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Abstract: 

Massless Dirac fermions have been observed in various materials such as graphene and 

topological insulators in recent years, thus offering a solid-state platform to study relativistic 

quantum phenomena. Single quantum dots (QDs) and coupled QDs formed with massless Dirac 

fermions can be viewed as artificial relativistic atoms and molecules, respectively. Such structures 

offer a unique platform to study atomic and molecular physics in the ultra-relativistic regime. Here, 

we use a scanning tunneling microscope to create and probe single and coupled electrostatically 

defined graphene QDs to unravel the unique magnetic field responses of artificial relativistic 

nanostructures. Giant orbital Zeeman splitting and orbital magnetic moment up to ~70 meV/T and 

~600𝜇𝐵 are observed in single graphene QDs. While for coupled graphene QDs, Aharonov–Bohm 

oscillations and strong Van Vleck paramagnetic shift (~20 meV/T2) are observed. Such 

properties of artificial relativistic atoms and molecules can be leveraged for novel magnetic field 

sensing modalities.  
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Quantum dots (QDs) are often referred to as artificial atoms because of their atomic-like 

electronic structure1,2. They have been widely studied over the last 40 years in semiconductors and 

have provided immense fundamental insight3-5. Recently, the confinement of massless Dirac 

fermions in electrostatically defined QDs has been achieved in graphene6-15 and topological 

insulators16. Different from semiconductor QDs formed with massive Schrödinger fermions, QDs 

populated by massless Dirac fermions can be viewed as artificial relativistic atoms, thus offering 

a unique opportunity to study atomic properties in the ultra-relativistic regime.  

Graphene is an ideal platform for studying relativistic quantum phenomena because it hosts 

massless Dirac fermions17 and has high tunability via electrostatic gating. As a result, multiple 

relativistic quantum phenomena have been demonstrated with graphene such as Klein 

tunneling18,19 and atomic collapse20,21. Such phenomena are important not only for fundamental 

research but also for technological applications. For example, Klein tunneling renders graphene 

pn junctions highly transparent, which makes graphene an outstanding platform for electron optics 

applications such as negative refraction22, Veselago lensing23, and beam collimation24,25.  

When graphene massless Dirac fermions are confined into a quantum dot (QD), another 

intriguing platform for relativistic physics is realized, an artificial relativistic atom. For such a 

system, the usual relationship between orbital magnetic moment (𝜇⃑) and angular momentum (𝐿⃑⃑) 

for atomic states (𝜇⃑ = 𝑔𝜇𝐵 𝐿⃑⃑, 𝜇𝐵 is the Bohr magneton) is invalid. This is because massless Dirac 

fermions disobey the non-relativistic relationship between velocity and momentum, 𝑝⃑ = 𝑚𝑣⃑. 

Instead, 𝜇 is given by the area of the atomic orbit (𝜋𝑟2) multiplied by the electrical current (
−𝑒𝑣𝐷

2𝜋𝑟
), 

which results in 𝜇⃑ = −𝑒𝑣⃑𝐷 × 𝑟/2. Because of this, the large and constant Dirac velocity 𝑣⃑𝐷 

together with a sizable atomic orbital radius 𝑟 can produce extremely large 𝜇⃑ for artificial 

relativistic atoms. One direct consequence of this large 𝜇⃑ is a giant Zeeman splitting for artificial 
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atomic orbital states in a magnetic field (𝐵), which can potentially be useful for sensing. Such 

properties of artificial relativistic atoms, however, have not been experimentally demonstrated to 

date. In this article we investigate single and coupled graphene QDs that are subjected to an 

external perpendicular B. These structures function as artificial relativistic atoms and molecules, 

and reveal intriguing 𝐵 responses that originate from the relativistic nature of these nanostructures 

such as giant orbital Zeeman splitting and strong paramagnetic shift. 

Observation of linear orbital Zeeman splitting 

We study graphene QDs defined by electrostatically induced circular pn junctions with a 

scanning tunneling microscope (STM) as schematized in Fig. 1a. Although Klein tunneling18,19 

makes it difficult to confine massless Dirac fermions, their oblique incidence onto the circular pn 

junction boundary (schematized in Fig. 1b) avoids the 100% transmission occurring at normal 

incidence. This allows for the formation of quasi-bound states in graphene QDs, which have been 

confirmed in previous experiements6,8-12,14,15. In zero B, the clockwise and counterclockwise quasi-

bound states possessing the same radial quantum number (𝑛) and angular quantum numbers (±𝑚) 

are degenerate due to time reversal symmetry. The directions of their 𝜇⃑, however, are opposite 

(Fig. 1c). Thus, by applying an external B, the degeneracy between the clockwise and 

counterclockwise quasi-bound states is lifted through an orbital Zeeman effect (Fig. 1d), leading 

to a splitting energy Δ𝐸 = 2|𝜇⃑ ∙ 𝐵⃑⃑|. This linear orbital Zeeman splitting can be used to measure 𝜇⃑ 

of graphene QD states. 

Importantly, the Berry phase change of graphene QD states10,26 in 𝐵 precludes the 

measurement of 𝜇⃑. To avoid this, we create graphene QDs with unprecedently sharp potential wells 

(further discussion in SI section S2). Our method involves using a two-step tip voltage pulsing 

technique based on prior works9,27 (details in SI section S3) on samples with reduced hexagonal 
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boron nitride (hBN) thickness. Figure 1e shows a typical 𝑑𝐼/𝑑𝑉𝑆 spectra along a line across the 

center of a circular pn junction created with this technique on a large angle (14.1°) twisted bilayer 

graphene (tBLG)/hBN sample. By tracking the graphene charge neutrality point (marked by white 

dots in Fig. 1e), we estimate the potential variation to be 200~300 meV across 100 nm. This is 

2~3 times sharper than previous works that utilized a related tip pulsing technique9,10,14,15. Figure 

1f shows a comparison of 𝑑𝐼/𝑑𝑉𝑆 point spectra at 𝑑 = 0 nm and 40 nm of the graphene QD shown 

in Fig. 1e. Evidently, the 𝑑𝐼/𝑑𝑉𝑆 peaks are much sharper off center than at the QD center. This is 

because near the QD boundary, states with larger m are concentrated, which correspond to Dirac 

fermions propagating tangentially to the pn junction, resulting in a stronger reflection and hence 

better confinement8,9. For the remainder of this work, we will focus on these large 𝑚 states. 

We now study the response of our graphene QDs to a perpendicular 𝐵. Figure 2a shows 

the comparison of 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆, 𝑑) measured across the center of another graphene QD with a sharp 

potential well in 𝐵 = 0 T and 0.2 T. Splitting patterns are clearly seen in 𝐵 = 0.2 T as dimples 

near the QD boundary where high 𝑚 states concentrate. Figure 2b shows the evolution of 𝑑𝐼/𝑑𝑉𝑆 

point spectra at 𝑑 = 40 nm in various 𝐵, the splitting and merging of graphene QD states can be 

seen as B increases. To visualize this behavior more clearly, 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆, 𝐵) with high 𝐵 resolution 

was acquired and is shown in Figure 2c. These data were taken from the same graphene QD shown 

in Fig. 2a at 𝑑 = 40 nm, here 𝑑3𝐼/𝑑𝑉𝑆
3(𝑉𝑆, 𝐵) are presented to enhance the visibility of 𝑑𝐼/𝑑𝑉𝑆 

peaks (raw 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆, 𝐵) data in Extended Data Fig. 1). We observe a clear linear splitting for 

each QD state. We attribute this behavior to orbital Zeeman splitting and find it is present at 

locations off the QD center but absent near the center where low m states concentrate (see SI 

section S4). These experimental findings are all in good agreement with simulations based on a 

tight binding (TB) model for a graphene QD (methods in SI section S5) with a quadratic potential 
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well (Figs. 2d-f), thus further supporting our qualitative understanding. The slight deviations 

visible between experiment and simulation at negative energies is likely due to the deviation of 

the experimental potential from the quadratic potential used in our simulation. 

Angular quantum number and gate dependence of 𝝁⃑⃑⃑ 

After confirming the existence of orbital Zeeman splitting, we now extract 𝜇⃑ of our 

artificial relativistic atom and study its angular quantum number and gate dependence. With 

spatially resolved 𝑑𝐼/𝑑𝑉𝑆 spectra (Fig. 2a), we can assign both the radial and angular quantum 

numbers (𝑛, 𝑚) for graphene QD states in 𝑑3𝐼/𝑑𝑉𝑆
3(𝑉𝑆, 𝐵) plots10 (details in SI section S6), the 

assigned quantum numbers are shown in Figs. 2c,f. By using the simple consideration discussed 

in Fig. 1d (Δ𝐸 = 2|𝜇⃑ ∙ 𝐵⃑⃑|), 𝜇⃑ of graphene QD states can then be extracted from the slopes of Δ𝐸 

as a function of 𝐵. Figure 3a shows the extracted Δ𝐸(𝐵) and corresponding linear fits for QD 

states with different 𝑚 at 𝑉𝐺 = −16 V (for more details see SI section S7), a clear increase in slope 

is seen for states with larger 𝑚. The magnitude of  𝜇 ⃑⃑⃑ ⃑ (𝜇) as a function of 𝑚 extracted from the 

slopes of linear fits in Fig. 3a is plotted in Fig. 3b. An increase from ~200𝜇𝐵 to ~500𝜇𝐵 for 𝜇  is 

seen when 𝑚 is increased from 2.5 to 10.5. 

Next, we compare our experimentally extracted 𝜇  with theory. Approximately, the 

measured 𝜇 are on the order of 300𝜇𝐵, which agrees well with the 𝜇 of a current loop (𝜇 =
𝑒𝑣𝐹𝑟

2
) 

for a charge flowing with graphene’s Fermi velocity 𝑣𝐹 = 106 m/s and with a loop radius 𝑟 = 35 

nm. For a more formal comparison we calculated 𝑚 resolved 𝐿𝐷𝑂𝑆(𝐸, 𝐵) from a continuum model 

for graphene QDs with quadratic potential wells (details in SI section S8), some results are shown 

in Fig. 3c. From such plots, we can extract 𝜇 for graphene QD states with different quantum 

numbers, the extracted 𝜇 for states with 𝑛 = 0 and 𝑚 = 2.5 to 10.5 are plotted in Fig. 3b. We 

notice the experimental results (red triangles) do not overlay any individual theory curve (empty 



 7 

circles). Additionally, experimental results at larger 𝑚 appear closer to theoretical curves 

calculated with a smaller |𝜅|. Akin to the discrepancy discussed for Fig. 2, the discrepancy seen 

here is likely caused by the deviation of the experimental potential from a quadratic potential at 

negative 𝑉𝑆 (further discussion in SI section S9). Nonetheless for both experiment and theory, a 

clear increase in 𝜇 is seen with increasing m.  

We now explore the gate dependence of 𝜇 for our artificial relativistic atoms. Figure 3d 

shows 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆, 𝑑) measured at 𝑉𝐺 = −20 V, −10 V and 0 V in 𝐵 = 0.2 T for the same QD in 

Fig. 2a. The potential well sharpness of graphene QDs in our experiments can be tuned by 𝑉𝐺 

(further discussion in SI section S10). Apparently as the potential well sharpness increases with 

increasing 𝑉𝐺, the splitting energy reduces. Figure 3e shows the experimentally extracted Δ𝐸(𝐵) 

for the 𝑛 = 0, 𝑚 = 5.5 QD state at various 𝑉𝐺, 𝑑𝐼3/𝑑𝑉𝑆
3(𝑉𝑆, 𝐵) data at these 𝑉𝐺 are shown in 

Extended Data Fig. 2. A clear increase in slope is seen as 𝑉𝐺 is decreased, indicating an 

enhancement of 𝜇 when reducing 𝑉𝐺. To see this more quantitatively, we plot extracted 𝜇 values 

as a function of 𝑚 in Fig. 3f for graphene QD states with different 𝑚 measured at various 𝑉𝐺. The 

extracted 𝜇 are generally smaller at larger 𝑉𝐺 (sharper potential well) for all QD states.  

The observed gate tuning of 𝜇 can be understood as a result of orbital size tuning of 

graphene QD states with 𝑉𝐺: sharper dots at larger 𝑉𝐺 have current loops with smaller radius. In 

contrast to nonrelativistic atoms, 𝜇 for relativistic atoms is governed by the orbital radius instead 

of the angular momentum. Therefore, it is uniquely possible to tune 𝜇 of our artificial relativistic 

atom by 𝑉𝐺 while maintaining the same quantum numbers. These results are also supported by the 

theoretically calculated 𝜇(𝑚) for graphene QDs with different potential well sharpness (Fig. 3b).  

We now compare the observed 𝜇 in graphene QDs with that of other systems. The value of 

𝜇 observed in this work are orders of magnitude larger than those observed in natural atoms28 and 
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semiconductor QDs29-31, and are also several times larger than those observed in Bernal-stacked 

bilayer graphene (BLG) QDs32,33 (Table 1). Although similar 𝜇 values have been observed in 

Bernal-stacked trilayer graphene (TLG) QDs34, the findings in this work have several 

distinctions/advantages. Briefly, graphene QDs can achieve similar 𝜇 with a smaller QD size and 

maintain linear splitting within a larger 𝐵 range compared to TLG QDs (further discussion in SI 

section S11). Thus, the extremely large orbital Zeeman splitting observed in our graphene QDs 

(~23 to 58 meV/T) together with their nanometer scale sizes offers a unique opportunity to 

fabricate magnetometer arrays with nanometer scale spatial resolution (further discussion in SI 

section S12). This is difficult to achieve for the current state of the art35,36.  

Coupled double graphene QDs 

Having attained a thorough understanding of the 𝜇 of single graphene QDs, below we study 

the 𝐵 response of another interesting system, coupled double graphene QDs, which can be viewed 

as artificial relativistic molecules37. These structures were created on a graphene/hBN sample by 

fabricating two circular p-doped regions with centers separated by 150 nm with our two-step tip 

voltage pulsing technique (details in SI section S3). Figure 4a shows a 𝑑3𝐼/𝑑𝑉𝑆
3(𝑉𝑆, 𝑑) plot 

measured along a line across the centers of two dots in 𝐵 = 0 T at 𝑉𝐺 = 0 V, the red and blue 

patterns in the plot correspond to 𝑑𝐼/𝑑𝑉𝑆 peaks and valleys, respectively. Three distinct regions 

can be identified and labeled as (i), (ii) and (iii) in Fig. 4a. At region (i), the energy spacing between 

𝑑𝐼/𝑑𝑉𝑆 peaks are half of those at regions (ii) and (iii); and at region (iii) different nodal patterns 

appear compared to region (ii). These features are distinct from uncoupled double graphene QDs 

made with a similar fabrication technique (see SI section S12).  

Next, we map the 𝐵 response of our coupled graphene QDs. Plots of 𝑑3𝐼/𝑑𝑉𝑆
3(𝑉𝑆, 𝐵) 

measured at the three distinct regions of the coupled dots are shown in Figs. 4b and 4c. First, we 
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notice at region (i) the QD states display a positive energy shift that is proportional to 𝐵2, such 

behavior is more evident in a zoom in (right panel of Fig. 4b). The parabolic energy shift observed 

here is ~20 meV/T2. Secondly, in region (ii) we encounter a linear splitting resembling the 

observation in single graphene QDs (left panel of Fig. 4c). Finally, region (iii) reveals a distinct 

behavior compared to the other regions, a staggered pattern for 𝑑𝐼/𝑑𝑉𝑆 peaks (right panel of Fig. 

4c). These observations are all qualitatively reproduced with a TB model for a coupled double 

graphene QD (see SI section S13).  

To attain an intuitive understanding of this rich set of observations, we consider 

semiclassical orbits within coupled double graphene QDs. For QD states in a single graphene QD, 

their semiclassical orbits can be approximated as circular orbits. Once two QD states couple, the 

circular orbits of individual QD states merge into a figure-eight orbit. Such an orbit is schematized 

by the yellow rings embedded in a double graphene QD in Fig. 4d. The arrows indicate the 

direction of the current, a degenerate time-reversed figure-eight orbit also exists but is not shown 

here for clarity. Closer to each individual QD center, we expect QD states have a smaller radius 

and are decoupled thus forming circular orbits, as depicted by green rings in Fig. 4d. In our 

experiment, regions (i) and (iii) correspond to QD states with figure-eight orbits, and region (ii) 

corresponds to QD states with circular orbits. With this understanding in hand, the half energy 

spacing observed at region (i) compared to region (ii) is due to the length of the figure-eight orbit 

being twice that of the circular orbit. This is because according to the semiclassical quantization 

rule the energy spacing between graphene QD states is Δ𝐸 =
ℎ𝑣𝐹

𝐿
, where h is Planck’s constant, 𝑣𝐹 

is the graphene Fermi velocity and 𝐿 is the semiclassical orbit length. Consequently, the large B 

induced linear splitting observed at region (ii) can be explained by the large 𝜇⃑ of circular orbits 

akin to uncoupled graphene QDs. 
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Van Vleck paramagnetic shift and Aharonov–Bohm effect  

We now discuss how the unique 𝐵 response observed in region (i) corresponds to the 

emergence of novel magnetism due to the relativistic nature of our artificial molecule. Because 

each of the two rings of the figure-eight orbit have reversed current flow directions, their 𝜇⃑ are in 

opposite directions but with the same magnitude. Therefore, the net 𝜇⃑ of an entire figure-eight 

orbit will be zero, hence explaining the disappearance of linear splitting in 𝐵 at regions (i) and 

(iii). Moreover, the positive parabolic energy shift for holes observed at region (i) is caused by a 

Van Vleck paramagnetic shift, which is a second order perturbative B response38. Classically, this 

effect stems from a Lorentz force that expands (contracts) orbits with 𝜇 aligned (anti-aligned) to 

𝐵, resulting in an increase (decrease) of 𝜇. The quenching of the first order 𝐵 effect in figure-eight 

orbits helps the detection of this second order effect. Importantly, for non-relativistic systems such 

as natural atoms39 and semiconductor QDs29,30,39, a Larmor diamagnetic shift due to the change of 

electron orbital velocity in 𝐵 also exists and is usually stronger than the Van Vleck paramagnetic 

shift. However, for graphene QDs, the Larmor diamagnetic shift is absent because of the constant 

velocity of massless Dirac fermions. Alternatively, this can be understood as resulting from the 

graphene Hamiltonian in 𝐵 lacking a 𝐵2 term that produces Larmor diamagnetism in non-

relativistic systems (further discussion in SI section S14). Such a B induced response is thus unique 

to ultra-relativistic artificial atoms and molecules.    

Finally, we discuss the origin of the staggered red stripe patterns in 𝑑𝐼3/𝑑𝑉𝑆
3(𝑉𝑆, 𝐵) plot 

at region (iii). We attribute this phenomenon to Aharonov–Bohm (AB) oscillations that occur at 

the crossing point of figure-eight orbits, region (iii). When a particle returns to its original position 

after traveling along a closed path, constructive (destructive) interference leading to enhanced 

(reduced) 𝐿𝐷𝑂𝑆 will occur if the action along the closed path 
1

ℏ
∮ 𝒑 ∙ 𝑑𝒒 equals an even (odd) 



 11 

number of 𝜋. Here 𝒑 and 𝒒 are the canonical momentum and position coordinates, ℏ is Dirac’s 

constant. As shown in Fig. 4e, two distinct eigen energies exist for figure-eight orbits with 

constructive (yellow dot) and destructive (black dot) interference at the figure-eight orbit center, 

respectively. This is because charges return to this location after traveling half of a figure-eight 

orbit. By applying an external 𝐵, the AB effect causes the pickup of additional phases (Δφ =
−𝑒Φ𝐵

ℏ
, 

where Φ𝐵 is the magnetic flux through each circular segment) with opposite signs for the two 

circular orbits flowing in opposite directions. As a result, the energy level of the figure-eight orbit 

does not change in 𝐵 to first order, but the interference type at the figure-eight orbit center switches 

depending on the amount of Δ𝜑 picked up by each circular segment (Fig. 4e). This explains the 

staggered pattern observed at region (iii) (Fig. 4c), where red and blue stripes (corresponding to 

constructive and destructive interference, respectively) alternate at a constant 𝑉𝑆 in 𝐵. In addition, 

the assigned Δ𝜑 in Fig. 4c are in good agreement with our experimental double dot geometry (see 

SI section S15), thus further supporting our interpretation. This observed AB oscillation in the 

𝐿𝐷𝑂𝑆 intensity of coupled graphene QDs can also be potentially used for 𝐵 sensing. Notably, it 

represents a different modality compared to the linear orbital Zeeman splitting observed in single 

graphene QDs.  

Conclusions 

 In conclusion, we observed giant 𝜇⃑ and large orbital Zeeman splitting in artificial 

relativistic atoms formed with single graphene QDs. We also observed strong Van Vleck 

paramagnetic shift and AB oscillations in artificial relativistic molecules formed with coupled 

double graphene QDs. Our work adds fundamental insight into relativistic quantum phenomena in 

solid state systems and paves the way towards new modalities of B sensing that utilizes massless 

Dirac fermions.  
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Methods 

Sample fabrication. The graphene/hBN and  tBLG/hBN samples were assembled with a standard 

polymer-based transfer method40. For the graphene/hBN sample, a graphene flake exfoliated on a 

methyl methacrylate (MMA) substrate was mechanically placed on top of an ~20 nm thick hBN 

flake that rests on a 285 nm SiO2/Si++ substrate. For the tBLG sample, we first use a monolayer 

graphene flake on MMA to pick up another monolayer graphene flake on SiO2/Si++ substrate, then 

we place the tBLG/MMA onto an ~20 nm hBN flake that rests on a 285 nm SiO2/Si++ substrate. 

For both samples, the MMA scaffold was dissolved in a subsequent solvent bath. The assembled 

heterostructure is then annealed in forming gas (Ar/H2) for ~12 hours at 400 °C to reduce residual 

polymer after the heterostructure assembly procedure. Next, an electrical contact to the sample is 

made by thermally evaporating 7 nm of Cr and 200 nm of Au using a metallic stencil mask. To 

further improve the sample surface cleanliness, the heterostructure is then mechanically cleaned 

using an AFM41, which is done in a glovebox filled with N2 gas. We perform sequential scans in 

contact mode (setpoint of 0.2 V, scanning speed of ~15 µm/sec, and 1024 × 1024 pixels 

resolution) to sweep regions of ~ 30 × 30 µm2 by a Cypher S AFM with Econo-ESP-Au tips from 

Oxford Instruments. Finally, the heterostructure is annealed in ultra-high vacuum (UHV) at 400 °C 

for seven hours before being introduced into the STM chamber. 

STM/STS measurements. The STM/STS measurements were conducted in UHV with pressures 

better than 1 × 10−10 mbar at 4.8 K in a Createc LT-STM. Electrochemically etched tungsten tips 

calibrated on Au(111) surface were used in the experiments. The lock-in AC signal frequency used 

for STS measurements was 704 Hz. 
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Figure 1 

 

Figure 1: Experimental set up and orbital Zeeman splitting of graphene Quantum Dot (QD) 

states. a, Schematic of the experimental setup. The circular graphene pn junction is created in a 

monolayer graphene or large angle twisted bilayer graphene/hBN heterostructure (additional 

information in SI section S1) resting on a SiO2/Si chip. Contact to graphene is made through a 

Cr/Au electrode. The STM tip is grounded, a bias voltage 𝑉𝑆 together with an ac voltage 𝑉𝑎𝑐 is 

applied between the STM tip and graphene. A backgate voltage 𝑉𝐺 is applied between the p-doped 

silicon and graphene and an out of plane magnetic field is applied to the whole device. b, 

Schematic of the confinement of massless Dirac fermions in a circular graphene pn junction. c, 

Schematic of the orbital magnetic moments of graphene QD states. The blue lines are the 

calculated semiclassical orbits of 𝑛 = 0,  𝑚 = ±11/2 graphene QD states in a parabolic potential 

well 𝑈(𝑟) = 𝜅𝑟2, where 𝜅 = −0.01 meV/nm2. The red arrows indicate the direction of the 

trajectory. The orange arrows indicate the orientation of the orbital magnetic moments. d, 

Schematic of the orbital Zeeman splitting of graphene QD states in a finite magnetic field. The 

blue ovals and orange arrows represent the energy levels and the orbital magnetic moment 

orientations of graphene QD states, respectively. e, Experimentally measured 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆, 𝑑) at 

𝑉𝐺 = 0 V along a line across the center of a circular graphene pn junction that has a sharp potential 

well. Colored dashed lines are quadratic potential wells with different 𝜅 values. The set point used 

to acquire the tunneling spectra was 𝐼 = 1 nA,  𝑉𝑆 = −200 mV, with a 2 mV ac modulation. f, 

𝑑𝐼/𝑑𝑉𝑆 point spectra at the center and at 40 nm away from the center of the circular graphene pn 

junction as shown in (c). The set point used to acquire the tunneling spectra was 𝐼 = 1 nA,  𝑉𝑆 =
−60 mV, with a 2 mV ac modulation.   
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Figure 2 

 

Figure 2: Experimental observation of linear orbital Zeeman splitting. a, Experimentally 

measured 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆, 𝑑) at 𝑉𝐺 = −16 V in 𝐵 = 0 T and 𝐵 = 0.2 T along a line across the center 

of a circular graphene pn junction with a sharp potential well. This pn junction is different from 

the junction shown in Fig. 1e. The red arrow indicates the splitting of one QD state. b, 𝑑𝐼/𝑑𝑉𝑆 

point spectra measured at 𝑑 = 40 nm and at 𝑉𝐺 = −16 V in various magnetic fields from 0 T to 

0.4 T with a 0.1 T step. c, 𝑑3𝐼/𝑑𝑉𝑆
3(𝑉𝑆, 𝐵) at 𝑉𝐺 = −16 V at 𝑑 = 40 nm as indicated by the yellow 

dashed lines in (a). The quantum number (𝑛, 𝑚) corresponds to radial and angular quantum 

number, respectively. d, Simulated 𝐿𝐷𝑂𝑆(𝐸, 𝑑) for a graphene QD in 𝐵 = 0 T and 𝐵 = 0.2 T with 

𝑈(𝑟) = −0.03𝑟2 meV/nm2 + 160 meV. e, Simulated 𝐿𝐷𝑂𝑆 at 𝑑 = 40 nm in various magnetic 

fields from 0 T to 0.4 T for the same graphene QD in (d). f, Simulated 𝜕2𝐿𝐷𝑂𝑆/𝜕𝐸2(𝐸, 𝐵) at 𝑑 =

40 nm for the same graphene QD in (d). The quantum number (𝑛, 𝑚) corresponds to radial and 

angular quantum number, respectively. 
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Figure 3 

 

Figure 3: Quantum number and gate dependence of magnetic moments of graphene QD 

states. a, Experimentally extracted orbital Zeeman splitting energy at various 𝐵 and linear fits for 

graphene QD states with different 𝑚 and 𝑛 = 0 at 𝑉𝐺 = −16 V. b, Comparison between 

experimentally extracted 𝜇(𝑚) at 𝑉𝐺 = −16 V and theoretically calculated 𝜇(𝑚) for graphene QD 

states with parabolic potential wells 𝑈(𝑟) = 𝜅𝑟2. c, Calculated 𝑚 resolved 𝐿𝐷𝑂𝑆(𝐸, 𝐵) at 𝑑 =

40 nm for a graphene QD with 𝑈(𝑟) = −0.03𝑟2 meV/nm2 + 160 meV. Yellow dashed lines 

indicate the theoretical orbital Zeeman splitting size with the 𝜇 given in each plot. d, 

Experimentally measured 𝑑𝐼/𝑑𝑉𝑆(𝑉𝑆, 𝑑) at 𝑉𝐺 = −20 V, −10 V and 0 V in 𝐵 = 0.2 T along a line 

across the center of the same circular graphene pn junction shown in Fig. 2a. The red curve in each 

plot represents a parabolic potential well with 𝜅 = −0.05 meV/nm2 and is a guide for the eye to 

aid comparison between potential well sharpness variation between different 𝑉𝐺. e, Experimentally 

extracted orbital Zeeman splitting energy at various 𝐵 and corresponding linear fits for graphene 

QD states with 𝑛 = 0, 𝑚 = 5.5 at different 𝑉𝐺. f, Experimentally extracted 𝜇 for graphene QD 

states with different 𝑚 and 𝑛 = 0 at different 𝑉𝐺. Error bars in (a) and (e) reflect the uncertainty 

of the peak position in Gaussian fitting. Error bars in (b) and (f) reflect the uncertainty of the slope 

in weighted linear fitting. 
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Figure 4 

 

Figure 4: Paramagnetic shift and Aharonov–Bohm (AB) effect in coupled double graphene 

QDs. a, Experimentally measured 𝑑3𝐼/𝑑𝑉𝑆
3(𝑉𝑆, 𝑑) at 𝑉𝐺 = 0 V in 𝐵 = 0 T for coupled double 

graphene QDs that are separated by 150 nm. b, Left panel: 𝑑3𝐼/𝑑𝑉𝑆
3(𝑉𝑆, 𝐵) measured at 𝑉𝐺 = 0 V 

at 𝑑 = −150 nm corresponding to region (i) in (a). Right panel: zoom in around 𝑉𝑆 = 0 of the left 

panel. c, Left panel: 𝑑3𝐼/𝑑𝑉𝑆
3(𝑉𝑆, 𝐵) measured at 𝑉𝐺 = 0 V at 𝑑 = −110 nm corresponding to 

region (ii) in (a). Right panel: 𝑑3𝐼/𝑑𝑉𝑆
3(𝑉𝑆, 𝐵) measured at 𝑉𝐺 = 0 V at 𝑑 = 0 nm corresponding 

to region (iii) in (a). Yellow dashed lines indicate approximate 𝐵, at which the circular orbits pick 

up an integer number of 𝜋 AB phase. 𝑑3𝐼/𝑑𝑉𝑆
3 values in (a-c) were numerically calculated from 

the 𝑑𝐼/𝑑𝑉𝑆 acquired through a lock-in measurement and smoothed with a 2 mV box average. The 

set point used to acquire the tunneling spectra in (a-c) was 𝐼 = 1 nA,  𝑉𝑆 = −60 mV, with a 2 mV 

ac modulation. d, Schematic of coupled double graphene QD and figure-eight and circular orbits. 

e, Schematic of the constructive (represented by yellow dot) and destructive (represented by black 

dot) interference at the center of the figure-eight orbit for different energy levels and its tuning by 

𝐵 through AB effect.  

 

 

 

 

 

 



 18 

Table 1 

 

Table 1: Comparison of measured 𝝁 values from different types of systems. For works in 

which 𝜇 values are not given directly, we convert the observed Zeeman splitting Δ𝐸 in 𝐵 to an 

effective 𝜇 through the definition 𝜇 =
Δ𝐸

2𝐵
. 

 

 

 

 

 

 

 

 

 

 

 

                               

 atural  toms

 n the order of several for their 

ground states and not highly e cited 

states  

 elf assem led In  Ds    

 elf assem led In s  a s  Ds    

 elf assem led In a s  a s  Ds 1   

 T  tip induced      Ds    

Few carrier      Ds    

 T  tip induced T    Ds    

This work       Ds   



 19 

Extended Data Figure 1 

 

Extended Data Figure 1: Raw 𝒅𝑰/𝒅𝑽𝑺(𝑽𝑺, 𝑩) used to get 𝒅𝟑𝑰/𝒅𝑽𝑺
𝟑(𝑽𝑺, 𝑩) plot in Fig. 2c. 
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Extended Data Figure 2 

 

Extended Data Figure 2: 𝒅𝟑𝑰/𝒅𝑽𝑺
𝟑(𝑽𝑺, 𝑩) plot at different 𝑽𝑮. a, 𝑑3𝐼/𝑑𝑉𝑆

3(𝑉𝑆, 𝐵) at 𝑉𝐺 =
−24 V and at 𝑑 = 36 nm. b, 𝑑3𝐼/𝑑𝑉𝑆

3(𝑉𝑆, 𝐵) at 𝑉𝐺 = −20 V and at 𝑑 = 40 nm. c, 

𝑑3𝐼/𝑑𝑉𝑆
3(𝑉𝑆, 𝐵) at 𝑉𝐺 = −10 V and at 𝑑 = 36 nm. d, 𝑑3𝐼/𝑑𝑉𝑆

3(𝑉𝑆, 𝐵) at 𝑉𝐺 = 0 V and at 𝑑 =
25 nm. The quantum number (𝑛, 𝑚) in (a-d) corresponds to radial and angular quantum number, 

respectively. 
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