, however, sufficiently

accurate models are in general not available, and predictions

based on models of limited accuracy face substantial difficulties

[12]. Recent research has therefore focused on model-free

approaches that extract warning signals from observed time series

[13]. Two of the most widely used approaches are increasing

variance [14] and autocorrelation [15], both of which are caused

by critical slowing down [16]. Other approaches consider warning

signals based on skewness [17], flickering [18] and spatial

correlation [19].

One strategy for improving the quality of an early warning

signal, which to our knowledge has not been explored, is to utilize

other information that may be available. This other information

may take the form of other time series data, for example in

ecological applications birth rates as well as population sizes, or

additional knowledge about the system, such as that the top-

predator mortality is likely to be linear. This highlights the need

for intermediate approaches, which can efficiently incorporate

available information without requiring a fully specified mathe-

matical model.

In the present Letter, we propose an approach for the prediction

of critical transitions based on the framework of generalized

modeling [20,21]. The approach allows available information to

be used, subject to certain limitations on the quality and

availability of the information. Our results indicate that in the

cases considered here, the approach can reduce the amount of

time series data required or increase the quality of the prediction.

We demonstrate the applicability of the proposed approach by

considering a simple one-population model, a previously studied

fisheries model and a tri-trophic food chain.

Methods

Generalized modeling
Suppose that a system has been identified as being at risk of

a critical transition. Even if very little specific information is

available, the dynamics can generally still be captured by a so-

called generalized model [20]. Such a model captures the structure

of the system, without restricting it to specific functional forms.

To formulate a generalized model we first identify important

system variables (say, abundance or biomass of the populations in

the system) and processes (for example, birth, death, or predation).

As a first step, the generalized model can then be sketched

in graphical form, such as in Fig. 1 below. This graphical

representation is sometimes called a causal loop diagram [22].

To obtain a mathematical representation of the model we write

a dynamical equation for each variable Xi. In these equations we

represent the processes by general functions. For instance we can

model a single population X1 subject to gains G and losses L by an

ordinary differential equation
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d

dt
X1~G(X1){L(X1),

or as a discrete-time map

X1,tz1~G(X1,t){L(X1,t):

Note, that in contrast to conventional models, we do not attempt

to describe the processes G and L by specific functional forms.

Instead, we use unspecified functions G() and L() as formal

placeholders for the (unknown) relationships realized in the real

system.

Calculation of early warning signal
We assume that before the critical transition, the system can be

considered in equilibrium. We emphasize that this does not

require the system to be completely static or closed in a

thermodynamic sense, but that, on the chosen macroscopic level

of description, the system can be considered at rest. For example,

the system may be undergoing stochastic fluctuations of a fixed

distribution around a stable fixed point. Additionally, the system is

subject to a slowly changing external parameter that puts it at risk

of undergoing a critical transition. The system is therefore at

equilibrium only on a certain timescale. In the following we refer

to this timescale as the fast timescale, while the dynamics of the

whole system, including the slow change of the external

parameter, takes place on the slow timescale.

Using the definitions above critical transitions can be linked to

instabilities (bifurcations) of the fast subsystem [23]. For detecting

these instabilities we construct the Jacobian matrix, a local

linearization of the system around the steady state [24]. A system

of ordinary differential equations (ODEs) is dynamically stable if

all eigenvalues of the Jacobian have negative real parts, whereas a

discrete time map is stable if all eigenvalues have an absolute value

less than one. Critical transitions are thus signified by a change in

the external parameter causing at least one of the eigenvalues to

cross the imaginary axis (ODE) or a unit circle around the origin

(map).

To warn of impending critical transitions we monitor the

eigenvalues of the Jacobian of the fast subsystem, which usually

change slowly in time. A warning is raised if at least one of the

eigenvalues shows a clear trend toward the stability boundary (for

ODEs, zero real part; for maps, absolute value of one). The

Jacobian itself can be computed directly from the generalized

model, but will contain unknown terms reflecting our ignorance of

the precise functional forms in the model. Previous publications

[20] have shown that these unknowns can be treated as well-

defined parameters with clear ecological interpretations. In the

present applications we estimate the unknowns in the Jacobian

matrix from short segments of time series data. Thereby, a pseudo-

continuous monitoring of the eigenvalues of the fast subsystem is

possible.

The generalized model that is constructed should reflect existing

knowledge about the structure of the system. It should contain

terms that represent relevant and observable processes (or relevant

processes whose magnitudes can be deduced from other processes,

as we will see below). The generalized model should also have a

structure that permits bifurcations that are relevant for the system;

if not, the generalized model cannot be used to anticipate those

bifurcations.

We note that with given time series data estimating the

generalized model parameters is simpler than estimating the

entries of the Jacobian matrix directly, because the generalized

model already incorporates structural information about the

system. Further, many of the parameters in the generalized model

may already be available in a given application, because they refer

to well-studied properties of the species, such as natural life

expectancy or metabolic rate.

Results

We applied the proposed approach to three case studies,

focusing on a generic population with an Allee effect, a fisheries

example, and a tri-trophic food chain.

Simulation with Allee effect
Allee effects, that is, positive relationships between per-capita

growth rate and population size, are postulated in many populations

and have been conclusively demonstrated in some [25]. A

population with an Allee effect can suddenly transition from a

stable, non-zero population size to unconditional extinction [26].

We supposed that an early warning signal was desired for a

population in which a slowly increasing death rate (for example

Figure 1. Schematic of the fishery knowledge that was
incorporated into the generalized model.
doi:10.1371/journal.pcbi.1002360.g001

Author Summary

Fisheries, coral reefs, productive farmland, planetary
climate, neural activity in the brain, and financial markets
are all complex systems that can be susceptible to sudden
changes leading to drastic re-organization or collapse. A
variety of signals based on analysis of time-series data
have been proposed that would provide warning of these
so-called critical transitions. We propose a new method for
calculating early warning signals that is complementary to
existing approaches. The key step is to incorporate other
available information about the system through the
framework of a so-called generalized model. Our new
approach may help to anticipate future catastrophic
regime shifts in nature and society, allowing humankind
to avert or to mitigate the consequences of the impending
change.
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the spread of a new disease, the appearance of a new predator,

or habitat destruction) was pushing the population towards a

critical transition associated with an Allee effect. We assumed

that regular observations of the population size and birth rate

were available.

Accordingly, we constructed the generalized model

d

dt
X~B(X ){M(X ,m), ð1Þ

where B(X ) and M(X ,m) are the birth and death rates of the

population, respectively, and m represents the external factor

pushing the system towards the critical transition. We refer to the

population and birth rate observations as Xi and Bi, taken at times

ti, i~1, . . . ,n. (Observations of the death rate would also be

acceptable in place of the birth rate.)

From the generalized model of Eq. (1), we constructed the

Jacobian (in this 1-D system, also the eigenvalue) of the system

l~B’(X ){M ’(X ,m) ð2Þ

near its steady state, where the prime denotes the derivative with

respect to X . To calculate the changing values of the eigenvalue li

as the external parameter changes, we need to estimate the

gradients B’ and M ’ from our time series observations of X and B.

We calculated l as follows. Since the birth rate Bi and the

population Xi have been directly observed, B’i~DBi=DXi could

therefore be computed immediately, where we use the notation

DGi:Gi{Gi{1. (These one-sided derivative estimators involve a

loss in accuracy but allow the eigenvalues to be estimated at the

most recent observation time, which is important when attempting

to predict an imminent transition.) A discretization of Eq. (1) gives

Mi~Bi{DXi=Dti. We cannot calculate M ’ in the same way as

B’, because M also depends on m. Instead, we make one additional

assumption: That the mortality M(X ,m) is linear in X (although

the coefficient of this linearity may change with m). Then we can

estimate M ’i~Mi=Xi. (Suppose M~kX . Then M ’~k~M=X .)

Finally, the eigenvalue li~B’i{M ’i.
To test the early warning signal, we simulated a simple model

(given in the Supporting Information as Text S1) of an Allee effect

with additive noise. A critical transition occurred, causing

subsequent extinction of the population (Fig. 2). The challenge

we addressed is predicting the critical transition from a limited

number (here, fifteen) of observations of population size and birth

rate. We emphasize that we did not utilize any information on the

functional forms of processes employed in the simulation, so that

the prediction is based solely on the 15 observations and the

assumed structural information (that is, one population subject to

gains and losses). By estimating the parameters of the generalized

model as described above, we determined the eigenvalues of the

Jacobian as a function of time (Fig. 2b). A clear increase in the

eigenvalue is detectable well before the critical transition, giving

ample warning of the impending collapse.

Due to a phenomenon called bifurcation delay [23], the

population size did not start to change rapidly until well after

(t&13:5) the bifurcation point (t~12:5). As previously observed

by Biggs et al. [27], management action to reverse the change in

bifurcation parameter may successfully avert the critical transition

even after the fast subsystem’s bifurcation has occurred, if still

within the range of the bifurcation delay. In the case of Fig. 2b, the

eigenvalue trend is directed more towards the last possible time

that successful management action can be taken than towards the

time of the actual bifurcation.

Fishery simulation of Biggs et al.
Our second case study focuses on an example from fisheries.

Increased harvesting of piscivores can induce a shift from the high-

piscivore low-planktivore regime to a low-piscivore high-planktivore

regime [28]. Many fisheries are suspected to have undergone such

transitions [29,30]. Based on the causal loop diagram (Fig. 1), we

formulated a discrete-time generalized model, describing the

piscivore and planktivore populations at the end of each year, in

the spirit of stock-assessment modeling (see Text S1). Thereby

detailed modeling of the intra-annual dynamics was avoided.

To test the warning signal, we generated time series data with a

detailed fishery model by Biggs et al. [27], which was developed

from a series of whole-lake experiments [31]. We describe this

model more fully in Text S1, but note here that the model differs

significantly from our generalized model by a) accounting for the

intra-annual dynamics and b) containing an additional state

variable denoting the juvenile piscivore population. These

discrepancies were intentionally included to reflect the limited

information that would be available for the formulation of the

generalized model in practice. In simulations the detailed model

showed a transition to a low-piscivore high-planktivore regime as

the harvesting rate was increased (Fig. 3a).

From this simulation, we recorded the simulated piscivore and

planktivore density and piscivore catch at the end of each year.

Because the simulated data was very noisy we estimated the Jacobian’s

eigenvalues after smoothing the recorded data (see Text S1). In

addition to the time series data, the information on the natural adult

piscivore mortality and reproduction rate and the planktivore influx

from refugia were required (see Text S1). This type of information

can be reasonably well estimated for most systems. We confirmed

Figure 2. Early warning signal for a single population with
Allee effect. (a) Population time series (solid line, left axis, in relative
units) and yearly births (circles, right axis) generated by the simulation
model described in Text S1. The vertical dashed line indicates the time
of the bifurcation. Parameters were A~20, k~1, m~7:5z0:2t and
s~0:1. The simulation was started at tv0 to allow for the decay of
transient responses. (b) Eigenvalues estimated from the sampled data
indicated with markers in (a), using the procedure described in the text.
The eigenvalue was always real.
doi:10.1371/journal.pcbi.1002360.g002
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that our predictions (reported below) are not sensitive to the specific

values used. Indeed, a simple approach for estimating these

parameters is to recognize that the initial state, before the critical

transition, is stable. In a number of test trials we confirmed that any

reasonable combination of parameters used that corresponded to an

initially stable steady state provided an early warning signal

comparable to the results reported below.

An estimate of the Jacobian eigenvalues for the fisheries

example is shown in Fig. 3b. As the system approaches the critical

transition we observe that an eigenvalue approaches one, which

signifies a critical transition for discrete time systems. This result is

compared to the variance early warning signal computed by Biggs

et al. [27], which uses a much more densely sampled time series

including intra-annual dynamics. The comparison shows that the

approach proposed here produces a signal of similar quality

(although possibly too early), while requiring significantly less time

series data. Further, comparison with a variance signal using the

same amount of time-series data as the generalized model shows

that the generalized model-based signal is a much clearer early

warning signal in this case. In particular, the variance signal only

rises during or after the transition.

Tri-trophic food chain
For our final example we consider a tri-trophic food chain. In

ecological theory food chains play a role both as a prominent motif

appearing in complex food webs and as coarse-grained models.

Using generalized models, a general Jacobian for a continuous-

time model of the tri-trophic food chain can be derived (see Text

S1 and Gross et al. [32]).

We generated example time series data using a set of three

ordinary differential equations that modeled a producer biomass,

X1, predator biomass, X2, and top predator biomass, X3, as

described in Text S1. We included additive noise terms in the

equations, and if any biomass decreased to zero we suppressed the

noise term so that the corresponding population remained extinct.

We simulated these equations while increasing the mortality rate

m of the top predator. The resulting time series, for the chosen

combination of parameters, show a slowly changing steady-state

followed by a sudden transition to large oscillations, and a sudden

collapse of all three populations (Fig. 4).

To provide an early warning signal for the transition we

recorded time series of the three biomasses and the top-predator’s

death rate, and estimated the parameters of the generalized model

from smoothed segments of these time series. Even for the

smoothed data we find that one of the eigenvalues is very noisy

and sometimes positive. We believe that the presence of this

eigenvalue reflects the response of the prey to fluctuations on the

higher trophic levels and therefore exclude this value from our

analysis. As m is increased toward the onset of oscillations, two

eigenvalues show a clear increase toward zero real part (Fig. 4).

The two eigenvalues approach zero as a complex conjugate

eigenvalue pair, which is indicative of the system undergoing a

Hopf bifurcation [24], which in turn generally implies a transition

from stationary to oscillatory dynamics. The early warning signal

constructed here, consisting of the approach of this eigenvalue pair

towards the imaginary axis, warned of the transition to an

oscillatory state significantly before the transition occurred. These

large oscillations combined with stochastic fluctuations then led

rapidly to extinction.

Supercritical Hopf bifurcations, to which class the bifurcation in

the present system belongs, are by themselves not critical

transitions. The detection of Hopf bifurcations is nevertheless of

interest. First, subcritical Hopf bifurcations are indeed true critical

transitions. Second, even supercritical Hopf bifurcations have long

been associated in ecology with rapid destabilization and

extinction of populations [33], a chain of events that we

characterize as a critical transition and that we observed to occur

in the present system. We also note that although to linear order

sub- and super-critical Hopf bifurcations cannot be distinguished,

generalized modeling can be extended to higher orders where

these cases can be identified [34].

Discussion

In this Letter we proposed an approach for anticipating critical

transitions before they occur. In particular we showed that

generalized modeling of the system can facilitate the incorporation

of the structural information that is in general available.

We demonstrated the proposed approach in a series of three

case studies. The first example showed that in simple systems even

very few time points can be sufficient for clean prediction of the

Figure 3. Early warning signals for the fishery simulation of
Biggs et al. [27]. (a) Results for the adult piscivore (blue line, left axis),
juvenile piscivore (red line, left axis) and planktivore (green line, left
axis) populations of the model of Biggs et al. [27], with the harvesting
rate they specified of 1:5z0:005t per year. From these results, data
were sampled from A and F , once per year, after maturation and
mortality for that year had been computed (black markers/thick black
line). The annual piscivore catch data used in the early warning signal
calculation are also shown (thin black line, right axis). (b) Early warning
signals: the eigenvalues (points, left axis) estimated by the generalized
modeling approach; the intra-annual variance of the planktivore
population (solid line, right axis) as calculated by the method of Biggs
et al. [27]; and the planktivore variance using only year-end data (dot-
dashed line, right axis). Only one of the eigenvalues is visible at this
scale. The eigenvalues were always real. The year-end variance warning
signal was calculated using a sliding window of the previous 15 year-
end planktivore populations and a quadratic detrending within that
window, which yielded generally stationary data for those windows that
were before the critical transition.
doi:10.1371/journal.pcbi.1002360.g003
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critical transition. The second example posed a hard challenge,

where test data was generated by a model that differed

considerably from the generalized model. Yet even in this case

the generalized model significantly reduced the amount of data

needed for predicting the transition. The third and final example

demonstrated the ability of the proposed approach to distinguish

between different types of critical transitions (in this case, through

the presence of a complex conjugate pair of eigenvalues

approaching the imaginary axis).

In all case studies we found that the proposed approach can

robustly warn of critical transitions in the presence of noise. We

believe that the performance of the approach under noisy

conditions can be further improved by subsequent refinements.

Such refinements could include combination with dynamic linear

modeling [14], utilization of a parameter transformation (to ‘scale’

and ‘elasticity’ parameters) previously proposed for generalized

models [20], or the use of optimized sampling procedures.

Two important rules for constructing the generalized model are

as follows. First, there must be sufficiently few unobservable

processes (represented by placeholder functions in the generalized

model) that their magnitudes can be inferred from balancing the

observable processes. For example, in the Allee effect study, the

unobserved process M was estimated by M~B{dX=dt. Second,

where a process is a function of nw1 variables (although in the

cases studied here n was never larger than 2), our method at

present requires assumptions or other knowledge about the

dependence of the process on n{1 of those variables. This

requirement could be relaxed in future work, although probably at

the cost of requiring more time series data.

An advantage of the proposed approach is that it generally

becomes more reliable closer to a critical transition, where rates of

change of state variables and other observables are generally

larger, which may lead to better sampling, although noise will also

increase close to the transition due to critical slowing down. In

such situations statistical methods such as variance may become

more difficult to estimate as the time series becomes less stationary,

for example since detrending becomes more difficult. On the other

hand, the model-free statistical approaches may be more useful

where little knowledge is available about the system, or where

trends in the means of observed quantities are strongly obscured

by noise. In these respects, the proposed approach provides a tool

complementary to established statistical methods, each method

with its own domain of utility.

One limitation shared by both our and the statistical early

warning methods is that large noise can bias the estimation of the

respective warning signals. In our case, an asymmetric distribution

of fluctuations can bias the estimation of the underlying steady

state. That our approach effectively involves derivatives of time

series can increase the sensitivity to high observation noise or

otherwise poor-quality data. Another important assumption in our

present treatment (that is also shared by the statistical approaches)

was that the dynamics of the fast subsystem could, at least at some

level of description, be considered as stationary. Let us emphasize

that this is not a strong assumption because even systems that are

primarily non-stationary, such as the fisheries example, can be

modeled as stationary if a suitable generalized modeling

framework is chosen. Furthermore, ongoing efforts aim at

extending the framework of generalized modeling to non-

stationary dynamics, which may lead to a further relaxation of

that assumption in the future [35].

A thorough statistical analysis of the generalized modeling and

the statistics-based approaches is another topic for future work.

Such a study would help to quantify under exactly what conditions

the generalized modeling approach can operate effectively and

offer advantages compared to statistics-based approaches.

In summary, we used generalized models to efficiently incorpo-

rate available information about a system without requiring detailed

knowledge about that system. Our intermediate-complexity method

provides an early warning signal approach complementary to

existing statistics-based methods. In the cases studied here, our

method could provide early warning signals with significantly less

Figure 4. Early warning signal for a critical transition in a tri-
trophic food chain. (a) Time series of X1 (blue circles, left axis), X2

(green crosses, left axis) and X3 (red triangles, left axis) generated by the
simulation model described in Text S1. Only the data subsequently used
in the early warning analysis were plotted. Some of the data during the
oscillations between t~40 and 45 were outside the scale of this graph,
with X3 exceeding 30. The estimates of top-predator mortality used to
calculate the early warning signal are also shown (black dots, right axis).
Parameters were An~4, B~4, Ap~2, Kp~5, Kn~10, K3~2,
(s1,s2,s3)~(5,0:02,0:01) and m(t)~0:4z0:02t. (b,c) Real and imaginary
parts of eigenvalues estimated from the data in (a), using the procedure
described in the text. Eigenvalues are denoted by dots and circles; a dot
within a circle indicates two eigenvalues had the same real value. The
markers and colors used in (b,c) have no correspondence to those used
in (a). A third (purely real) eigenvalue was not plotted, for reasons
described in the main text. In (b), the horizontal dashed line indicates
the stability boundary at zero real part, while the vertical dashed line
indicates the time that the (Hopf) bifurcation occurred in the fast
subsystem of the simulation model.
doi:10.1371/journal.pcbi.1002360.g004
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time series data than statistical approaches. Thereby the proposed

approach can, under suitable conditions and with good quality data,

contribute to the warning of critical transitions from a realistic

sampling effort.

Supporting Information

Text S1 Simulation models and detailed method for
early warning signal calculation. Text S1 details the

application of the generalized modeling-based early warning

approach to the fishery simulation and the tri-trophic food chain

simulation. (The method for the Allee effect application is

described in the main text.) The simulation models, used to

generate the data to which the early warning signals were applied,

are also described.

(PDF)
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