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725, 299-331. The dissertation author is the primary investigator in this publication.

Chapter 4 has been in part submitted for peer review under the title “Two-Point Particle

Tracking Microrheology of Nematic Complex Viscoelastic Fluids”, by M. Gómez-González and
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The mechanical properties of the cell cytoplasm, individual cell constituents and their

surrounding medium play a determinant role in many cell functions, including migration, me-

chanotransduction, disease, etc. Several methods have been developed to measure the shear

moduli of microscopic materials, being Passive Particle Tracking Microrheology one of the

most prominent. It employs embedded microparticles subjected to Brownian thermal motion.

From the statistics of the particles’ motion, we extract the shear modulus of the sample. Particle

Tracking Microrheology presents practical limitations when applied to complex materials. In this

dissertation, we analyze two of these limitations: the Laplace transform of the microrheology data,
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and the anisotropy of the sample under study. In the first part, we examine the numerical Laplace

transform techniques currently used and their limitations. We then provide a new alternative and

show that it yields more accurate results than the methods currently in use. In the second part

we focus on a type of anisotropy ubiquitously present in nature and technology: directionality.

We describe the mechanical properties of a directional nematic fluid, and calculate the dynamics

of interacting particles embedded in a directional medium. We use this result to formulate the

directional particle tracking microrheology. We conclude that the motion of single particles don’t

provide enough information to fully characterize the rheology of a directional material. However,

we design a protocol to extract the directional rheology of a sample by correlating the motion of

pairs of distant particles, naming it Directional Two-Point Particle Tracking Microrheology. We

assess the accuracy of the method by simulating the motion of groups of particles embedded in a

directional viscoelastic fluid, and applying the method to them. We then apply this technique to a

nematic F-actin gel, in the first report of the directional microrheological properties of F-actin.

In the final part of this dissertation, we study the rheology of a different anisotropic system: a

viscoelastic membrane embedded in a different fluid. By using this model system, we study the

viscoelastic properties of the membrane-cortex complex of red blood cells, obtaining results that

are consistent with reported data acquired through independent techniques.

xxiii



Chapter 1

Introduction

1.1 Background

The mechanical properties of the cell cytoplasm, individual cell constituents and their

surrounding medium play a determinant role in many cell functions, including migration, me-

chanotransduction, development, differentiation, disease, regeneration, etc. Perhaps the most

intuitive example of the importance of cell rheology is the effect of the cytoplasm viscoelasticity

in the motion and distribution of organelles [80, 109], which is specially determinant during the

cell-division cycle [133].

The motile Amoeba proteus has been shown to locally and globally tune its viscoelasticity,

creating stiffness gradients used to generate the required traction forces [126]. In the same

vein, migrating fibroblasts are known to polarize and reorganize their cytoskeleton, assembling

filamentous actin (F-actin) in the leading lamella, effectively increasing the stiffness of the leading

edge [75].

Individual cells and tissues are known to sense external mechanical stimuli and generate

electro-chemical and mechanical responses through mechanisms globally known as mechanotrans-

duction. Tissue cells are known to feel and respond to the stiffness of the external substrate [36],

developing different phenotypes according to the cell type and the substrate they are in contact

with. Furthermore, stem cells have been reported to differentiate in a lineage directed by the

1
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stiffness of their surrounding matrix [40]. Additionally, embryonic stem cells have been shown to

display qualitatively different viscoelasticity than differentiated cells [31], i.e. while differentiated

cells present a complex elastic and viscous behaviour, the cytoplasm of embryonic stem cells do

not exhibit measurable elasticity, behaving as a purely viscous fluid. Moreover, characteristic

differences have been found between the mechanical properties of embryonic stem cells and

induced pluripotent stem cells [32]. On the other hand, cells are not only able to sense isotropic

mechanical stimuli, but they can detect directional stimuli such as stiffness gradients [92] and

directional shear flows [34] and provide a directional response.

Of particular significance is the viscoelasticity of cells that need to withstand large

deformations in order to perform their correct function. Characteristic examples are white blood

cells (WBC) and red blood cells (RBC). WBC are the cellular elements of the immune system

in humans and other animals. They traverse the body seeking potential sources of infection.

Neutrophils, which are one of the WBC types, circulate the blood, penetrate the capillaries and

migrate to the extravascular sites of infection where they phagocyte the infecting organisms [69].

Consequently, the deformability of the cytoplasm and nucleus of neutrophils is key for their

ability to invade and penetrate towards the sites of infection. Furthermore, due to their size and

viscoelastic properties, WBC are often temporarily trapped in the smallest capillaries, and need

to deform in order to traverse them. Thus, a reduction in the WBC deformability can locally

obstruct the capillaries and reduce the hematocrit [69]. On the other hand, RBC are the cells

that deliver oxygen to the body tissues, by using the oxygen-binding protein hemoglobin. Adult

human RBC maximize the oxygen they transport by lacking a nucleus and most organelles. Much

like WBC, RBC flow in the blood and deform to penetrate the body capillaries. However, the

only structural elements present in the RBC are the cell membrane and the underlying spectrin

cortex, that confer them rigidity and structural integrity [19]. Given the delicate balance between

deformability and stability needed for the correct function of WBC and RBC, variations of their

mechanical properties may lead into different disease states.

Of extreme importance to medicine are the microrheological properties of metastatic

cancer cells, that need to develop an optimal balance between stiffness and deformability in
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order to migrate in three-dimensional matrices [159]. They need to be stiff enough to be able to

deform the extracellular matrix while being deformable enough to migrate efficiently. Similarly, a

delicate balance between cortical tension and contractility has been found to enable amoeboid

migration [2].

Due to the importance of the rheological properties in cell and tissue function, different

methods have been used to measure their characteristic viscoelasticity. Simple elastic solids,

modeled as an elastic spring, withstand deformations when a force is applied to them, i.e. they

store elastic energy, and they are characterized by an elastic constant. Conversely, simple viscous

fluids flow when a force is applied to them, i.e. they dissipate energy through viscous flow, and

they are characterized by a viscosity constant. On the other hand, complex viscoelastic fluids

present both solid- and viscous-like behaviour that depend on the frequency and time scale of the

excitation [83, 51]. Macroscopically, the viscoelastic rheology of a material can be measured with

a rheometer by applying an oscillatory shear stress, σ(t) at constant frequency and measuring the

resultant shear strain ε(t), or vice versa [43]. In the frequency domain, shear strain and stress are

linearly related by the shear moduli of the material, G̃(s)

σ̃(s) = G̃(s) · ε̃(s), (1.1)

where ·̃ represents the Laplace transform and s the Laplace complex frequency. The shear modulus

is a complex number,

G̃(s) = G̃′(s)+ i · G̃′′(s), (1.2)

whose real part G̃′(s) is known as the storage modulus and quantifies the elastic energy stored

in the deformation, and whose imaginary part G̃′′(s) is the loss modulus and measures the

energy viscously dissipated during flow. However, certain limitations hinder the applicability

of macroscopic rheology to study the live cell rheology. When applying a probing shear stress,

only one frequency is explored, and thus the study of a large frequency spectrum becomes

complicated. On the other hand, typical rheometers are able to explore samples no smaller than a
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few millimeters in size, making it difficult if not impossible to probe individual cells. Furthermore,

cells are known to be complex entities with heterogeneous structures and subdomains of varying

mechanical properties, and the use of a rheometer will, at most, provide a bulk shear modulus

that averages the measurements over the whole cellular domain. Due to these limitations, a lot of

effort has been directed towards designing methods able to study the complex microrheology of

microscopic materials such as the cell cytoplasm. All these methods are based on applying either

a known force or displacement on the sample by means of a microscopical probe, and measuring

the subsequent displacement or stress on the probe. Finally, through an analytical model of the

relation between stress and strain on the sample, equivalent to (1.1), the shear modulus of the

material is calculated. The earliest implementations of microrheological measurements date from

the 1920’s, when rudimentary iron microparticles where inserted in gelatin and the cell cytoplasm,

manipulated by means of magnetic fields and their motion recorded [59, 45]. This method was

later refined in [28, 27]. However, insufficient accuracy in the detection of the particle motion

and inadequate control on the probing particles’ shape prevented the quantitatively accurate

application of the method at that early time.

Typically, microrheology methods fall into two broad categories. In active microrheology

the probing is driven by an external force applied on the system, while in passive microrheology

the forcing is provided by the dynamics of the system under study. A first example of active

microrheology technique is the micro-pipette aspiration [21, 144, 42], probably inspired by the

passage of the blood cells through narrow capillaries. Thin micropipettes with internal diameter

of a few microns are used to suction on small regions or in whole cells. A known pressure is

applied on the pipette, and the length of the sample that is aspired into the pipette is measured. A

simple relation between the applied pressure and the deformation is applied in order to calculate

the effective deformability of the cell. More complex analytical models can be used in order to

refine the measurements. Limitations of this technique include the need for physical access to

the measured cell, the reduced throughput, i.e. only one cell is analyzed in each measurement,

and the fact that the measured properties are bulk viscoelasticities of a relatively large area and

ensemble of cell structures.
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A second active microrheology method is the Atomic Force Microscopy (AFM). Small

known forces in the order of tenths of piconewtons, or small deformations in the order of

nanometers, are applied with a probing tip attached to a soft cantilever [10], and the surface of

the sample is indented according to the shape of the tip. The subsequent deformations on the

cantilever, or the forces on the cantilever base, are measured. A relation between the applied

force and the deformation of the sample, equivalent to (1.1), is modelled according to the shape

of the indentation that the probing tip induces on the sample, and from it the microrheological

properties of the sample are calculated. This technique allows for high spacial resolution of

the measurements, and it can be used to provide a mapping of the heterogeneous mechanical

properties of the cell. However, much like micropipette aspiration, AFM requires mechanical

access to the sample. Furthermore, the AFM probing of cells is always applied on the cellular

membrane, what complicates the probing of the internal structure of the cell.

An extensive group of microrheology methods employs probing micron sized particles

to both apply a force on the sample and measure the sample deformation. As a whole, they are

named Particle Tracking Microrheology (PTM) techniques, and they encompass both active and

passive methods. We refer to one-point methods to those that use the same particle to both excite

the material and measure the material deformations, while we call two-point methods to those

that use different particles to excite the medium and to measure the deformations. One-particle

microrheology methods typically employ spherical probing particles and model their motion in

agreement to Stokesian dynamics, i.e.

~̃F(s) = 6πa
G̃(s)

s
~̃v(s), (1.3)

where a is the particle radius, ~̃F(s) is the exciting force and ~̃v(s) is the velocity of the particle. It

is important to know that equation (1.3) assumes, among others, a low Reynolds number flow and

isotropy of the fluid. On the other hand, two-particle methods exploit the fact that a particle α
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undergoing a force ~̃Fα(s) will induce a velocity ~̃v I
α,β(s) on a distant particle β such that

~̃v I
α,β =

s
8πG̃(s)rα,β

·



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· ~̃Fα(s), (1.4)

where~rα,β = (x,y,z) is the vector that connects the centers of the interacting particles. It should be

noted that equation (1.4) is valid for distant particles, i.e. rα,β =
∣∣~rα,β

∣∣� aα,aβ. Both equations

(1.3) and (1.4) have been modified to be used with non-spherical probing particles [137], and in

this dissertation we provide equivalent equations applicable to non-isotropic materials such as

nematic fluids. Some of the advantages of PTM techniques are that they do not require mechanical

access to the sample, only an optical path, and they can be used to locally probe the material

under study, obtaining a mapping of its mechanical properties.

Among the active PTM techniques we find the “magnetic bead microrheometers” or

“magnetic tweezers” that were introduced above. They are based on the injection of magnetic

microparticles in the sample of interest, and the excitation through applied external magnetic fields

that induce known driving forces on the particles [51]. The displacements of the excited particles

are recorded, and the shear modulus of the fluid is measured by applying either equation (1.3) in

one-particle experiments or equation (1.4) in two-particle assays. A second active PTM technique

is known as “Optical Tweezers”. It makes use of highly focused laser beams to trap an optical

particle in the laser focus. The laser beam is accurately calibrated and the force that it applies on

the particle is know as a function of the particle position with respect to the laser focus [4, 11].

Similarly to magnetic tweezers, the excitation force is known, the particle displacement is recorded

and the fluid shear modulus is calculated. However, the forcing applied by the optical tweezers is

highly local, and they provide a higher control on the particle manipulation.

In a similar manner, passive PTM techniques track the motion of probing particles that

display Brownian motion due to thermal excitation. The instantaneous thermal force acting on
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the probing particle is not known, but the statistical description of its motion is well characterized

mathematically, and thus we can measure the shear modulus of the fluid from the statistical

properties of the problem. An important characteristic of PTM is that the thermal driving force

provides a broad spectrum of excitation frequencies, allowing to probe the material simultaneously

in a wide range of frequencies. The following section introduces passive PTM in more detail.

1.2 Passive Particle Tracking Microrheology

Due to the atomic nature of matter, microparticles suspended in a soft material experience

a continuous random motion due to thermal excitations. In brief, the molecular constituents of

matter are continuously vibrating and bouncing in a motion that is proportional to their thermal

energy content. These molecules randomly collide with the embedded microparticles, inducing

an exchange of momentum that translates into the random Brownian thermal motion of the

particles. This motion was first reported in 1828 by the Scottish botanist Robert Brown, in a work

later collected in [14] and further extended in [13]. Almost a century was necessary until this

phenomenon was mathematically described by Albert Einstein in [38, 39]. The simplest model of

Brownian motion predicts [9] that the microparticles move according to

ẋ(t) =
√

2D ·R(t), (1.5)

where x(t) indicates the displacement of the particle in any direction, ẋ(t) is the velocity of that

degree of freedom, t is the time, D is the diffusion coefficient and R(t) is any white noise process,

the simplest of which follow, for all t and τ

〈R(t)〉= 0, (1.6)

〈R(t),R(t + τ)〉= δ(τ) (1.7)

where 〈...〉 represents an ensemble average and δ the Dirac delta. Einstein made use of the

equipartition theorem [104, 155], that states that the energy content of each degree of freedom of
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any microscopical system in equilibrium is on average equal to

E =
1
2

kBT (1.8)

where E is the total energy of the system, kB = 1.3806488×10−23 m2 kg s−2 K−1 is the Boltz-

mann constant and T is the absolute temperature of the system, and he further identified the total

energy of the particle with its kinetic energy

EK =
1
2

n∑
∀ j

ẋ2
j(t), (1.9)

where ẋ j(t) represents the velocity of the particle in each one of its n degrees of freedom. Finally,

he calculated that the diffusion constant of a spherical particle of radius a embedded in a fluid of

viscosity η takes the form

D =
kBT

6πaη
. (1.10)

In 1995, Mason and Weitz [102] extended this theory to be able to measure the viscoelastic

response of soft materials. They model the hydrodynamics of a microparticle embedded in a

viscoelastic fluid by means of a generalized Langevin equation [62, 16]

mv̇(t) = fR(t)−
τ=t∫

τ=0

ζ(t− τ)v(τ)dτ, (1.11)

where m is the particle mass, v(t) its velocity, v̇(t) its acceleration, fR(t) the external force applied

on the particle and ζ(t− τ) a memory function, also known as response function, that quantifies

the hydrodynamic force applied on the particle as a function of the current velocity and the

previous history of velocities. By transforming equation (1.11) into Laplace space, multiplying

it for the velocity at the initial instant of time, taking an ensemble average and applying the
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equipartition theorem, we obtain the following equation

〈v(0), ṽ(s)〉= kBT

ζ̃(s)+m · s
. (1.12)

For very small particles that move slowly in a very viscous fluid the inertial terms are negligible

when compared to the viscoelastic terms, i.e. m · s� ζ̃(s), and equation (1.12) simplifies into

ζ̃(s) =
kBT

〈v(0), ṽ(s)〉 , (1.13)

which is an alternative expression of the fluctuation-dissipation theorem [114, 76]. We define the

one-dimensional Mean Squared Displacements (MSD) of an ensemble of particles in the direction

x as the ensemble average of the particle jumps in the coordinate x for each time τ

MSDx(τ) = 〈∆x2(τ)〉= 1
Nt

∑
∀t
[x(t + τ)− x(t)]2 , (1.14)

where Nt represents the number of times considered in the sum. It can be shown that, in the

frequency domain, the MSD are related to the velocity correlation as

〈∆x2(s)〉= 2
s2 〈v(0), ṽ(s)〉, (1.15)

and thus, we obtain a relation between the response function of the fluid and the MSD of

microparticles embedded in it

ζ̃(s) =
2kBT

s2〈∆x2(τ)〉 , (1.16)

that is known as the generalized Einstein equation.

Mason and Weitz [102] combined the generalized Einstein (1.16) and the generalized

Stokes (1.3) equations into a formula that relates the MSD of embedded microparticles with the
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complex shear modulus of the probed material

G̃(s) =
nkBT

3πas〈∆r̃2(s)〉 , (1.17)

where n is the number of dimensions of the motion of the particle and 〈∆r̃2(s)〉 are the n-dimensional

MSD of the particle

〈∆r̃2(s)〉=
j=n

∑
j=1
〈∆x̃2

j(s)〉. (1.18)

The equation (1.17) is known as the Generalized Stokes Einstein Relationship (GSER), and is the

base of Passive One-Point Particle Tracking Microrheology.

Passive one-point PTM has many advantages, which we summarized in the previous

section, that make it specially suitable to probe soft materials. However, this technique also

presents certain limitations that we need to know in order to correctly apply it, and even to

overcome them, as we will do in the following chapters of this dissertation. Due to the fact that the

driving force of the probing particles is very small, in the order of kBT , only very soft materials

can be probed with passive PTM. Furthermore, the displacements of the probing particles will

be very small, and extremely precise tracking algorithms, able to detect bead displacements of

the order of tenths of nanometers, become essential. On the bright side, such small energies are

unlikely to distort the material or to induce non-linear hydrodynamic effects, a concern commonly

associated to active microrheology techniques.

An important characteristic of the Einstein equation (1.16) is that it assumes thermo-

dynamic equilibrium. This is a safe hypothesis for many soft materials, where the only energy

present is in the form of thermal excitations, but it might be inappropriate for active materials,

such as the cell cytoplasm, where the presence of random active motors might induce an excitation

with a white noise spectrum different than (1.10) [55].

On the other hand, the generalized Stokes equation (1.3) rely on several assumptions that

need to be assessed in order to correctly apply PTM. For once, it is only applicable to spherical

particles, although advances have been made in order to study the dynamic of non-spherical

probing particles [137]. In addition, it assumes a homogeneous probed material that behaves as a
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continuum. This implies that the probing microparticle must be larger than any structural element

of the probed material, such as the mesh size, persistence length, etc. In contrast, the Stokes flow

assumption is only applicable to low Reynolds number flows, where Re = ρUL/η� 1 is the

Reynolds number, ρ is the density of the material, U and L are characteristic velocity and length

of the flow and η is a characteristic viscosity. This implies that the particle must be smaller than

the relevant length scale of the flow around the particle. These two conditions impose an upper

and lower bound for the radius of the probing particle, and we need to asses their compatibility in

order to perform a PTM measurement.

At the same time, the Stokes equation assumes that the probed fluid is isotropic and its

dynamics can be described by just one complex shear modulus G̃(s). However, many materials of

interest display complex dynamics that prevent us from directly using equation (1.3), and thus we

need to correctly model the dynamics of the probing microparticles in order to extract the actual

microrheology information of the material. In the following chapters of this dissertation we will

focus on studying two examples of great practical interest: directional materials, that cannot be

described by just one shear modulus, and membranes, that don’t follow the linear Stokes equation.

The final limitations of the Stokes model that we will mention in this introduction are

the physico-chemical interactions between the probing particle and the surrounding medium. As

an example, microparticles embedded in a polymer solution can locally create depletion zones

around it and thus modifying the local diffusivity. Additionally, the particle motion can induce

local compressibility on an otherwise incompressible polymer. Furthermore, the Stokes equation

assumes no slip on the particle surface, and electrically charged or chemically reacting particles

can induce partial or total slip on the particle surface. Even more, probing microparticles can

induce molecular anchoring on their surface, locally modifying the polymer structure. All of

these phenomena are restricted to a small region around the particle surface and will modify

its dynamics. As a consequence, they might prevent us from accurately measuring the material

properties of the sample, and affected one-point PTM experiment will render effective diffusivities

of the particles instead of the actual shear modulus of the probed material.

In order to overcome this local effects, in 2000 Crocker et al. introduced a technique
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called Two-Point Particle Tracking Microrheology (2PPTM) [30], that was later mathematically

justified by Levine and Lubensky [87, 88]. It is based on the correlation of the motion of pairs of

distant hydrodynamically interacting particles (1.4), and its formulation takes the form

G̃2P(s) =
kBT

2πrα,βs〈∆r̃α(s),∆r̃β(s)〉
=

kBT
4πrα,βs〈∆θ̃α(s),∆θ̃β(s)〉

, (1.19)

where ∆rα and ∆θθ represent the displacements of particle α along the line that connects the

centers of both particles, and the perpendicular direction respectively. Here, we have used the

definition of the cross-MSD between any two degrees of freedom x and y

〈∆x(τ),∆y(τ)〉= 1
Nt

∑
∀t
[x(t + τ)− x(t)] [y(t + τ)− y(t)] . (1.20)

It is important to note that, while the GSER (1.17) uses one particle to locally probe the surround-

ing medium, equation (1.19) correlates the motion of pairs of distant particles and provides an

average shear modulus in the region between the particles. Furthermore, equation (1.19) is not

dependent on any of the particles radii and as long as the particles are far apart, i.e.
∣∣~rα,β

∣∣� aα,aβ,

the shear modulus it provides is insensitive to the local interactions of the probing particles with

the medium [30, 87, 88]. For this reason, the use of 2PPTM is preferred over One-Point Particle

Tracking Microrheology (1PPTM) when studying complex materials where the mere presence of

the probing particles introduce distortions to the material and to its local rheology. On the other

hand, the hydrodynamic interactions between pairs of distant particles are weaker than each own

particle’s thermal motion, i.e. they decay as r−1
α,β, and thus they are more sensitive to experimental

noise and more experimental measurements need to be performed in order to obtain statistically

significant results.

1.3 Outline of the Dissertation

In the preceding sections we provided a short introduction to the importance of the

mechanical properties of the cell cytoplasm and cell constituents, and their relation to the correct
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cell function. We then summarized the different microrheological methods used to measure their

shear moduli. We concluded by providing an overview of passive particle tracking microrheology

and provided the formulation and limitations of both the one- and two-point variants. In the

following, we will address different mechanical limitations of PTM when applied to complex

materials. We provide suitable models for certain materials that cannot be regarded as isotropic,

we modify the existing PTM to take into account the particularities of such media, and we apply

the obtained formulation to experimental samples.

In chapter 2 we focus on a limitation that hinders the accurate application of current

PTM implementations to complex materials. In a typical PTM experiment we measure the

displacement of the probing microparticles, and calculate their MSD in the time domain (2.1).

However, the GSER formulation (1.17) requires us to provide the Laplace transform of the MSD

and it yields the shear modulus in the frequency domain. Because the MSD are measured on a

finite time interval and over a discrete set of time points, the numerical Laplace transform methods

that are currently used provide results that contain high numerical errors. In this dissertation,

we provide a method based on a least-square fit of the MSD to a physically satisfactory sum of

functions that have a known Laplace transforms. We analyze the accuracy of this novel approach

and compare it to the de facto approximation used in experimental PTM, and we find that the our

approach renders results that are highly more accurate.

In chapter 3 we study a characteristic of many biological and technological materials that

is not accounted for in the current microrheology formulations: directionality. We first provide the

fluid equations that direct the motion of a spherical particle moving at low Reynolds number in a

directional fluid, and from them we calculate the drag force experienced by the particle, providing

a generalization of the Stokes equation (1.3) for directional fluids. We find that the motion of

the particle is described by three complex shear moduli, as opposed to isotropic materials that

are described by just one. We then generalize the GSER to account for the directionality of the

probed material, defining the Directional GSER (DGSER). We find that, even for particles that

are able to move in three-dimensions, the DGSER is able to provide, at most, two independent

equations that are not enough to calculate the three independent viscoelastic shear moduli of a
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directional fluid. Nevertheless, we use the DGSER to provide an estimation of the errors rendered

by previous PTM methods when applied to directional materials.

In chapter 4 we study the interacting motion of pairs of distant particles embedded in a

directional viscoelastic fluid. We calculate the form of the velocity that one particle induces on

the other, in a generalization of equation (1.4). We then use this formula to generalize the form

of 2PPTM (1.19) when applied to directional fluids, in a method called Directional Two-Point

Particle Tracking Microrheology (D2PTM). We find that D2PTM provides three independent

equations that allows us to calculate the three complex shear moduli of a directional viscoelastic

material. In order to test the applicability of the method, we first simulate the motion of groups of

interacting particles embedded in a directional viscoelastic fluid. From their motion, we calculate

their MSD and the shear moduli of the simulated fluid, finding a good agreement with the actual

values initially prescribed to the simulation. In order to illustrate the applicability of D2PTM

to experimental samples, we studied the microrheology of nematic F-actin gels. Through the

application of shear flow to the samples, the molecules of the F-actin gels align in the direction

of the flow, conferring directional mechanical properties to the sample. By applying D2PTM to

these directional gels, we were able to measure, for the first time, the directional shear moduli of

nematic F-actin.

In chapter 5 we study the applicability of Live-Cell PTM to another type of samples that

are not isotropic: we analyze the mechanical properties of the membrane-cortex complex of RBC.

Their membrane-cortex complex is a thin layer bounded by other fluids above and bellow, and the

probing microparticles used in the PTM experiment are not free to move in three-dimensions,

but they are restricted to move in the membrane-cortex complex. We model the motion of the

probing microparticles in this viscoelastic anisotropic environment, and review the formulation of

1PPTM and 2PPTM when applied to this medium. We then apply both formulations to particles

embedded in the membrane-cortex complex of RBC and compare the results to the effective shear

moduli provided by isotropic PTM.



Chapter 2

On the Laplace Transform of Particle

Tracking Measurements into

Microrheology Data

2.1 Introduction

In a PTM experiment, we track the motions of individual or groups of probing particles,

and from them we calculate the shear moduli of the material. This process entails the measurement

of the time evolution of the location of the center of each particle,~rα(t), the calculation of the

average MSD as a function of the time steps, the transformation from the time domain into

frequency space, and the connection of this mobility data with the shear moduli of the material.

For each coordinate x of a particle, the MSD are defined as the ensemble average over N particles

MSDx(τ) = 〈∆x2(τ)〉= 1
N

α=N

∑
α=0

∑
∀t
[xα(t + τ)− xα(t)]

2 , (2.1)

15
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and the cross-MSD of two degrees of freedom x and y

MSDx,y(τ) = 〈∆x(τ),∆y(τ)〉= 1
N

α=N

∑
α=0

∑
∀t
[xα(t + τ)− xα(t)] [yα(t + τ)− yα(t)] , (2.2)

where these degrees of freedom are typically either two coordinates of a particle, or two coordi-

nates of two interacting particles. In passive one-point PTM of isotropic materials, the MSD are re-

lated to the shear moduli of the material through the Generalize Stokes-Einstein Relationship [102],

provided in equation (1.17). On the other hand, in passive two-point PTM of isotropic materials,

the shear moduli is related to the cross-MSD as of interacting particles through equation (1.19).

In active microrheology these formulas need to be adapted to take into account the shape of the

driving force.

In this chapter, we will focus on the transformation from the time domain to the Laplace

frequency space, the problems and particularities of the process, the approaches taken in previous

studies, and a proposed method to highly improve the results.

2.2 The Γ-Approximation to the Laplace Transform

In [102], Mason and Weitz firstly introduced the formulation of one-point PTM, and

suggested to transform ∆r2(τ) into ∆r̃2(s) by performing a numerical Laplace transform, i.e. by

performing the numerical integral

〈∆r̃2(s)〉=
τ=∞∫

τ=0

〈∆r2(τ)〉e−sτdτ (2.3)

for each complex frequency s = c+ iω. On the other hand, in [53, 132] the authors propose to

apply a standard Fast Fourier Transform (FFT), obtain 〈∆r̃2(ω)〉 from the coefficients calculated,

and identify s = i ·ω. However, since 〈∆r2(τ)〉 is only known at discrete time points of a finite

time interval, the two methods will introduce numerical errors in the frequency extremes due to

the truncation of the temporal data set [100, 101].

In order to solve this issue, in [103, 101] the authors propose the Γ-approximation to the
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Laplace transform. It consists in locally approximate 〈∆r2(τ)〉, around each frequency s, by a

power law and substitute 〈∆r̃2(s)〉 by the analytic Laplace transform of the approximation. The

MSD are locally approximated around a complex frequency s as

〈∆r2(τ)〉 ≈ A · (sτ)α(s), (2.4)

that has the exact analytic Laplace transform

L
[
A · (sτ)α(s);τ→ s

]
= A · sα(s) Γ [1+α(s)]

s1+α(s)
. (2.5)

The coefficient A is given by

〈∆r2(τ = i
s)〉= A · i α(s), (2.6)

and the exponent is calculated as

α(s) =
∂ ln
[
〈∆r2(τ)〉

]

∂ ln(τ)

∣∣∣∣∣
τ=i/s

. (2.7)

It is important to note here that 〈∆r2(τ)〉 is known at discrete time points and typically contains

experimental noise. In order to calculate the logarithmic slope α(s), ln
[
〈∆r2(τ)〉

]
is typically

fitted, as a function of ln(τ), by a polynomial [30]. By using equations (2.4)-(2.7) we can

approximate the Laplace transform of the MSD as

s〈∆r̃2(s)〉 ≈ 〈∆r2(τ = i
s)〉i −α(s)

Γ


1+

∂ ln
[
〈∆r2(τ)〉

]

∂ ln(τ)

∣∣∣∣∣
τ=i/s


 . (2.8)

The slope of the MSD of a particle thermally diffusing in a viscoelastic material, α(s), is

physically bounded between 0 for an elastic medium and 1 for a viscous fluid. For this

range of slopes, Mason [101] provides a polynomial approximation of the gamma function,

Γ [1+α]≈ 0.457(1+α)2−1.36(1+α)+1.90, with a maximum error of 12%. However, given

the widespread availability of the gamma function in most modern programing environments, we
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will not consider the polynomial approximation in this analysis. The shear moduli provided by

one-point PTM when the Γ-approximation is used is

G̃Γ(s) =
nkBTi α(s)

3πa〈∆r2(τ = i
s)〉Γ [1+α(s)]

. (2.9)

The Γ-approximation has the advantage of being algebraic and not requiring the calculation of

integrals, while retaining a maximum error of around 15% in the absolute value of the shear

modulus [101], and has become the de facto method used in microrheology analysis. On the other

hand, it comes with its drawbacks. Since it is a local transform, not a global integral, it neglects

the important contributions from distant time points. Furthermore, the small error in the absolute

value doesn’t guarantee a similar small error in the storage and loss moduli. The argument of

the complex shear moduli (2.9) is given by π

2 ·α(s) rad. When either storage or loss modulus is

larger than the other, a small variation on α(s) will have a small effect in the larger moduli, and a

comparatively large effect in the smaller. In order to study the impact of an error in α(s) on the

storage and loss moduli, we define a non-dimensional shear modulus

GΓ(s) = G̃Γ(s) ·
3πa〈∆r2(τ = i

s)〉Γ [1+α(s)]
nkBT

= i α(s) = cos
[

π

2 ·α(s)
]
+ i ·sin

[
π

2 ·α(s)
]
. (2.10)

It is a complex number with the same complex argument than the shear modulus, and unity

absolute value. Thus, it is a great benchmark for the distinct impact that small errors have on the

storage and loss moduli. An error ∆α(s) in the determination of the slope will induce an error

∆G(s) in the non-dimensional shear modulus such that

GΓ(s)+∆GΓ(s) =
Γ [1+α(s)]

Γ [1+α(s)+∆α(s)]
· i α(s)+∆α(s). (2.11)

For small errors, equation (2.11) can be linearized as

GΓ(s)+∆GΓ(s)≈ cos
[

π

2 ·α(s)
]
− π

2 ∆α(s)sin
[

π

2 ·α(s)
]

(2.12)

+ i ·
{

sin
[

π

2 ·α(s)
]
+ π

2 ∆α(s)cos
[

π

2 ·α(s)
]}

.
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Re

Im
i α(s)

π
2
·α(s)
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Im

i α(s)π
2
·α(s)

(a) (b)

Figure 2.1: Schematic representation of the complex number i α(s) that defines the ratio between
storage and loss moduli in the Γ-approximation. We depict (a) a material with high viscosity
and low elasticity and (b) a material with low viscosity and high elasticity. Its argument (angle
with the real axis) is determined by π

2 ·α(s).

Here, we can consider two extreme cases: a very viscous fluid and a very elastic material, that will

help us understand why small errors differently affect the storage and loss moduli. In Figure 2.1

we provide a visual representation of the issue. A fluid with high viscosity and low elasticity, and

thus α(s) . 1, is depicted in Figure 2.1 (a). Under this simplification, equations (2.11)-(2.12)

approximate to

GΓ(s)≈
π

2

(
1−α(s)

)
+ i ·

[
1− π2

8

(
1−α(s)

)2]
, (2.13)

GΓ(s)+∆GΓ(s)≈
π

2

[(
1−α(s)

)
−∆α(s)

]
+ i ·

[
1− π2

8

((
1−α(s)

)
−∆α(s)

)2]
. (2.14)

By inspecting the above equations, one can see that the relative importance of the error in the

storage modulus is much higher than the influence in the loss modulus. Both errors grow with

∆α(s) and with α(s) approaching 1. Furthermore, when ∆α(s)> 1−α(s), the storage modulus

becomes unphysically negative. Correspondingly, in Figure 2.1 (b) we show a material with low

elasticity and high viscosity, i.e. α(s). 0. In the presence of small errors, equations (2.11)-(2.12)

approximate to

GΓ(s)≈ 1− π2

8
α(s)2 + i · π

2
α(s), (2.15)
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GΓ(s)+∆GΓ(s)≈ 1− π2

8
(α(s)+∆α(s))2 + i · π

2
(
α(s)+∆α(s)

)
. (2.16)

For this material, the relative influence of the error in the storage and loss moduli increases with

increasing ∆α(s) and with decreasing α(s). Furthermore, when ∆α(s)<−α(s), the loss modulus

becomes unphysically negative.

In the following sections, we apply the Γ-approximation to four typical materials, an

isotropic viscous liquid, an isotropic elastic solid, a viscoelastic Kelvin-Voigt gel and a viscoelastic

Maxwell gel, and assess the errors introduced by the approximation.

2.2.1 Isotropic Viscous and Elastic Materials

Isotropic viscous liquids are characterized by a zero elasticity coefficient and a constant

viscosity η. They are represented by a viscous damper with viscosity constant η, as shown in

η

Figure 2.2: Schematic representation for isotropic viscous fluids. It consists on a damper with
viscosity constant η.

Figure 2.2. Their complex shear moduli have the form

G̃(s) = s ·η. (2.17)

The mean squared displacements of probing microparticles embedded in them are, according to

the GSER (1.17),

〈∆r̃2(s)〉= nkBT
3πas2η

. (2.18)
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The above equations has the exact analytic inverse Laplace transform

〈∆r2(τ)〉= nkBT
3πaη

τ. (2.19)

By applying equation (2.7) to equation (2.19) we find α(s) = 1, and equation (2.9) matches

exactly equation (2.18). Thus, isotropic viscous materials are perfectly described by the gamma

approximation.

At the other end of the spectrum, isotropic elastic solids are described by a constant

elasticity coefficient µ and a zero viscosity constant. They are represented by a spring, as depicted

in Figure 2.3. Their complex shear moduli are described by

µ

Figure 2.3: Schematic representation for isotropic elastic materials. It consists on a spring with
elasticity constant µ.

G̃(s) = µ, (2.20)

and the MSD of embedded microparticles have the form

〈∆r̃2(s)〉= nkBT
3πasµ

, (2.21)

with exact analytical inverse Laplace transform

〈∆r2(τ)〉= nkBT
3πaµ

. (2.22)

The application of equation (2.7) to (2.22) provides a slope α(s) = 0 and thus equation (2.9) also

provides an exact description of the material’s microrheology.
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η

µ
Figure 2.4: Schematic representation of the Kelvin-Voigt model for viscoelastic fluids. It
consists on a damper with viscosity constant η in parallel with a spring of elasticity constant µ.

2.2.2 Isotropic Kelvin-Voigt Viscoelastic Fluids

The Kelvin-Voigt model describes one of the simplest cases of viscoelastic fluids. It

consists on a purely viscous damper, with viscosity constant η, connected in parallel to a purely

elastic spring, with elasticity constant µ, as illustrated in Figure 2.4. The shear modulus of the

group takes the form

G̃(s) = µ+ s ·η, (2.23)

with the MSD of embedded probing particles being, as a function of the frequency,

〈∆r̃2(s)〉= nkBT
3πaη

1
s

1
s+µ/η

, (2.24)

and as a function of time,

〈∆r2(τ)〉= nkBT
3πaµ

(
1− e−

µ
η

τ
)
. (2.25)

In Figure 2.5 we illustrate the MSD, as a function of the time separation, of microparticles

embedded in a Kelvin-Voigt fluid and subjected to Brownian thermal motion. The example was

chosen with the viscoelastic parameters µ/η= 1. Two features of the plot become readily apparent.

For short time separations, τ� η

µ , (i.e. high frequencies ω� µ
η

), the material asymptotically

behaves as a viscous fluid, i.e. the slope of the MSD approaches 1. At long time separations τ� η

µ

(low frequencies ω� µ
η

), the material asymptotically approaches to an elastic solid behaviour,
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Figure 2.5: Normalized MSD, as a function of the time separation τ, of particles embedded in a
Kelvin-Voigt viscoelastic fluid and subjected to Brownian thermal motion ( ). The slope 0
trend ( ) is plotted at high frequencies, and the slope 1 trend ( ) at low frequencies. The
material is defined by the parameter ratio µ/η = 1.

i.e. the slope of the MSD approaches 0.

The logarithmic slope (2.7) of equation (2.25) takes the form

α(s) =
µ
η

i
s

e−
µ
η

i
s

1− e−
µ
η

i
s
, (2.26)

and the Γ-approximation of the MSD (2.8) and the shear modulus (2.9) become

〈∆r̃2
Γ(s)〉=

nkBT
3πaµ

1− e−
µ
η

i
s

s
· i −α(s) ·Γ [1+α(s)] , (2.27)

G̃Γ(s) =
µ · i α(s)

(
1− e−

µ
η

i
s
)
·Γ
[
1+α(s)

] . (2.28)

In the panel (a) of Figure 2.6 we show the real and imaginary part of the MSD, as

a function of frequency, of microparticles embedded in a Kelvin-Voigt fluid and subjected to

Brownian thermal motion (2.24), as well as the results provided by the Γ-approximation (2.27).

In panel (b), we show the percentage error of the Γ-approximation in the real and imaginary

parts as well as in the absolute value. One can see that the maximum error in the absolute

value is never higher than 20%, being the maximum near the “knee” region of the MSD (see

Figure 2.5) while for most frequencies the error lies below 10%. The Γ-approximation generally



24

10−2 10−1 100 101 10210−6

10−5

10−4

10−3

10−2

10−1

100

101

102

〈∆
r̃2

(s
)〉
·3
π
a
µ

2
/n
k
B
T
η

−Re
(
〈∆r̃2(ω)〉

)

−Im
(
〈∆r̃2(ω)〉

)

−Re
(
〈∆r̃2

Γ(ω)〉
)

−Im
(
〈∆r̃2

Γ(ω)〉
)

10−2 10−1 100 101 102

ω (s−1)

10−3

10−2

10−1

100

101

102

103

E
rr

or
(%

)

Err
[
Re
(
〈∆r̃2(ω)〉

)]

Err
[
Im

(
〈∆r̃2(ω)〉

)]

Err
[∣∣〈∆r̃2(ω)〉

∣∣]

(a)

(b)

Figure 2.6: Normalized MSD and their Γ-approximation, as a function of frequency ω, of parti-
cles embedded in a Kelvin-Voigt viscoelastic fluid, with the parameter ratio µ/η = 1, and sub-
jected to Brownian thermal motion. (a) Exact real ( ) and imaginary ( ) components of the
MSD, and the Γ-approximation of the real ( ) and imaginary ( ) parts. (b) Percentage
error of the real ( ) and imaginary ( ) parts, and the absolute value ( ) of the
Γ-approximation with respect to the exact value.

accurately describes, at each individual frequency, the biggest component of the MSD (the real or

the imaginary parts), while failing to accurately model the smallest component. This is patent

at low frequencies, where the error in the real part reaches 100% in the real component while

tending towards 0% in the imaginary component. Correspondingly, at high frequencies the real

part is larger than the imaginary part, and thus the error in the imaginary part is much larger.

In Figure 2.7 we depict similar graphs for the exact shear moduli and its Γ-approximation.

We can also see here that the maximum error in the absolute value of the shear modulus is 26%,
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Figure 2.7: Normalized shear modulus and its Γ-approximation, as a function of fre-
quency ω, of a Kelvin-Voigt viscoelastic fluid with the parameter ratio µ/η = 1. (a) Exact
storage G̃′ ( ) and loss modulus G̃′′ ( ), and the Γ-approximation of the real ( ) and
imaginary ( ) parts. (b) Percentage error of the storage ( ) and loss ( ) modulus,
and the absolute value ( ) of the Γ-approximation with respect to the exact value.

while the error stays below 10% for most frequencies. At low frequencies, the storage modulus

is much higher than the loss modulus, i.e. the material behaves more like an elastic solid than a

viscous fluid but the viscosity is never zero, and the error in the loss modulus tends towards 100%

while the error in the loss modulus is negligible. On the other hand, at higher frequencies the loss

modulus is much higher than the storage modulus, i.e. the material behaviour is viscous-like, the

error in the storage modulus reaches a 20% plateau while the error in the loss modulus decrease

with increasing frequencies.
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2.2.3 Isotropic Maxwell Viscoelastic Fluids

The Maxwell model is a representation of a viscoelastic fluid which consists on a purely

viscous damper, with viscosity constant η, connected in series to a purely elastic spring, with

elasticity constant µ, as illustrated in Figure 2.8. Despite having the same individual constituents

η µ

Figure 2.8: Schematic representation of the Maxwell model for viscoelastic fluids. It consists
on a damper of viscosity constant η in series with a spring of elastic constant µ.

than a Kelvin-Voigt material, its mechanical characteristics are very different. The assembly

presents a shear modulus

G̃(s) =
µ · s

s+µ/η
. (2.29)

The MSD of embedded particles subjected to thermal motion take the form, as a function of the

frequency,

〈∆r̃2(s)〉= nkBT
3πaµ

s+µ/η

s2 , (2.30)

whose analytic inverse Laplace transform is

〈∆r2(τ)〉= nkBT
3πaµ

(
1+

µ
η

τ

)
. (2.31)

Figure 2.9 shows the MSD, as a function of time separation, of microparticles embedded in a

Maxwell viscoelastic fluid and subjected to Brownian thermal motion. The fluid is characterized

by a ratio of viscoelasticity constants µ/η = 1. By comparing with Figure 2.5 one can see a

qualitative difference in the dynamics of both models. At high frequencies ω� µ
η

(i.e. short

time separations τ� η

µ ), the MSD in a Maxwell material present a slope approaching 0, i.e. it
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Figure 2.9: Normalized MSD, as a function of the time separation τ, of particles embedded
in a Maxwell viscoelastic fluid and subjected to Brownian thermal motion ( ). The slope 0
trend ( ) is plotted at low frequencies, and the slope 1 trend ( ) at high frequencies. The
material is defined by the parameter ratio µ/η = 1.

asymptotically approaches an elastic material. On the other hand, for low frequencies ω� µ
η

(i.e. long time separations τ� η

µ ), the slope of the MSD asymptotically go toward 1, i.e. it

asymptotically behaves as a viscous fluid.

The logarithmic slope (2.7) of equation (2.31) and the Γ-approximation of the MSD (2.8)

and shear moduli (2.9) of a Maxwell viscoelastic fluid take the form

α(s) =
µ
η

i
s

1
1+ µ

η

i
s

, (2.32)

〈∆r̃2
Γ(s)〉=

nkBT
3πaµ

1+ µ
η

i
s

s
· i −α(s) ·Γ [1+α(s)] , (2.33)

G̃Γ(s) =
µ · i α(s)

(
1+ µ

η

i
s

)
·Γ
[
1+α(s)

] . (2.34)

Panel (a) of Figure 2.10 shows the real and imaginary parts of the MSD, as a function of

frequency, of microparticles embedded in a Maxwell fluid and subjected to Brownian thermal

motion (2.30), as well as the results provided by the Γ-approximation (2.33). Panel (b), shows the

percentage error of the Γ-approximation in the real and imaginary parts as well as in the absolute

value. We can see that the Γ-approximation yields a worse result for a Maxwell material than

a Kelvin-Voigt material. The maximum error is around 26%, and the portion of the frequency
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Figure 2.10: Normalized MSD and their Γ-approximation, as a function of frequency ω, of par-
ticles embedded in a Maxwell viscoelastic fluid, with the parameter ratio µ/η = 1, and subjected
to Brownian thermal motion. (a) Exact real ( ) and imaginary ( ) components of the
MSD, and the Γ-approximation of the real ( ) and imaginary ( ) parts. (b) Percentage
error of the real ( ) and imaginary ( ) parts, and the absolute value ( ) of the
Γ-approximation with respect to the exact value.

domain with errors higher than 10% is now larger. As expected, the Γ-approximation produces

a better result for the biggest component of the MSD than for the smallest component. At low

frequencies, the error in the imaginary part grows larger than 50% while the error in the real part

falls bellow 1%. Likewise, at high frequencies the error in the real part exceeds 50% while the

error in the imaginary part goes bellow 1%.

Figure 2.11 shows analogous graphs for the exact shear moduli and its Γ-approximation.

The maximum error in the absolute value of the shear modulus is 20%, lower than the correspond-
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Figure 2.11: Normalized shear modulus and its Γ-approximation, as a function of frequency ω,
of a Maxwell viscoelastic fluid with the parameter ratio µ/η = 1. (a) Exact storage G̃′ ( )
and loss modulus ( ), and the Γ-approximation of the real ( ) and imaginary ( )
parts. (b) Percentage error of the storage ( ) and loss ( ) modulus, and the absolute
value ( ) of the Γ-approximation with respect to the exact value.

ing value of a Kelvin-Voigt material, while the portion of the frequency domain with errors below

10% is wider. The storage modulus at low frequencies is much smaller than the loss modulus, and

the error in the former goes above 50% while the error in the later falls bellow 1%. On the other

hand, for high frequencies the loss modulus is larger than the storage modulus, and thus the error

in the real part exceeds 50% while the error in the imaginary part goes under 1%.
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2.3 The Power-Exp-Approximation to the Laplace Transform

In the preceding sections we showed that, despite being an useful tool for purely viscous

and purely elastic materials, the Γ-approximation renders high qualitative and quantitative errors

when applied to viscoelastic fluids. Consequently, here we propose a more accurate approximation

to the Laplace transform of experimental data. Our approach has the advantage of being global,

not local, whilst not requiring the evaluation of numerical integrals.

Here, we propose to perform a least square fit of the experimentally measured 〈∆r2(τ)〉

to a series of power-exponential functions

〈∆r2(τ)〉 ≈∑
j

A j · τB j · e−C j·τ, (2.35)

where A j, B j and C j are free parameters. This approach has the advantage of being global, i.e. the

fit describes the whole τ domain, and the choice of functions present a known exact analytical

Laplace transform

〈∆r̃2(s)〉 ≈∑
j

A j ·
Γ [B j +1]

[s+C j]
B j+1 , (2.36)

that is valid for B j >−1. An interesting feature of this method is that we can constrain the fitted

constants by making use of known physical information about the system, such as restricting the

slope of the MSD between 0 and 1. For simple fluids, the fit will be accurate with one or two

terms, while for materials with complex rheology, we can start the fit with two parameters and

iteratively increase their number in order to achieve a better approximation in the whole domain.

Unless otherwise stated, all the fits shown in this chapter were performed with exactly two terms,

i.e. six parameters A0, A1, B0, B1, C0 and C1.

In the following sections, we will assess the accuracy of the power-exponential fit, and

compare it to the results provided by the Γ-approach. We will consider a purely viscous, a

purely elastic, a Kelvin-Voigt and a Maxwell viscoelastic fluids. We fit their MSD to equation

(2.35) by using the general purpose Least-Square fit algorithm provided by SciPy [67], use the
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calculated coefficients to calculate the Laplace transform of the MSD (2.36), and finally apply the

GSER (1.17) to calculate the material’s shear moduli.

2.3.1 Isotropic Viscous and Elastic Materials

In §2.2.1 we introduced the isotropic viscous and elastic materials, we provided the

form of their shear moduli (equations 2.17 and 2.20), and the MSD of embedded microparticles

subjected to Brownian thermal motion in the time domain (equations 2.19 and 2.22) and in the

frequency domain (equations 2.18 and 2.21). We also justified that the Γ-approximation provides

exact results for these types of materials. In this section, we illustrate the use of the Power-Exp

approach, analyze the obtained results and compare them with the Γ-approach, finding a virtually

equivalent accuracy for purely viscous and elastic materials.

In Figure 2.12 we show the normalized MSD, as a function of time separation τ, of

microparticles subjected to Brownian thermal motion and embedded in a purely viscous fluid

(panel a) and in a purely elastic material (panel c), together with their Power-Exp approximation.

In panels (b) and (d) we report the percentage error of the approximation. We can see that the

Power-Exp approximation provides very low numerical errors, and the results for simple viscous

and elastic materials are highly accurate. Even though these are reasonable errors for most

applications, the accuracy of the fit can be further increased by optimizing the fitting algorithm.

As important as the local value of the MSD is their local slope, since the slope greatly affects their

Laplace transform. In Figure 2.13 we show the exact MSD in Laplace space, and the predictions

given by the Γ-approach and the Power-Exp fit, together with the percentage error of the later. The

Γ-approach provides exact results for these simple materials, while the Power-Exp fit provides

similarly good results, with maximum errors of around 10−2%, that, as we stated before, could

even be reduced with a better optimization of the fit algorithm.

In Figure 2.14 we plot the exact shear moduli of a viscous fluid (panel a) and an elastic

material (panel c) and the values provided by the Γ-approximation and the Power-Exp fit. In

panels (b) and (c), we show the error of the Power-Exp approximation. As with the MSD, the

Γ-approach privies exact values for the shear moduli of purely viscous and purely elastic materials.
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Figure 2.12: Normalized MSD and their Power-Exp approximation, as a function of the
time separation τ, of microparticles subjected to Brownian thermal motion and embedded in
purely viscous (a) and elastic (c) materials. Lines: exact values ( ). Symbols: Power-Exp
approximation (∆). Percentage error of the Power-Exp approximation (∆) when applied to purely
viscous (b) and elastic (d) materials.

On the other hand, the Power-Exp approximation provides a very accurate approximation.

In this section, we have seen that the Power-Exp approximation, when applied to

purely viscous and purely elastic materials, provides results that are virtually as accurate as

the Γ-approximation. In the next section we will analyze how the two approximations compare

for more complex viscoelastic materials.

2.3.2 Isotropic Kelvin-Voigt and Maxwell Viscoelastic Fluids

Isotropic Kelvin-Voigt and Maxwell viscoelastic fluids were described in §2.2.2 and

§2.2.3. The form of their shear moduli was given in equations (2.23) and (2.29), the MSD of

embedded microparticles subjected to Brownian thermal motion were described, in the time

domain, by equations (2.25) and (2.31), and in the frequency domain by equations (2.24) and

(2.30). The Γ-approximation to the MSD and shear modulus was also assessed, finding varying
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Figure 2.13: Normalized MSD and their Γ and Power-Exp approximations, as a function of
frequency ω, of microparticles subjected to Brownian thermal motion and embedded in purely
viscous (a) and elastic (c) materials. Lines: exact values of the real ( ) and imaginary ( )
parts, real ( ) and imaginary ( ) parts of the Γ-approximation. Symbols: real (—) and
imaginary (›) parts of the Power-Exp approximation. Percentage error of the real (—) and
imaginary (›) parts of the Power-Exp approximation when applied to purely viscous (b) and
elastic (d) materials.

errors depending the relative values of the storage and loss moduli. In this section, we apply the

Power-Exp approximation, we compare it with the Γ-approach, and we find consistently more

accurate results with our proposed method.

In Figure 2.15 we show the normalized MSD, as a function of time separation τ, of

microparticles subjected to Brownian thermal motion and embedded in a Kelvin-Voigt (panel a)

and Maxwell (panel c) viscoelastic fluid, together with their Power-Exp approximation. In

panels (b) and (d) we report the percentage error of the Power-Exp approximation. It can be seen

that the numerical errors of the Power-Exp approach are very low, and thus, it can be used to

accurately fit the MSD in Kelvin-Voigt and Maxwell viscoelastic fluids.

In Figure 2.16 we show the exact MSD in Laplace space, and the predictions given

by the Γ-approach and the Power-Exp fit, together with the percentage error of the later. As
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Figure 2.14: Normalized shear moduli and their Γ and Power-Exp approximations, as a function
of frequency ω, of purely viscous (a) and elastic (c) materials. Lines: exact values of the
storage G̃′ ( ) and loss G̃′′ ( ) moduli, real ( ) and imaginary ( ) parts of the
Γ-approximation. Symbols: storage (—) and loss (›) moduli provided by the Power-Exp
approximation. Percentage error of the real (—) and imaginary (›) parts of the Power-Exp
approximation when applied to purely viscous (b) and elastic (d) materials.

explained in §2.2.2 and §2.2.3, the Γ-approximation provides fairly accurate results in the largest

component of the MSD, either the real or the imaginary part, and a very poor approximation for

the smallest, reaching errors of around 100%. In contrast, the Power-Exp approximation provides

a consistently more accurate approximation, with a maximum error of around 1% at the lowest

frequencies, and errors of around or less than 10−2% for most other frequencies.

In Figure 2.17 we depict the exact shear moduli of a Kelvin-Voigt (panel a) and a

Maxwell viscoelastic fluid (panel c) and the values provided by the Γ-approximation and the

Power-Exp fit. In panels (b) and (c), we show the error of the Power-Exp approximation. Much

like with the MSD, the Γ-approximation provides a much better fit for the largest storage or loss

modulus, and a poor fit for the smallest. On the other hand, the Power-Exp fit render consistently

more accurate results, with errors typically much lower than 1%.
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Figure 2.15: Normalized MSD and their Power-Exp approximation, as a function of the time
separation τ, of microparticles subjected to Brownian thermal motion and embedded in a
Kelvin-Voigt (a) and Maxwell (c) viscoelastic fluid. Lines: exact values ( ). Symbols:
Power-Exp approximation (∆). Percentage error of the Power-Exp approximation (∆) when
applied to Kelvin-Voigt (b) and Maxwell (d) viscoelastic fluids.

In summary, in this section we have shown that, for typical viscoelastic fluids, the

Power-Exp approximation performs exceptionally well, even at the frequencies where the

Γ-approach breaks, and not performing worse, at any frequency, than the later. Furthermore, the

Power-Exp approach inherently has the needed flexibility to accurately fit viscoelastic fluids that

are more complex than the ones shown in this chapter.

2.4 Conclusions

Due to the nature of the PTM experiments, the measured MSD are acquired in the time

domain, but the calculated quantity of interest, the shear modulus, needs to be prescribed in the

frequency domain. Consequently, a key step to connect those quantities is to accurately perform

a numerical Fourier or Laplace transform of the experimental data. Several approaches have
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Figure 2.16: Normalized MSD and their Γ and Power-Exp approximations, as a function
of frequency ω, of microparticles subjected to Brownian thermal motion and embedded in
a Kelvin-Voigt (a) and Maxwell (c) viscoelastic fluid. Lines: exact values of the real ( )
and imaginary ( ) parts, real ( ) and imaginary ( ) parts of the Γ-approximation.
Symbols: real (—) and imaginary (›) parts of the Power-Exp approximation. Percentage error
of the real (—) and imaginary (›) parts of the Power-Exp approximation when applied to
Kelvin-Voigt (b) and Maxwell (d) viscoelastic fluids.

been proposed in the literature, such as a numerically performing the Laplace transform integral,

the use of an FFT routine, and the de facto standard in microrheology analysis, the Γ-approach.

In this chapter, we have studied the accuracy of the later, finding that it is highly accurate for

simple viscous and elastic materials, while introducing high quantitative and qualitative errors for

complex viscoelastic fluids. As a consequence, we proposed a new method, based on globally

fitting the measured MSD to a series of power-exponential functions, that have a known analytical

Laplace transform. We have studied the accuracy of this approximation, providing some examples

of application. We have found that, for purely viscous and elastic materials, as well as for complex

Kelvin-Voigt and Maxwell viscoelastic fluids, the Power-Exp approximation provides consistently

highly accurate results, shaping up as a powerful tool in microrheology analysis. Throughout this

chapter, all of the presented examples were fitted by keeping only two terms in the Power-Exp
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Figure 2.17: Normalized shear moduli and their Γ and Power-Exp approximations, as a function
of frequency ω, of Kelvin-Voigt (a) and Maxwell (c) viscoelastic fluids. Lines: exact values
of the storage G̃′ ( ) and loss G̃′′ ( ) moduli, real ( ) and imaginary ( ) parts of
the Γ-approximation. Symbols: storage (—) and loss (›) moduli provided by the Power-Exp
approximation. Percentage error of the real (—) and imaginary (›) parts of the Power-Exp
approximation when applied to purely Kelvin-Voigt (b) and Maxwell (d) viscoelastic fluids.

series. This allowed for reduced complexity in the calculation of the fit. However, due to the great

flexibility of this tool, one can fit more complex fluids by keeping as many terms in the series as

needed to reach the desired accuracy.

Chapter 2 is currently being prepared for publication under the provisional title

“On the Laplace transform of Particle Tracking measurements into Microrheology data”, by

M. Gómez-González and J. C. del Álamo. The dissertation author is the primary investigator in

this publication.



Chapter 3

Flow of a Viscous Nematic Fluid

Around a Sphere

3.1 Introduction

Nematic fluids exhibit molecular or supramolecular alignment along a director vector

field, leading to anisotropic rheology. These fluids often appear in industrial applications and in

biology. For instance, nematic liquid crystals are a key component in a vast variety of displays

for their high resolution and energy efficiency. The interaction between flow, topological defects

and nematic orientation in liquid crystals are exploited in particle self-assembly [123, 93] and

sensing applications [12]. Anisotropic rheology is also observed in reconstituted gels when

the polymer phase is aligned [57, 58] and, perhaps more importantly, the cytoplasm of animal

cells is far from being isotropic. The filaments that make up the cytoskeleton can experience

spatial order and alignment both at the level of the mesh size (∼ 10 nm) and of the whole

cell (∼ 10 µm), leading to short- and long-range directionality [95]. Intracellular rheology has

been proposed to modulate important cell functions such as mechanotransduction, [20, 153, 17],

cell migration [75, 122, 161] and intracellular organelle transport [79, 85, 109]. Recent studies

suggest that intracellular anisotropy may play an important role in controlling the directionality

38
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of these cellular processes [130, 126, 34]. In short, anisotropy is purpose.

Particle Tracking Microrheology (PTM) determines the viscoelastic shear modulus of a

medium from the measured motion of embedded microparticles [102, 103, 101]. This technique

is particularly suitable for probing minute quantities of biological materials, including live cells

[147, 29, 34]. In active PTM, the motion of the probing particle is forced with magnetic or laser

tweezers, whereas in passive PTM this motion is caused by the thermal excitation of the medium.

These two approaches estimate the complex response function ζ̃(s) that relates the drag force

experienced by the probing particle and the particle velocity as f̃(s) = ζ̃(s)ṽ(s), where ·̃ indicates

Laplace transform and s is the Laplace frequency. A crucial step in both active and passive PTM

is to connect the measured response function to the underlying rheological properties of the

medium, which is usually accomplished by assuming that the particle experiences a generalized

Stokes’s resistance. For a sphere of radius a moving in a single-phase no-slip isotropic continuum,

the response function is modeled as ζ̃(s) = 6πaη̃(s) [102, 138], where η̃(s) is the frequency

dependent viscosity of the medium.

The application of the generalized Stokes’s law in complex biomaterials (e.g. gels)

is complicated by their multiphase nature as well as by interactions between the material and

the probing particle. For instance, the Stokes’s flow assumption can break down in live cells

when tracking endogenous particles that are anchored to the cytoskeleton [90]. Furthermore,

the mobility of injected microspheres has been reported to vary dramatically depending on their

surface charge [147]. Chemical interactions, polymer depletion near the microsphere and network

compressibility can also introduce substantial deviations from Stokes’s flow [136, 105, 149, 53].

Theoretical studies have analyzed the effect of both network compressibility and slip

between the probing particle and the material in two-fluid gels composed by a polymer network

viscously coupled to a solvent [87, 48]. These studies have provided frequency-dependent

corrections to the generalized Stokes’s law that can be used to better interpret PTM experiments.

The introduction of two-point PTM [30, 88] has allowed investigators to account for most non-

Stokesian effects in the vicinity of the probing particle by cross-correlating the motion between

pairs of distant probing particles.



40

"!

#!

$! %!

&! '(!!'"

!%"

Figure 3.1: We consider an orthotropic gel with constant and homogeneous nematic. The
motion of the sphere is assumed to not alter the nematic.

Despite these advances, little is known about the effect of anisotropy in the response

function of a microrheology probe. This lack of knowledge affects both the active and passive

modalities of PTM, as well as both single-particle and two-particle microrheology. Previous stud-

ies have provided directional diffusivity coefficients (effective viscosities) of microrheological

probes in nematic fluids, ηeff
‖ and ηeff

⊥ , where ‖ and ⊥ denote, respectively, the directions parallel

and perpendicular to the nematic director. Although these measurements provide useful informa-

tion about anisotropic diffusion processes, it is not clear how to relate ηeff
‖/⊥ with the directional

viscosities of anisotropic fluids because the Stokes’s formula is not applicable in this case.

In this chapter, we address the limitations of PTM in anisotropic fluids by calculating an

analytical expression for the response function of a microsphere moving through an orthotropic

two-fluid gel. In §3.2, we formulate the mathematical problem under the assumptions that the

director remains constant and is not altered by the motion of the sphere (see Figure 3.1) and

that there is strong viscous coupling between the network phase and the liquid phase. The

anisotropy of the medium is modeled through the Leslie-Ericksen constitutive equations [41, 86].

Interestingly, the resulting flow equations are also valid for the case of a nematic fluid with high

bending elastance and free of defects, thereby conferring a broader reach to the results of this

theoretical study.

The Green’s function of the problem is obtained in §3.3 and is used in §3.4 to determine

an explicit analytical expression for the anisotropic response function that depends on up to four
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viscosity coefficients. This solution is compared with numerical solutions that have previously

been obtained for particular combinations of the viscosity coefficients [63], obtaining excellent

agreement. We find that the anisotropy of the Leslie-Ericksen constitutive relation affects the

response function through two independent mechanisms. One is the anisotropy in the stress-strain

relationship and the other is the bending of the fluid with respect to the nematic director. These

mechanisms are studied in isolation by considering rotationally pseudo-isotropic fluids in which

the bending stresses are zero, and strain pseudo-isotropic fluids in which the stress-strain relation

is isotropic.

Analysis of our results and experimental data from nematic biopolymer networks in §3.5

reveals that the application of Stokes’s drag law can lead to errors of orders of magnitude in PTM

measurements even for moderate levels of anisotropy. §3.6 illustrates the effect of anisotropy on

the flow velocity field showing that, in some cases, it leads to streamline patterns that challenge

our intuition about creeping flow.

3.2 Problem Formulation

This section introduces the equations to be solved in subsequent sections. We start

by considering a two-fluid gel formed by a dilute polymer network that is permeated by a

liquid. We illustrate the possible sources of anisotropy in this model before performing a

number of simplifying assumptions that hold under the conditions of a live-cell PTM experiment.

The simplified equations are still of general scope, as they also describe the flow in other

anisotropic fluids such as nematic liquid crystals. We conclude the section by providing a physical

interpretation of the different viscosity terms appearing in the flow equations.

As mentioned above, we consider a two-fluid gel composed of a polymer network

viscously coupled to a solvent similar to previous PTM studies [87, 88, 48]. The viscoelastic

network is characterized by its displacement field~u, and the viscous solvent by its velocity field

~v. We assume that the network is dilute as the polymer network fraction φ in the eukaryotic

cytoskeleton is very small [φ∼ 0.01−0.02, see 143]. For a dilute network, the two-fluid equations
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take the form

ρ~̈u−∇ · τN =−Γ · (~̇u−~v)+~fu, (3.1)

ρF~̇v−η∇
2~v+∇p = Γ · (~̇u−~v)+~fv, (3.2)

∇ ·~v = 0, (3.3)

where τN is the Cauchy stress tensor in the network, Γ is a tensor that represents the viscous

coupling between the network and the solvent and ~fu and ~fv model the stresses caused by the

sphere on the gel.

The directional order in the network may cause anisotropic dynamics not only through

constitutive equations of the polymer but also through the viscous coupling between the polymer

and the solvent, even if the solvent is isotropic. For instance, if we idealise the polymer phase in a

nematic network as a square array of circular cylinders, then the coupling tensor is defined by the

two coefficients

Γ|| =
πη

ξ2 log(A/φ)
, (3.4)

Γ⊥ =
2πη

ξ2 log(A/φ)
, (3.5)

where ξ is the distance between neighbouring filaments and A is a non-dimensional shape factor

that takes the value A≈ 0.23 under dilute conditions [φ < 0.02, see 151]. Note that, in this case,

the viscous coupling is weaker in the nematic direction than in the perpendicular directions by a

factor of two.

An order-of-magnitude analysis of equation (3.2) after eliminating the pressure indicates

that viscous coupling is dominant for (kξ)2� 1 and sξ2ρF/η� 1, where k and s are respectively

a characteristic wavenumber and frequency. These conditions are often met in live cell cytoplasmic

microrheology, where the network (cytoskeleton) mesh size is ξ∼ 0.02 µm, and the density and

viscosity of the cytosol (the solvent) are approximately equal to those of water [96, 95]. Using

the inverse radius of the probing particle 1/a as an upper bound to k, the strong coupling limit is
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found for a� ξ∼ 0.02 µm and s� 104 s−1. In the forthcoming analysis, we assume that these

conditions hold so that ~̇u =~v, and equations (3.1) and (3.2) combine into

ρ~̇v−∇ · τ = ~f , (3.6)

where τ is prescribed, as a function of~v, by the constitutive relations for the strongly coupled

two-fluid gel. Interestingly, this simplification makes the flow equations applicable to single-

phase fluids such as nematic liquid crystals as well. Note that, due to the strong coupling and the

incompressibility of the solvent (3.3), the network motion in this model is also divergence-free,

even if the network is compressible.

Equation 4.1 is completed with the Leslie-Ericksen constitutive relation, which is gener-

ally used for anisotropic fluids with nematic order [41, 86, 33],

τi j =−pδi j +α1nknpεkpnin j +α2niN j +α3n jNi +α4εi j +α5ninkεk j +α6n jnkεki. (3.7)

This constitutive relation depends on the six Leslie viscosity coefficients, αi. It relates the stress

tensor τi j with the strain rate tensor εi j = (vi, j + v j,i)/2, the director ni and the rate of change of

the director with respect to the background fluid. The latter is written as

~N = ∂t~n+(~v ·∇)~n− (∇∧~v)∧~n/2, (3.8)

where the first two terms represent the substantial derivative of~n and the third one represents the

rotation of the fluid with respect to~n.

In general, the director field~n can be obtained by imposing the elastic and viscous torques

to be in equilibrium. For simplicity, however, we assume that the viscous torque is much smaller

than the elastic one, so that the director remains uniform and constant throughout the fluid and

~N = −(∇∧~v)∧~n/2. This assumption is known as the small Ericksen number limit [140] and

is likely reasonable to model passive PTM experiments, where the thermal energy driving the

motion, kBT , is extremely low and not expected to alter the nematic configuration. We further



44

assume that the Reynolds number, Re = ρUa/α4, is very small. Typical parameter values in

PTM are ρ∼ 103 kgm−3, U ∼ 10−6 ms−1, a∼ 10−6 m, α4 ∼ 10−3 Pas−1 and Re∼ 10−6, so the

low-Reynolds-number simplification is reasonable in this problem. These simplifications make

the resulting equations analogous to those describing the dynamics of nematic visco-elastomers

[141] when only the viscous terms are retained in the latter.

It is possible to reduce the number of independent viscosity coefficients from the six that

appear in the Leslie-Ericksen constitutive equation (3.7) to four by introducing the Miesowicz

coefficients [107],

ηa = α4/2, (3.9)

ηb = (α3 +α4 +α6)/2, (3.10)

ηc = (−α2 +α4 +α5)/2, (3.11)

and by using Parodi’s relation [119],

α6 = α2 +α3 +α5. (3.12)

Under these simplifications and, using a Cartesian coordinate system in which~n = (1,0,0), the

momentum balance equation (4.1) can be written as

∂x p′ = ηb∇
2u+α1∂xxu+ fx, (3.13)

∂y p′ = ηa∇
2v+(ηc−ηa)∂xωz + fy, (3.14)

∂z p′ = ηa∇
2w− (ηc−ηa)∂xωy + fz, (3.15)

where~r = (x,y,z) is the position vector, ~v = (u,v,w) is the velocity vector, ~ω = (ωx,ωy,ωz) is

the vorticity vector and p′ = p−α5∂xu is a modified pressure. This form of the momentum

balance equations is not the most suitable one to solve for the flow around a sphere, but it is

included here to facilitate the physical interpretation of the Miesowicz viscosity coefficients. The
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equations suggest that the two first Miesowicz coefficients, ηa and ηb, govern the diffusion of the

momentum components perpendicular (⊥) and parallel (||) to~n, respectively. In particular, ηa

is equivalent to the viscosity in an isotropic fluid and the difference ηb−ηa indicates the level

of anisotropy in the stress-strain relation due to the nematic order of the fluid. Apart from the

momentum diffusion Laplacians, equations (3.13)-(3.15) have contributions from ||-derivatives

of the vorticity. These terms represent bending of the fluid with respect to the nematic and

are proportional to ηc−ηa. This second source of anisotropy is perhaps less intuitive than the

anisotropy of the stress-strain relation but it can modify significantly the response function of a

sphere, as shown in §3.4.

Taking the curl of equations (3.13)-(3.15) yields the vorticity equation,

[
ηa∇

2 +(ηc−ηa)∂xx
]
~ω+

[
(ηb−ηa)∇

2 +α1∂xx
]
{∇∧ [(~u ·~n)~n]}=~0, (3.16)

which is analogous to Laplace’s vorticity equation for an isotropic, low-Re flow, and where terms

in addition to ∇2~ω clearly show the two anisotropy mechanisms mentioned above: the anisotropy

in the stress-strain relationship, which is proportional to ηb−ηa, and the bending resistance of the

fluid, which is proportional to ηc−ηa. Unfortunately, the physical interpretation of α1 appears

to be less clear. This parameter bears relation to the compressibility of the fluid in the direction

of the nematic, as it can be deduced by inspecting the constitutive equation (3.7). Nevertheless,

our results suggest that α1 affects the response function of a sphere less than the other viscosity

coefficients (see §3.4).

3.3 Green’s Function for the Flow in an Orthotropic Fluid

The response function of a particle in the linear regime can be calculated by using a

multipole expansion [70, 91, 77]. The first step is to calculate the Green’s function for the flow.

This task is simplified by defining a second modified pressure,

p = p′+(ηc−ηa)∂xu = p+(ηc−ηa−α5)∂xu, (3.17)
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so that equations (3.13) to (3.15) become separated in u, v and w,

∂x p = (ηc +ηb−ηa +α1)∂xxu+ηb(∂yy +∂zz)u+ fx, (3.18)

∂y p = ηc∂xxv+ηa(∂yy +∂zz)v+ fy, (3.19)

∂z p = ηc∂xxw+ηa(∂yy +∂zz)w+ fz. (3.20)

In these equations, the boundary conditions introduced by the sphere are replaced by a point force

at the origin before shifting to Fourier space. Because the problem is linear, we assume a solution

of the form

~v =
G ·~F
8π

=
1

8π





G1 jFj

G2 jFj

G3 jFj




, (3.21)

p =
~P ·~F

8π
=

1
8π

P jFj, (3.22)

where Gi j is the Green’s function for the velocity (also called the Oseen tensor) and P j is the

Green’s function for the pressure. Solving for the Green’s function in Fourier space renders (see

Appendix 3.8 for more details)

P̂ j√
8/π

= ik j

[
1−δ1 j

k2 +

1−δ1 j
k2 (α1k4

1−ηak4)+ηak2 +(ηb−ηa)k2
1 +(ηc−ηb)k2

1δ1 j

α1k2
1(k

2
2 + k2

3)+ηbk4 +(ηc−ηb)k2
1k2

]
, (3.23)

and

Ĝ1 j√
8/π

=
δ1 jk2− k1k j

α1k2
1(k

2
2 + k2

3)+ηbk4 +(ηc−ηb)k2
1k2 , (3.24)

Ĝ2 j√
8/π

=
δ2 j

(ηc−ηa)k2
1 +ηak2 − k2k j

(1−δ1 j)
α1k2

1+(ηb−ηa)k2

(ηc−ηa)k2
1+ηak2 +1

α1k2
1(k

2
2 + k2

3)+ηbk4 +(ηc−ηb)k2
1k2 , (3.25)

Ĝ3 j√
8/π

=
δ3 j

(ηc−ηa)k2
1 +ηak2 − k3k j

(1−δ1 j)
α1k2

1+(ηb−ηa)k2

(ηc−ηa)k2
1+ηak2 +1

α1k2
1(k

2
2 + k2

3)+ηbk4 +(ηc−ηb)k2
1k2 , (3.26)
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In this formulation, ~k = (k1,k2,k3) = (kx,ky,kz) is the wavenumber vector in the Fourier do-

main, δi j is the Dirac delta function and i the imaginary unit. In the isotropic limit case where

ηa = ηb = ηc = η and α1 = 0, we recover the Green’s functions for isotropic fluids as expected.

3.4 Response Function of a Spherical Particle in a Nematic Fluid

In the low-Reynolds-number limit, the velocity of a particle moving in an orthotropic

fluid and the drag force exerted on it are related as

~F = ζ ·~v(~x =~0) = ζ ·~v0, (3.27)

where ζ is a tensorial response function, also known as hydrodynamic resistance [70]. The aim of

this section is to obtain analytical expressions for the different elements of ζ. Given the singularity

at the origin, the response function cannot be directly calculated from equation (3.21) but it can

be obtained by regularizing the solution and assuming that the force applied by the sphere is not

a point force but a compact force distribution ~F(~x) [88, 91]. The velocity at the origin can be

obtained from the Fourier transform of the Green’s function as

~v0 =
1

(2π)3/2

∫∫∫ Ĝ
8π
· ~̂F(~k)d3k = γ ·~F , (3.28)

where ~̂F(~k) = ~FF̂ (~k) is the Fourier transform of ~F(~x), the function F̂ (~k) is a regularization

kernel that localized the drag force in physical and/or Fourier space, and γ is the hydrodynamic

mobility. Note that equation (3.28) is just the inverse Fourier transform of ~̂v(~k) particularized at

the origin, and that equations (3.27)-(3.28) imply that ζ = γ
−1

.

In [88] the authors propose a volume localization approach to simplify the calculation

of γ in the isotropic case by considering that the particle radius limits the spectrum of allowed

fluctuations in the flow field. Hence, they only consider wavenumbers smaller than kmax = π/2a.
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This approximation is written as

F̂ (k) = H
(

π

2a
− k
)
, (3.29)

where H is the Heaviside function. It leads to the following expression for the inverse response

function tensor

γi j =
1

4
√

2πa

θ=π∫
θ=0

sinθ




ϕ=2π∫
ϕ=0

k2Ĝi j

8π
dϕ


dθ, (3.30)

where θ and ϕ are the inclination and azimuth angles in spherical coordinates, respectively. Note

that Ĝi j is inversely proportional to k2, so that the whole expression is independent of k. While it

holds a clear physical meaning, the sharp Fourier cut-off of the Heaviside regularization function

leads to a non-localized force distribution in physical space and a velocity field with Gibbs

oscillations in the radial direction. For this reason, the Gaussian regularization function

F̂ (k) = e−a2k2/π (3.31)

is preferred in this study. This choice yields the same equation for γi j and has the advantage of

providing a localized Gaussian force distribution and a smooth velocity field in physical space

(see §3.6). This approach is analogous to the regularized Stokeslet method [5, 26].

Owing to the symmetry of the Green’s function (3.24)-(3.26), we obtain that γi j = 0 for

i 6= j, and both γ and ζ are diagonal tensors. In particular,

~F =




ζ|| 0 0

0 ζ⊥ 0

0 0 ζ⊥



·~v0, (3.32)

where ζ|| is the response function in the direction parallel to the nematic and ζ⊥ is the response

function in all transverse directions. These principal values can be determined independently by

measuring the drag force of a particle in the directions parallel and perpendicular to~n. For any

other direction of motion, the drag force acting on a particle is not parallel to~v0. In general, if
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~v0 forms an angle βv with~n, the angle between the drag force vector and the nematic director is

βF = arctan[tan(βv)ζ⊥/ζ||] (see Figure 3.1).

Armed with some tenacity, one can find an explicit analytical solution to the integrals in

equation (3.30), leading to the following expressions for the diagonal components of the response

function,

ζ|| =
1

γ11
=

8πaηbB(~η)

D+(~η)
arctan[C+(~η)]

C+(~η)
−D−(~η)

arctan[C−(~η)]
C−(~η)

, (3.33)

ζ⊥ =
1

γ22
=

1
γ33

=
8πaηa

(
ηb
α1

)2
C−(~η)8 E+(~η)

E−(~η)

arctan
(√

ηc/ηa−1
)

√
ηc/ηa−1

+ 1
B(~η)

ηa
ηb

[
arctan[C−(~η)]

C−(~η)
− arctan[C+(~η)]

C+(~η)

] , (3.34)

where B(~η), C±(~η), D±(~η) and E±(~η) are non-dimensional functions of the viscosity vector

~η = (α1, ηa, ηb, ηc). These functions are given in Appendix 3.9. Equations (3.33) and (3.34)

have a weak singularity at α1 = 0 that can be removed by taking the limit α1→ 0, leading to

ζ||,α1=0 =
4πa(ηc−ηb)

ηc
ηb

arctan
(√

ηc/ηb−1
)

√
ηc/ηb−1

−1

, (3.35)

ζ⊥,α1=0 =
8πa(ηc−ηb)

1−
arctan

(√
ηc/ηb−1

)

√
ηc/ηb−1

+ ηc−ηb
ηa

arctan
(√

ηc/ηa−1
)

√
ηc/ηa−1

. (3.36)

The isotropy point is of particular interest because diluted networks should not be too far

from it. Taylor expanding equations (3.33) and (3.34) around the point α1 = 0, ηa = ηb = ηc = η,

and keeping only the first order term we obtain

ζ‖
6πaη

≈ 1+
4
35

α1

η
+

4
5

(
ηb

η
−1
)
+

1
5

(
ηc

η
−1
)
, (3.37)

ζ⊥
6πaη

≈ 1+
3
70

α1

η
+

1
2

(
ηa

η
−1
)
+

1
10

(
ηb

η
−1
)
+

2
5

(
ηc

η
−1
)
. (3.38)

This Taylor expansion is consistent with previous results by Pokrovskii & Tskhai [121], who

studied the motion of a particle in a weakly anisotropic fluid with ηb = ηc.
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Figure 3.2: Contour maps of the response function in the nematic direction, ζ||, obtained
from equation (3.33): (a), ζ||(ηa/ηb,ηc/ηb) for α1 = 0, showing that this response function is
independent of ηa; (b), ζ||(α1/ηb,ηc/ηb). Note that the x-axis is broken between α1 =−0.01ηb
and α1 = 0.01ηb. The thick black curve indicates the locus where ζ|| = 0. The hatched region to
the left of this curve yields unphysical, complex-valued results for the response function. In both
panels, the response functions have been normalized with 6πaηb. The green circle represents
the isotropic case with ηa = ηb = ηc and α1 = 0.

In general, both components of the response function increase with increasing the viscos-

ity coefficients but there are several aspects of this dependence that deserve especial attention.

Figure 3.2 displays the response function in the nematic direction, ζ|| = ζ11. Interestingly, this

component is independent of the first Miesowicz viscosity ηa, as shown in Figure 3.2 (a) for

α1 = 0, and in agreement with [73]. This degeneracy can be explained by realizing that the flow

elicited by a sphere that translates parallel to the nematic director is axially symmetric. Working

in polar cylindrical coordinates (r,θ,x) and taking into account this symmetry, the momentum

balance equations (3.13)-(3.15) can be rewritten as

∂x p′ = ηb∇
2ux +α1∂xxux, (3.39)

∂r p′ = ηc
(
∇

2ur−ur/r2)− (ηc−ηa)∂r(∇ ·~v), (3.40)

where ηc−ηa acts as a dilatational viscosity in the radial direction that disappears when the

velocity field is divergence-free. It is recognized that the resulting divergence-free, axially

symmetric velocity field has a stream function but this function is not pursued here for the sake
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of consistency with the perpendicular problem, which is not axially symmetric. Note also that

the Green’s function derived in §3.3 can be easily extended to networks with significant volume

fractions, where network compressibility leads to ∇ ·~v 6= 0, and there is no stream function.

Figure 3.2 (b) depicts the dependence of the parallel response function on the remaining

three viscosity coefficients by displaying ζ||/(aηb) as a function of α1/ηb and ηc/ηb. This non-

dimensionalization is chosen because the viscous shear stresses in the || direction are proportional

to ηb (see equation 3.13). In this scaling, the parallel response function shows a moderate

dependence on the ratio ηc/ηb. In fact, the limiting values of ζ||(α1 = 0) for ηc/ηb→ 0,∞ are

4πaηb and 8a
√

ηbηc, respectively, only differing by a factor of order (ηc/ηb)
1/2.

The dependence of the parallel response function on α1 is even weaker, especially in the

case ηc� ηb, which is dominated by the viscous stresses in the ⊥ directions. Near the isotropy

point, the parallel response function is relatively insensitive to α1, consistent with the small

factor multiplying this coefficient in the Taylor expansion of equation (3.37). Figure 3.2 (b) also

considers α1 < 0 as this viscosity coefficient has been reported to be negative in some nematic

liquid crystals [72]. Our analysis indicates that lowering α1 below zero causes the response

function to decrease. This decrease is moderate everywhere but near the curve

ηc

ηb
= 1− α1

ηb
−2
√−α1

ηb
, α1 <−ηb, (3.41)

where the function B(~η) that multiplies the right-hand side of equation (3.33) becomes zero and

so does the parallel response function (see Appendix 3.9). The region to the left of this curve in

the (α1/ηb,ηc/ηb) plane produces complex values of ζ|| and, thus, is physically impossible.

The transverse response function, ζ⊥ = ζ22 (equation 3.34), has a more complicated

dependence on the viscosity coefficients than its parallel counterpart because the flow elicited

by ~v0 is not axially symmetric. In order to analyze this dependence, it is convenient to plot

ζ⊥/(aηa) as a function of ηb/ηa, ηc/ηa and α1/ηa. This representation allows us to evaluate

the relative importance of the different sources of anisotropy in the Leslie-Ericksen constitutive

equation (3.7), namely bending of the fluid with respect to the nematic and anisotropy in the
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Figure 3.3: Contour maps of the response function perpendicular to the nematic, ζ⊥, obtained
from equation (3.34): (a), ζ⊥(ηb/ηa,ηc/ηa) for α1 = 0; (b), ζ⊥(ηb/ηa,α1/ηa) for ηb = ηa.
Note that the x-axis is broken between α1 =−0.01ηa and α1 = 0.01ηa. The thick black curve
indicates the locus where ζ⊥ = 0. The region to the left of this curve yields unphysical, complex-
valued results for the response function. In both panels, the response functions have been
normalized with 6πaηa. The green circle represents the isotropy point, ηa = ηb = ηc and
α1 = 0.

stress-strain relationship.

Figure 3.3 (a) displays the transverse response function in the case α1 = 0. The plot

reveals that ζ⊥/(aηa) is more sensitive to ηc/ηa than to ηb/ηa. This is especially true in the

limit ηc� ηa, in which the bending stresses become dominant in the equations of motion, and

the response function has a concise limit that is independent of the second Miesowicz viscosity,

ζ⊥→ 16aηa

√
ηc

ηa
. (3.42)

The response function also becomes independent of ηb in the limit ηb � ηa, in which the

anisotropic momentum diffusivity dominates the flow dynamics, and

ζ⊥→ 8πaηa

√
ηc/ηa−1

arctan
(√

ηc/ηa−1
) . (3.43)

The α1-dependence of ζ⊥ is similar to that of ζ||, as shown in Figure 3.3 (b) for the case ηa = ηb.

The transverse response function is fairly insensitive to α1 for the most part of the parameter
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space, particularly near the isotropy point and for large ηc/ηa. Much like the || case, the effect

of α1 only becomes strong near the curve defined by equation (3.41), where the transverse

response function is zero. In the scaling used to plot Figure 3.3 (b), this curve has an asymptote

at (α1/ηa, ηc/ηa) = (−ηb/ηa,0). Thus, as ηb increases, the asymptote moves towards larger

negative values of α1/ηa and the influence of α1 becomes less important.

3.4.1 Pseudo-Isotropic Conditions

The analysis of the equations of motion (3.13)-(3.16) suggests that the anisotropy in

the Leslie-Ericksen constitutive relation (3.7) may influence the response function by means

of two separate mechanisms. One is the anisotropy of the stress-strain relationship, which is

proportional to the viscosity difference ηb−ηa, while the other is the resistance to the bending

of the fluid, which is proportional to the viscosity difference ηc−ηa. The aim of this section is

to dissect the effects of the two anisotropy mechanisms. We first study the response function in

a rotationally pseudo-isotropic fluid where anisotropy comes exclusively from the anisotropic

momentum diffusivity, and which corresponds to the horizontal line ηc = ηa in Figures 3.2 (a)

and 3.3 (a). We then consider a strain pseudo-isotropic fluid, where the anisotropy comes solely

from the resistance to bending of the fluid with respect to the nematic, and which corresponds to

the vertical line ηb = ηa in Figures 3.2 (a) and 3.3 (a).

The response functions derived in this section also provide with distinct two-viscosity

benchmarks to test the accuracy of existing PTM methods when applied to anisotropic fluids

(see §3.5). This assessment needs to be performed on two-viscosity fluids as only two of the prin-

cipal components of the response functions are independent in a nematic fluid (see equation 3.32).

This limitation can be circumvented by considering two-point response functions, and such

approach will be addressed in Chapter 4.

An aspect of particular interest that is evaluated on pseudo-isotropic fluids is the accuracy

of the directional effective viscosity approximation. Based on the principal components of the

response function, one can define two effective directional viscosities ηeff
||,⊥ = ζ||,⊥/(6πa), similar

to [140]. This phenomenological approach has been previously used by experimentalists to
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characterise different types of nematic fluids [94, 57, 126, 34, 58] but it has not been justified yet.

3.4.1.1 Rotationally Pseudo-Isotropic Fluid (ηa = ηc)

Consider a fluid where α1 is very small and α2 = α5. Under these conditions, the last

term in the transverse components of the momentum balance equation (equations 3.14-3.15)

disappears, yielding the rotationally isotropic pseudo-Stokes problem

∇p′ =




η|| 0 0

0 η⊥ 0

0 0 η⊥



·∇2~v, (3.44)

where η|| = ηb denotes the viscosity parallel to the director and η⊥ = ηa is the viscosity in the

transverse directions. In this case, the directionality of the problem is solely due to the anisotropic

diffusion of momentum along different directions (i.e. anisotropy in the stress-strain relationship).

Taking the limit ηa→ ηc on equations (3.33)-(3.34), and introducing the anisotropy ratio

Λ = η||/η⊥, we find that

ζ||
6πaη||

=
2
3(1−Λ)

−Λ+
arctan

(√
1/Λ−1

)

√
1/Λ−1

, (3.45)

ζ⊥
6πaη⊥

=
4
3(1−Λ)

−Λ+2−
arctan

(√
1/Λ−1

)

√
1/Λ−1

. (3.46)

These response functions are plotted in Figure 3.4 (a) together with their tangent lines at the

isotropy point Λ = 1 and their asymptotes for highly anisotropic conditions (Λ� 1 and Λ� 1).

This figure shows 1D cuts of Figures 3.2 (a) and 3.3 (a) along the horizontal line ηc = ηa.

The behavior of the || and ⊥ response functions near the isotropy point is given by their
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Figure 3.4: Principal component of the response function in a rotationally pseudo-isotropic and
a strain pseudo-isotropic fluids, as a function of the viscosity ratios. (a) Rotationally pseudo-
isotropic fluid, α1 = 0, ηb = η|| and ηa = ηc = η⊥, represented as a function of the viscosity
ratio Λ = η||/η⊥ and (b) strain pseudo-isotropic fluid α1 = 0, ηa = ηb = η and ηc = ∆η+η,
represented as a function of the viscosity ratio Λ = ∆η/η: , ζ||/6πaη||: , ζ⊥/6πaη⊥.
The green circle marks the isotropy point: (a) Λ = 1 and (b) Λ = 0. The thick color segments
mark the asymptotic behavior of the response function for (a) Λ� 1 (red), Λ≈ 1 (green) and
Λ� 1 (blue), and (b) Λ→−1 (red), Λ≈ 0 (green) and Λ� 1 (blue).

Taylor expansion

ζ||
6πaη||

= 1− 1
5
(Λ−1)+

27
175

(Λ−1)2 +O[(Λ−1)3], (3.47)

ζ⊥
6πaη⊥

= 1+
1

10
(Λ−1)− 33

700
(Λ−1)2 +O[(Λ−1)3], (3.48)

where the leading-order terms correspond to the expected isotropic result ζ = 6πaη, and the

higher-order terms are the corrections introduced by the anisotropy of the fluid. The numerical

values of the coefficients in these expansions indicate that the anisotropic corrections are weaker

in the transverse response function than in the parallel one, consistent with the weaker variation

of ζ⊥ observed in Figure 3.4 (a).

In order to determine whether the effects of anisotropy are bounded in a rotationally

pseudo-isotropic fluid, we consider the asymptotic behavior of the response function for Λ� 1,
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where

ζ||
6πaη||

' 2
3
, (3.49)

ζ⊥
6πaη⊥

' 4
3
. (3.50)

Interestingly, these expressions are equivalent to those of a prolate ellipsoid moving along its

principal axes in an isotropic liquid [70]. It is important to note that the two components of the

response function are decoupled from each other, so that increasing η|| does not affect ζ⊥ and

vice versa. Thus, the ratio of effective diffusivities becomes proportional to the ratio of actual

viscosities of the fluid for Λ� 1,

ηeff
||

ηeff
⊥

=
ζ||
ζ⊥
' 1

2
η||
η⊥

, (3.51)

although these ratios differ by a factor of two.

The second asymptotic limit is Λ� 1, which results in

ζ||
6πaη||

' 4
3π
√

Λ
, (3.52)

ζ⊥
6πaη⊥

' 2
3
. (3.53)

It can be seen that, in this limit, the || component of the response function not only depends on η||

but also on η⊥, so that the ratio of effective diffusivities,

ηeff
||

ηeff
⊥

=
ζ||
ζ⊥
' 2

π

√
η||
η⊥
� η||

η⊥
, (3.54)

becomes a rather poor measure of the ratio of actual viscosities of the fluid.
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3.4.1.2 Strain Pseudo-Isotropic Fluid (ηa = ηb)

Consider a fluid where α1 and α3 are very small and α2 =−α5. Under these conditions,

the equations of motion (3.13)-(3.15) become

∇p′ = η∇
2~v+∆η∂||(~ω×~n), (3.55)

where η = ηa and ∆η = ηc−ηa. The Laplacian term on the right hand side of equation (3.55)

can be seen as coming from isotropic momentum diffusion with viscosity η. On the other hand,

the last term in the equation represents the resistance of the fluid to bending with respect to the

nematic, and this is the only source of anisotropy in the strain pseudo-isotropic condition. The

coefficient ∆η can be interpreted as a rotational viscosity.

Taking the limit ηb→ ηa on equations (3.33)-(3.34), and introducing the anisotropy ratio

Λ = ∆η/η, we find that

ζ||
6πaη

=
2
3 Λ

(Λ+1)
arctan(

√
Λ)√

Λ
−1

, (3.56)

ζ⊥
6πaη

=
4
3 Λ

(Λ−1)
arctan(

√
Λ)√

Λ
+1

. (3.57)

Note that, in this case, the anisotropy ratio ranges between Λ = −1 (ηc � ηa) and Λ = ∞

(ηc� ηa), and the isotropy point corresponds to Λ = 0.

Similar to Figure 3.4 (a), the parallel and perpendicular response functions for a strain

pseudo-isotropic fluid are plotted in Figure 3.4 (b), along with their tangent lines at the isotropy

point and their asymptotes for highly anisotropic conditions. In this case, the plotted curves are

one-dimensional sections of Figures 3.2 (a) and 3.3 (a) along the vertical line ηa = ηb.

The behavior of the response function near the isotropy point is given by its Taylor
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expansion,

ζ||
6πaη

= 1+
1
5

Λ− 8
175

Λ
2 +O[Λ3], (3.58)

ζ⊥
6πaη

= 1+
2
5

Λ− 17
175

Λ
2 +O[Λ3], (3.59)

which shows that, in contrast to the rotationally pseudo-isotropic condition, the anisotropy

corrections are stronger in the transverse direction than in the parallel direction. This result is

consistent with the intuitive notion that particle motion in the ⊥ direction bends the nematic more

than particle motion in the || direction.

In the limit Λ� 1, the asymptotic behavior of the response function is

ζ||
6πaη

' 4
3π

√
Λ, (3.60)

ζ⊥
6πaη

' 8
3π

√
Λ, (3.61)

whereas, in the limit Λ→−1, we have

ζ||
6πaη

' 2
3
− 2

3

[
1+

1
2

ln
(

Λ+1
4

)]
(Λ+1) , (3.62)

ζ⊥
6πaη

'−4
3

1
ln
(

Λ+1
4

)
+1

. (3.63)

Comparing these asymptotic responses with those in Figure 3.4 (a) reveals that the

effects of anisotropy in the stress-strain relationship are fundamentally different from those

arising from nematic bending. In rotationally pseudo-isotropic fluids, the response function

becomes independent of the anisotropy ratio for high levels of anisotropy, leading to horizontal

asymptotes in Figure 3.4 (a), and rendering upper bounds to the effect of anisotropy. The only

exception to this behavior is ζ||(η||� η⊥), which has a square-root dependence on η⊥ due to the

fact that the flow is still infinitesimally deflected in the ⊥ direction by the sphere in this limit, as

will be shown in §3.6.1.

In contrast, the strain pseudo-isotropic response function remains dependent on both η
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and ∆η even at high levels of anisotropy, suggesting a strong interaction between the anisotropic

stresses caused by bending and the diffusion of momentum by strain. These two mechanisms only

appear to decouple from each other for ζ||(∆η→−η), which is consistent with the independence

of the parallel response with respect to the first Miesowicz coefficient (Figure 3.2 a), as ∆η=−ηa

in this limit. These results inevitably call for caution in employing the concept of effective

directional viscosities. This notion may be qualitatively useful in rotationally pseudo-isotropic

fluids where the effect of anisotropy can be partially separated in different directions. However,

its usefulness becomes limited in fluids with resistance to bending, where the anisotropy appears

to act in all directions concurrently and in a non-trivial manner.

3.4.2 Comparison with Numerical Results

This section uses data from existing numerical simulations to validate the analytical

procedures employed to determine ζ. Owing to the relatively high number of different viscosities

involved in the problem, it is difficult to find simulation studies that cover a significant part of the

parameter space. The most comprehensive set of simulations is [63], where the authors compute

the steady creeping flow of a nematic liquid of uniform director around a sphere using finite

differences and a relaxation time integrator. They provide empirical formulae for both ζ|| and ζ⊥

that fit their simulation results near the isotropy point.

Figure 3.5 (a) compares the analytical expression for ζ|| (3.33) with Heuer et al. ’s

empirical fit in the parameter range where these authors find the fit to be accurate, that is

0.05 < ηc/ηb < 10 and −1/2 < α1/ηb < 1 [63]. Both results are in an excellent agreement, not

only around the isotropy point but in the whole domain, including its boundaries α1 =−ηb/2

and α1 = ηb.

Figure 3.5 (b) displays a similar comparison for ζ⊥ (3.34), this time in the domain

0.2 < ηc/ηb < 5, 0.2 < ηc/ηa < 5 and α1 = 0, which is the range of accuracy of Heuer et al. ’s

empirical fit to their simulation data [63]. The agreement is again perfect near the isotropy

point and for low values of ηb/ηa and ηc/ηa (bottom left corner of Figure 3.5 (b)). However, it

worsens slightly for high values of ηb/ηa and ηc/ηa (top right corner of the figure), where the
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Figure 3.5: Comparison between our analytical expression for the response function (lines) and
numerical simulations by [63] (symbols). The two line plots on each figure represent the lower
and upper limits of the parameter ranges provided in [63]. These limits and the entire parameter
ranges are represented in the inset contour maps, where the thick colour contours come from
the simulations, the thin black contours come from equations (3.33) and (3.34), and the green
circle denotes the isotropic case. (a) Response function in the nematic direction, ζ||, normalized
with aηb and represented as a function of ηc/ηb and α1/ηb: and N, α1 =−0.5ηb;
and ›, α1 = ηb; , ηc = 0.05ηb; , ηc = 10ηb. (b) Response function perpendicular
to the nematic direction, ζ⊥, computed for α1 = 0, normalized with aηa and represented as a
function of ηb/ηa and ηc/ηa: and N, ηc = 10ηb; and ›, ηb = 0.05ηc; and •,
ηc = 0.2ηa; and ∆, ηc = 5ηa.

simulation results seem to underestimate ζ⊥. These differences are however small and remain

below 12%. The observed divergence may be due to imprecisions in Heuer et al. ’s fit to their

own simulation results far from the isotropy point. This hypothesis is supported by comparing

their simulation results to the prediction from the empirical fit for the one case in their paper

where both are available, i.e. (ηb/ηa, ηc/ηa,α1/ηa) = (1/3, 10/3, 0). For this combination of

viscosities, the simulation yields ζ⊥/6πaηa = 5.28, which is in excellent agreement with our

calculation of ζ⊥/6πaηa = 5.27. However, the empirical fit predicts ζ⊥/6πaηc = 5.47, which

differs by 4% from the simulation result.

3.5 Assessing Particle Tracking Microrheology of Nematic

Bio-Polymer Networks

This section employs the expressions for the response function derived in §3.4.1 to

evaluate the accuracy of existing PTM formulae when applied to pseudo-isotropic nematic fluids.
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This analysis allows us to separately determine the ability of those formulae to estimate strain

directional viscosities or bending viscosities.

PTM determines the viscosity of a fluid from the measured response function of embedded

microparticles. Whether the motion of the particles is spontaneously driven by the thermal

excitation of the fluid (passive PTM) or externally forced (active PTM), the fluid viscosity is

estimated by fitting the measured response function to a model for the drag of a canonical particle.

The simplest possible model is the Stokes’s formula ζ = 6πaη, which is valid for isotropic fluids

[102, 103, 101]. A second, more recent approach that is applied to nematic biogels and liquid

crystals consists of applying Stokes’s equation separately in the two principal directions of the

motion to obtain two effective viscosity coefficients [140, 94, 57, 126, 34, 58],

ζ||,⊥ = 6πaη
eff
||,⊥. (3.64)

From the statistical mechanics perspective, this approach has been justified on the grounds

that the motion of the particle in one principal direction is uncorrelated from its motion in the

second principal direction [34]. From the point of view of fluid mechanics, the effective viscosities

were proposed as friction coefficients that quantify overall directional diffusivity in a nematic

fluid [140]. However, their relation to the actual directional viscosities of the fluid has not been

characterized yet. Figure 3.6 sheds light into this question with the aid of experimental data

coming from reconstituted biopolymer gels [57, 58] and live cells [34]. The figure displays

the ratio of viscosity coefficients in pseudo-isotropic fluids as a function of the ratio ζ⊥/ζ||

calculated in this study, together with the predictions from the isotropic Stokes’s law and the

effective viscosity approach (3.64). The range of values of ζ⊥/ζ|| measured in experiments is

included in the plots. In passive PTM experiments, this ratio is equal to the ratio of mean squared

displacements of the particles 〈∆x2〉⊥/〈∆x2〉|| [34].

A first interesting observation that can be made from comparing Figures 3.6 (a) and

3.6 (b) is that biopolymer networks, both reconstituted and inside live cells, behave closer to a

rotationally pseudo-isotropic fluid than to a strain pseudo-isotropic one. In fact, Figure 3.6 (b)
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Figure 3.6: Ratio of viscosity coefficients as a function of the ratio of directional response
functions, ζ⊥/ζ||, for rotationally pseudo-isotropic and strain pseudo-isotropic fluids. (a)
Ratio of viscosity coefficients, η||/η⊥. Each curve is obtained by using a different model for
the response function: , isotropic Stokes’s formula; , effective viscosity approach
(equation 3.64); , rotationally pseudo-isotropic fluid (see §3.4.1.1); , asymptotes. The
hatched areas represent experimental ranges of ζ⊥/ζ|| for biopolymer networks: left hatched,
sheared DNA solutions [57]; horizontally hatched, nematic reconstituted actin networks [58];
right hatched, cytoplasm of live bovine aortic endothelial cells [34]. (b) Same as panel (a) for a
strain pseudo-isotropic fluid (see §3.4.1.2) where the relevant ratio of viscosities is ∆η/η

reveals that most of the reported values of ζ⊥/ζ|| for these materials are disallowed by the strain

pseudo-isotropic model. In this model, ζ⊥/ζ|| has a vertical asymptote at 2 and, thus, fluids where

ζ⊥/ζ|| is measured to be > 2 are necessarily strain anisotropic. The only exception is the sheared

DNA solution [57], which shows a nearly isotropic behavior that can be in principle consistent

with both the rotationally pseudo-isotropic and the strain pseudo-isotropic conditions.

If, in consonance with the previous observation, one assumes that the rheology of nematic

biopolymer networks is relatively close to rotationally pseudo-isotropic, Figure 3.6 (a) can

be used to estimate the accuracy of previous response function models when applied to those

biomaterials. Note that this estimation is not expected to be very precise as we merely proved that

these fluids are not strain pseudo-isotropic, which is not exactly equivalent to proving that they are

rotationally pseudo-isotropic. Nevertheless, we proceed with this estimation for lack of a better

measure. Comparing the different curves in Figure 3.6 (a) within the range of experimental values

of ζ⊥/ζ|| obtained from the literature indicates that previous models render errors of up to one
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order (effective viscosity) or two orders of magnitude (isotropic Stokes). In both cases, the actual

anisotropy of the fluid, given by the ratio η⊥/η||, is underestimated, with the effective viscosity

approach predicting 0.8 . η⊥/η|| . 9, and the present results predicting 0.5 . η⊥/η|| . 100.

Thus, researchers should exercise caution when interpreting directional PTM data.

3.6 Influence of Anisotropy on the Far Velocity Field

Anisotropy does not alter the r−1 decay of the velocity far away from the sphere but it

does modify the dependence of~v on the azimuth and inclination angles. The velocity in the far

field of the sphere can be calculated from equations (3.21) and (3.32), yielding

~v(~x) =
G(~x)
8π
·




ζ|| 0 0

0 ζ⊥ 0

0 0 ζ⊥



·~v0, (3.65)

where~v0 is the velocity of the particle. Similar to §3.4, the Green’s function is obtained by Fourier

transforming equations (3.24)-(3.26) after regularizing with the Gaussian (3.31). This section

focuses on the two basic flow configurations in which~v0 is parallel and perpendicular to~n. All

other possible configurations are linear combinations of these two basic flows.

3.6.1 Velocity Field Caused by a Sphere Moving Parallel to the Nematic Director

(~v0 ||~n)

Figure 3.7 displays velocity profiles around a sphere that translates parallel to the nematic

director (i.e. northwards) and experiences a resistance equal to ζ||. The velocity components

parallel and perpendicular to the director, v|| and v⊥ respectively, are shown. These components

fully define the axially symmetric velocity field elicited by the sphere. For illustrative purposes,

we have represented v|| and v⊥ at a distance r = 5a from its centre but similar results are obtained

at other radial locations.

As noted above, the flow generated by ~v0 ||~n is independent of the first Miesowicz
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Figure 3.7: Longitudinal (v||, panel a) and transverse (v⊥, panel b) flow velocity components
elicited by a sphere moving parallel to the nematic director. The velocities are calculated at a
distance r = 5a away from the sphere centre, represented as a function of the inclination angle θ.
Each line type corresponds to a different value of ηc/ηb, as indicated in the inset map at the
lower left corner of each figure: , ηc = 10ηb; , ηc = ηb; , ηc = ηb/10.

viscosity, so we restrict our analysis to the effect of the other two Miesowicz coefficients. For

simplicity, we focus on the case α1 = 0 in which the equations governing the flow (3.39)-(3.40)

become

∂x p′ = ηb∇
2ux, (3.66)

∂r p′ = ηc
(
∇

2ur−ur/r2) . (3.67)

These equations are similar to Stokes’s equations but have different viscosity coefficients in the

axial and radial directions. The resulting flow is therefore rotationally pseudo-isotropic, and

ηb and ηc represent the viscosities in the || and ⊥ directions, respectively (see equation 3.44).

Curiously enough, invoking axial symmetry allows us to recast the very same equations as

∂x p′ = ηb∇
2ux, (3.68)

∂r p′ = ηb(∇
2ur−ur/r2)+(ηc−ηb)∂xωθ, (3.69)

which are now consistent with strain pseudo-isotropic conditions with ηb = η and ηc = η+∆η

(see equation 3.55). The equivalence of these two formulations implies that the flow generated
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by a sphere moving parallel to the director is both strain pseudo-isotropic and rotationally

isotropic. However, it is important to note that this conjunction arises exclusively from the

flow geometry and not from the fluid properties, and that it does not mean that the flow is

isotropic. In this configuration, the bending stresses are still different than zero and momentum

diffuses differently in the || and ⊥ directions unless ηc = ηa and ηb = ηa, respectively. This is

possible because the axial symmetry of the flow imposes a connection between the two types of

anisotropic stresses, which is reflected by the equivalence η|| = η and η⊥ = η+∆η that follows

from comparing equations (3.66)-(3.67) with equations (3.68)-(3.69). Consistent with this idea,

the change of variables (η||,η⊥) = (η,η+∆η) transforms the rotationally pseudo-isotropic ζ||

(3.45) into the strain pseudo-isotropic one (3.56). Of course, the same does not happen for ζ⊥

(equations 3.46 and 3.57) because the flow elicited by~v0 ⊥ ~n is not axially symmetric.

Probably due to this enhanced pseudo-isotropy, the velocity profiles in the~v0 ||~n configu-

ration conserve many isotropic features and the streamlines are not substantially affected by the

viscosity ratio ηc/ηb. In particular, Figure 3.7 (a) shows that, regardless of the value of ηc/ηb,

the longitudinal velocity component has a single maximum on the polar axis (θ = 0) and a single

minimum on the equatorial plane (θ = π/2). The viscosity ratio ηc/ηb, however, has a marked

effect on the peak-to-valley variation of v||. For ηc/ηb� 1, the spatial distribution of v|| is nearly

uniform. However, for ηc� ηb, there is a significant enhancement of the flow velocity on the

polar axis, which is accompanied by a slight velocity damping on the equatorial plane.

The transverse velocity component is shown in Figure 3.7 (b). Owing to the symmetry

of this flow configuration, v⊥ is zero both on the polar axis and the equatorial plane. We find

that the ratio ηc/ηb influences both the maximum value of v⊥ and its azimuthal location, which

is θ = π/4 in the isotropic case. For ηc < ηb the peak value of v⊥ increases and its location is

displaced towards the equator, whereas the opposite happens for ηc > ηb.

Figure 3.8 displays the flow streamlines obtained by integrating the far velocity field after

subtracting the speed of the sphere. In order to illustrate the effect of anisotropy, the integration is

performed for different values of ηc/ηb from a common initial point far upstream of the sphere.

It is found that anisotropy only has a modest influence on the flow streamlines when the sphere
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Figure 3.8: Streamlines on the meridional plane of a sphere that translates parallel to the
nematic director (thick black vertical axis). The arrows indicate the flow direction in a reference
frame moving with the sphere. The spatial coordinates are normalized with the sphere radius.
One streamline is plotted for each value of ηc/ηb considered in Figure 3.7: , ηc = 10ηb;

, ηc = ηb; , ηc = ηb/10.

moves parallel to the nematic. Consistent with ηb and ηc acting as η|| and η⊥, respectively, in

equations (3.66)-(3.67) and with the observed decrease of v⊥ with ηc/ηb (Figure 3.7 b), fluid

particles approaching the sphere are deflected somewhat more in the ⊥ direction for ηc < ηb than

in isotropic conditions, and the opposite happens for ηc > ηb. However, the level of deflection

in this axially symmetric configuration is considerably smaller than when the sphere is moving

perpendicular to the nematic (Figure 3.11).

3.6.2 Velocity Field Caused by a Sphere Moving Perpendicular to the Nematic

Director (~v0 ⊥~n)

The flow generated by a sphere moving perpendicular to the nematic director

(e.g. eastwards) is more complex than its ~v0 ||~n counterpart because axial symmetry is bro-
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Figure 3.9: Flow velocity elicited by a sphere moving perpendicular to the nematic director.
The velocities are calculated on the meridional plane φ = 0 at a distance r = 5a away from the
sphere centre, and represented as a function of the inclination angle θ: (a)-(c), v⊥,||; (d)-(f), v||.
(a) and (d), ηa = ηc/10; (b) and (e), ηa = ηc; (f) and (g), ηa = 10ηc. Each line type corresponds
to a different value of ηb/ηc, as indicated in the inset maps: , ηb = ηc/10; , ηb = ηc;

, ηb = 10ηc. The isotropic case is also plotted for reference ( ).

ken, the velocity field is three-dimensional and all four viscosity coefficients affect the flow. In

this section, we study this dependence by plotting velocity profiles and streamlines for all of the

possible combinations of the viscosity ratios defined by ηb/ηa and ηc/ηa�,=,� 1 (0.1, 1, 10),

and consistent with the scaling of the response function chosen to plot Figure 3.3. For simplicity,

we restrict our analysis to α1 = 0 similar to the~v0 ||~n configuration.

Figures 3.9 and 3.10 display angular profiles of the velocity at a constant distance

r = 5a from the origin, similar to Figure 3.7. To characterise the spatial organization of the

velocity field in the present three-dimensional configuration, we plot data on two planes. The

first is the meridional plane φ = π/2 (Figure 3.9) and the second is the equatorial plane θ = π/2

(Figure 3.10). These planes intersect along the west-east axis of translation of the sphere. On

them, v|| is the velocity component parallel to the nematic director (i.e. northward), whereas v⊥,|| is

perpendicular to the director and parallel to the sphere’s trajectory (i.e. eastward). The remaining

velocity component, v⊥,⊥, is perpendicular to both the director and the sphere’s trajectory.
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Figure 3.10: Same as Figure 3.9 for the equatorial plane θ = 0. Velocities are represented as a
function of the azimuth angle φ: (a)-(c), v⊥,||; (d)-(f), v⊥,⊥.

Figure 3.11 demonstrates the effect of anisotropy on the streamline pattern. The stream-

lines in each panel are obtained by integrating the far velocity field relative to the sphere from

a common initial point in the far east, upstream of the sphere. They are represented on the

same meridional and equatorial planes used in Figure 3.9 and 3.10. Apart from allowing direct

comparison between velocity profiles and streamlines, the choice of these two planes has the

additional advantage that the local cross-plane flow velocity is zero, so that the streamlines remain

in-plane. The same is not true for other initial points of integration given the three-dimensional

nature of the flow when~v0 ⊥~n.

3.6.2.1 Case ηa = ηc

A first look into Figures 3.9 and 3.10 indicates that, for ηa = ηc, the velocity profiles are

qualitatively similar to the isotropic condition (panels b and e). The reason for this behavior is that

the bending stresses in the equations of fluid motion are zero for ηa = ηc, and the flow becomes

rotationally pseudo-isotropic with ηb and ηc acting respectively as η|| and η⊥ (see equation 3.44).

Comparing Figures 3.7 and 3.8 with panels (b), (e) of Figures 3.9 and 3.10 and Figure 3.11 (b)

suggests that anisotropy influences the flow organization more deeply in the present rotationally
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pseudo-isotropic configuration than in the~v0 ||~n case, consistent with the fact that the bending

stresses are not zero in that configuration.

The response function of a sphere in the case ηa = ηc is characterized in §3.4.1.1 above.

Here we focus on the effect of the ratio ηb/ηa on the flow organization. We find that v⊥,||

increases with ηb/ηa on the axis of translation of the sphere, θ = π/2, whereas it decreases or

varies little on the perpendicular axes (Figures 3.9 b and 3.10 b). Thus, the profile of this velocity

component becomes sharper as ηb/ηa increases. More importantly, the magnitude of v|| decreases

with ηb/ηa on the meridional plane (Figure 3.9 e), while the magnitude of v⊥,⊥ increases on the

equatorial plane (Figure 3.10 e). Overall, these velocity profiles suggest that the motion of the

sphere leads to an asymmetric deflection of the fluid particles that is larger in the plane of lower

viscosity and vice versa. This behavior can be easily appreciated by looking at the streamline

pattern in Figure 3.11 (b). Note also that these streamlines resemble the streamlines in the flow

of isotropic fluid around a prolate ellipsoid, consistent with the results in §3.4.1.1.

3.6.2.2 Case ηc� ηa

For large values of ηc/ηa, the viscous bending stresses become important in the equations

of motion (3.13)-(3.15), causing changes in the anisotropic velocity field that depend little on

the other viscosity ratio, ηb/ηa. This result is consistent with the fact that ζ⊥/(aηa) is almost

independent of ηb/ηa in the limit ηc�ηa (see Figure 3.3 a). The largest variations in the velocity

profiles occur on the meridional plane, where the east-west velocity component v⊥,|| increases

substantially near the polar axis (Figure 3.9 a). This is also the region where the anisotropic

stresses are maximum (data not shown). The northward velocity v|| behaves qualitatively similar

to the ηc = ηa case. It experiences a moderate increase in magnitude and shifts towards the polar

axis as ηb/ηa decreases (Figure 3.9 d). As a consequence, the streamlines on the meridional

plane are deflected more as ηb/ηa decreases, and this deflection occurs closer to the location of

the sphere (Figure 3.11 a).

The flow in the equatorial plane is even less sensitive to the ratio ηb/ηa, remaining very

close to the isotropic case (Figures 3.10 a,d). In particular, the streamlines on this plane are almost
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(a) (b) (c)

Figure 3.11: Streamlines on the meridional and equatorial planes of a sphere moving perpendic-
ular to the nematic director (thick black vertical axis). The arrows indicate the flow direction
in a reference frame moving with the sphere. The spatial coordinates are normalized with the
sphere radius. Each panel corresponds to one value of the first viscosity ratio: (a) ηa = ηc/10;
(b) ηa = ηc; (c) ηa = 10ηc. Each line type corresponds to a different value of ηb/ηc, as indi-
cated in the inset map at the upper right corner of each figure: , ηb = ηc/10; , ηb = ηc;

, ηb = 10ηc. The isotropic case is also plotted for reference ( ).

identical to the isotropic ones, with a slight increase in deflection with ηb/ηa (Figure 3.11 a).

3.6.2.3 Case ηc� ηa

Similar to the rotationally pseudo-isotropic condition, the flows with ηc� ηa are rather

sensitive to the ratio of momentum diffusivities in the || and ⊥ directions, ηb/ηa. For large

values of this ratio, v|| decreases to virtually zero on the meridional plane (Figure 3.9 f), where

the viscosity is higher (ηb). Conversely, v⊥,⊥ increases significantly on the equatorial plane

(Figure 3.10 f), where the viscosity is lower (ηa). Accordingly, the flow streamlines remain

almost straight on the meridional plane whereas they are highly deflected away from the sphere

on the equatorial plane (Figure 3.11 c).

The velocity field corresponding to ηc� ηa = ηb is comparable to the isotropic velocity

field. The only remarkable difference is that the profile of v⊥,|| is sharper than the isotropic one

on the meridional plane and flatter on the equatorial plane (Figures 3.9 c and 3.10 c). Apart from

that, anisotropy affects little the velocity components perpendicular to axis of translation of the

sphere in this case (v⊥,|| and v||, Figures 3.9 f and 3.10 f), and the streamline pattern remains

similar to the isotropic one (Figure 3.11 c).

Finally, we consider the flow elicited by a sphere moving perpendicular to the nematic

director in a fluid with ηc� ηb� ηa. As expected, v|| significantly increases in the meridional
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plane because of the ηb � ηa condition (Figure 3.9 f), and the flow streamlines are highly

deflected away from the sphere on this plane (Figure 3.11 c). However, this flow has a remarkable

characteristic which separates it from all other cases studied above, including the isotropic one; its

streamlines converge towards the sphere on the equatorial plane (Figure 3.11 c). Consequently,

the sign of v⊥,⊥ on this plane is opposite to that of all of the other flow conditions (Figure 3.10 f).

This somewhat counterintuitive behavior can be partially understood by inspecting the balance

of the different terms in the vorticity equation (3.16) at constant ηb/ηa and varying ηc/ηa (not

shown). It is found that the angular profiles of the torques coming from the anisotropy of the

stress-strain relation remain similar when varying ηc/ηa. However, the torques coming from the

bending of the fluid with respect to the nematic change sign at ηc = ηa, attenuating the effect of

the stress-strain anisotropy for ηc > ηa and magnifying it for ηc < ηa.

3.6.2.4 A Remark on the ηb/ηa Dependence of the Flow

It should be noted that the above classification in terms of ηc/ηa is exclusively intended

to facilitate the presentation of the nine flows obtained by combining ηc/ηa = 0.1, 1, 10 and

ηb/ηa = 0.1, 1, 10 in the ~v0 ⊥ ~n configuration. Likewise, one may choose to classify these

flows in relation to the order of magnitude of ηb/ηa. Such classification is indeed implicit in

Figures 3.9 to 3.11, where the strain pseudo-isotropic condition is depicted with solid (black)

lines, whereas the ηb/ηa� 1 and ηb/ηa� 1 cases are depicted respectively by dashed (blue)

and chain-dotted (red) lines. In broad strokes, although the general shape of the velocity profiles is

mainly dependent on ηc/ηa, the velocity magnitudes in the direction perpendicular to the sphere’s

motion and, therefore, the asymmetry in streamline deflection, are mostly dependent on ηb/ηa.

3.7 Conclusions

3.7.1 Summary of Findings

One of the greatest challenges that hinders the application of PTM to complex anisotropic

fluids is the lack of knowledge about the dynamics of the probing particle. This paper studies the
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creeping flow generated by the motion of a point particle in a nematic incompressible fluid defined

by the Leslie-Ericksen constitutive relation. The equations governing this flow are generally

applicable to a broad range of nematic systems, ranging from liquid crystals to aligned biopolymer

networks that are strongly coupled to their solvent, and nematic visco-elastomers.

The response function ζ of a sphere in a nematic fluid is a 3×3 tensor that provides the

drag force ~F experienced by the particle as

~F = ζ ·~v0, (3.70)

where ~v0 is the velocity of the particle. This tensor only has two independent values, ζ|| and

ζ⊥, which respectively represent the resistance of the fluid to the motion of the particle in the

directions parallel and perpendicular to the nematic director, ~n [33]. In this work, we provide

explicit analytical expressions for ζ|| and ζ⊥, i.e. the equivalent of Stokes’ drag formula for a

nematic fluid, by performing a multipole expansion in Fourier space. These formulae depend on

up to four viscosity coefficients: the three Miesowicz viscosities ηa, ηb and ηc, and the first Leslie

viscosity α1. Our solution compares well with the results from previous numerical simulations

[63] in the limited region of the parameter space where the simulation data are available. Similar

to [73], we observe that the flow caused by a particle moving parallel to the nematic (~v0||~n) is

axially symmetric and ζ|| is independent of the first Miesowicz viscosity. On the other hand, the

flow originated by a particle moving perpendicular to the nematic (~v0 ⊥~n) is three-dimensional

and ζ⊥ depends on all four viscosity coefficients. It is important to note, however, that the~v0||~n

flow is independent of ηa only if the velocities of the network and the solvent are divergence-free.

This requirement is only satisfied when the viscous coupling between the network and the solvent

is strong and the network velocity matches that of the incompressible solvent.

In a nematic two-fluid gel, anisotropy can present itself through the viscous coupling

between the network and the solvent, as well as through the network’s constitutive equations. The

anisotropy arising from the coupling has been illustrated by considering an idealized network

formed by a square array of circular cylinders, which opposes twice as much resistance to the
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relative motion of the solvent in the ⊥ direction than in the || direction. Further analysis of the

effect of anisotropic coupling will require relaxing the strong coupling assumption and is beyond

the scope of this study. The anisotropy of the Leslie-Ericksen constitutive relation can, however,

be thoroughly studied in the present formulation. We find that the response function is affected

mainly by the anisotropic diffusion of momentum along different directions (i.e. anisotropy in the

stress-strain relationship), and by the resistance of the fluid to bending. Analysis of the equations

of fluid motion indicates that momentum diffusivity is anisotropic when ηa 6= ηb and that the

fluid opposes resistance to bending when ηa 6= ηc. We have studied these two mechanisms

independently from each other by examining the response function in a rotationally pseudo-

isotropic fluid where the bending stresses are zero and in a strain pseudo-isotropic fluid where the

stress-strain relation is isotropic. The first of these fluids is governed by a pseudo-Stokes equation

with different viscosities η|| = ηb and η⊥ = ηa in the directions parallel and perpendicular to the

nematic director. The second fluid is characterized by an isotropic momentum diffusivity η = ηa

plus a resistance to bending ∆η = ηc−ηa. A comparative analysis of these two “pure” conditions

indicates that anisotropic momentum diffusivity leads to greater changes in ζ||, whereas ζ⊥ is

more influenced by the bending resistance of the fluid.

It is also found that directional momentum diffusivity has a limited effect on the response

function in rotationally pseudo-isotropic fluids, so that ζ||/η|| and ζ⊥/η⊥ reach constant asymp-

totic values for high levels of anisotropy with the only exception of ζ||/η||(η||� η⊥). In fluids

with zero resistance to bending, this result provides some level of justification for the qualita-

tive usage of effective directional viscosities, which are defined by applying Stokes’s drag law

separately along the || and ⊥ directions. However, it is important to note that the thus estimated

effective viscosities differ from the actual viscosities of the fluid by over one order of magnitude

for moderate levels of anisotropy like those observed in reconstituted biopolymer networks and

the cytoskeleton of cultured animal cells. Furthermore, the very notion of directional effective

viscosities may be misleading in fluids with an appreciable resistance to bending because the

effect of ∆η is felt in both components of the response function for all levels of anisotropy.

The present study is finalized by a parametric description of the far velocity field around
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a spherical particle under different anisotropy conditions. For simplicity and due to the observed

small influence of the first Leslie viscosity on the response function, the analysis is restricted to

zero values of this coefficient (α1 = 0). When the particle moves parallel to the nematic director,

the axial symmetry of the flow establishes a constraint between the bending stresses in the fluid

and the directional diffusion of momentum, which cannot vary independently of each other in this

flow configuration. As a consequence, the flow pattern varies little with respect to the isotropic

case although the level of streamline deflection increases when ηb = η|| > η⊥ = ηc and vice versa.

When the sphere moves perpendicular to the nematic director, the flow is three-dimensional and

the directional diffusion of momentum can be varied independently of the bending resistance

of the fluid through the viscosity ratios ηb/ηa and ηc/ηa. When ηc/ηa� 1, the fluid opposes

high resistance to bending and the flow differs little from the isotropic case, similar to the~v0||~n

flow. However, when ηc/ηa is of order unity, anisotropic momentum diffusivity can lead to large

changes in the flow structure which essentially consist of asymmetric streamline deflection; for

ηb > ηa, the streamlines are deflected more in the equatorial plane than in the meridional ones,

and the opposite happens for ηb < ηa. Intriguingly, when ηc/ηa� 1, the resistance to bending

enhances the flow asymmetry caused by anisotropic momentum diffusivity rather than reducing it,

so much as to cause the streamlines to converge towards the sphere in the equatorial plane when

ηb� ηa.

The parametric study of anisotropic viscosity effects on the flow of a nematic fluid

around a sphere would be incomplete without a survey of the experimental values of the viscosity

coefficients reported in the literature. Such a survey is useful in determining which of the

conditions explored in this chapter are more likely to be observed experimentally and, at the

same time, it can offer new insight about the dynamics of those fluids. Unfortunately, there

is little information about the anisotropic rheology of nematic biopolymer gels, and most of

this information comes from effective viscosity approaches that suffer from the limitations

described above. Our analysis suggests that these biopolymers are relatively close to a rotationally

pseudo-isotropic fluids with 0.5 . η⊥/η|| . 100 but these values should only be taken as rough

estimations. For nematic liquid crystals, the situation is better and we find values of the Miesowicz
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Figure 3.12: Survey of Miesowicz viscosity coefficients reported for nematic liquid crystals in
the literature, plotted in the scaling of Figures 3.2 and 3.3: (a, c) ζ||/6πaηb; (b, d) ζ⊥/6πaηa.
Each symbol represents a different compound and has been coloured according to the corre-
sponding value of the response function as predicted by equations (3.33)-(3.34), and according
to the colorbar on the right hand side of the figure: 2, PPA [146, 116, 108]; ◦, MBBA [49, 82];
4, 5CB [135, 61]; 5, MBPP [61]; /, E7 [152]; ., UCF-02 [152]; F, N4 [6]; ∗, 8OCB [66]. (a, b)
also include the representative streamline pattern corresponding to each region of the parameter
space. For reference, the isotropic streamlines are also included in green.

viscosities for eight different compounds. This information is summarized in Figure 3.12 using

the same scaling as Figures 3.2 and 3.3. The vast majority of the compounds have ηc/ηa ≈ 3

and 0.5 . ηb/ηa . 0.8, which implies that their bending resistance is relatively high and that, in

contrast to biopolymer networks, nematic liquid crystals can be considered to behave somewhat

closer to a strain pseudo-isotropic fluid than to a rotationally pseudo-isotropic fluid. Interestingly,

all of the liquid crystals considered are in the range where α1 has a small effect on the flow.

Although the main motivation for this study is to provide fundamental understanding of

the dynamics of a microrheology probe in nematic fluids, many of the results presented here have

broader applications. Modelling the motility of spermatozoa in the cervical mucus is just one

example of such applications. This mucus varies through different phases along the ovulatory
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cycle, including one in which the mucin network aligns parallel to the direction of the reproductive

tract thereby favouring the directed migration of spermatozoa [22]. This anisotropic synergy

could be studied in more detail by modeling each swimmer as a superposition of regularized point

forces using the anisotropic Green’s functions derived in this study.

3.7.2 Model Limitations

The present formulation is linear, incompressible and assumes affine deformations. Thus,

the results in this dissertation are valid only for small deformations and do not apply to regimes

displaying strain-stiffening, negative normal stresses and other non-linear effects.

A potential limitation of the results presented in this chapter is that we consider the

response of the fluid to be purely viscous. However, most biopolymer gels have viscoelastic

properties defined by a dependence of their stress field on their deformation at previous instants of

time. A standard procedure to model these effects is to replace the constant viscosity coefficients

in equation (3.7) by time-dependent memory functions, and the products by temporal convolutions.

Owing to the linear nature of the problem, Fourier transforming in time renders similar equations

in which the constant, real-valued viscosity coefficients are replaced by complex-valued functions

of the frequency, αi→ α̂i(s). From there, the calculation of the response function in the frequency

domain follows the same steps as in the purely viscous case, although its analysis is complicated

by the fact that both the viscosity coefficients and the response function are complex numbers.

Such analysis will be performed when we study the Directional Two-Point Particle Tracking

Microrheology of Complex Viscoelastic Fluids in Chapter 4.

One of the main potential limitations of this study is our assumption that the particle

does not distort the nematic director field. Molecular anchoring at the particle surface may

distort the director in liquid crystals, leading to dipole or Saturn ring configurations next to the

particle. The drag force of a sphere in these configurations has been numerically calculated and

reported in [127], and [140], showing considerable differences with respect to results obtained for

a uniform nematic. The influence of surface anchoring on the local director topology and particle

diffusion has been determined experimentally [74] and numerically [112]. These near-field effects
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disappear in two-point PTM [30, 88], which is based on measurements of the correlated motion

of distant particles.

Particle motion can also distort the director in the far field due to the finite elastance of

the nematic. We have hypothesized that this effect is negligible in passive PTM of biopolymer

networks because the thermal energy that drives particle motion is extremely low. However, this

energy can be several orders of magnitude higher in active PTM. In that case, the methodology pre-

sented here can be extended by prescribing a suitable spatio-temporal nematic distribution [140],

including the Frank elasticity constants into the formulation [44] or by calculating the dynamics

of the nematic through the Poisson-bracket approach [139].

Finally, assuming a uniform director is relatively reasonable for live cell PTM experiments.

Adherent cells are known to align their cytoskeletal fibers in response to directional mechanical

stimuli [50, 68] and substratum stiffness [84]. Even in the absence of global alignment, the

cytoskeleton will organize in smaller nematic domains in which the director remains locally

uniform.

3.8 Appendix A - Green’s Functions

In this appendix, we outline the procedures to obtain the Green’s functions for the flow

velocity and pressure from the equations of motion (3.18), (3.19), (3.20) and (3.3). In Fourier

space, these equations of motion become

ik1 p̂+
(

1
2π

)3/2

f̂x = (ηc +ηb−ηa +α1)k2
1û+ηb(k2

2 + k2
3)û, (3.71)

ik2 p̂+
(

1
2π

)3/2

f̂y = ηck2
1v̂+ηa(k2

2 + k2
3)v̂, (3.72)

ik3 p̂+
(

1
2π

)3/2

f̂z = ηck2
1ŵ+ηa(k2

2 + k2
3)ŵ, (3.73)

k1û+ k2v̂+ k3ŵ = 0. (3.74)
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Assuming a linear solution of the form (3.21)-(3.22), equations (3.71)-(3.74) simplify to

[
(α1 +ηc−ηa)k2

1 +ηbk2] Ĝ1 j

8π
= ik1

P̂ j

8π
+

(
1

2π

)3/2

δ1 j, (3.75)

[
(ηc−ηa)k2

1 +ηak2] Ĝ2 j

8π
= ik2

P̂ j

8π
+

(
1

2π

)3/2

δ2 j, (3.76)

[
(ηc−ηa)k2

1 +ηak2] Ĝ3 j

8π
= ik3

P̂ j

8π
+

(
1

2π

)3/2

δ3 j, (3.77)

kiĜi j = 0. (3.78)

After applying the divergence of equations (3.75)-(3.77) and using (3.78), we obtain

P̂ j

8π
=

(
1

2π

)3/2 ik j

k2 −
[
α1k2

1 +(ηb−ηa)k2] ik1

k2
Ĝ1 j

8π
. (3.79)

Finally, plugging this result into equations (3.75)-(3.77) and (3.79) we obtain the Green’s

functions for the velocity and pressure,

Ĝ1 j√
8/π

=
δ1 jk2− k1k j

α1k2
1(k

2
2 + k2

3)+ηbk4 +(ηc−ηb)k2
1k2

, (3.80)

Ĝ2 j√
8/π

=
δ2 j

(ηc−ηa)k2
1 +ηak2 − k2k j

(1−δ1 j)
α1k2

1+(ηb−ηa)k2

(ηc−ηa)k2
1+ηak2 +1

α1k2
1(k

2
2 + k2

3)+ηbk4 +(ηc−ηb)k2
1k2 , (3.81)

Ĝ3 j√
8/π

=
δ3 j

(ηc−ηa)k2
1 +ηak2 − k3k j

(1−δ1 j)
α1k2

1+(ηb−ηa)k2

(ηc−ηa)k2
1+ηak2 +1

α1k2
1(k

2
2 + k2

3)+ηbk4 +(ηc−ηb)k2
1k2 , (3.82)

P̂ j√
8/π

= ik j

[
1−δ1 j

k2 +

1−δ1 j
k2 (α1k4

1−ηak4)+ηak2 +(ηb−ηa)k2
1 +(ηc−ηb)k2

1δ1 j

α1k2
1(k

2
2 + k2

3)+ηbk4 +(ηc−ηb)k2
1k2

]
. (3.83)
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3.9 Appendix B - Expressions for the Functions Appearing in the

Response Function

Equations (3.33) and (3.34) for the response function of a sphere in a nematic fluid refer

to the non-dimensional functions

A(~η) =
α1

ηb
+

ηc

ηb
−1, (3.84)

B(~η) =
√

A(~η)2 +4
α1

ηb
, (3.85)

C+(~η) =

√
A(~η)+B(~η)

2
, (3.86)

C−(~η) =

√
A(~η)−B(~η)

2
, (3.87)

D+(~η) = A(~η)+2+B(~η), (3.88)

D−(~η) = A(~η)+2−B(~η), (3.89)

E+(~η) = A(~η)D+(~η)−2
(

ηc

ηb
−1
)
, (3.90)

E−(~η) = A(~η)D−(~η)−2
(

ηc

ηb
−1
)
, (3.91)

which arise from the integrals in equation (3.30).

These equations degenerate in the limit B(~η)−→ 0, which occurs whenever

ηc

ηb
−→ 1− α1

ηb
±2
√−α1

ηb
. (3.92)

In this limit, C+→C−, D+→ D− and E+→ E−, and the expressions that determine the two

components of the response function (equations 3.33-3.34) become undefined. Solving the

limit yields that ζ|| = ζ⊥ = 0 along the branch associated with the − sign in the square root of

equation (3.92), and the same happens for the − branch when α1 > ηb. As a consequence, the

region of parameter space corresponding to

ηc < ηb−α1−2
√−α1ηb, α1 <−ηb (3.93)
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is associated with unphysical complex values of the response functions and cannot be realized.

On the other hand, the signs of ζ|| and ζ⊥ do not change along the branch associated with the +

sign in the square root of equation (3.92).

Chapter 3 has been published in the Journal of Fluid Mechanics under the title “Flow of a

Viscous Nematic Fluid around a Sphere”, by M. Gómez-González and J. C. del Álamo (2013),

725, 299-331. The dissertation author is the primary investigator in this publication.



Chapter 4

Two-Point Particle Tracking

Microrheology of Nematic Complex

Viscoelastic Fluids

4.1 Introduction

Particle tracking microrheology (PTM)[102, 103] is a useful experimental technique to

determine the rheological properties of soft materials that exhibit complex mechanical behaviors

and are available only in minute amounts [158, 138]. In PTM, micron-sized particles are embed-

ded in a material sample, excited with a known force, and their displacements are measured as a

function of time. From these measurements one can determine the material’s frequency-dependent

shear modulus G(ω). PTM methods can be classified as active or passive depending on the nature

of the excitation force that drives particle motion. Active PTM methods apply an external force

on the probing particle whereas in passive PTM methods, the embedded microparticles undergo

random motion due to thermal and possibly non-thermal excitations. Active and passive PTM

have been applied to characterize, among other systems, colloidal suspensions [15, 106, 157],

reconstituted protein gels [3, 53, 110], and the cytoplasm of live cells [147, 34, 56].

81
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Regardless of the mechanism driving particle motion, a key step of PTM is to connect the

measured motion with the underlying rheological properties of the medium. This step requires

theoretical knowledge of the relation between excitation force and particle velocity as a function

of G(ω). This relation is usually idealized as Stokesian, i.e. F = 6πGa/ω where a is the particle

radius, but there is a number of near field phenomena that generate deviations from Stokesian

behavior. Examples of these are partial slip at the particle surface [48], compressibility [88] and

electrochemical surface interactions [149]. To eliminate these short-range effects, Crocker et

al. [30] introduced two-point PTM, which analyzes the cross-correlated motion of pairs of distant

particles.

The vast majority of existing PTM protocols (active and passive, single-point and

two-point) assume that the probed medium is isotropic. However, there is a substantial number of

soft materials that exhibit molecular or supramolecular alignment leading to anisotropic rheology.

Anisotropic particle diffusion has been reported in nematic liquid crystals [94, 148], reconstituted

polymer networks [57, 58], and the cytoplasm of cells [34, 117, 84, 18, 98]. Currently, there is

not any microrheological method to measure the viscoelastic response of nematic complex fluids.

Previous efforts analyzed particle motion in the principal directions of minimum and maximal

motion, and applied Stokes’ law in each direction [57, 34, 58]. This approach provides effective

shear moduli that quantify the viscoelastic resistance experienced by the particle in different

directions, but these effective shear moduli could significantly differ from the actual directional

viscosities of the fluid (see Chapter 3 and [54]). To address this limitation, in Chapter 3 we

studied the flow of a nematic fluid around a sphere using the Leslie-Ericksen constitutive relation

(see also [54]). We calculated the two drag coefficients in the directions parallel and perpendicular

to the nematic as functions of the three directional shear moduli of the fluid. Yet, incorporating

this knowledge to one-point PTM leads to an undetermined problem.

In this chapter, we resolve this indetermination by analyzing the cross-correlated motion

of a pair of distant spheres in a nematic fluid. Specifically, we derive a closed-form analytical

solution for the spheres’ mutually induced velocity, i.e. the multiparticle mobility tensor. We show

that this approach provides three independent equations, so that two-point PTM, with the Leslie-
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Ericksen constitutive relation can be used to determine the rheological properties of a nematic

fluid. To validate and illustrate this novel directional two-Point PTM (D2PTM) formulation, we

perform numerical simulations and experiments in a nematic solution of filamentous actin. The

results presented in this chapter represent the first report of the measurement of the directional

shear moduli of F-actin, enabling future applications of D2PTM to other soft materials.

4.2 Theoretical Foundation of Directional Two-Point Particle Track-

ing Microrheology

This section describes the motion of spherical PTM probes embedded in a nematic

complex fluid defined by the director~n (Figure 4.1). The drag force experienced by the particles,

and the interaction between pairs of distant particles (Figure 4.2), are calculated. These results

are used to develop analysis algorithms for D2PTM.

4.2.1 Mathematical Formulation

The velocity field of an incompressible complex fluid can be described [81] by the

Cauchy’s momentum equation

ρ~̇v−∇ · τ = ~f , (4.1)

together with the continuity equation ∇ ·~v = 0, where ~f represents the applied external forces,

~v = ∂t~u is the velocity field, ~u is the deformation field, ρ is the density and τ is the stress

tensor. These equations rely on the assumption of a continuum material and are equally valid

for homogeneous one-component materials and semidiluted bio-polymer networks that conform

to certain conditions [87], i.e. low volume fraction φ of the solute, characteristic length of the

displacements a larger than the mesh size ξ, and frequencies ω� 104s−1. These conditions

are often met in microrheology studies of biological samples, such as the eukaryotic cytoplasm

(φ∼ 0.01−0.02 [143]) and reconstituted bio-polymer networks (φ∼ 0.001−0.01 [132, 53, 58]),

where the length scale is the radius of the probing particle a� ξ and the frequencies are usually
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Figure 4.1: Particle of radius a embedded in a nematic complex fluid with director ~n. The
particle moves with velocity~v and experiences a resistance force ~F .

well below the specified limit.

We estimate a Reynolds number Re = ρUa/η∼ 10−6 in PTM experiments [54] and thus

neglect inertial terms in the equations of motion. We relate the stress and strain (ε) tensors via a

generalization of the Leslie-Ericksen constitutive equations [41, 86, 33] in the frequency domain,

τ̃i j =− p̃δi j + α̃
∗
1(s)ñkñpε̃kpñiñ j + α̃

∗
2(s)ñiÑ j + α̃

∗
3(s)ñ jÑi

+ α̃
∗
4(s)ε̃i j + α̃

∗
5(s)ñiñkε̃k j + α̃

∗
6(s)ñ jñkε̃ki, (4.2)

where ·̃ indicates Laplace transform and s is the frequency. This expression is analogous to the

generalized Stokes’ formula proposed by Mason and Weitz [102]. It depends on six complex

viscoelasticity coefficients α̃∗k(s), the director of the nematic ñi, and the rate of change of the

director with respect to the background gel, Ñi. The viscoelasticity coefficients are a generalization

of the Leslie viscosity coefficients αk through analytical continuation, and depend on the complex

frequency s. The vector Ñi is defined as the sum of the substantial derivative of ñi and the rotation

of the gel with respect to the nematic, and is more conveniently expressed in real space as

~N = ∂t~n+(~v ·∇)~n− (∇∧~v)∧~n/2. (4.3)
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The nematic field ~n is determined by the equilibrium of moments of the viscoelastic

stresses on the gel and the elastic forces on the nematic. We define the Ericksen number, Er, as

the ratio of viscoelastic forces on the gel to elastic forces on the nematic. In the limit of Er� 1,

the viscoelastic forces on the gel generated by the motion of the particle are small enough to not

perturb the nematic field, and ~n will be equal to the equilibrium distribution [33]. In a typical

PTM experiment the low Ericksen number hypothesis is reasonable far away from the particle.

Thus, for the sake of studying the correlated motion of pairs of distant particles to formulate

D2PTM, we assume the director field to be uniform in space and constant in time,~n = (1,0,0).

To reduce the number of free material parameters, we group the viscoelasticity coefficients

into three generalized Miesowicz [107] shear moduli,

G̃a = α̃
∗
4/2, (4.4)

G̃b = (α̃∗3 + α̃
∗
4 + α̃

∗
6)/2, (4.5)

G̃c = (−α̃
∗
2 + α̃

∗
4 + α̃

∗
5)/2, (4.6)

and make use of Parodi’s relation [119], α̃∗6 = α̃∗2+ α̃∗3+ α̃∗5. Under these simplifications, equation

(4.1) becomes

∂x ˜̄p = (G̃c− G̃a + α̃
∗
1)∂xxũx + G̃b∇

2ũx + f̃x, (4.7)

∂y ˜̄p = (G̃c− G̃a)∂xxũy + G̃a∇
2ũy + f̃y, (4.8)

∂z ˜̄p = (G̃c− G̃a)∂xxũz + G̃a∇
2ũz + f̃z, (4.9)

where ˜̄p = p̃+(G̃c− G̃a− α̃∗5)∂xũx is a modified pressure, and~r = (x,y,z) and ~̃u = (ũx, ũy, ũz) are

the position and displacement vectors in a Cartesian coordinate system.
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4.2.2 Derivation of the Response Function

A spherical particle of radius a, moving at low Reynolds number, experiences a drag

force that is proportional to its velocity

~̃F =−˜
ζ ·~̃v(~x =~0) =−˜

ζ ·~̃v0 =−s
˜
ζ ·~̃u0, (4.10)

where
˜
ζ is the tensorial Response Function, also known as Hydrodynamic Resistance [70] or

Self-Resistance [137]. Note that~v0 and ~F are not parallel to each other in an anisotropic fluid as
˜
ζ

is not proportional to the identity matrix.

To calculate the response function of the particle, we perform a multipole expansion [70,

91, 77]. We first calculate the Green’s function of the problem in the Fourier wavenumber domain,

and then integrate the Green’s function to obtain the velocity of the particle as a function of the

driving force. Due to the linearity of the problem, we look for a solution of equations (4.7)-(4.9)

of the form

~̂v =
Ĝ · ~̂f
8π

=
1

8π





Ĝ1 j f̂ j

Ĝ2 j f̂ j

Ĝ3 j f̂ j




, (4.11)

p̂ =
~̂P · ~̂f
8π

=
1

8π
P̂ j f̂ j, (4.12)

where ·̂ denotes Fourier transform along the spatial coordinates, Ĝi j and P̂ j are the Green’s

functions for the velocity and the pressure, and ~̂f is the driving force applied on the fluid. Solving

for the Green’s functions of the problem yields (see Chapter 3 and [54] for more details)

P̂ j√
8/π

=
√
−1k j

(1−δ1 j)c+b
d

, (4.13)
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and

Ĝ1 j

s
√

8/π
=

δ1 jk2− k1k j

d
, (4.14)

Ĝl j

s
√

8/π
=

δl j

b
− klk j

(1−δ1 j)c+b
db

, (4.15)

with l = 2,3, and where

b(~µ;~k) = (G̃c− G̃a)k2
1 + G̃ak2, (4.16)

c(~µ;~k) = α̃
∗
1k2

1 +(G̃b− G̃a)k2, (4.17)

d(~µ;~k) = α̃
∗
1k2

1(k
2
2 + k2

3)+ G̃bk4 +(G̃c− G̃b)k2
1k2, (4.18)

~k = (k1,k2,k3) = (kx,ky,kz) is the wavenumber vector,~µ = (α̃∗1, G̃a, G̃b, G̃c) is the viscoelasticity

vector, and δi j is the Kronecker delta.

The particle velocity is calculated by performing the inverse Fourier transform of

equation (4.11) particularized at~x =~0,

~̃v0 =
1

(2π)3/2

∫∫∫ Ĝ
8π
· ~̂f (~k)d3k =−˜

ζ

−1
· ~̃F, (4.19)

where ~̂f (~k) = ~f · Ĥ(~k) is the Fourier transform of ~f (~x) and the function Ĥ(~k) is a regularization

kernel that localizes the drag force in physical and/or Fourier space. We choose to distribute the

force as a Gaussian around the origin [5, 26], so that

Ĥ(k) = e−a2k2/π. (4.20)

The response function is thus given by

˜
ζ
−1
∣∣∣
i j
=

s
4
√

2πa

θ=π∫
θ=0

sinθ




ϕ=2π∫
ϕ=0

k2Ĝi j

8π
dϕ


dθ, (4.21)
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where ~k = (k,φ,θ) is the Fourier wavenumber vector in spherical coordinates. Due to the

symmetry of Ĝi j, the tensor
˜
ζ−1 is diagonal and equation (4.10) becomes

~̃F =−s




ζ̃|| 0 0

0 ζ̃⊥ 0

0 0 ζ̃⊥



·~̃u0, (4.22)

where ζ̃‖ and ζ̃⊥ are respectively the components of the response function in the directions

parallel and perpendicular to the nematic. Their general form is provided in Appendix 4.6

(equations 4.49 and 4.50) together with its singularities and Taylor expansion around the isotropy

point.

The influence of the parameter α̃∗1 in the response function has been shown to be weak

compared to that of the other coefficients [54], and its value has been measured to be very small

for many nematic materials [146, 49, 61, 152, 6]. Thus, we focus on the limit case α̃∗1→ 0, for

which the principal components of the response function are defined by

sζ̃||
∣∣∣
α̃∗1→0

=
4πa(G̃c− G̃b)

G̃c
G̃b

arctan
(√

G̃c/G̃b−1
)

√
G̃c/G̃b−1

−1

, (4.23)

sζ̃⊥
∣∣∣
α̃∗1→0

=
8πa(G̃c− G̃b)

1−
arctan

(√
G̃c/G̃b−1

)

√
G̃c/G̃b−1

+ G̃c−G̃b
G̃a

arctan
(√

G̃c/G̃a−1
)

√
G̃c/G̃a−1

, (4.24)

which exclusively depend on the three generalized Miesowicz shear moduli.

4.2.3 Particle-Particle Hydrodynamic Interactions in a Nematic Complex Fluid

Consider two distant particles denoted α and β, embedded in a nematic complex fluid as

shown in Figure 4.2, where aα and aβ represent the particle radii,~rα,β is the vector that connects

the center of the particles, and ‖~rα,β‖� aα, aβ.

When particle β moves with velocity ~̃v 0
β

it displaces the fluid around itself and induces a
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Figure 4.2: Hydrodynamic interaction between two particles separated by a vector~rα,β.

velocity

~̃v I
α,β =

˜G · ˜ζ
8π
·~̃v 0

β
(4.25)

on particle α. Contrary to the isotropic case, the induced velocity depends not only on the distance

between particles, |~rα,β|, but also on the orientation of~rα,β with respect to the nematic director.

This induced velocity will create an additional drag force on particle α. Up to first order, the drag

force acting on particle α is

~̃Fα =−˜
ζ ·


~̃v 0

α +

˜G
8π
· ˜ζ ·~̃v 0

β


 . (4.26)

Reciprocally, the total velocity of particle α is

~̃vα =−˜
ζ
−1 · ~̃F 0

α −
˜G

8π
· ~̃F 0

β
. (4.27)

The dependence between the velocities and drag forces of both particles can be expressed
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in matrix form [137] as




~̃Fα

~̃Fβ




=− ˜Z ·




~̃vα

~̃vβ




, (4.28)

where
˜
Z(~r;s) is the multiparticle resistance tensor and its inverse, the multiparticle mobility tensor.

When the two particles are far apart from each other their long range interaction is very weak,

and each particle’s self-induced drag force dominates over their mutually-induced force. Thus,

the resistance and mobility tensors can be simplified up to first order as

˜Z ≈




˜
ζ

˜
ζ · ˜G · ˜ζ

8π

˜
ζ · ˜G · ˜ζ

8π

˜
ζ




, (4.29)

and

˜Z−1 ≈




˜
ζ−1

˜G
8π

˜G
8π

˜
ζ−1




. (4.30)

This result is essential to derive D2PTM formulae in §4.2.5 below. To this end, it is necessary

to transform the Fourier expressions (4.14)-(4.15) of the Green’s function back into the physical

domain. For a nematic fluid, it is sufficient to obtain the inverse transform particularized at z = 0

due to the axial symmetry of the nematic configuration. To exploit this symmetry, we work on the

plane defined by~n and~rα,β and apply a simple rotation of the coordinate system to transform this
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plane into z = 0. The general form G(x,y,z = 0) is given in Appendix 4.7 (equations 4.69-4.74),

along with its singularities and Taylor expansion around the isotropy condition. In the limit

α̃∗1→ 0, the components of the Green’s function are

G̃11

s

∣∣∣z=0
α̃∗1→0

=
2

G̃b− G̃c


 1√

x2 + y2
− G̃c

G̃b

1√
x2 + G̃c

G̃b
y2


 , (4.31)

G̃12

s

∣∣∣z=0
α̃∗1→0

=
2

G̃b− G̃c

x
y


 −1√

x2 + y2
+

1√
x2 + G̃c

G̃b
y2


 , (4.32)

G̃22

s

∣∣∣z=0
α̃∗1→0

=
2

G̃b− G̃c

x2

y2


 1√

x2 + y2
− G̃b

G̃c

1√
x2 + G̃c

G̃b
y2

+
1
x2

(
G̃b

G̃c
−1
)√

x2 +
G̃c

G̃a
y2


 ,

(4.33)

G̃33

s

∣∣∣z=0
α̃∗1→0

=
2

G̃b− G̃c

1
y2


−
√

x2 + y2 +
G̃b

G̃c

√
x2 +

G̃c

G̃b
y2−

(
G̃b

G̃c
−1
)

x2
√

x2 + G̃c
G̃a

y2


 . (4.34)

4.2.4 Directional One-Point Particle Tracking Microrheology: An Undetermined

Problem

The Einstein relation between the one-dimensional mean squared displacements (MSD)

of a particle undergoing Brownian motion and its hydrodynamic drag is

ζ̃ =
2kBT

s2〈∆x(0),∆x̃(s)〉 , (4.35)

where kB is the Boltzmann constant, T the temperature and 〈∆x(0),∆x̃(s)〉 the Laplace transform

of the MSD. This Einstein equation can be adapted to describe the motion of a particle embedded

in a nematic complex fluid using the results derived in §4.2.1 and §4.2.2. In the principal

directions defined by the nematic and its orthogonal plane, the response function tensor is diagonal

(see equation 4.22). Thus, the MSD measured in these principal directions are independent of

each other (zero cross-correlation) and equation (4.35) can be applied separately along each
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principal direction [57, 34, 58], yielding

6πaG̃eff,|| = sζ̃|| =
2kBT

s〈∆x||(0),∆x̃||(s)〉
, (4.36)

6πaG̃eff,⊥ = sζ̃⊥ =
2kBT

s〈∆x⊥(0),∆x̃⊥(s)〉
. (4.37)

However, it is important to note that these two equations together with (4.23)-(4.24), are not

sufficient to determine the three Miesowicz shear moduli G̃a, G̃b and G̃c [54]. Next section shows

that analyzing the correlated motion of pairs of distant particles resolves this indetermination.

4.2.5 Directional Two-Point Particle Tracking Microrheology

Consider two distant particles whose coordinates and velocity components are represented

by xα,i and vα,i in a Cartesian coordinate system with its x1 = x|| direction parallel to the nematic,

its x2 = x⊥ direction contained in the plane defined by the two particles and the nematic, and the

x3 = z direction perpendicular to said plane (see Figure 4.2). The two particles are thus contained

in the plane z = 0 and equations (4.31)-(4.34) hold. Following Squires and Mason [137], we

obtain that

〈∆xα,i(0),∆x̃β, j(s)〉=
2kBT

s2

[
Z̃−1(~rα,β;s)

]
i, j , (4.38)

where
˜Z(~r;s) is the multiparticle resistance tensor derived in §4.2.3, whose inverse is given in

equation (4.30). The upper left and lower right blocks of (4.30) provide the one-point directional

PTM formula derived by Gómez-González and del Álamo [54] (presented in Chapter 3 and

summarized in §4.2.4). The off-diagonal blocks of the tensor provide the two-point formulae

〈∆xα,i(0),∆x̃β, j(s)〉=
kBT
4πs2 G̃i j, α 6= β. (4.39)

This symmetric tensor relation provides with six equations for G̃a, G̃b and G̃c but these equations

are not linearly independent. The incompressibility condition ∇ ·G =~0 provides three relations
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between the elements G̃i j, effectively reducing the number of independent equations (4.39) to

three.

In the ideal experimental scenario where one could measure 3D particle displacements

as a function of time, it would be convenient to use diagonal equations of (4.39) to solve for

the Miesowicz shear moduli from the measured two-point mobility tensor. However, typical

experiments only provide accurate measurements of 2D particle displacements. In this scenario, it

is still possible to calculate the three Miesowicz shear moduli from the equations corresponding to

G̃11, G̃12 and G̃22, but it is advisable to precondition the equations as described below to minimize

numerical error.

The cross-correlated displacements in the left hand side of (4.39) have very low values

due to the low energy and long range of the particle-particle interactions. Thus, it is necessary to

compile averages over a large number of particle pairs to obtain statistically meaningful results.

Because G̃i j ∼ r−1
α,β, the averaging procedure converges faster if (4.39) is renormalized by rα,β.

Additionally, G̃12 is typically much smaller than G̃11 and G̃22, which can lead to numerical errors

when jointly solving the three equations. Considering that G̃12 ∼ x/(y
√

x2 + y2), we use this

factor to renormalize the corresponding equation. The resulting system of equations for the

calculation of the Miesowicz shear moduli is

∑
α,β

rα,β〈∆xα,||(0),∆x̃β,||(s)〉=
kBT
4πs2 ·∑

α,β

rα,βG̃11(~r;s), (4.40)

∑
α,β

y
x

rα,β〈∆xα,||(0),∆x̃β,⊥(s)〉=
kBT
4πs2 ·∑

α,β

y
x

rα,βG̃12(~r;s), (4.41)

∑
α,β

rα,β〈∆xα,⊥(0),∆x̃β,⊥(s)〉=
kBT
4πs2 ·∑

α,β

rα,βG̃22(~r;s), (4.42)

Equations (4.40)-(4.42) form a system of non-linear equations that must be solved iteratively for

each Laplace frequency.

Figure 4.3 presents a flow chart summarizing the D2PTM analysis. We first track the

embedded probing particles in two random orthogonal directions x and y. The geometry of the

experiment must be such that x and y define a plane containing the director of the gel, ~n. We



94

Track Particles

Calculate one-point MSD
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equations (4.40)-(4.42)

G̃a(s)
G̃b(s)
G̃c(s)

Figure 4.3: Flow diagram summarizing the D2PTM analysis procedures.

then calculate the average of their 1P MSD, i.e. 〈∆x2(τ)〉, 〈∆y2(τ)〉 and 〈∆x,∆y(τ)〉. From them,

we calculate their principal directions x|| and x⊥, i.e. the two orthogonal directions where the

cross-MSD term 〈∆x||,∆x⊥(τ)〉 is minimum. One of the principal directions is parallel to~n. After

that, we calculate the two-point MSD of each pair of probing particles, in principal directions,

and from them we solve equations (4.40)-(4.42) iteratively. Their solution will provide the values

of G̃a(s), G̃b(s) and G̃c(s).

4.3 Validation of D2PTM by Numerical Simulation

This section assesses the feasibility and accuracy of our D2PTM analysis procedures. To

this end, we simulate the Brownian motion of particles embedded in a directional viscoelastic fluid

of known Miesowicz viscoelasticity coefficients, including the particle-particle hydrodynamic

interactions. We then analyze the simulated particle trajectories using the method presented in

§4.2.5 above, and compare the shear moduli values obtained from this analysis with those initially

prescribed in the Brownian motion simulation.
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4.3.1 Simulation Methodology

In our simulations, we prescribe the Miesowicz shear moduli using a Kelvin-Voigt

model G̃k = µk + s ·ηk with constant µk and ηk. The Brownian motion experienced by each

particle is defined as a Gaussian process with average and autocorrelation consistent with the

fluctuation-dissipation theorem [76, 114]:

〈vx(t)〉= 〈vy(t)〉= 〈vz(t)〉= 0, (4.43)

〈vx(t),vx(t + τ)〉= L−1

(
2kBT

ms+ ζ̃||(s)
;s→ τ

)
, (4.44)

〈vy(t),vy(t + τ)〉= 〈vz(t),vz(t + τ)〉= L−1
(

2kBT

ms+ ζ̃⊥(s)
;s→ τ

)
, (4.45)

where L−1(·;s→ t) represents the inverse Laplace transform. A key step of the simulations is to

calculate direct and inverse Laplace transforms. The numerical implementation of these transforms

is explained in detail in Appendix 4.8. Since the particles are small, we assume that inertial forces

are negligible compared with the hydrodynamic forces acting on them, i.e. ms� ζ̃ j(s). This as-

sumption has been shown to be valid for the frequencies accessible to PTM experiments [54, 88].

By virtue of the central limit theorem, it can be shown that equations (4.43), (4.44) and

(4.45) describe three multivariate normal distributions, one for the velocity in each direction [113].

Each distribution is completely defined by a zero average vector and a covariance matrix Σ|| or Σ⊥

with components

Σ||,kl = 2kBT ·L−1
(

ζ̃
−1
|| (s);s→ τ

)∣∣∣
τ=tk−tl

, (4.46)

Σ⊥,kl = 2kBT ·L−1
(

ζ̃
−1
⊥ (s);s→ τ

)∣∣∣
τ=tk−tl

. (4.47)

We prescribe fixed values for µa, µb, µc, and ηa ηb, ηc, and calculate the covariance

matrices (4.46) and (4.47). The time distribution of velocities for each particle,~v 0
α (t), is drawn

from a Multivariate Random Number generator. Figure 4.4 shows the parallel and perpendicular

covariance kernels calculated from (4.46)-(4.47) for µa = 0.5 Pa, µb = 0.01 Pa, µc = 1 Pa and
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Figure 4.4: Covariance of the velocity components of the simulated particles, represented as
a function of time separation τ. Symbols: averaged autocorrelation of the || (—) and ⊥ (›)
velocity components of the simulated particles, represented as a function of time separation
τ. Lines: covariance kernels Σ|| ( ) and Σ⊥ ( ) (equations 4.46-4.47), represented as a
function of the time separation. The vicinity of τ = 0 is shown in the inset.

ηa = ηb = ηc = 0.1 Pa·s, compared to the average of the autocorrelation of the velocity samples

drawn from the multivariate random number generator, for 10,000 time steps and 3,325 parti-

cles. The plot shows that the autocorrelation closely follows the prescribed covariance kernels,

indicating that the simulation procedures are self-consistent.

In each simulation we consider five particles randomly located at a distance not smaller

than ten radii from their neighbors, which is representative of the F-actin experiments presented

in §4.4.3. From the simulated Brownian motion of the particles, we calculate the hydrodynamic

interactions between pairs of particles as described in §4.2.3. The computation of these interac-

tions can be accelerated by exploiting the fact that the jumps in particle position are negligible

compared to the inter-particle distance, which allows us to assume constant ~r(s). Thus, for

each pair of particles it is only necessary to evaluate once the Green’s functions (4.31)-(4.33) to

calculate the induced velocity from (4.25).

Once the hydrodynamic interactions are calculated, the velocity of each particle is

obtained as the sum of its own Brownian motion and the particle-particle interaction terms,

~̃vα = ~̃v 0
α + ∑

∀β6=α

~̃v I
α,β. (4.48)
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Directional shear moduli:
G̃a(s), G̃b(s), G̃c(s)

Initial locations:
~x 0

α ,~x 0
β

Hydrodynamic interactions:
G̃i j(~rα,β;s)

(equations 4.31-4.34)

Velocity kernels: Σ||, Σ⊥
(equations 4.46-4.47)

Brownian velocities
~v 0

α (t),~v
0

β
(t)

Induced velocity~v I
α,β(t)

(equation 4.25)

Total velocity
(equation 4.48)

Trajectories
~xα(t),~xβ(t)

Figure 4.5: Flow diagram of the numerical simulations of the probing particles moving in a
nematic viscoelastic fluid.

The final step of the simulation is to calculate the particle trajectories by integrating in time their

velocity vector. As a summary, in Figure 4.5 we outline the steps of the numerical simulations

of the Brownian thermal motion of groups of distant interacting particles. All the analysis and

simulation tools used in this chapter were written in the general-purpose programming language

Python [125], using the numerical and scientific packages Numpy [150] and Scipy [67] and the

plotting library Matplotlib [64]. The most computationally intensive functions were compiled in

C by using Cython [7], and sped up by using Memoryview objects and the linear algebra module

Ceygen [78].

Figure 4.6 (a) shows the random evolution of the velocity of a representative particle

in the directions parallel and perpendicular to the nematic. The blue and red lines represent

respectively the total velocity of the particle and the velocity induced by its four neighboring

particles. The particle-particle interaction is a weak, higher order effect, and the total influence

of the four neighbouring particles is very small compared with the Brownian thermal particle

velocity. Figure 4.6 (b) shows the trajectories of the five particles in the same simulation. As

noted above the inter-particle distance is much greater than the particle displacement, which
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Figure 4.6: Trajectories and velocity components of a representative numerical simulation
containing five interacting particles embedded in a nematic Kelvin-Voigt fluid and subjected
to Brownian motion. (a) || and ⊥ velocity components of the simulated Brownian motion of
an example simulated particle moving through a nematic Kelvin-Voigt fluid with µa = 0.5 Pa,
µb = 0.01 Pa, µc = 1 Pa and ηa = ηb = ηc = 0.1 Pa·s. The total velocity is shown in blue ( )
while the velocity contribution from hydrodynamic interactions is shown in red ( ). (b)
Trajectories of a representative numerical simulation containing five interacting particles. The
nematic is aligned in the horizontal direction. For reference, each trajectory is marked with a
black arrow. The inset zooms in the trajectory of one of the particles.

justifies our assumption of constant particle-particle separation in the calculation of the Green’s

functions (4.31)-(4.33). The inset of Figure 4.6 (b) zooms into the trajectory of one particle,

whose envelope is an ellipse with its major axis aligned along the nematic, consistent with the

anisotropic rheological properties of the simulated fluid.

4.3.2 D2PTM on Simulated Particle Trajectories

To determine the mean square displacement tensor, we simulate the trajectories of

200 particle groups each containing 5 particles (i.e. 2,000 particle pairs). For consistency, we

consider the same nematic Kelvin-Voigt fluid with µa = 0.5 Pa, µb = 0.01 Pa, µc = 1 Pa and
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Figure 4.7: One- and two-point MSD of N = 1,000 simulated particles and M = 2,000 par-
ticle pairs in the principal directions of a nematic Kelvin-Voigt fluid. (a) One-point MSD
in the principal directions of a nematic Kelvin-Voigt fluid with µa = 0.5 Pa, µb = 0.01 Pa,
µc = 1 Pa and ηa = ηb = ηc = 0.1 Pa·s, projected along the || ( ) and ⊥ ( ) direc-
tions. A line of unit slope is plotted as reference ( ). The inset shows the MSD ra-
tio, 〈∆x||,∆x||〉/〈∆x⊥,∆x⊥〉. (b) Renormalized two-point cross-MSD of the same simulated
trajectories: 〈r ·∆x||,α,∆x||,β〉 ( ), 〈r ·∆x⊥,α,∆x⊥,β〉 ( ), 〈 y

x r ·∆x||,α,∆x⊥,β〉 ( ) and
〈 y

x r ·∆x⊥,α,∆x||,β〉 ( ). The data is plotted versus the time separation τ.

ηa = ηb = ηc = 0.1 Pa·s used for Figures 4.4 and 4.6. The directional one-point MSD of the

simulated particles are plotted in Figure 4.7 (a) in principal directions of the fluid. Due to the

particular choice of parameters for the Kelvin-Voigt model, these MSD have a characteristic

shape. At low values of τ, the MSD are dominated by the high-frequency viscous response of the

fluid and thus increase linearly with τ. Furthermore, since we prescribed the same value for ηa, ηb

and ηc, at short τ the MSD are isotropic (i.e. 〈∆x2
||〉= 〈∆x2

⊥〉). In contrast with this behavior, the
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MSD are dominated by the low-frequency elastic response of the fluid at high values of τ, thereby

reaching a plateau. Additionally, since we prescribed different values for µa, µb and µc, the MSD

are different along different directions. It is important to note that the MSD ratio 〈∆x2
||〉/〈∆x2

⊥〉 is

non-trivially related to the ratios between the three shear moduli [54] (see also Chapter 3).

Figure 4.7 (b) displays the two-point MSD of the simulated 2,000 particle pairs. The

dependence of these data on τ is similar to that of their one-point counterparts, although as we had

anticipated, the noise content of the cross-directional MSD (i.e. ||–⊥) is higher. Also as expected,

the renormalization proposed in (4.40)-(4.42) makes the values of the different two-point and

one-point MSD components comparable to each other. Using the two-point MSD as inputs, we

solve equations (4.40)-(4.42) to determine the three Miesowicz complex shear moduli.

Figure 4.8 shows the loss (panel a) and storage (panel b) components of the complex

moduli recovered from the simulated trajectories, together with the functional forms of these

parameters initially prescribed in our simulations. The agreement between recovered and pre-

scribed moduli is fairly good for the whole range of frequencies considered. A similarly good

agreement between prescribed and recovered shear moduli is found for different combinations of

viscoelastic parameters (see Appendix 4.9 for an additional example). Thus, we conclude that

the D2PTM analysis framework presented in this chapter can be used to accurately determine

the rheological properties of nematic complex fluids. Next section focuses on the experimental

implementation of D2PTM.

4.4 Experimental Application of D2PTM to Nematic F-actin Solu-

tions

This section illustrates the experimental application of D2PTM to characterize the rheo-

logical properties of a nematic complex fluid formed by a solution of filamentous actin (F-actin).

Actin is the most abundant cytoskeletal protein in eukaryotic cells, and forms elongated fibers

that can display a nematic ordering and anisotropic rheology [34]. He et al. [58] showed that the

mobility of microscopic particles in reconstituted nematic F-actin solutions is anisotropic. Thus,
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Figure 4.8: Prescribed and recovered loss and storage moduli of the simulated fluid, calculated
by applying the D2PTM analysis. (a) Symbols: Miesowicz loss moduli; G′′a (›), G′′b (∆)
and G′′c (—). Solid line: prescribed loss moduli of the material; ωηa = ωηb = ωηc ( ).
(b) Symbols: Miesowicz storage moduli; G′a (›), G′b (∆) and G′c (—). Lines: prescribed storage
moduli of the material; µa ( ), µb ( ) and µc ( ). The data are plotted versus the
frequency ω.

this system is an ideal benchmark for D2PTM.

4.4.1 Sample Preparation

F-actin samples were prepared following well-established protocols [58, 118]. Pre-

formed actin filaments from rabbit skeletal muscle were purchased from Cytoskeleton, Inc.

(Denver, CO). This F-actin mixture was diluted in Milli-Q water at room temperature to a con-

centration of 0.4 mg/ml. The resulting F-actin solution contained 5 mM Tris-HCl pH 8.0, 0.2
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mM CaCl2, 0.2 mM ATP, 2 mM MgCl2 and 5% (w/v) sucrose. The samples were incubated

for 10 minutes at room temperature, allowing the filaments to completely dissociate from each

other. In order to protect the samples from bacterial growth, ampicillin was added to a final

concentration of 100 µg/ml. This salt concentration of the buffer produces an average filament

length of 8 µm, which is substantially smaller than the persistence length of F-actin, ξp ∼ 20

µm [52]. Thus, the actin filaments in our experiments can be safely assumed to be straight.

To induce the nematic transition of the samples, the F-actin concentration was increased to 4

mg/ml while keeping constant the salt concentration and filament length by dialyzing the sample,

i.e. the sample was centrifuged at 2,000 g and 19◦C in an Amicon Ultra-4 Centrifugal Filter Unit

(EMD Millipore, Billerica, MA) until the target concentration was reached. The protein concen-

tration was monitored using a spectrophotometer to measure the absorbance at 650 nm.

Carboxylate modified red latex beads with 0.5 µm nominal diameter (Fluospheres, Invitro-

gen, Carlsbad CA) were diluted in the supernatant solution and then added to the protein solution.

The protein solution with beads was stored at 4◦C for no more than a week. Rectangular capillary

tubes with internal dimensions 0.1 mm× 1 mm× 50 mm (VitroCom, Mountain Lakes, NJ) were

filled through capillarity with the protein solution. The filling flow provides enough shear to align

the F-actin filaments parallel to the capillary axis (Figure 4.11 a and ref. [58]). The tubes were

sealed with two-component epoxy resin to avoid evaporation and internal currents, and attached

to a microscope glass slide. The samples were kept at room temperature for at least 2 hours to

reach thermal equilibrium in preparation for imaging.

4.4.2 Microscopy and Image Processing

Fluorescent light image sequences of the samples were captured at 50 Hz using a Leica

DMI6000 B inverted microscope (Leica Microsystems, Inc., Buffalo Grove, IL), equipped with

a Zyla 4.2 sCMOS camera (Andor Technology Ltd., Belfast, UK) and a 63x oil immersion

objective lens, and mounted on a Micro-g 63-543 optical air table (TMC - AMETEK, Inc.) that

damped vibrations. The imaging setup was controlled by the open source microscopy software

Micro-Manager [1, 142, 37].
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Figure 4.9: Fluorescence images of the microparticles embedded in a nematic F-actin gel with
their trajectories superimposed. The inset represents a zoom in one of the particles. The nematic
of the gel is parallel to the horizontal axis.

The centers of the fluorescent particles were tracked by implementing a previously

reported algorithm [120] that we validated for Newtonian fluids (see Appendix 4.10). From

the trajectories of the particles, we calculated the one-point MSD in the directions parallel

and perpendicular to the nematic, and the two-point cross-MSD for pairs of distant particles.

Figure 4.9 shows particle trajectories obtained in a typical experiment. We then analyzed the

cross MSD as described in §4.2.5 to determine the directional shear moduli of the F-actin solution

(see Figure 4.3). A total of 20 F-actin samples were analyzed. For each sample, images from

different regions were taken, capturing the motion of 2 to 10 particles in each image, for a total of

2,346 particles and 6,105 particle pairs.

4.4.3 Experimental Results and Discussion

The qualitative anisotropic rheology of nematic F-actin solutions can be observed by

plotting the histograms of the tracked particle jumps in the directions parallel and perpendicular

to the nematic, P[∆x||(∆t)] and P[∆x⊥(∆t)] (see ref. [58] and Figure 4.10). Both histograms
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Figure 4.10: Histograms of the experimental particle jumps in the || and ⊥ directions for
τ = δt = 0.02 s. Two Normal histograms with the same average and standard deviation than the
|| ( ) and ⊥ ( ) experimental distributions are included for reference.

have similar skewness (S) and kurtosis (K) coefficients, namely S|| =−2.4×10−3, K|| = 3.25,

and S⊥ = 9×10−4, K⊥ = 3.22. These values are also approximately consistent with a Normal

distribution (S = 0, K = 3). The widths of these histograms are however markedly different,

indicating that particle mobility is anisotropic. The nematic of the F-actin solution has been

shown to correspond with the direction of highest mobility of the probing particles [58]. Thus,

we define the || direction as the principal direction of maximal mobility in our experiments, and

the ⊥ direction as the orthogonal direction corresponding to minimal mobility. This assignment

is confirmed by Figure 4.11 (a), which shows one-point MSD of the tracked particles along the

axis of the capillary tube (x direction), the orthogonal direction (y), and the principal || and ⊥

directions determined by diagonalizing the MSD tensor. The data shows that the MSD in the x

and y directions respectively agree with the MSD in the || and ⊥ directions, implying that the

actin fibers were successfully aligned parallel to the capillary axis during sample preparation.

As expected, the MSD curves in Figure 4.11 (a) have slopes between 0 and 1, suggesting

that the rheology of the F-actin solutions was neither elastic nor viscous in the range of time scales

considered. The MSD ratio 〈∆x2
||〉/〈∆x2

⊥〉, shown in the inset of Figure 4.11 (a), ranges between

2 at low values of τ and 4 at high τ values, confirming the anisotropic behavior observed in the

histograms of Figure 4.10. Overall, these one-point MSD are in fair agreement with previously
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Figure 4.11: One- and two-point MSD of N = 2,346 experimental particles and M = 6,105 par-
ticle pairs in the principal directions of an F-actin nematic solution. (a) One-point MSD.
Symbols: MSD along the direction of the capillary tube axis x (›) and the perpendicu-
lar direction y (—). Lines: MSD along the principal directions of maximal (||, ) and
minimal (⊥, ) particle mobility. The dotted green line (•••) represents the ||-⊥ cross-
correlation of the particle displacements. For reference, a line with unit slope has been in-
cluded ( ). The inset shows the MSD ratio 〈∆x||,∆x||〉/〈∆x⊥,∆x⊥〉. (b) Renormalized
two-point MSD: 〈r ·∆x||,α,∆x||,β〉 ( ), 〈r · ∆x⊥,α,∆x⊥,β〉 ( ), 〈 y

x r · ∆x||,α,∆x⊥,β〉 ( )
and 〈 y

x r ·∆x⊥,α,∆x||,β〉 ( ). The data are plotted versus the time separation τ.

reported data [58].

In Figure 4.11 (b) we plot the two-point directional MSD of the 6,105 tracked particle

pairs, expressed in principal directions and normalized as indicated in (4.40)-(4.42). These data
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Figure 4.12: Directional loss and storage moduli of the F-actin gel, calculated by applying
the D2PTM analysis. (a) G′′a (›), G′′b (∆) and G′′c (—), calculated with the two-particle data.
(b) G′a (›), G′b (∆) and G′c (—), calculated with the two-particle data.

are noisier than the one-point MSD in agreement with our simulations (Figure 4.7), and with

previous experiments on isotropic fluids [30]. This explains why it was necessary to compile data

from a relatively large number of particle pairs to obtain converged statistics. The D2PTM analysis

of the two-point MSD allowed us to calculate the complex shear moduli of the nematic F-actin

solutions from our experimental measurements. These shear moduli are plotted in Figure 4.12 as

a function of frequency. For the whole range of frequencies considered, the smallest loss modulus

is G′′c (see Figure 4.12 a). On the other hand, G′a > G′b > G′c (Figure 4.12 b). We also observe

that G′′b > G′′a for high frequencies while the opposite happens for low frequencies. It is notable

that, while all the loss moduli have a slope lower than 1, G′′b has the highest slope.
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Figure 4.13: Comparison of the directional shear moduli of the nematic F-actin gel calculated
with D2PTM and the effective directional shear moduli predicted from one-point PTM.
(a) Symbols: loss moduli G′′⊥ = G′′a (›), G′′|| = G′′b (∆),−G′′

∆
=−(G′′c −G′′a) (—). Lines: effective

loss moduli G′′eff,⊥ ( ), G′′eff,|| ( ). Inset: ratio G′′||/G′′⊥ ( ) and G′′eff,||/G′′eff,⊥ ( ).

(b) Symbols: storage moduli G′⊥ = G′a (›), G′|| = G′b (∆), −G′
∆
= −(G′c−G′′a) (—). Lines:

effective storage moduli G′eff,⊥ ( ), G′eff,|| ( ). Inset: ratio G′||/G′⊥ ( ) and

G′eff,||/G′eff,⊥ ( ).

To facilitate the interpretation of these results, Figure 4.13 replots the Miesowicz moduli

as G||=Gb, G⊥=Ga and G∆ =Gc−Ga, based on the form of the equations of motion (4.7)-(4.9).

In this representation, G|| and G⊥ reflect the anisotropy in the strain-stress relationship, while G∆

indicates the bending resistance with respect to the nematic (see Chapter 3 and [54]). The data

suggest that fluctuations perpendicular to the nematic likely generate distortions of the F-actin

fibers including fiber bending, which trigger an elastic-like response, i.e. the storage components
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of G⊥ and G∆ are dominant. Conversely, fluctuations parallel to the nematic generate a viscous

response dominated by G′′||, and likely caused by filament-solvent sliding.

The anisotropic rheology of a nematic complex fluid can be fully characterized by one-

point microrheology only in two particular pseudo-isotropic cases (see Chapter 3 and [54]) in

which the number of independent Miesowicz shear moduli is reduced to two. These cases are

Ga =Gb, which corresponds with isotropic momentum diffusivity (G||=G⊥), and Ga =Gc, which

corresponds with zero resistance to bending (G∆ = 0). Our experimental results indicate that nei-

ther of these conditions are satisfied for nematic F-actin solutions. Figure 4.13 compares the shear

moduli obtained by D2PTM with the effective moduli obtained by one-point directional PTM,

Geff,|| and Geff,⊥ (equations 4.36-4.37 and refs. [57, 34, 58]). Apart from the obvious differences

in magnitude, there is a number of notable qualitative differences between the effective one-point

moduli and actual two-point ones. We observe that |G∆| ∼ |G⊥| suggesting that the response to

nematic bending, which cannot be captured by one-point PTM, makes an important contribution

to the microrheology of nematic F-actin solutions. More importantly, the one-point data would

suggest that G′′eff,|| < G′′eff,⊥ despite that G′′|| > G′′⊥ (Figure 4.13 a), implying that one-point PTM

may fail to identify the direction of maximum viscosity in nematic complex fluids. Additionally,

one-point PTM underestimates G′⊥ while it overestimates G′|| (Figure 4.13 b), thus severely

under-predicting the level of anisotropy in the elastic response.

4.5 Conclusions

Many technological and biological soft viscoelastic materials exhibit microstructural

alignment along a common direction leading to anisotropic rheological properties. Examples

of these are liquid crystals [24], nematic viscoelastomers [154], the cell cytoplasm [50, 34],

and the extracellular matrix [99]. For small distortions of the nematic direction field (i.e. low

Ericksen number limit), the anisotropic rheology of nematic complex fluids can be approximately

described by three frequency-dependent Miesowicz complex shear moduli [140, 141, 54]. These

coefficients can be macroscopically measured by subjecting the sample to simple shear in different
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geometrical configurations [108, 134], by propagating ultrasound waves or electromagnetic fields,

and by light scattering techniques [8]. However, there is a lack of microscopic methods to

characterize the rheological properties of nematic complex fluids. This chapter introduces a novel

particle tracking microrheology method to address this limitation: directional two-point particle

tracking microrheology (D2PTM). Compared to existing macroscopic methods, D2PTM can be

applied to minute samples and involves a simple experimental setup.

The theoretical foundation of D2PTM is established by extending our previous analysis

of nematic flow around a microrheological probe [54]. We determine the mutual hydrodynamic

interactions between pairs of distant particles immersed in a nematic complex fluid, and we

use this knowledge to generalize two-point particle-tracking microrheology [30] to these soft

materials. This new analysis allows for calculating the three Miesowicz shear moduli from the

measured cross-MSD of particle pairs by solving a system of three complex-valued equations at

each frequency. To test this approach, we simulate the Brownian motion of several thousands

of spheres embedded in a nematic complex fluid in which we prescribe the Miesowicz shear

moduli as functions of the frequency. We then apply the D2PTM analysis to the trajectories of

the particles and recover the Miesowicz moduli, which result to be in close agreement with the

prescribed ones.

To demonstrate the experimental application of D2PTM for nematic complex fluids and

to investigate the rheological properties of these fluids, we perform particle-tracking experiments

on F-actin solutions where the actin filaments are aligned by flow shear. The one-point statistics

of particle motion obtained in our experiments are consistent with those previously reported

for similar F-actin solutions [58]. Moreover, D2PTM provides direct information about the mi-

crostructure of the material that is not accessible from one-point measurements of particle mobility.

Specifically, we observe that the microrheological response of F-actin solutions is predominantly

viscous in the direction parallel to the nematic probably due to filament-solvent sliding, whereas

this response is predominantly elastic in the perpendicular direction due to fiber distortions and

fiber bending. This two-point analysis of particle trajectories reveals important differences be-

tween the actual directional shear moduli of nematic F-actin solutions, and the so-called effective
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directional shear moduli derived from previously proposed one-point analyses [57, 34, 58]. In

addition to not being able to capture the rotational shear modulus of the nematic, one-point PTM

does not correctly determine the direction of maximum viscosity in nematic F-actin solutions,

and underestimates the anisotropy in their elastic response.

The theoretical framework employed here to develop D2PTM is based on a number of

simplifications that could potentially limit the applicability of this new microrheology technique.

Specifically, we work with a continuum incompressible formulation that assumes small deforma-

tions. Thus, the accuracy of D2PTM is expected to deteriorate in experiments that cause large

deformations, for strongly non-linear materials, and for materials that are heterogeneous at the

length scale of the distance between particle pairs. It is important to note, however, that these

simplifications are common to most if not all existing PTM methods [138].

An additional important simplification made in this chapter is that the orientation of the

nematic remains uniform over the length scale of the inter-particle distance. This assumption is

reasonable in the present experiments, where actin filaments are externally aligned as part of the

sample preparation, and their persistence length ξp is approximately twice their total length and

80 times the particle radius. The assumption of uniform nematic orientation can be particularly

delicate in the vicinity of the particle due to surface effects [127]. Likewise, when probing polymer

solutions with ξp� a the particle may alter the local orientation of filaments near itself [131].

However, these near-field effects have a negligible influence on the hydrodynamic interaction

of pairs of distant particles, and thus the ability of D2PTM to quantify the bulk response of the

fluid remains largely unaffected [88]. Distortions of the nematic orientation could be incorporated

into the D2PTM analysis by considering static non-uniform nematic fields that include defects

near the particle surface [140]. Alternatively, the dynamics of the nematic could be solved taking

into account its Frank elasticity constants [44], or using the Poisson-bracket approach [139].

Nonetheless, these refinements would introduce additional material parameters unknown a priori,

and a two-particle protocol would be insufficient to determine these new parameters together with

the Miesowicz shear moduli.

In conclusion, we have developed a new directional two-point particle tracking mi-
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crorheology method (D2PTM) that provides important new information about the anisotropic

viscoelastic response of nematic complex fluids, which is hidden to currently available microrhe-

ology techniques.

4.6 Appendix A - Single-Particle Response Function

This appendix provides the general form of the components of the response function (4.22)

of a particle of radius a moving in a directional complex fluid, calculated from the integral (4.19)

making use of equations (4.14)-(4.15). The singularities of the response function and its Taylor

expansion around the isotropy point are also presented.

The components of the response function of nematic complex fluid with general values

of the shear moduli α∗1, G̃a, G̃b and G̃c are

sζ̃|| =
8πaG̃bB(~µ)

D+(~µ)
arctan[C+(~µ)]

C+(~µ)
−D−(~µ)

arctan[C−(~µ)]
C−(~µ)

, (4.49)

sζ̃⊥ =
8πaG̃a

(
G̃b
α̃∗1

)2
C−(~µ)8 E+(~µ)

E−(~µ)

arctan
(√

G̃c/G̃a−1
)

√
G̃c/G̃a−1

+ 1
B(~µ)

G̃a
G̃b

[
arctan[C−(~µ)]

C−(~µ)
− arctan[C+(~µ)]

C+(~µ)

] . (4.50)

where we have used the non-dimensional functions

A(~µ) =
α̃∗1 + G̃c

G̃b
−1, (4.51)

B(~µ) =

√
A(~µ)2 +

4α̃∗1
G̃b

, (4.52)

C+(~µ) =

√
A(~µ)+B(~µ)

2
, (4.53)

C−(~µ) =

√
A(~µ)−B(~µ)

2
, (4.54)

D+(~µ) = A(~µ)+2+B(~µ), (4.55)

D−(~µ) = A(~µ)+2−B(~µ), (4.56)

E+(~µ) = A(~µ)D+(~µ)−2
(

G̃c

G̃b
−1
)
, (4.57)
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E−(~µ) = A(~µ)D−(~µ)−2
(

G̃c

G̃b
−1
)
. (4.58)

Equations (4.49)-(4.50) degenerate in the limit B(~µ)→ 0, which occurs whenever

G̃c

G̃b
→
(

1±
√
−α̃∗1
G̃b

)2

. (4.59)

In this limit, C+→C−, D+→ D− and E+→ E−, and the expressions that determine the two

components of the response function (4.49)-(4.50) become undefined, although solving the limit

yields sζ̃|| = sζ̃⊥ = 0. There is a change of sign of sζ̃⊥, when crossing the limit (4.59) along the

branch associated to the − sign, only when α̃∗1 <−G̃b, yielding unphysical negative values of the

response function. On the other hand, the sign of the response function does not change along the

branch associated to the + sign.

Equations (4.49)-(4.50) are singular for α̃∗1 = 0. However, the response function can be

calculated, for a complex fluid with α̃∗1 = 0, as the limit

sζ̃||
∣∣∣
α̃∗1=0

=
4πa(G̃c− G̃b)

G̃c
G̃b

arctan
(√

G̃c/G̃b−1
)

√
G̃c/G̃b−1

−1

, (4.60)

sζ̃⊥
∣∣∣
α̃∗1=0

=
8πa(G̃c− G̃b)

1−
arctan

(√
G̃c/G̃b−1

)

√
G̃c/G̃b−1

+ G̃c−G̃b
G̃a

arctan
(√

G̃c/G̃a−1
)

√
G̃c/G̃a−1

. (4.61)

For complex fluids that are nearly isotropic, the response function can be approximated

by the Taylor expansion of equations (4.49)-(4.50) around α̃∗1 = 0 and G̃a = G̃b = G̃c = G̃:

sζ̃‖
6πaG̃

≈ 1+
4
35

α̃∗1
G̃

+
4
5

(
G̃b

G̃
−1
)
+

1
5

(
G̃c

G̃
−1
)
, (4.62)

sζ̃⊥
6πaG̃

≈ 1+
3
70

α̃∗1
G̃

+
1
2

(
G̃a

G̃
−1
)
+

1
10

(
G̃b

G̃
−1
)
+

2
5

(
G̃c

G̃
−1
)
. (4.63)
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Equation (4.50) is also singular for G̃a = G̃c. However, it presents the limit value:

sζ̃⊥
∣∣∣
G̃a=G̃c

=
8πaG̃c

(
G̃b
α̃∗1

)2
C−(~µ)8 E+(~µ)

E−(~µ)

1+ 1
B(~µ)

G̃c
G̃b

[
arctan[C−(~µ)]

C−(~µ)
− arctan[C+(~µ)]

C+(~µ)

] . (4.64)

Equations (4.60)-(4.61) present other singularities, for different combinations of G̃a, G̃b

and G̃c, with finite limits:

sζ̃||
∣∣∣α̃∗1=0
G̃b=G̃c

= 6πaG̃c, (4.65)

sζ̃⊥
∣∣∣α̃∗1=0
G̃a=G̃c

=
8πa(G̃c− G̃b)

2− G̃b
G̃c
−

arctan
(√

G̃c/G̃b−1
)

√
G̃c/G̃b−1

, (4.66)

sζ̃⊥
∣∣∣α̃∗1=0
G̃b=G̃c

=
24πaG̃a

G̃a
G̃c

+3
arctan

(√
G̃c/G̃a−1

)

√
G̃c/G̃a−1

, (4.67)

sζ̃⊥
∣∣∣α̃∗1=0
G̃a=G̃b=G̃c

= 6πaG̃c. (4.68)

4.7 Appendix B - Two-Particle Response Function

This appendix provides the general form of the components of the hydrodynamic interac-

tion tensor
˜G(~r;s) (see equation 4.25) of pairs of distant particles moving in a directional complex

fluid, calculated as the inverse Fourier transform of equations (4.14)-(4.15) when both particles

are located in the same plane z = 0. For the sake of completeness, we also provide the Green’s

function for the pressure, i.e. the inverse Fourier transform of (4.13).

The hydrodynamic interaction tensor in a nematic complex fluid, with general values of

the shear moduli α∗1, G̃a, G̃b and G̃c, is given by

G̃11

s

∣∣∣
z=0

=

√
2

eb

(
d + ex2
√

c− ey2
− d− ex2
√

c+ ey2

)
, (4.69)

G̃12

s

∣∣∣
z=0

=
G̃21

s

∣∣∣
z=0

=

√
2

eb
x
y

(√
c+ ey2−

√
c− ey2

)
, (4.70)

G̃13

s

∣∣∣
z=0

=
G̃31

s

∣∣∣
z=0

= 0, (4.71)
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[
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2
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1
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, (4.72)

G̃23
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∣∣∣
z=0
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z=0

= 0, (4.73)

G̃33
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2
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2x2

√
x2 + Gc

Ga
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+
b
e
·
(

n+√
c+ ey2

− n−√
c− ey2

)
 , (4.74)

where x, y and z are the coordinates of the particle-particle separation in the Cartesian coordinate

system defined in Figure 4.2, and

b(~µ;~r) =
√(

α̃∗1 + G̃b + G̃c
)

x2y2 + G̃bx4 + G̃cy4, (4.75)

c(~µ;~r) =
(
α̃
∗
1 + G̃b + G̃c

)
y2 +2G̃bx2, (4.76)

d (~µ;~r) =
(
α̃
∗
1 + G̃b + G̃c

)
x2 +2G̃cy2, (4.77)

e(~µ) =
√(

α̃∗1 + G̃b + G̃c
)2−4G̃bG̃c, (4.78)

m+ (~µ;~r) = (c−Gbx2)(d + ex2−2Gcy2)−2GbGcx2y2, (4.79)

m− (~µ;~r) = (c−Gbx2)(d− ex2−2Gcy2)−2GbGcx2y2, (4.80)

n+ (~µ;~r) = α̃
∗
1 + G̃b + G̃c + e, (4.81)

n− (~µ;~r) = α̃
∗
1 + G̃b + G̃c− e. (4.82)

It should be noted here that all (4.69), (4.70), (4.72) and (4.74) depend on G̃b and G̃c,

while only (4.72) and (4.74) depend on G̃a. The Green’s function for the pressure has the form
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, (4.83)

P̃2

∣∣∣
z=0

=
2
√

2y
eb3

[
Gc
(
3G̃bh+ ly4)

(
1√

c+ ey2
− 1√

c− ey2

)

−Gb

(
q−

(c+ ey2)3/2 −
q+

(c− ey2)3/2

)]
, (4.84)
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P̃3

∣∣∣
z=0

= 0, (4.85)

where

h(~µ;~r) =
(
α̃
∗
1− G̃a + G̃b + G̃c

)
x2y2 + G̃bx4 + G̃cy4, (4.86)

l (~µ) =
(
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1− G̃a + G̃b + G̃c

)(
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)
−4G̃bG̃c (4.87)
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+ G̃cy2 (2G̃bx2− G̃ay2)] (4.88)
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)
, (4.89)

q− (~µ;~r) = p+ G̃bx6 (G̃am−+4G̃bG̃c
)
. (4.90)

For a complex fluid with α̃∗1 = 0, equations (4.69)-(4.84) are simplified into

G̃11

s

∣∣∣z=0
α̃∗1=0

=
2

G̃b− G̃c


 1√

x2 + y2
− G̃c

G̃b

1√
x2 + G̃c

G̃b
y2


 , (4.91)
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For nearly isotropic complex fluids, the particle-particle interaction can be approximated
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by its Taylor expansion around α̃∗1 = 0 and G̃a = G̃b = G̃c = G̃ as
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Equations (4.69)-(4.84) are also singular for other combinations of the viscoelasticity parameters.

Here we list their limit values. For α̃∗1 = α̃ =−
(√

G̃b−
√

G̃c

)2
, we have:
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For α̃∗1 = α̃ =−
(√

G̃b +
√

G̃c

)2
:

G̃11

s

∣∣∣z=0
α̃∗1=α̃

=
1

G̃b

2x2−
√

G̃c
G̃b

y2

(
x2−

√
G̃c
G̃b

y2
)3/2 , (4.109)

G̃12

s

∣∣∣z=0
α̃∗1=α̃

=
1

G̃b

xy
(

x2−
√

G̃c
G̃b

y2
)3/2 , (4.110)

G̃22

s

∣∣∣z=0
α̃∗1=α̃

=
1

G̃cy2


2

√
x2 +

G̃c

G̃a
y2− x2

2x2−3
√

G̃c
G̃b

y2

(
x2−

√
G̃c
G̃b

y2
)3/2


 , (4.111)

G̃33

s

∣∣∣z=0
α̃∗1=α̃

=
1

G̃cy2




−2x2
√

x2 + G̃c
G̃a

y2
+

2x2−
√

G̃c
G̃b

y2

√
x2−

√
G̃c
G̃b

y2


 , (4.112)

P̃1

∣∣∣z=0
α̃∗1=α̃

=
x

G̃b

(
x2−

√
G̃c
G̃b

y2
)5/2


3G̃cy2− G̃a

√
G̃c

G̃b
y2

5x4− G̃c
G̃b

y4

(
x2−

√
G̃c
G̃b

y2
)2

+2G̃ax4
x4− G̃c

G̃b
y4

(
x2−

√
G̃c
G̃b

y2
)3


 , (4.113)



118

P̃2

∣∣∣z=0
α̃∗1=α̃

=
y

G̃b

(
x2−

√
G̃c
G̃b

y2
)5/2


3G̃cy2− G̃a

√
G̃c

G̃b
y2

5x4− G̃c
G̃b

y4

(
x2−

√
G̃c
G̃b

y2
)2

+2G̃ax4
x4− G̃c

G̃b
y4

(
x2−

√
G̃c
G̃b

y2
)3


 . (4.114)

When α̃∗1 = 0 and G̃b = G̃c:
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When α̃∗1 = 0 and G̃a = G̃b = G̃c:
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Another singularity arises when y = 0, independently of the viscoelasticity coefficients:
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. (4.127)

4.8 Appendix C - Numerical Implementation of Laplace Transforms

Laplace transforms are calculated using the Fast Laplace Transform (FLT) approach [65].

The FLT is based on the observation that the complex Laplace frequency s is related to the Fourier

frequency ω as s= c+ iω, so that the Laplace transform can be calculated by using the coefficients

of the Fast Fourier Transform. We use an efficient implementation of the Fast Fourier Transform

called the FFTW [46, 47]. The accuracy of the FLT has been characterized as a function of the

free frequency parameter c [65], being c = 4π/T the optimal value, which we have employed

throughout the simulations. We have found the errors introduced by the FLT for the specific data

of our simulations to be ∼ 10−6% (data not shown). We dismissed the implementation of an

improved Talbot approximation to the Inverse Laplace Transform [145, 156, 35] because, while it

would provide a smoother result, it is singular at τ = 0.

4.9 Appendix D - Validation of D2PTM by Numerical Simulation.

Additional Data.

The parameters used in the simulation presented in §4.3 were deliberately chosen so

that the MSD would display isotropic features at high frequencies and anisotropic characteristics

at low frequencies, and thus illustrate the applicability of D2PTM to differentiate these two

behaviors. Here, we present additional validation data for a more generic example fluid where the

6 viscoelastic parameters are different from each other, i.e. µa = 0.1 Pa, µb = 0.4 Pa, µc = 0.3 Pa,
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Figure 4.14: One- and two-point MSD of N = 1,000 simulated particles and M = 2,000 particle
pairs in the principal directions of an additional nematic Kelvin-Voigt fluid. (a) One-point MSD
in the principal directions of a nematic Kelvin-Voigt fluid with µa = 0.1 Pa, µb = 0.4 Pa, µc = 0.3
Pa and ηa = 0.6 Pa·s, ηb = 0.2 Pa·s, ηc = 0.4 Pa·s, projected along the || ( ) and ⊥ ( )
directions. A line of unit slope is plotted as reference ( ). The inset shows the MSD
ratio, 〈∆x||,∆x||〉/〈∆x⊥,∆x⊥〉. (b) Renormalized two-point cross-MSD of the same simulated
trajectories: 〈r ·∆x||,α,∆x||,β〉 ( ), 〈r ·∆x⊥,α,∆x⊥,β〉 ( ), 〈 y

x r ·∆x||,α,∆x⊥,β〉 ( ) and
〈 y

x r ·∆x⊥,α,∆x||,β〉 ( ). The data are plotted versus the time separation τ.

ηa = 0.6 Pa·s, ηb = 0.2 Pa·s and ηc = 0.4 Pa·s, and show that they can also be recovered by

D2PTM. In Figure 4.14 we show the MSD of individual microparticles and the cross-MSD of

pairs of interacting particles embedded in the simulated material. It can be seen that the shapes of

the MSD curves are qualitatively similar to those shown in Figure 4.7, but here the anisotropy is

present at all frequencies. In Figure 4.15 we show the directional shear moduli prescribed to the

simulation, along with the values recovered by the D2PTM implementation. Although the shape
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Figure 4.15: Prescribed and recovered loss and storage moduli of an aditional simulated
fluid, calculated by applying the D2PTM analysis (a) Symbols: G′′a (›), G′′b (∆) and G′′c (—).
Lines: actual loss moduli of the material ( , and ). (b) Symbols: G′a (›), G′b (∆)
and G′c (—). Lines: actual storage moduli of the material ( , and ).

of the loss moduli is qualitatively similar to those shown in Figure 4.8, the numerical values

of every coefficient are now different. As one can see, the shear moduli are recovered with an

accuracy similar to §4.3.
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4.10 Appendix E - Validation of the Particle Tracking Setup

To characterize the accuracy of the imaging platform and particle tracking algorithm

implemented for our experiments, we performed PTM in a solution of glycerol and water, which

is a well characterized system with isotropic Newtonian rheology. We prepared control isotropic

samples of 50% (v/v) glycerol in water, which results in a bulk viscosity consistent with MSD

values that span the range of MSD measured in the F-actin experiments.

Figure 4.16 shows the MSD of the probing particles in principal directions as well as the

total MSD. For the whole range of representative frequencies of the experiment, the MSD follow

a straight line with unit slope down to the lowest values of τ. This result indicates that our particle

tracking setup has sufficient spatial resolution to track particle displacements at our experimental

sampling frequency. Furthermore, we calculated the viscosity of the sample from the MSD by

applying standard PTM (equation 4.35), and obtained a viscosity coefficient of η≈ 6.5 mPa·s,

consistent with a 50% (v/v) solution of glycerol in water, at 20◦C. Another important result

stemming from Figure 4.16 is that, although the isotropic samples were confined in the same
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Figure 4.16: MSD of 0.5 µm diameter particles embedded in a 50% (v/v) solution of glycerol in
water, plotted as a function of time separation τ. Total ( ) MSD as well as MSD in principal
directions of maximal ( ) and minimal ( ) mobility are shown. A line with unit slope has
been included for reference ( ).
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capillary tubes than the F-actin solutions, the measured MSD are isotropic up to time separations

τ∼ 10s. Thus, the spatial confinement induced by the walls of the capillary tube does not induce

anisotropic particle mobility in the range of frequencies of interest.

Chapter 4 has been in part submitted for peer review under the title “Two-Point Particle Tracking

Microrheology of Nematic Complex Viscoelastic Fluids”, by M. Gómez-González and J. C. del

Álamo. The dissertation author is the primary investigator in this publication.



Chapter 5

Particle Tracking Microrheology of

Live Cell Membranes

5.1 Introduction

In this chapter, we study the microrheological properties of the membrane-cortex complex

of live Red Blood Cells (RBC). To that end, we apply PTM in a similar manner we did in previous

chapters, by using probing particles embedded in the membrane-cortex complex of the RBC (note

that, from here on, we will interchangeable use the expressions membrane-cortex complex and

“membrane”, as opposed to the “cell membrane”).

RBC are the cells in charge of delivering oxygen to the body tissues. To that end, they

need to squeeze through the body’s capillaries, and thus their deformability, stability and other

mechanical properties are key to their correct function [19]. Their viscoelasticity and deformability

can be highly influenced by different pathophysiological conditions [19, 71], such as age, the

invasion of the Malaria parasite [25], the sickle cell disease [97], Thalassemia, etc., and thus

modifying the blood viscosity, circulation and RBC function. Similarly, the processing and storage

of transfusion blood greatly affect their deformability and viscoelasticity, and thus the quality

and performance of the donated RBC[160, 23]. Because of this interplay between mechanical
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Figure 5.1: Side-view schematic representation of the RBC’s membrane PTM experiment.
Individual RBC (depicted in red) are attached to a solid surface. Probing polylysine-coated
microparticles (shown in blue) are embedded in the cell’s membrane (solid line)-cortex (green
hatch) complex.

properties and cell function, a quantitative analysis of the RBC structural microrheology is key to

understanding different diseases and conditions of the blood and RBC.

RBC transport oxygen by making use of the oxygen-binding protein hemoglobin. In order

to maximize the amount of hemoglobin they carry, adult mammalian RBC lack a cell nucleus

and most organelles. Their structure, integrity and viscoelasticity is mostly provided by the cell

membrane and the spectrin cortex laying underneath it, and thus it is paramount to design an

experimental tool to measure the viscoelasticity of this structure. In [19, 71], the authors provide

extensive reviews of the experimental approximations taken to measure the microrheological

characteristics of RBC.

In Figure 5.1 we show a side-view schematic representation of a RBC mechanical

structure and the PTM experimental setup that we used to probe its local microrheological

properties. The RBC’s cell membrane is depicted as a solid black line, and the spectrin cortex is

delimited by a dashed black line, and hatched in green. Individual RBC are attached to a solid

surface, and polylysine-coated microparticles are embedded into its membrane. This experimental

system presents the defining characteristic that the probed material is a thin viscoelastic membrane,

surrounded by buffer and the cell cytoplasm, and the probing particles cannot freely move in

three dimensions, but their motion is restricted to the surrounding membrane. Furthermore,

the particle motion is also affected by the fluid surrounding the membrane. Thus, we cannot

apply the GSER (1.17) to the measured particle MSD in order to obtain the membrane shear

modulus, but we will need to correctly model the diffusivity of the particles in this complex
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system. Consequently, this is a perfect example of the importance of having a correct description

of the fluid mechanics of the experimental system, and the need to adapt the GSER to the physical

characteristics of the specimen under study.

In the following sections, we will provide the drag force of a particle embedded in this

system, the interaction of pairs of distant embedded particles, and we will use them to modify

the GSER to correctly measure the membrane viscoelasticity. Furthermore, we will provide

some experimental examples of their application, i.e. we will measure the viscoelasticity of the

membrane-cortex complex of RBC by applying membrane one-particle and two-point PTM.

5.2 One-Point PTM of 2D Membranes Embedded in Surrounding

Fluids

Lets consider a viscoelastic 2D membrane of thickness h and shear modulus G̃m embedded

in a viscoelastic fluid of shear modulus G̃ f , as depicted in Figure 5.2. This membrane contains

a cylindrical inclusion, α, of radius aα and height not smaller than h. We are interested in the

mobility of the inclusion, with motion parallel to the membrane surface. In the low Reynolds

number regime and in the frequency domain, a force F̃α acting on the particle and its induced

velocity ṽα are related by the particle’s translational mobility b̃T,α as

ṽα = b̃T,α · F̃α, (5.1)

where the particle mobility is the inverse of the particle resistance, in the frequency domain,

b̃T,α(s) = ζ̃−1
α (s). Saffman and Delbrück [129, 128] calculated the mobility of an inclusion

bounded to a purely viscous membrane which is embedded in a purely viscous liquid. Here,

we will apply analytical continuation to their results and study the case of complex viscoelastic

membranes embedded in a viscoelastic fluid. In the case
(
G̃m ·h/G̃ f ·aα

)
� 1 and assuming a

no-slip boundary condition on the inclusion, the translational mobility of the particle takes the
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Figure 5.2: Schematic representation of the hydrodynamic model for the mobility of inclusions
submerged on a 2D viscoelastic membrane which is simultaneously embedded in a different
viscoelastic fluid. The membrane is defined by a shear modulus G̃m and a thickness h and the
surrounding fluid by a shear modulus G̃ f . The inclusions, modeled as cylinders of radius aα and
height not smaller than h, can freely move in the xy plane but not in the z direction.

form

b̃T,α =
s

4πG̃m ·h

[
ln
(

G̃m ·h
G̃ f ·aα

)
− γ

]
, (5.2)

where γ≈ 0.5772 is the Euler-Mascheroni constant. This is the equivalent to the Stokes equation

(1.3) when we are quantifying the drag force of a particle submerged on a 2D viscoelastic

membrane, which is embedded in a second viscoelastic fluid. If instead of a no-slip boundary

condition on the particle surface we impose a zero tangential stress condition, the translational

mobility takes the form

b̃T,α =
s

4πG̃m ·h

[
ln
(

G̃m ·h
G̃ f ·aα

)
+

1
2
− γ

]
. (5.3)

In the specific case where the fluids above and bellow the membrane present different shear

moduli, G̃ f ,a and G̃ f ,b, equations (5.2) and (5.3) should be modified to include the effective fluid

shear moduli G̃ f =
(
G̃ f ,a + G̃ f ,b

)
/2 [89]. Interestingly, equations (5.2)-(5.3) are independent on

the amount the inclusion sticks out of the membrane. This allows spherical particles of radius

larger than the membrane thickness, i.e. aα� h, to be locally modelled as disks embedded in a

membrane, with hemispherical protrusions projecting into the surrounding fluid. In the reminder
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of this section, we will consider no-slip on the particle surface.

Similar to the analysis carried out in previous chapters, we can relate the MSD in the

frequency domain, 〈∆r̃2
α(s)〉, of inclusion α subjected to Brownian thermal excitations and its

translational mobility through the Einstein equation (1.16)

〈∆r̃2
α(s)〉=

2nkBT
s2 b̃T,α(s), (5.4)

where n is the number of dimensions of the motion, kB = 1.3806488× 10−23m2kg/s2K is the

Boltzmann constant and T is the absolute temperature. We then obtain an equation equivalent to

the GSER that can be applied to our model system

〈∆r̃2
α(s)〉=

nkBT
2πsG̃m ·h

[
ln
(

G̃m ·h
G̃ f ·aα

)
− γ

]
. (5.5)

The ensemble average of the MSD of N particles takes the form

〈∆r̃2(s)〉= nkBT
2πsG̃m ·h

[
ln
(

G̃m ·h
G̃ f ·a

)
− γ

]
, (5.6)

where

〈∆r̃2(s)〉= 1
N ∑
∀α
〈∆r̃2

α(s)〉, (5.7)

is the ensemble average of the MSD of N individual particles and

a =
1
N ∑
∀α

aα. (5.8)

is their average radius.

Equation (5.6) present certain particularities. It is a transcendental equation, and thus it

needs to be solved iteratively, and we need to prescribe an initial guess. However, it is a fairly

smooth function, and we can use, as initial guess, the result provided by (1.17) or an estimation

similar to the one shown below, and the iterative solver will quickly converge. A second possible
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source of problems is that it contains the logarithm of a complex number, and hence it should

be treated carefully. In our implementation, we have defined the following non-dimensional

parameters and variables

Ã(s) =
2π

nkBT
〈∆r̃2(s)〉 · s ·a · G̃ f (s), (5.9)

G̃(s) =
G̃m(s) ·h
G̃ f (s) ·a

, (5.10)

and solved the non-dimensional equation

F̃log(s)≡ ln
[
G̃(s)

]
− γ− Ã(s) · G̃(s) = 0. (5.11)

At this point, we can make an order-of-magnitude estimation of the error incurred on

when applying the GSER (1.17) to a system that actually follows (5.6). If we define the shear

modulus provided by the GSER as

G̃3D(s) =
nkBT

3πas〈∆r̃2(s)〉 , (5.12)

and combine it with equation (5.6), we obtain the relation

G̃3D(s) =
2
3

h
a

G̃m(s)

ln
(

G̃m·h
G̃ f ·a

)
− γ

, (5.13)

In a typical live-cell membrane PTM experiment, the surrounding fluid will consist on a water

based buffer, with shear modulus G̃ f (s) ∼ G̃H2O(s). The membrane complex will typically

consist on an oily substance with a shear modulus such that G̃m(s)∼ 103G̃H2O(s). The membrane

thickness will be in the range of tenths of nanometers, while the probing particle diameter will be

a fraction of a micron. For these values,
∣∣G̃m(s) ·h/G̃ f (s) ·a

∣∣∼ 103. Since a logarithm is applied

to this parameters, a fairly large variation of the parameters will have a relative small influence in
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our estimations. It follows that

2
3

∣∣∣∣ln
(

G̃m ·h
G̃ f ·a

)
− γ

∣∣∣∣∼ 10, (5.14)

and thus

G̃m(s)∼ 10 · a
h
· G̃3D(s). (5.15)

As we already indicated, the above statement is an order-of-magnitude estimation, and any deduc-

tion extracted from it should be regarded as a rough estimation. In the light of equation (5.15),

we can expect that the shear modulus provided by the GSER and the membrane formulation

will be simmilar when the particle radius is one tenth of the membrane thickness. However, for

that geometry, the experimetnal particles that we use in this study would probably not be well

described by a cylindrical inclusion, and the membrane formulation would break. We will be

testing this order-of-magnitude estimation with our experimental results.

5.3 Two-Point PTM of 2D Membranes Embedded in Surrounding

Fluids

In [138] the authors provide an extensive review of the conditions under which the

assumptions that lead to the GSER (1.17) might break. Specifically, the Einstein relation (1.16)

will break if the system is not in thermodynamic equilibrium or if the equipartition theorem

doesn’t hold, i.e. if the driving force has an average energy content different than kBT/2, as

happens in active PTM. The Stokes equation (1.3) will not be applicable if the material cannot

be described as a continuous, homogeneous and isotropic fluid, i.e. if the far-field assumptions

don’t hold, or if the local mechanical or electrochemical interactions between the particle and the

medium alter the local environment, i.e. if the near-field hypothesis breaks. In §5.2, we focused

on why the far field assumptions of the GSER don’t hold in our experimental system, and we

modified the Stokes formula to take into account the actual hydrodynamics of the problem. In this
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G̃m
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Figure 5.3: Schematic representation of the hydrodynamic model for interactions of pairs of
distant inclusions submerged on a 2D viscoelastic membrane which is simultaneously embedded
in a different viscoelastic fluid. The membrane is defined by a shear modulus G̃m and a thickness
h and the surrounding fluid by a shear modulus G̃ f . The inclusions, modeled as cylinders of
radius ai and height not smaller than h, can freely move in the xy plane but not in the z direction.
Each pair of particles are located at a distance rα,β� ai.

section, we will focus on the breaking of the near-field assumptions, as happens when the probing

particles induce local compressibility, when there are electrochemical interactions between the

particle and the probed material, when there is partial or total slip in the particle surface, etc. As

stated before, these conditions will have an effect in the mobility of individual particles. However,

their effect will be negligible in the cross-correlated motion of pairs of distant particles, and thus

they will not affect 2PPTM.

Lets consider two distant inclusions α and β, as depicted in Figure 5.3, embedded in the

model viscoelastic system, and separated a distance rα,β� ai. We define a Cartesian coordinate

system with the x-direction defined by the line that connects the particle centers, the z-direction

perpendicular to the membrane, and the y-direction defining a right orthonormal system. When an

in-plane point force ~̃fα is applied to one inclusion, the second inclusion experiences an in-plane

velocity ~̃v I
α,β of the form

~̃v I
α,β(s) =

˜G(rα,β;s) · ~̃fα(s)
8π

(5.16)

where
˜G(rα,β;s) is the Green’s function for the velocity. In the coordinate system so defined, the
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Green’s function tensor has the form, up to first order,

˜G(rα,β;s) =




G̃xx 0

0 G̃yy


 . (5.17)

In [89, 115] the authors provide the general form of G̃xx and G̃yy by using Bessel and Struve func-

tions. In [115] they also provide approximations for different ranges of the problem parameters.

Specifically, we are interested in a membrane that is much more viscous than the surrounding

fluid, and particles that are separated a distance large compare to their radius, i.e.

∣∣∣k̃ · ai

h

∣∣∣
−1
� rα,β

ai
�
∣∣∣k̃ · ai

h

∣∣∣
−3/2

, (5.18)

where

k̃ = 2 · G̃ f

G̃m
. (5.19)

For this range of parameters

G̃xx(rα,β;s) =
2s

G̃m ·h

{
ln
(

2
k̃
· h

rα,β

)
− γ+

1
2
+

2
3

k̃ · rα,β

h

}
, (5.20)

G̃yy(rα,β;s) =
2s

G̃m ·h

{
ln
(

2
k̃
· h

rα,β

)
− γ− 1

2
+

4
3

k̃ · rα,β

h

}
. (5.21)

By combining equations (5.20)-(5.21) with the two-particle Einstein equation (4.39) we obtain

the form of the cross-MSD of a pair of interacting particles

〈∆xα(0),∆x̃β(s)〉=
kBT

2πsG̃m ·h

{
ln
(

2
k̃
· h

rα,β

)
− γ+

1
2
+

2
3

k̃ · rα,β

h

}
, (5.22)

〈∆yα(0),∆ỹβ(s)〉=
kBT

2πsG̃m ·h

{
ln
(

2
k̃
· h

rα,β

)
− γ− 1

2
+

4
3

k̃ · rα,β

h

}
, (5.23)

that don’t depend on the size of the particles. It is important to note that, while interacting particles
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embedded in a 3D isotropic material present coss-MSD that are related as

〈∆xα(0),∆xβ(τ)〉
〈∆yα(0),∆yβ(τ)〉

∣∣∣∣∣
3D

= 2, (5.24)

interacting particles embedded in our membrane system will present a ratio of cross-MSD that

is more complicated, and in general dependent on the shear moduli ratio of the membrane and

surrounding fluids, as well as other geometric parameters of the problem.

In a typical 2PPTM experiment, we will calculate the ensemble average of the cross-MSD

of M pairs of distant particles. For the system under study, they take the form

〈∆r1(0),∆r̃2(s)〉=
kBT

2πsG̃m ·h

{
ln
(

2
k̃ · r̂

)
− γ+

1
2
+

2
3

k̃ · r
}
, (5.25)

〈∆θ1(0),∆θ̃2(s)〉=
kBT

2πsG̃m ·h

{
ln
(

2
k̃ · r̂

)
− γ− 1

2
+

4
3

k̃ · r
}

(5.26)

where

〈∆r1(0),∆r̃2(s)〉=
1
M ∑
∀α,β
α6=β

〈∆xα(0),∆x̃β(s)〉, (5.27)

〈∆θ1(0),∆θ̃2(s)〉=
1
M ∑
∀α,β
α6=β

〈∆yα(0),∆ỹβ(s)〉 (5.28)

are the ensemble averages of the cross-MSD of M pairs of interacting particles in the directions

parallel and perpendicular to the lines of centers,

r =
1
M ∑
∀α,β
α6=β

rα,β

h
(5.29)

is the average inter-particle distance divided by the membrane thickness and

r̂ =


∏
∀α,β
α6=β

rα,β

h




1/M

(5.30)
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is the geometric mean of the inter-particle distances divided by the membrane thickness. By know-

ing the physical and geometrical parameters of the experiment, both equation (5.25) and (5.26)

independently provide the shear modulus of the embedded membrane G̃m. In practice, we will

solve both equations and average the obtained shear moduli. However, it is important to be aware

that the radial particle interactions 〈∆r1(0),∆r̃2(s)〉 will frequently be higher and contain less

noise than the transversal interactions 〈∆θ1(0),∆θ̃2(s)〉, and thus there might be experimental

circumstances where we only want to use one of the equations.

The inter-particle interactions (5.25)-(5.26) are weaker in nature than the single particle

MSD (5.6), and thus more prone to be affected by experimental noise. In order to obtain

statistically significant 2PPTM results, one needs to average over a comparatively large number

of pairs of particles, i.e. M� N. On top of that, the inter-particle distance will not be uniform,

but it greatly vary from pair to pair. This poses a problem on its own, because the inter-particle

interaction decreases with the particle distance rα,β, and averaging over noisy data with very

different values will introduce numerical errors. One can mitigate this by normalizing the cross-

MSD with the distance, and obtaining data with similar order of magnitude that we can average

with more confidence. The normalized cross-MSD of pairs of distant particles in our model

system take the form

〈r ·∆r1(0),∆r̃2(s)〉=
kBT

2πsG̃m

{
r ·
[

ln
(

2
k̃

)
− γ+

1
2

]
− ln

(
r̂r
)
+

2
3

k̃ · r2

}
, (5.31)

〈r ·∆θ1(0),∆θ̃2(s)〉=
kBT

2πsG̃m

{
r ·
[

ln
(

2
k̃

)
− γ− 1

2

]
− ln

(
r̂r
)
+

4
3

k̃ · r2

}
(5.32)

where

〈r ·∆r1(0),∆r̃2(s)〉=
1
M ∑
∀α,β
α6=β

rα,β · 〈∆xα(0),∆x̃β(s)〉, (5.33)

〈r ·∆θ1(0),∆θ̃2(s)〉=
1
M ∑
∀α,β
α6=β

rα,β · 〈∆yα(0),∆ỹβ(s)〉 (5.34)

are the ensemble averages of the cross-MSD, normalized with the inter-particle distance rα,β, of
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M pairs of interacting particles in the directions parallel and perpendicular to the lines of centers,

r2 =
1
M ∑
∀α,β
α 6=β

(rα,β

h

)2
(5.35)

is the average of the square of the inter-particle distances divided by the membrane thickness and

r̂r =


∏
∀α,β
α6=β

(rα,β

h

)rα,β/h




1/M

(5.36)

is the geometric mean of the inter-particle distance divided by the membrane thickness, to the

power of the inter-particle distance divided by the membrane thickness.

Correspondingly to the results given in §5.2, equations (5.31)-(5.32) are nonlinear and

have to be solved iteratively. By defining the following non-dimensional parameters

Ã(s) =
2π

kBT
〈r ·∆r1(0),∆r̃2(s)〉 · s · G̃ f (s), (5.37)

B̃(s) =
2π

kBT
〈r ·∆θ1(0),∆θ̃2(s)〉 · s · G̃ f (s), (5.38)

G̃(s) =
G̃m(s)
G̃ f (s)

, (5.39)

the system of equations to solve are

F̃r(s)≡ G̃(s) ·
{

Ã(s) · G̃(s)− r ·
[

ln
(
G̃(s)

)
− γ+

1
2

]
+ ln

(
r̂r
)}
− 4

3
r2 = 0, (5.40)

F̃θ(s)≡ G̃(s) ·
{

B̃(s) · G̃(s)− r ·
[

ln
(
G̃(s)

)
− γ− 1

2

]
+ ln

(
r̂r
)}
− 8

3
r2 = 0. (5.41)

5.4 One- and Two-Point Particle Tracking Microrheology of the

Membrane-Cortex Complex of Red Blood Cells

In this section, we illustrate the application of membrane one-point and two-point PTM

to experimental data acquired from adult human RBC. The RBC were suspended in a water based
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Figure 5.4: Experimental image of a RBC with microparticles embedded in its membrane-cortex
complex. The microparticles are the white bright spots. The particle trajectories ( ) are
overlaid on on top of each particle.

buffer, and attached to a rigid cover-slip. 0.1 µm diameter carboxilated fluorescent beads were

coated with polylysine and embedded in the membrane-cortex complex of the RBC. A more

detailed specific experimental protocol will be published elsewhere. Time snapshots of the RBC

and the embedded microparticles were taken at a fixed frame rate of 100 Hz. In Figure 5.4 we

show an example of a typical experimental image of a RBC with four probing microparticles. In

the image, we can clearly distinguish the cell outline and four embedded beads, depicted as bright

spots. The center of the particle probes were tracked by using the tracking algorithm discussed in

previous sections. The tracked trajectories are overlaid, as blue lines, in Figure 5.4.

From here on, we will show the data collected from five RBC, totalling N = 31 particles

and M = 91 particle pairs. We calculate the one-dimensional MSD of individual particles as (2.1)

and their cross-correlation as (2.2). For the analyzed RBC, the motion in the plane defined by the

membrane is highly isotropic, and thus the MSD in orthogonal directions are equal. We can thus

define the two-dimensional MSD of individual particles as

〈∆r2(τ)〉= 〈∆x2(τ)〉+ 〈∆y2(τ)〉. (5.42)

In panel (a) from Figure 5.5 we show the ensemble average of the two-dimensional MSD
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Figure 5.5: One-point and two-point MSD of probing particles embedded in the membrane-
cortex complex of RBC. (a) Ensemble MSD of individual particles ( ), cross-correlation
of the MSD in orthogonal directions (•••) and line of slope 1 ( ). (b) Ensemble two-
particle cross-MSD of pairs of interacting particles along the line of centers ( ) and
the normal direction ( ). Ensemble normalized two-particle cross-MSD along the line of
centers ( ) and the normal direction ( ).

of the probing particles, together with the cross-MSD in orthogonal directions. Theoretically,

the displacements in orthogonal directions of particles undergoing Brownian motion should be

uncorrelated, and thus the cross-MSD should be identically zero. For experimental results, they

provide a measurement of the experimental noise-level of the tracking. It can be seen that, in the
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results presented here, the nose level is far below the measured signal. As reference, we include a

line of slope 1. We can see that the slopes of the MSD are larger than 0 in the whole domain and

smaller than 1 for most time separations. The observation of these slopes points towards a more

elastic behaviour of the system at most frequencies, while a more viscous response is displayed at

high frequencies. However, since the MSD of the probing particles and the shear moduli of the

membrane and fluid don’t follow an inverse proportionality relation, as in a 3D isotropic fluid,

interpretations based solely on the MSD of the probing particles are just rough descriptions of the

viscoelasticity of the fluid.

In panel (b) from Figure 5.5 we depict the ensemble average of the two-particle cross-

MSD projected over the direction of the line of centers (5.27), and the orthogonal direction (5.28).

The normalized cross-MSD (5.33)-(5.34) are also provided. We can highlight certain charac-

teristics of these curves. The general shape of the four curves is similar between them, and

much alike the one-particle MSD. However, as we explained above, we cannot immediately infer

the viscoelastic characteristics of the fluid from them. We can also see that, as predicted, the

normalized MSD are larger and smoother than the raw cross-MSD, and thus we will use them to

calculate the microrheological parameters of the material.

An important characteristic readily recognizable in panel (b) of Figure 5.5 is the asym-

metry of the cross-MSD along the line of centers and the normal direction. As we mentioned

above (5.24), the ratio of cross-MSD of pairs of particles freely diffusing in a three-dimensional

fluid is 2. However, in our experimental model, this ratio of MSD is highly dependent on the

viscoelasticity as well as the geometry of the system. In Figure 5.6 we show the ratio of cross-

MSD, as well as the ratio of normalized cross-MSD. We can clearly see that, for the pairs of

particles tracked, the ratio of MSD is always lower or around 1, not being this ratio substantially

affected by the normalization with the inter-particle distance. In contrast to the freely-diffusing

3D problem, the particles in this medium move slightly more in the direction perpendicular to

the line of centers than in the direction of centers. A remarkable characteristic of the MSD ratio

is that it remains considerably constant for the ratio of frequencies under study, and we would

expect it to become even smoother when we study a larger number of particle pairs.
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Figure 5.6: Ratio of two-point cross-MSD of pairs of interacting particles embedded in the
membrane-cortex complex of RBC: unnormalized ( ) and normalized ( ). Ratio of MSD
of pairs of particles freely diffusing in a three-dimensional fluid ( ).

We will first analyze the MSD shown in Figure 5.5 by using the isotropic formulae

(1.17)-(1.19), as if the probing particles were freely diffusing in a 3D fluid, and investigate the

results they provide. We name G̃1P and G̃2P, respectively, to the shear moduli they yield, and they

will be interpreted as effective friction coefficients and effective hydrodynamic interactions of the

probing particles. In Figure 5.7 we show the calculated effective shear moduli. We can point to

several features which indicate that the isotropic model is not valid for the system under study. We

can clearly see that the results provided by the one-point (1.17) and the two-point (1.19) formulae

present manifestly similar shapes, but the one-particle effective moduli are uniformly ten times

larger than the two-particle effective moduli. This large discrepancy would not be present in

isotropic fluids. A second revealing detail comes from the foreknowledge of the system under

study. The membrane-cortex complex of the RBC is mainly formed by lipids and a cross-linked

spectrin network, that should present an effective shear modulus of around hundreds or thousands

of times larger than the viscosity of water. However, the one-point effective shear modulus

measured and provided in Figure 5.7 is of the order of magnitude of the viscosity of water, while

the two-point effective shear modulus is ten times lower. Having present all of the above, one can

conclude that the isotropic GSER is not a valid model for the system under study.

Equations (5.11), (5.40) and (5.41) show that the hydrodynamics of the problem is highly
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Figure 5.7: Effective shear moduli, as a function of frequency ω, obtained by applying the GSER
(1.17) and the 2PPTM formulae (1.19) to the measured MSD and cross-MSD of individual and
interacting pairs of distant probing particles embedded in the membrane-cortex complex of
RBC: one-particle effective storage (—) and loss (›) moduli, two-particle effective storage (—)
and loss (›) moduli.

dependent not only on the shear moduli of the membrane and surrounding fluids, but also on

the thickness of the membrane-cortex complex. Furthermore, by just analyzing the mobility

of probing particles and solving the above equations, without external measurements on the

thickness of the membrane, we can only measure the product of the shear modulus with the

membrane thickness, G̃m ·h. However, this product is a significant physical measurement on its

own, given that the mechanical characteristics of the system depend on it, rather than simply the

shear modulus. As such, many previous studies measure and analyze this and related physical

quantities [19, 71, 124].

As previously explained, the fluid surrounding the RBC is a buffer with zero elasticity

and viscosity close to that of water, i.e. η f ,a ≈ 1 mPa·s. The fluid below the membrane-cortex

complex is the cell cytoplasm. The cytoplasm of a RBC is known to be composed mainly of an

hemoglobin solution, with zero elasticity and viscosity in the range of 2-7 mPa·s at physiological

conditions [19, 71]. Here, we have used an average value of η f ,b ≈ 4 mPa·s. As a result, the

effective shear modulus of the surrounding fluid used in our analysis is

G̃ f (s) =
G̃ f ,a + G̃ f ,b

2
≈ 2iω mPa. (5.43)
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Figure 5.8: Product of the shear modulus and thickness of the membrane-cortex complex
of RBC, as a function of frequency ω: storage (—) and loss (›) moduli measured using the
one-point formulation, storage (—) and loss (›) moduli measured applying the two-point
formulation.

In Figure 5.8 we show the measured membrane shear moduli, times the membrane

thickness, obtained by solving the non-linear one-point (5.11) and two-point (5.40)-(5.41) for-

mulae. It is readily noticeable that both the one-point and two-point formulation provide very

consistent results, further confirming the applicability of the membrane model. We can see that the

material is highly viscous at high frequencies, while the elasticity dominates at low and moderate

frequencies. Furthermore, the shapes of the storage and loss moduli are highly reminiscent

of those of a Kelvin-Voigt material, as can be seen by inspecting Figures 5.8 and 2.17 (as a

reference, we should also compare Figures 5.5 and 2.15). This fact is particularly consistent with

the experimental membrane system, composed of a viscous lipid membrane strongly attached

to an elastic spectrin network. However, there are noticeable deviations from the Kelvin-Voigt

model at low frequencies. This can be explained by the fact that, at lower frequencies, fewer

experimental data points are available, and the averaged data tends to be noisier (see Figure 5.5).

Furthermore, the lowest frequencies are more affected by experimental noise, sample drift and

even cell movements, and thus more experimental data would be necessary to more accurately

resolve the lowest frequency region.

In Figure 5.9 we show the ratio between the effective storage and shear moduli calculated
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Figure 5.9: Ratio between the storage (—) and loss (›) moduli rendered by the
isotropic GSER (1.17) and the membrane formulation (5.11). Comparison with the theoret-
ical estimation for this ratio (5.15) ( ).

using the isotropic GSER (1.17) and the shear moduli obtained by applying the membrane

formulation (5.11). As a reference, we include the theoretical estimation of this ratio shown in

equation (5.15). It can be seen that the ratio of shear moduli, both for the real and imaginary parts,

is of the order of magnitude predicted by our initial theoretical estimation.

By knowing the thickness of the membrane-cortex complex of the RBC, one can use

the data shown in Figure 5.8 and calculate the actual membrane viscoelasticity. An average

value of 50 nm, previously reported in the literature [60], has been used from here on. The

shear moduli of the membrane-cortex complex, calculated by using both the one-particle and

two-particle data are reported in Figure 5.10. The values calculated are compatible with a viscous

membrane attached to an elastic spectrin network, and they are comparable to measuremets

performed with micropipete aspiration and other mocrorheology techniques and reported in

the literature [111, 71]. By comparing with Figure 5.8, we can also see that the shear moduli

of the membrane system is one to three orders of magnitude higher than the value provided

by the isotropic GSER and the isotropic 2PPTM formulation. In Figure 5.11 we show the

ratio between the storage and loss moduli provided by the one-point and two-point membrane

formulation, and the effective moduli calculated from the isotropic formulation. One can see

that the effective one-point isotropic formulation greatly underestimates the shear moduli of the
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Figure 5.10: Shear modulus of the membrane-cortex complex of RBC, as a function of frequency
ω: storage (—) and loss (›) moduli measured using the one-point formulation, storage (—) and
loss (›) moduli measured applying the two-point formulation. An average value of 50 nm was
used as the membrane thickness.

material, providing values around 20 times smaller than the membrane moduli. On the other

hand, the results rendered by two-particle isotropic fomulation are even worse, providing effective

hydrodynamic interactions that are 300-500 times smaller than the membrane shear moduli. It

is also very noticeable that, given the physical and geometrical parameters of the experimental

system, the isotropic and the membrane formulation provide virtually proportional numerical
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Figure 5.11: Ratio of the shear moduli provided by the membrane and the effective isotropic
PTM formulations: ratio of storage (—) and loss (›) moduli calculated with the one-particle
data, ratio of storage (—) and loss (›) moduli calculated with the two-particle interaction data.



144

10−1 100 101 102

ω (sec−1)

10−1

100

101

102

V
is

co
si

ty
(P

a·
s)

ηm,1P ηm,2P

Figure 5.12: Viscosity coefficient of the membrane-cortex complex of RBC, as a function of
frequency ω, calculated with the one-point (›) and two-point (›) experimental data.

results, with very low variation in the proportionality constant at the measured frequencies.

In Figure 5.12 we depict the viscosity coefficient, defined as the ratio between the loss

modulus and the complex frequency

η(s) =
G̃′′(s)

s
, (5.44)

measured from the one-pont and two-pint data, and both are virtually identical. It can ve seen that

the viscosity coefficient display very low variation with the frequency, being its value between

1,000 and 10,000 times the viscosity of water.

5.5 Conclusions

In this chapter, we have reviewed the importance of the RBC deformability and viscoelas-

ticity properties for the correct blood flow and RBC function. As a consequence, we proposed

a PTM experiment capable of resolving the mechanical properties of their membrane-cortex

complex, which is the one responsible for the RBC microrheological properties. We provided the

formulation capable of relating the MSD of individual particles embedded in the membrane-cortex

complex and the shear moduli and geometric parameters of the material. We also related the
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measured interactions of pairs of distant particles with the physical parameters of the material.

In the final part of the chapter, we applied both the one-particle and two-particle formulation to

the membrane-cortex complex of live RBC. We found that, for this model system, the straight

application of the isotropic PTM formulation provides results that are 10 to 1000 times smaller

than the actual shear modulus of the system. The results here provided open the door to the use of

this relatively inexpensive and high-throughput tool to study the microrheological influence of

different RBC diseases and conditions.

It should finally be noted that there are sources of uncertainties in our experimental

application. The membrane thickness is a key parameter in the hydrodynamics of the problem, to

the point that the particle mobility is dominated by the product of the membrane shear modulus

and thickness. In order to calculate the shear modulus, an independent measurement of the

specific membrane thickness should be performed. Here, we have used an average value of

50 nm previously reported in the literature. However, the conditions that modify the RBC shear

moduli might also modify the membrane-cortex thickness, and a rigorous quantitative analysis

should include the in situ measurement of the sample membrane thickness. A second source of

uncertainty is the viscoelasticity of the surrounding medium. Here, we have assumed a purely

viscous buffer, with the viscosity of water, surrounding the RBC, and an average viscosity for the

RBC cytoplasm at physiological conditions. However, the viscosity of the RBC cytoplasm can be

greatly influenced by the cell conditions, and thus it should be independently measured in order

to accurately quantify the shear moduli of the RBC membrane-cortex system.

Chapter 5 is currently being prepared for publication under the provisional title “Dynamic

viscoelasticity of individual human RBCs measured by video-particle tracking microrheology”,

by Y.F. Tseng, Y.Q. Chen, M. Gómez-González, J. C. del Álamo and A. Chiou.



Chapter 6

Concluding Remarks

In this dissertation we have analyzed the current practical limitations that hinder the

applicability of PTM. We have addressed some of its most significant practical shortcomings,

such as the accurate Laplace transform of the experimental measurements and the adequate

physical modeling of the medium under study. We have provided mathematical alternatives that

provide a more accurate approach to said limitations than the current isotropic formulation in use.

Furthermore, we have applied these novel results to the study of the rheological properties of

appropriate complex biomaterials.

In chapter 2 we explained how PTM relies on the accurate Laplace transform of the

particle tracking measurements in order to calculate the shear modulus of the material under

study. We showed that, due to the fact that the experimental tracking data is only known in

a given time interval and over discrete time points, the numerical Laplace transform is prone

to be calculated with considerable numerical errors. We presented the approximations to the

Laplace transform currently reported in the literature, and analyzed how the most extensively

used method, the Γ-approach, breaks for many rheological models. In order to solve this issue,

we proposed a novel strategy known as the Power-Exp approximation. It consists on performing

a least square fit of the MSD data to a sum of power-exponential functions in the time domain.

These functions present a known analytical Laplace transform, and making use of the linearity of

146
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the problem, the Laplace transform of the sum is calculated. We then quantify the accuracy of this

procedure by analyzing four theoretical materials: a simple viscous fluid, a simple elastic solid, a

Kelvin-Voigt viscoelastic fluid and a Maxwell viscoelastic material. We found that the Power-Exp

approximation is at least as accurate as the previous methods, and that it highly outperforms them

in the most delicate regions of the frequency spectrum, where previous methods fail to correctly

identify the Laplace transform of the particles’ MSD and the Power-Exp approximation provides

accurate numerical values.

In chapter 3 we study the applicability of 1PPTM to directional samples. As summarized

in chapter 1, the classical PTM formulation is only applicable to isotropic materials, and its

use with directional fluids will provide, at most, viscoelastic friction coefficients that don’t fully

describe the directional fluid under study. In chapter 3 we modelled the directional medium with

the Leslie-Ericksen equations that, as we illustrated, hold when the driving thermal forces are

weak enough to not perturb the global orientation of the nematic. We find that the fluid dynamics

of the problem is fully described by three viscoelastic directional shear moduli, and obtain the

form of the drag force of an embedded microparticle and the flow induced by it, as a function of

these three shear moduli. The form of the drag force is a generalization of the Stokes formula

for directional fluids, and is a tensorial equation that depends on the orientation of the particle

velocity with respect to the nematic. We observe that, in this model system, the anisotropy of the

dynamics is originated by two distinct mechanisms, i.e. the anisotropic diffusion of momentum

and the bending of the fluid with respect to the nematic. Combining the formula of the drag force

thus obtained with the Einstein equation, we are able to generalize the GSER to take into account

the directionality of the fluid. However, we conclude that due to the symmetrical mechanical

characteristics of the problem under study, following single microparticles will provide, at most,

two independent equations, even in a fully three-dimensional experiment. Because a general

directional medium is described by three shear moduli, we resolve that Directional 1PPTM

doesn’t provide sufficient information to fully characterize a nematic fluid.

In chapter 4 we extend the work presented in chapter 3 and we calculate the hydrody-

namic interactions between pairs of distant particles embedded in a nematic fluid. By knowing the
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analytical form of these interactions, we generalize 2PPTM to take into account the directionality

of the medium under study, designing a technique named D2PTM. By cross-correlating the

motion of pairs of distant particles, we obtain three independent equations that are sufficient to

determine the three viscoelastic shear moduli of the nematic medium under study. In order to asses

the feasibility and accuracy of D2PTM, we simulate the motion of groups of interacting particles

embedded in a directional viscoelastic fluid. From the simulations we obtain the trajectory of

each particle, to which we apply the novel D2PTM formulation. We conclude that the calculated

shear moduli are in high agreement to the shear moduli initially prescribed to the simulated

material, and thus establishing the applicability of the method. In the final part of the chapter,

we describe a laboratory experiment where we prepare F-actin sample gels and shear them to

induce a nematic alignment of the fluid. The samples are seeded with probing microparticles, and

D2PTM is applied to the measured trajectories of the particles. We obtain the directional shear

moduli of the material, which describe a complex dynamics that that is not properly describe by

the previous isotropic formulation.

In chapter 5 we analyze a different type of anisotropic material: we study the rheological

properties of a membrane system embedded in a different fluid. We show the formulation of

1PPTM and 2PPTM when it is adapted to take into account the complex dynamics of this system,

which is a good model for the membrane-cortex complex of RBC. We then embed microparticles

in the membrane-cortex complex of live adult human RBC and track their motion by applying

the tools developed in chapter 4. We first apply the GSER and the 2PPTM formulation to the

MSD and cross-MSD of the tracked microparticles, obtaining shear moduli that are one or two

orders of magnitude lower than the expected values, and in high discrepancy between the one-

and two-point formulation. We finally apply the membrane formulation of 1PPTM and 2PPTM,

obtaining highly consistent results, and values that are in good agreement to the viscoelasticity of

the system measured with previous microrheological methods.

The results and methods reported in this dissertation open the door to compelling new

studies on biological and technological materials. The directional PTM has been here formulated

and applied to a model biomaterial, a nematic F-actin solution. However, directionality is a
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key factor in many biological processes and technological materials, and as such D2PTM is

an interesting new tool to study their directional rheology. Among those materials, we can list

nematic liquid crystals, nematic viscoelastomers, the live cell cytoplasm, etc.; and a deeper

understanding of their behaviour can only be achieved if we correctly model their directional

dynamics. On the other hand, many samples of interest present non-directional anisotropy or

other characteristics not accurately described by the isotropic GSER. Because of this reason,

future rheological studies should take an approach similar to the methodology presented in this

dissertation, and correctly model the dynamics of the system in order to accurately quantify the

sample’s rheology.
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