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Effect of cross-platform gene-expression,
computational methods on breast cancer
subtyping in PALOMA-2 and PALLET
studies

Check for updates

Maggie Chon U. Cheang1 , Mothaffar Rimawi 2, Stephen Johnston3, Samuel A. Jacobs4, Judith Bliss3,
Katherine Pogue-Geile4, Lucy Kilburn3, Zhou Zhu5, Eugene F. Schuster3, Hui Xiao3, Lisa Swaim5,
Shibing Deng5, Dongrui R. Lu5, Eric Gauthier 5, Jennifer Tursi6, Dennis J. Slamon7, Hope S. Rugo 8,
Richard S. Finn 7 & Yuan Liu5

Intrinsic breast cancer molecular subtyping (IBCMS) provides significant prognostic information for
patients with breast cancer and helps determine treatment. This study compared IBCMSmethods on
various gene-expression platforms in PALOMA-2 and PALLET trials. PALOMA-2 tumor samples were
profiled using EdgeSeq and nanostring and subtypedwith AIMS, PAM50, and research-use-only (ruo)
Prosigna. PALLET tumor biopsieswereprofiled usingmRNAsequencing and subtypedwithAIMSand
PAM50. In PALOMA-2 (n = 222), a 54% agreement was observed between results from AIMS and
gold-standard ruoProsigna, with AIMS assigning 67% basal-like to HER2-enriched. In PALLET
(n = 224), a 69% agreement was observed between results from PAM50 and AIMS. Different IBCMS
methods may lead to different results and could misguide treatment selection; hence, a standardized
clinical PAM50 assay and computational approach should be used.
Trial number: NCT01740427

Breast cancer diagnosis and decisions regarding treatment are largely based
on clinicopathologic variables such as histologic subtype, nodal status,
tumor size and grade, and biomarkers such as estrogen receptor (ER) and
human epidermal growth factor receptor 2 (HER2), which are suboptimal
biomarkers for predicting disease outcome of targeted therapies and
emerging treatments1,2. Using global gene-expression profiling, breast
cancers can be molecularly classified into five intrinsic subtypes: luminal A
(LumA), luminal B (LumB),HER2 enriched (HER2-E), basal-like (BL), and
normal-like (NL)3,4, although these subtypes do not represent distinct dis-
ease entities but, rather, exist on a continuum. These subtypes are associated
with significantly different prognoses, incidence rates between races, and
survival benefits achieved from endocrine, and HER2-targeted therapies5–9.
Molecular classification of breast cancers into intrinsic subtypes has been
embraced in the medical community because of its importance for both
clinical decision-making and the development of new breast cancer
treatments10.

The PAM50 classifier, an optimally selected, minimized, 50-gene-
based subtype predictor, was developed from 189 prototypical samples
representing the five intrinsic subtypes to capture the major intrinsic sub-
types in a general patient population in relative proportions9,11. The clinical
value of the PAM50 classifier was validated on independent cohorts of
samples9,11. The final PAM50 algorithm consists of centroids constructed as
described by Parker et al.9,12. Tumor subtype classification is assigned based
on the nearest of the five centroids, with distances calculated using Spear-
man’s rank correlation9. The PAM50 classifier has become the widely
accepted gold standard for intrinsic subtyping. A clinical-grade, standar-
dized version of this test is the Prosigna® Breast Cancer Prognostic Gene
Signature Assay (Veracyte, Inc.), which also includes a numeric score that
integrates the intrinsic subtype information with tumor size. This score has
been shown to indicate the probability of cancer recurrence during the next
10 years for patients with hormone receptor-positive (HR+)/HER2-nega-
tive (HER2−) early breast cancer13,14.

1The Institute of Cancer Research, Sutton, UK. 2Baylor College of Medicine, Houston, TX, USA. 3The Institute of Cancer Research, London, UK. 4NSABP
Foundation, Pittsburgh, PA, USA. 5Pfizer Inc, La Jolla, CA, USA. 6Pfizer Srl, Milan, Italy. 7David Geffen School of Medicine, University of
California Los Angeles, Santa Monica, CA, USA. 8University of California San Francisco Helen Diller Family Comprehensive Cancer Center,
San Francisco, CA, USA. Affiliations at the time of the study: Zhou Zhu, Jennifer Tursi. e-mail: maggie.cheang@icr.ac.uk
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Contemporarybreast cancer trials and clinical studies are often focused
onmolecular subgroups asdefinedbyHR+ andHER2+ status for inclusion
criteria. However, with improving sequencing technologies, it is easier to
obtain high-dimensional gene-expression data using RNAseq techniques
for formalin-fixed paraffin-embedded (FFPE) samples collected from
clinical trials. The publicly available PAM50 classifier algorithm and asso-
ciated intrinsic subtype centroids (i.e., average profiles) were developed to
capture themajor intrinsic subtypes in a general population of patients with
breast cancer in relative proportions. The clinicopathologic distribution of
the study cohort should be carefully considered and normalized. For
example, it should be determined if the study cohort hasmainly ER-positive
(ER+) breast cancer or triple-negative breast cancer. Furthermore, the
technology platform should be calibrated for gene-expression profiling15.
The absolute intrinsicmolecular subtyping (AIMS) algorithmwasoriginally
trained to recapitulate the intrinsic subtype classification by the PAM50
algorithm and was claimed to have 77% agreement in testing16. This
bioinformatic approach was suggested to accurately assign subtypes to
individual patients regardless of normalization procedures used, relative
frequencies of ER+ tumors or subtypes, or other clinicopathologic patient
attributes. However, the accuracy of AIMS in predicting intrinsic subtyping
by PAM50, as originally developed, has not been cross-validated by an
independent study.

The aim of this analysis was to determine if there were any dis-
crepancies between PAM50 and AIMS in regard to intrinsic subtyping by
performing head-to-head comparisons of these different next-generation
sequencing technologies using the same sample sets. Data were collected
using tumor samples from postmenopausal women with ER+/HER2−
breast cancer included in two randomized trials, PALOMA-2 and PALLET.
The predictive value of the intrinsic subtypes, as assessed by the different
methodological approaches, for progression-free survival (PFS) treatment
benefit of palbociclib was also evaluated.

Results
PALOMA-2
A total of 666 patients were enrolled in PALOMA-2; of these, 455 patients
had HTG gene-expression data, and 222 patients had both ruoProsigna-
PAM50 and HTG-AIMS data. Baseline demographics and disease char-
acteristicswere similar betweenpatients in theoverall cohort inPALOMA-2
and those with biomarker data (Supplementary Table 1). An overall 54%
agreement rate was observed between the ruoProsigna-PAM50 and HTG-
AIMSmethods. In total, 46%of samples (56/121) assigned as LumB subtype
by the gold standard ruoProsigna-PAM50were assigned as LumAbyHTG-
AIMS, and 67% (6/9) of those assigned as BL by ruoProsigna‑PAM50 were
assigned as HER2-E by HTG-AIMS (Table 1). Cohen’s kappa statistic of
agreement was 0.30 (P < 0.0001), indicating a fair agreement between the
two computational subtyping methods that were generated from their
respective gene-expression profiles. Since the clinical-grade Prosigna does
not provide an NL subtype, we assigned the NL in AIMS to its closest
subtype, LumA, to calculate a kappa statistic.

In PALOMA-2, the ruoProsigna-PAM50 identified 54.5% of samples
(121/222) as LumB, while HTG-AIMS and HTG-PAM50.sgPct methods
identified 50.3% and 48.6% of the samples as LumA, respectively (Fig. 1a).
HER2-E and BL subtyping also differed between methods (ruoProsigna-
PAM50, 9.0% and 4.1%; HTG-PAM50.sgPct, 5.7% and 7.5%; HTG-AIMS,
18.7% and 0.4%, respectively). Among the methods that tested for the NL
subtype, HTG-PAM50.sgPct identified 10.3% as NL, whereas HTG-AIMs
identified 0.9% as NL. Although the agreement between intrinsic subtyping
methods was fair, the prognostic nature of the subtypingwas conserved and
consistent across themethods, particularly for PAM50 subtyping results on
HTG and NanoString data. PFS by ruoProsigna-PAM50-derived subtype
showed that palbociclib plus letrozole versus letrozole alone conferred a
greater benefit for all patients regardless of LumA, LumB, HER2-E, or BL
subtype; however, the sample size for the BL subtype was small, limiting the
interpretation of thefinding (treatment interactionP = 0.28; likelihood ratio
test) (Fig. 1b). Hazard ratios and 95% CIs for PFS by breast cancer subtype
and subtyping method are shown in Fig. 1c. These observations were cor-
roborated by the survival analysis ofHTG-PAM50.sgPct data. Regardless of
the subtyping method used, palbociclib plus letrozole improved PFS com-
pared with letrozole alone.

ComparisonofPAM50 intrinsic subtypingwithAIMSonHTGdata
PAM50 subtypingmethodswith theHTGpanel on the PALOMA-2patient
samples are shown in Supplementary Table 2. As described in theMethods,
proper normalization should be performed before applying the original
PAM50methodon sample subgroups.As shown in SupplementaryTable 2,
applying the PAM50 method9 (without normalization), namely HTG-
PAM50, tended to classify samples equally to each subtype even though
PALOMA-2 includedonlypatientswithER+/HER2−disease.Afterproper
normalization, HTG-PAM50.sgPct improved the intrinsic subtyping
assignments by reassigning many of the patients to LumA or LumB from
other subtypes. HTG-AIMS classified patients into primarily LumA, LumB,
and HER2-E subtypes. When comparing HTG-PAM50 and HTG-
PAM50.sgPct with HTG-AIMS, the highest subtype agreement was
observed with the LumA subtype (Supplementary Tables 3 and 4).

PALLET
Molecular subtyping of PALLET samples was performed using dif-
ferent methods with the RNAseq gene-expression data, including
RNAseq-AIMS and RNAseq-PAM50.sgMd.TC. In PALLET, 224
patients had RNAseq data at baseline, and a 69% agreement between
the RNAseq-AIMS and RNAseq-PAM50.sgMd.TC computational
approaches were observed. Only 4% of samples were assigned LumB
by RNAseq-PAM50.sgMd.TC were assigned as LumA by RNAseq-
AIMS, but 17% and 16% of samples that were assigned as LumA were
classified as LumB or NL by RNAseq-AIMS, respectively (Table 2).
Distributions of subtypes identified by additional subtyping methods
are shown in Supplementary Table 5.

In PALLET, the RNAseq-AIMS method classified 44.2% of
samples as LumA, whereas RNAseq-PAM50.sgMd.TC classified
69.6% of samples as LumA, with an overall reduction in the percentage
of samples classified as other subtypes (i.e., LumB, HER2-E, and NL;
Fig. 2a). An equal percentage of samples was classified as BL between
the two subtyping methods (1.8%). Odds ratios and 95% CIs for non-
CCCA by breast cancer subtype in PALLET are shown in Fig. 2b.
Overall, percentages of patients with non-CCCA were significantly
lower in the palbociclib arm using both the RNAseq-AIMS and
RNAseq-PAM50.sgMd.TC subtyping methods. The individual sub-
types are classified with RNAseq-AIMS and PAM50.sgMd.TC also
favored the palbociclib arm, which was significant for LumB patients
subtyped with the RNAseq-AIMS method and LumA patients sub-
typed with the RNAseq-PAM50.sgMd.TC method but did not reach
significance for other subtype groups owing to the small numbers of
patients.

Table 1 | Intrinsic breast cancermolecular-subtypingmethods
in PALOMA-2

ruoProsigna-PAM50, n (%) Total, n

HTG-AIMS BL HER2-E LumA LumB

BL 1 (11) 0 0 0 1

HER2-E 6 (67) 6 (30) 6 (8) 13 (11) 31

LumA 0 2 (10) 60 (83) 56 (46) 118

LumB 2 (22) 12 (60) 3 (4) 52 (43) 69

NL 0 0 3 (4) 0 3

Total 9 (100) 20 (100) 72 (100) 121 (100) 222

Bolded numbers indicate subtype agreement between methods.
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Evaluation of the heterogeneity of intrinsic subtyping
assignments
In examining the largest and second-largest distance to PAM50 intrinsic
subtyping centroids in the gold-standard ruoProsigna-PAM50 assay, the

distances and correlation between the first two closest centroids were very
close among some samples (Fig. 3a). Particularly, most of those close pairs
were LumA‒LumB, LumB‒HER2-E, or HER2-E–BL. This suggests the
potential for misclassification of samples with vague boundaries between

Fig. 1 | Tumor subtyping andPFS in patients from
PALOMA-2. aPie charts of subtype distributions by
HTG-AIMs, HTG-PAM50.sgPct, and ruoProsigna-
PAM50 subtyping methods among total available
samples. HTG-AIMS and HTG-PAM50.sgPct were
applied on the entire cohort of 455 samples; only
222 sampleswere available for ruoProsigna-PAM50.
b Kaplan–Meier curves of median PFS by subtype
and treatment in PALOMA-2 with ruoProsigna-
PAM50, the gold standard. cHazard ratios and 95%
CIs for PFS by breast cancer subtype and subtyping
method in PALOMA-2; forHGT-AIMS analysis, six
patients were not included (four NL and two BL).
*Data from Finn et al.17. LET letrozole, N number of
patients in the analysis group, n number of patients,
NA not available, PAL palbociclib, PBO placebo.

0

0 18126 24
Time, mo

Pr
og

re
ss

io
n-

Fr
ee

 S
ur

vi
va

l, 
%

30 36 42 48

4047 34 27 24 1 0

25

50

75

100

0

Pr
og

re
ss

io
n-

Fr
ee

 S
ur

vi
va

l, 
%

52
1012 8 7 4 0

16
2 020

PAL+LET
Patients at risk, n:

PBO+LET

0 18126 24
Time, mo

30 36 42 48

48 2 1 0 0 012
13 1 0 0 0

0
0 08

PAL+LET
Patients at risk, n:

PBO+LET

25

50

75

100

0

Time, mo

Pr
og

re
ss

io
n-

Fr
ee

 S
ur

vi
va

l, 
%

25

50

75

100

0

Time, mo
Pr

og
re

ss
io

n-
Fr

ee
 S

ur
vi

va
l, 

%

25

50

75

100

0.10

Favors PAL+LET

0.25 0.50 1.0 2.0

Favors PBO+LET

0 18126 24 30 36 42 48

5465 43 35 27 0 079
2129 14 13 1 0

10
6 042

PAL+LET
Patients at risk, n:

PBO+LET

0 18126 24 30 36 42 48

23 1 1 1 0 05
02 0 0 0 0

1
0 04

PAL+LET
Patients at risk, n:

PBO+LET

HTG-AIMS (N=455)
0.9%

50.3%

29.7%

18.7%
0.4%

Subtype
LumA
LumB
HER2-E
Basal-like
Normal-like

HTG-PAM50.sgPct (N=455)

10.3%

48.6%

27.9%

5.7%

7.5%

Subtype
LumA
LumB
HER2-E
Basal-like
Normal-like

ruoProsigna–PAM50 (N=222)
4.1%

32.4%

54.5%

9%

Subtype
LumA
LumB
HER2-E
Basal-like

LumA PAL+LET
Median PFS=37.2 months (95% Cl, 23.9, NA)
PBO+LET
Median PFS=13.6 months (95% Cl, 8.3, NA)

HER2-E PAL+LET
Median PFS=11.0 months (95% Cl, 8.1, NA)
PBO+LET
Median PFS=5.1 months (95% Cl, 2.8, NA)

LumB PAL+LET
Median PFS=27.6 months (95% Cl, 19.6, 33.1)
PBO+LET
Median PFS=13.8 months (95% Cl, 11.0, 30.7)

Basal-like PAL+LET
Median PFS=8.2 months (95% Cl, 5.5, NA)
PBO+LET
Median PFS=3.6 months (95% Cl, 0.4, NA)

Method

HGT-AIMS

HGT-AIMS

HGT-AIMS

HGT-AIMS

HGT-PAM50.sgPct

HGT-PAM50.sgPct

HGT-PAM50.sgPct

HGT-PAM50.sgPct

HGT-PAM50.sgPct

HGT-PAM50.sgPct

ruoProsigna-PAM50

ruoProsigna-PAM50

ruoProsigna-PAM50

ruoProsigna-PAM50

ruoProsigna-PAM50

0.55 (0.39, 0.77)

0.51 (0.34, 0.77)

0.84 (0.49, 1.44)

0.6 (0.47, 0.76)

0.98 (0.43, 2.2)

0.49 (0.19, 1.27)

0.61 (0.42, 0.88)

0.47 (0.31, 0.73)

0.56 (0.29, 1.09)

0.6 (0.47, 0.76)

0.42 (0.21, 0.84)

0.63 (0.4, 1.0)

0.41 (0.15, 1.11)

0.39 (0.09, 1.77)

0.5 (0.36, 0.7)

n

229

135

85

449

34

26

221

127

47

455

72

121

20

9

222

Subtype

LumA

LumB

HER2–E

Overall

Basal-like

HER2–E

LumA

LumB

Normal-like

Overall

LumA

LumB

HER2–E

Basal-like

Overall

Progression-Free Survival
PAL+LET vs PBO+LET
Hazard Ratio (95% Cl)

a

b

c

https://doi.org/10.1038/s41523-024-00658-y Article

npj Breast Cancer |           (2024) 10:54 3



LumA and LumB, LumB and HER2-E, and HER2-E and BL. On the other
hand, it is unlikely that a LumAsamplewould bemisclassified asHER2-Eor
BL, or vice versa by PAM50.

For the 222 patients in PALOMA-2 with both HTG-AIMS and
ruoProsigna-PAM50 subtyping results, the subtype agreement was 54%
(κ = 0.3). Patients whose subtypes agreed between the two methods were
defined as subtype clear-defined (n = 119), and the remaining patients were
subtype borderline-defined or discord. Figure 3b showsPFS among patients
in the palbociclib armwith subtypes defined byHTG-AIMS (left panel) and
by ruoProsigna-PAM50 (right panel). In the AIMS subtype, the clear-
defined subtypes (solid lines) are highly prognostic, with LumA having
better PFS than LumB, andHER2-E having the worst. However, in patients
with subtype discord (dashed lines), PFS in patients with HER2-E was
similar to PFS in patients with clear-defined LumB subtype. This suggests
that AIMS did not separate LumB and HER2-E subtypes well, with discord
HER2-Emore like clear-defined LumB, and discord LumBmore like clear-
definedHER2-E. The samedata plottedwith ruoProsigna-PAM50 subtypes
(Fig. 3b, right panel) showed that PFS in the discord LumA and clear-
defined LumB subtypes were similar, which suggests that PAM50 separated

LumA and LumB poorly, with discord LumAmore like LumB and discord
LumBmore likeLumA.Thediscordnonluminal subtypewas very similar to
clear-defined nonluminal, indicating that the ruoProsigna-PAM50‒defined
nonluminal subtype was consistently assigned.

Furthermore, a numeric experiment was conducted by switching the
subtype from the closest centroid to the second-closest centroid if the cor-
relation distance was within 0.1. About 22.5% of patients (n = 50/222) had
their subtype switched to the second-closest centroid. All the switches
happened between two adjacent subtypes if they were ordered as LumA‒
LumB‒HER2-E‒BL (Supplementary Table 6). The switched subtypes were
still very prognostic, and treatment benefit of palbociclib wasmaintained in
all subtypes (data not shown).

Discussion
This study reports the first analysis with a head-to-head comparison of
breast cancer subtyping methods and the clinical association of their dif-
ferences with survival outcomes in randomized trials. Intrinsic subtyping
classification is based on the concept of assigning a tumor to a subtype with
the highest similarity to a defined molecular profile, thus representing a
spectrum of similarities. This molecular continuum can be clearly seen in
Fig. 4, which shows that there is overlap between the different intrinsic
subtypes. In this study, we found a considerable lack of agreement (less than
70%) between the different subtypingmethods for classifying ER+/HER2−
tumors. Using gene-expression data derived from RNAseq in patients with
operable breast cancer from PALLET, there was a 69% agreement in
assigning molecular subtypes between the RNAseq-AIMS and RNAseq-
PAM50.sgMd.TC methods. Using the HTG-derived gene-expression data
from patients with advanced breast cancer in PALOMA-2, there was a 54%
agreement in assigning molecular subtypes between the HTG-AIMS and
ruoProsigna-PAM50 classifying methods. In addition, among the 119
patients in PALOMA-2 in which the two classifying methods were in
agreement (clear-defined subtypes), both theHTG-AIMSand ruoProsigna-
PAM50 classifying methods were highly prognostic for PFS among the
subtypes; however, for the 103patients inwhich the two classifyingmethods

Table 2 | Intrinsic breast cancermolecular-subtypingmethods
in PALLET

RNAseq-PAM50.sgMd.TC, n (%) Total, n

RNAseq-AIMS BL HER2-E LumA LumB NL

BL 3 (75) 0 0 0 1 (8) 4

HER2-E 1 (25) 3 (100) 8 (5) 6 (12) 1 (8) 19

LumA 0 0 97 (62) 2 (4) 0 99

LumB 0 0 26 (17) 41 (84) 0 67

NL 0 0 25 (16) 0 10 (83) 35

Total 4 (100) 3 (100) 156 (100) 49 (100) 12 (100) 224

Fig. 2 | Tumor subtyping and CCCA in patients
from PALLET. a Pie chart of subtype distributions
by the RNAseq-AIMS and RNAseq-
PAM50.sgMd.TC subtyping methods for PALLET
samples. b Odds ratios and 95% CIs for non-CCCA
by breast cancer RNAseq-AIMS and RNAseq-
PAM50.sgMd.TC subtype in PALLET. LET letro-
zole, n number of patients in the subtype treatment
group, PAL palbociclib.
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Fig. 3 | PALOMA-2 subtype correlations and PFS by subtype. a Plot of the largest
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troids. The solid line is the equal line, and the dashed line is 0.1 from the equal line.
Each symbol is a sample. Symbol “AB” means the largest correlation coefficient is
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follows for the remaining symbol combinations. b PFS in the palbociclib plus

letrozole group between patients with clear-defined subtypes (solid lines) versus
patients with discord subtypes (dashed lines) based on agreement between theHTG-
AIMS and ruoProsigna-PAM50 methods. In the figure on the left, the subtype is
based on AIMS; in the figure on the right, the subtype is based on PAM50. LET
letrozole, NonLum nonluminal, PAL palbociclib.
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did not agree (discord subtypes), the HTG-AIMS and ruoProsigna-PAM50
classifying methods were poorly prognostic for PFS. These findings high-
light the limitations in clearly assigning a tumor to a specific molecular
subtype and indicate that caution should be taken when evaluating the
molecular subtype of tumors.

While there was a lack of agreement in assigning molecular subtypes
between methods, the subtyping methods did provide prognostic infor-
mation for the treatment of palbociclib, consistent with previous studies. A
2020 analysis by Finn et al. presented PFS data by AIMS subtyping in
PALOMA-217. The PFS benefit of palbociclib plus letrozole over letrozole
plus placebo was greatest among luminal subtypes and reduced in the
HER2-like subtype, although observations in the HER2-like subtype were
limited by the small sample size (19% of patients). Similar AIMS subtyping
results were observed in PALOMA-3, with the majority of patients being
assigned a LumA subtype (44.0%), followed by LumB (30.8%), HER2-E
(20.9%),NL (2.6%), andBL (1.7%)18.Abenefit of palbociclib plus fulvestrant
versus placebo plus fulvestrant was also observed regardless of the luminal
subtype. However, patients with the LumA subtype had longer PFS than
patients with the LumB subtype. In the current study, when patients in
PALOMA-2 were subtyped by the HTG-AIMS method, palbociclib plus
letrozole versus placebo plus letrozole also demonstrated a significant PFS
benefit in patients with LumA and LumB subtype. When the PALOMA-2
samples were reanalyzed with the ruoPAM50-Prosigna classifier, results
also demonstrated that palbociclib provided a PFS benefit in all patients
regardless of the luminal subtype, and additionally similarly benefited the
HER2-E subtype; however, the benefit of palbociclib plus letrozole was
marginal in patients with the BL subtype. These findings align with those
reported in an analysis of 1303 tumor samples from patients with HR
+/HER2− disease across the MONALEESA-2, MONALEESA-3, and
MONALEESA-7 trials, which demonstrated that the cyclin-dependent
kinases 4 and 6 (CDK4/6) inhibitor ribociclib plus endocrine therapy
benefited patients with tumors characterized by all molecular subtypes
except BL19. Of note, in this subtyping analysis of tumor samples across the
MONALEESA trials, intrinsic subtyping was not assessed with the HTG-
PAM50, RNAseq-PAM50, or ruoProsigna-PAM50 methods. This con-
sistency between studies further suggests the relatively robust utility of
intrinsic subtyping of the BL subtype as resistant to CDK4/6 inhibitors and
could be considered in future biomarker trial design when evaluating the
efficacy of CDK4/6 inhibitors alone or in combination with other experi-
mental drugs in an early breast cancer setting. In addition, the benefit of

palbociclib for the HER2-E subtype demonstrated in the PALOMA-2 and
PALLET cohorts in this study and in the PALOMA-2 cohort by Finn et al.,
and the benefit of ribociclib for the HER2-E subtype shown in the MON-
ALEESA trials, suggests that there could be a role for CDK4/6 inhibitors in
patients with ER+/HER2+ breast cancer, which is also consistent with
preclinical data20.

This analysis shows the importance of using validated methods as the
determination of intrinsic subtypes varied between methods, and not all
tumors had a clearly defined subtype, with some having an intrinsic subtype
at the boundary of two subtypes. However, despite the lack of agreement
between the methods used the prognostic value of PAM50 subtyping pre-
vailed. AIMS resulted in a better classification of LumA versus LumB but
separated LumB and HER2-E poorly. Prosigna PAM50 defined HER2-E
clearly but did not provide as clear a distinction between LumA and LumB.
In this analysis of intrinsic subtypes, palbociclib plus endocrine therapy
should be considered for all patients with ER+/HER2− metastatic breast
cancer; the value of alternative treatment for patients with BL tumors
warrants future evaluation. A standardized clinical intrinsic subtyping assay
andbioinformatics approach such as the PAM50 classifier should be used in
clinical practice because discrepancies in gene-expression platforms and
algorithms may lead to different results and could misdirect treatment
decisions.

Methods
Patient population
PALOMA-2 (NCT01740427) was a double-blind, randomized, phase
3 study, inwhich666postmenopausalwomenwithER+/HER2− advanced
breast cancer with no prior treatment for advanced disease were randomly
assigned 2:1 to receive palbociclib plus letrozole or placebo plus letrozole21.
The primary endpoint was investigator-assessed PFS. The details of
PALOMA-2 have been previously published21; results demonstrated sig-
nificantly longer PFS with palbociclib plus letrozole compared with placebo
plus letrozole.

PALLETwas a randomized,multicenter, phase twoneoadjuvant trial22.
Postmenopausal women with unilateral, operable, ER+/HER2− tumors
that were ≥2 cm as observed by ultrasound with no evidence of metastatic
disease were randomly assigned in a ratio to 3:2:2:2 (A:B:C:D) to 1 of 4
treatment groups. Group A received letrozole alone for 14 weeks; group B
received letrozole for 2 weeks followed by palbociclib plus letrozole for
12 weeks, for a total duration of 14 weeks; group C received palbociclib for

Fig. 4 | Heatmap of subtype cross-classification.
Heatmap of cross-classification of different breast
cancer molecular intrinsic subtypes according to
PAM50 bioclassifier centroids and their proposed
sensitivities to CDK4/6 inhibitors.
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2 weeks followed by palbociclib plus letrozole for 12 weeks, for a total
duration of 14 weeks; and group D received palbociclib plus letrozole for
14 weeks. The parallel 4-group design allowed the role of each drug in the
suppression of the proliferation marker Ki-67 to be evaluated both alone
and/or in combination. Ki-67 was centrally assessed. The main results of
PALLET have been previously published22; briefly, adding palbociclib to
letrozole significantly enhanced the suppression of malignant cell pro-
liferation (Ki-67) in people with primary ER+ breast cancer but did not
increase the clinical response rate over 14 weeks.

PALOMA-2 was approved by the WCG institutional review board in
accordance with the International Council on Harmonization Good Clin-
ical Practice guidelines and the provisions of the Declaration of Helsinki21.
PALLETwas approved by the National Research Ethics Service Committee
London—Fulham in accordance with the International Ethical Guidelines
for Biomedical Research Involving Human Subjects22. For both trials, all
patients provided written informed consent and an independent data and
safety monitoring committee met every 6 months to review safety data and
perform the interim analysis.

Tissue samples
In PALOMA-2, submission of FFPE tumor samples was mandatory, as
previously described17. Patients consented to the evaluation of biomarkers
associated with sensitivity and/or resistance to palbociclib plus letrozole per
the study protocol. In PALLET, core-cut biopsies and trial-specific blood
sampleswere obtained at baseline (after randomization), 2weeks (before the
start of the second drug for groups B and C), and at 14 weeks or at the
discontinuation of study therapy (within 48 h of the last dose of study
treatment)22.

Gene-expression profiling
In PALOMA-2, gene-expression profiling assays were only performed on
samples from patients who had consented to their use. Analyses of gene
expression (RNA) were performed with the EdgeSeq Oncology Biomarker
Panel (HTG Molecular Diagnostics, Inc), as previously reported17. RNA
expression levels of 2549 gene targets in FFPE tissues were quantified with
targeted capture sequencing. The first section of breast cancer FFPE tissue
was stainedwith hematoxylin and eosin (H&E). The tumor cell content and
tissue necrosis were assessed by a board-certified pathologist, and the
number of malignant cells as a proportion of all cells (i.e., malignant plus
normal cells in the tissue section) was used to estimate tumor content.
Acceptance criterion for analysis of tumors was established at >70% of
tumor content, and the percentage of necrotic tissue within the total tissue
area was used to determine necrosis. The necrosis acceptance criterion for
analysis was established at <20%necrosis. If the tumor contentwas <70%or
if necrosis was ≥20%,macrodissection was performed on the tissue sections
per standard laboratory processes andmanufacturer protocols. Sequencing
was performed on an Illumina NextSeq 500 sequencer (Illumina, Inc.). For
normalization, probe counts were transformed into log2 counts permillion.
Expression values were quantile normalized. HTG Molecular Diagnostics,
Inc., was blinded to patient information and clinical outcomes.

In PALOMA-2, research-use-only (RUO) PAM50 NanoString Breast
Cancer Prognostic Gene Signature Assay using the NanoString nCounter
Dx Analysis System was validated and implemented at HistoGeneX, Bel-
gium. NanoString confirmed that the kit components and instructions for
use were identical between the RUO PAM 50 NanoString Breast Cancer
Prognostic Gene Signature Assay kit and investigational-use-only-labeled
PAM50 NanoString Breast Cancer Prognostic Gene Signature Assay kit.
FFPE breast tumor tissue blocks were submitted to HistoGeneX, and the
FFPE tumor blocks were sectioned for ≤10 tissue slides of 5 µm each. A
certified pathologist reviewed and evaluated the prepared H&E slides to
confirm the area of breast carcinoma and tumor surface area were suitable
for PAM50 testing before sample processing. If confirmed that no tumor
was present, sample processing was canceled, and results were not reported
for that sample. After macrodissection of the tumor area, RNA was
extracted, and an elution volume of 30 µL was used for analysis. nCounter

gene expression analysis was performed at HistoGeneX in batches of
≤10 samples along with a duplicate control sample. Raw data reporter code
count files were transferred to NanoString for analysis using a software
module with the same normalization and algorithm used for the investi-
gational use only PAM50 NanoString Breast Cancer Prognostic Gene Sig-
natureAssay,which reports the intrinsic subtyping according to thePAM50
gene expression algorithm. In addition, a 300-ng aliquot in a volume of
12 µL was submitted to NanoString for further analysis. NanoString
transferred the PAM50 results to HistoGeneX and Pfizer for statistical
analyses. Both HistoGeneX and NanoString were blinded to patient infor-
mation and clinical outcomes.

In PALLET, RNA sequencing (RNAseq) of baseline samples was
performed on fresh frozen biopsies for 224 patients (letrozole only, n = 77;
letrozole plus palbociclib, n = 147). Transcriptome RNAseq was performed
using total RNA. Strand-specific, poly-A+RNAseq libraries for sequencing
on the Illumina platform were prepared as previously described23. Strand-
specific, poly-A+ RNAseq libraries for sequencing were prepared with the
Illumina platform. At the ligation step, Illumina unique dual barcode
adapters (Cat# 20022370) were ligated onto samples. Libraries were
amplified in 50-µL reactions containing 150 pmol of P1.1 (5’-AATGA-
TACGGCGACCACCGAGA) and P3 (5’-CAAGCAGAAGACGGCA-
TACGAGA) primer and Kapa HiFi HotStart Library Amplification kit
(Cat# kk2612, Roche Sequencing and Life Science). The following PCR
conditions were used: incubation at 95 °C for 45 s; followed by 13–15 cycles
of 95 °C for 15 s, 60 °C for 30 s, and 72 °C for 1min; and 1 cycle at 72 °C for
5min. The amplified libraries were purified with 1.4× AMPure XP beads
and eluted into 50 µL of H2O. Libraries were quality controlled on a frag-
ment analyzer using a DNA7500 kit (5067–1506, Agilent Technologies),
and library yields were determined based on a range of 200–800 bp.
Libraries were pooled in equimolar ratios and sequenced on the Illumina
platform. Of 427 samples, 34 were sequenced on a HiSeq 2000/2500
instrument to generate 2 × 100-bp reads, and the remaining samples were
sequenced on a NovaSeq 6000 instrument using the S4 reagent kit (300
cycles) to generate 2 × 150-bp paired-end reads. An average of 82 million
reads per sample were generated. The raw reads of the RNAseq data were
aligned to the human genome GRCh38 with gene annotation GENCODE
v22 using STAR (v2.5.3a). The read count (i.e., the number of readsmapped
to each gene) was produced using HTSeq (v0.12.4). The RNAseq gene
expression was evaluated by the upper quartile fragments per kilobase of
transcript per million mapped reads, which normalized the read count by
dividing it by the gene length and the 75th percentile read count of protein-
coding genes for the sample.

Because the EdgeSeq Oncology platform has not been used to profile
diverse, large reference tumor sets, and because the PALOMA-2 study only
included patients with ER+ disease, the widely used PAM50 classification
scheme was not feasible. Instead, the single sample predictor algorithm
AIMS (referred to as HTG-AIMS in this paper) used a set of binary rules to
compare expressionmeasurements for pairs of genes to classify tumors into
intrinsic subtypes for each patient16,17. Because only 42 of the 100 binary
rules could be applied based on genes in the EdgeSeq Oncology BM panel,
classification performance was assessed by downsampling the cancer gen-
ome atlas (TCGA) data from genome-wide to the EdgeSeq oncology panel
subset. Furthermore, the impact of using 42 rules on the agreement between
AIMS and PAM50 is minimal, since the AIMS subtype derived from the 42
rules is highly consistent with those derived from the 100 rules. Using all
genes versus EdgeSeq Oncology panel genes only, the agreement between
the AIMS subtypes and those classified by PAM50 was 77% vs 76%,
respectively17. For PALLET, AIMS was applied to the whole transcriptomic
data as described and referred to as RNAseq-AIMS16.

A summary of the PAM50 algorithmused in PALOMA-2 provided by
NanoString is as follows, and results from this algorithm are referred to as
ruoProsigna-PAM50 in this paper24. The NanoString RUO PAM50 algo-
rithm is a 50-gene signature measuring the gene expression profile of each
sample that allows for the classificationof breast cancer into fourbiologically
distinct subtypes (LumA, LumB, HER2-E, and BL)9. Quality control
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thresholds are determined using the geometric mean of eight housekeeping
genes (HK Geomean), six positive controls, and eight negative controls to
ensure RNA quality, and all samples must pass quality-control thresholds
for results to be reported. Signal normalization is performed using the eight
housekeeping genes. The algorithm was performed in three steps. The first
step involves scaling using two sets of scaling factors to bring the house-
keeping and reference sample expression values into the scale necessary for
thenext step. The second step calculates thePearsoncorrelationbetween the
observed scaled expression for the PAM50 genes and a centroid for each of
the four subtypes, resulting in a set of four correlationvalues for each sample.
The final step is to identify the subtype correlation with the greatest value
and set that subtype as the subtype call for that sample.

Intrinsic subtypes of the PALOMA-2 cohort were identified based on
the HTG data using the PAM50 classifier9 with subgroup-specific gene
percentile centering (sgPct) as suggested byZhao et al.15. Datawere available
for 49 of the 50 genes used for the PAM50 classifier. Subtyping results
associated with this method are referred to as HTG-PAM50.sgPct in this
paper (Supplementary Fig. 1). Each gene in theHTGdatawas centered on a
specific percentile, where the percentile was determined from the RNAseq
data of theER+/HER2− subgroupof theTCGAbreast cancer cohort. In the
TCGA cohort, we took the percentile of the ER+/HER2− subgroup where
the expression value corresponded to the global median expression value of
the entire cohort for eachgene.Then, in thePALOMA-2 cohort, theTCGA-
derived subgroup percentile was assigned to each corresponding gene, and
the gene expression was centered by subtracting the value at this percentile.
The PAM50 classifier was then applied to the sgPct-centered HTG data to
obtain the intrinsic subtypes. Technical calibration was not performed on
the HTG data because there was a lack of data performed on both the HTG
and microarray platforms. Tumor samples from consenting patients in the
PALOMA-2 trial were subtyped using the validated RUO PAM50 assay
(ruoProsigna-PAM50); results were compared with published subtype
results using AIMS on EdgeSeq Oncology Biomarker Panel (HTG-AIMS;
HTG Molecular Diagnostics®, Tucson, AZ, USA; Supplementary Fig. 1)17.

In PALLET, PAM50 subtyping was performed on data normalized
with subgroup-specific gene centering andmicroarray-RNAseq calibration,
which is labeled as RNAseq-PAM50.sgMd.TC. Because the publicly avail-
ablePAM50classifierwas developed andvalidated for breast cancer subtype
determination based on microarray data9, additional steps should be per-
formed to calibrate the technical bias between RNAseq and microarray
platforms when applying the PAM50 classifier to PALLET RNAseq data.
RNAseq-PAM50.sgMd.TC includes a two-step calibration: subgroup-
specific gene median centering normalization to correct clinical group
bias and technical calibration for RNAseq to correct platformbias, as shown
in Supplementary Fig. 1. Each gene in the PALLET RNAseq data was
centered to the median of the ER+/HER2− subgroup of the TCGA cohort
by subtracting the differences between the PALLETmedian and the TCGA
subgroup median from PALLET gene expression5. The subgroup-median-
normalized RNAseq data were scaled to pretrained microarray-to-RNAseq
technical calibration factors to correct theRNAseqbias tomicroarray before
intrinsic subtype classification by the PAM50 classifier5,9.

Additional methods included the publicly available PAM50 classifier
applied directly on PALLET RNAseq data (RNAseq-PAM50), the publicly
available PAM50 classifier with subgroup-specific percentile gene centering
(RNAseq-PAM50.sgPct)15, and the publicly available PAM50 classifier with
subgroup-specific median gene centering (RNAseq-PAM50.sgMd).

We are reporting theNL as was done in the original classifier. Prosigna
did not include an NL subtype, therefore no NL was reported. Prosigna
assigned NL to LumA. PAM50 and AIMS have NL breast cancer, therefore
NL is included in the classifier.

Statistical analyses
InPALOMA-2, PFSwas estimatedusing theKaplan–Meiermethod, hazard
ratios were calculated using Cox proportional hazardmodels, and 1-sidedP
values were calculated by the log-rank test. The agreements between

intrinsic subtypes definedby the computationalmethodswere compared by
kappa statistics, and percentages were reported as descriptive statistics.

In PALLET, patients with breast cancer with Ki-67 ≤ 2.7% after
14weekswere classified as achieving complete cell cycle arrest (CCCA), and
patients with Ki-67 > 2.7% were classified as not achieving CCCA (non-
CCCA), which suggested resistance to treatment22. Odds ratios of non-
CCCA and 95% CIs were estimated by Fisher’s exact test for each subtype.

Data availability
Uponrequest, and subject to review,Pfizerwill provide thedata that support
the findings of this study. Subject to certain criteria, conditions, and
exceptions. Pfizer may also provide access to the related individual de-
identified participant data. See https://www.pfizer.com/science/clinical-
trials/trial-data-and-results for more information.

Code availability
The PAM50 and AIMS codes are publicly available. All steps for the data
analyses and processes are described in the methods.
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