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Abstract

Uncertainty quantification of reduced models

by

Zhenyuan Liu

Doctor of Philosophy in Engineering - Mechanical Engineering

and the Designated Emphasis in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Michael Frenklach, Chair

Detailed reaction models, such as detailed soot models, describing complex phenomena in
combustion are typically computationally intensive. Reduced reaction models derived from
a detailed, full-size reaction model are, thus, necessary in combustion simulations. The
validation of a reduced model typically requires its predictions for selected quantities of
interest (QOIs) to be close to those of the detailed model. Moreover, an accurate reduced
model should be capable of reproducing faithfully the propagation of uncertainty by the
detailed model.

Several reduced models for syngas combustion were developed by the “detailed reduc-
tion” method. This method was also adapted to develop several reduced models for a
stochastic soot oxidation model, which are typically difficult to develop with other reduction
methods. Different measures were developed to assess how uncertainties in the model pa-
rameters and in the model predictions behave for reduced models as compared to those for
the detailed model. The uncertainty quantification (UQ) analysis was carried out through a
numerically efficient, deterministic, and optimization-based framework of Bound-to-Bound
Data Collaboration (B2BDC) and a Gibbs sampling algorithm adopted for B2BDC. The
measures developed can be categorized into the sampling- and optimization-based measures.

The measures were applied to several reduced models of syngas combustion and several
reduced models of soot oxidation in three different examples. The developed measures suc-
cessfully quantified the propagation of uncertainty by the detailed and reduced models, and
numerically demarcated the performance of different reduced models. The results demon-
strated that assessment of the quality of a reduced model without considering parameter
uncertainty may be misleading in that the deviation can be much larger when the uncer-
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tainties in the model parameters are taken into account, highlighting the significance of UQ
analysis in the validation of reduced models. The performed analysis demonstrated that
when the experimental data are of bad quality, the posterior region of the model parame-
ters (the feasible set) could have a very complex shape, posing a substantial challenge to
the sampling-based measures. If no verifiably accurate experimental data exist, computer-
generated data from the solution of the detailed model offer a reliable alternative, in which
the desired level of reduced-model accuracy can be prescribed by specifying the accepted
ranges of variations in prediction of training targets. If a feasible set has a very complex
shape, uniform sampling of the feasible set could be very expensive. In such situations, the
B2BDC framework offers a more practical alternative by quantifying the propagated uncer-
tainty through numerically efficient computations of uncertainty intervals and their overlap,
all with the added benefit of obtaining the uncertainty sensitivities.
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Chapter 1

Introduction

1.1 Motivation

Declining costs, growing share of ESG (Environmental, Social, and Governance) investing,
and favorable government policies, along with many other factors, have driven the continued
growth of the renewable energy industry in the past few years [1–3]. Despite substantial
efforts, renewable energy comprised only 11% of all energy consumption in the U.S. in 2019,
on par with coal (11%), but much less than petroleum (37%) or natural gas (32%) [4]. In
total, fossil fuels accounted for approximately 80% of U.S. energy consumption in 2019.
The remaining 8% 1 of energy consumption was from nuclear energy, another form of clean
energy. In its Annual Energy Outlook 2020 [5], U.S. Energy Information Administration
(EIA) projected an increase in the use of fossil fuels through 2050.

Global energy consumption relies heavily on fossil fuels as well. According to the Inter-
national Energy Outlook 2019 [6] published by EIA, petroleum, natural gas, coal, renewable
energy, and nuclear energy comprised approximately about 32%, 22%, 26%, 15%, and 5%
of global energy consumption in 2018. In total, fossil fuels accounted for about 80% of in-
ternational energy consumption in 2018. The 26% share of coal, the least clean energy, in
global energy consumption reflects a grimmer energy landscape in some developing countries.
EIA’s projection [6] shows that the share of fossil fuels globally will decline modestly to 69%
by 2050 from 80% in 2018. However, this decrease is eclipsed by the projected nearly 50%
increase in global energy usage by 2050, led by growth in Asia [6].

Energy conversion of fossil fuels mainly takes the form of combustion. Carbon dioxide
(CO2) emissions from combustion of fossil fuels have been the main contributor of rising CO2-
concentration levels in the atmosphere [7]. Burning fossil fuels also leads to the emissions of
pollutants such as carbon monoxide (CO), nitrogen oxides (NOx), and soot among others [8,
9]. Soot is composed of carbonaceous particles produced in fuel-rich zones during combustion
and they pose major threats to human health and the environment [8, 10–12]. Soot particles
are a major type of particular matter (PM) particles [8], and they are regulated by the U.S.

1Sum of components may not equal 100% because of independent rounding.
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Environmental Protection Agency (EPA) [13]. Numerical methods, alongside experimental
and theoretical methods, play an important role in designing combustion devices with a high
efficiency and low emissions of CO2 and pollutants [8]. Accurate predictive reaction models
are the key to numerical methods.

Detailed reaction models, with the full set of equations (composed of the full set of
species and reactions), to describe complex phenomena of combustion currently exist, but
the computations with such models cannot be completed in a reasonable amount of time
[8]. Reduced reaction models derived from a detailed, full-size reaction model are, thus,
necessary in combustion simulations.

Reduced models derived from a detailed model have less species and reactions than the
detailed model and, hence, have less model parameters. Accurate reduced models should be
capable of reproducing the detailed models in computer simulations. Validation of a derived
reduced model is typically assessed by comparing its predictions for selected quantities of
interest (QOIs), such as ignition delays and soot oxidation rates, against the predictions of
the same QOIs with the detailed model. Such a comparison is usually done with model
parameters (rate coefficients, equilibrium constants, etc.) fixed at their respective nomi-
nal values. However, there exist uncertainties in the model parameters because the values of
these parameters are unknown, cannot be known beyond a certain accuracy, or are merely ap-
proximations due to assumptions in the fundamental theory [14, 15]. Assessment of reduced
models, accounting for uncertainties in the model parameters, has received more attention
recently [16–19]. However, systematic treatments of uncertainties in the model parameters
and in the model predictions and their interactions in the context of reduced models remain
largely unavailable in the combustion community.

Detailed soot models can enhance the understanding of soot formation and oxidation.
The latter is particularly important for soot emission control in combustion processes because
soot oxidation counterbalances soot growth and, ultimately, is responsible for the removal
of soot from exhaust [20]. However, detailed soot models require a substantial amount of
computational time and cost [21]. Coupling a detailed soot model with a reactive flow model
would be prohibitively expensive. There is a strong demand for reduced soot models that
can reproduce faithfully a detailed soot model with less computing time. Such reduced
soot models can also provide greater insight into the significance of different underlying
mechanisms in soot processes. The validation of reduced soot models under uncertainties
in the model parameters is a key step in developing accurate reduced soot models. This
dissertation aims to develop quantitative measures of the difference between reduced and
detailed models under uncertainties in the model parameters. Such measures would provide
important information on whether a reduced model can reproduce the uncertainties of the
detailed model and whether such a requirement can be used for the development of accurate
reduced models.
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1.2 Background

Three topics are essential to this dissertation: reduction methods for gas phase reaction
models, soot modeling, and uncertainty quantification and its application in combustion. A
brief review on these topics will be given in this section.

1.2.1 Reaction model reduction

Reaction model reduction is itself an active field of study, and there are numerous reduction
methods. Often, a good reduced model, with a smaller set of equations, can obtain a close
estimate of the solution of the full model with less computing time [8]. For a good reduced
model, the benefit of lower computing effort outweighs the small deviations from the detailed
model. Moreover, a reduced model provides increased insight into species interactions and
the importance of certain mechanisms [8]. Several commonly used methods will be reviewed
in this section.

Reaction rate analysis identifies unimportant reactions and species by checking the con-
tributions of reactions on the formation and consumption of species at different time steps
and locations. The idea of reaction rate analysis is adopted in many different reaction
model reduction methods [16, 22–27]. The “detailed-reduction” method [22–24] removes
non-contributing reactions with low heat release rates and reaction rates relative to some
pre-selected rate-controlling reactions. Methods based on directed relation graph (DRG) [16,
25–27] also remove unimportant reactions, accounting for strongly coupled species groups.
With the introduction of DRGs, graph algorithms, such as the Dijkstra’s algorithm and the
AStar algorithm [28], can be leveraged to further reduce the size of the reduced model from
conventional target search algorithms (TSAs) [27].

Quasi-steady-state assumption (QSSA) and partial equilibrium assumption (PEA) are
commonly used in reaction model reduction [29–32]. They are either used by themselves or
in combination with other methods [8]. QSSA states that the rate of production and the
rate of consumption of a species is very close to each other such that the net consumption
rate of that species is approximately zero. As a result, concentrations of such species can
be calculated in terms of other known concentrations [29] so that the number of ordinary
differential equations (ODEs) can be reduced as a result of the algebraic relations obtained
[8]. PEA bears some similarities to QSSA but should not be confused with QSSA. PEA is
established when the forward and backward reaction rates of some reactions are essentially
equal to each other. This usually results from the very fast rates of both the forward and
backward rates of these reactions at high temperatures [8]. Similarly, concentrations of some
reactive species can be expressed in terms of more stable species [8]. One drawback with
QSSA and PEA is that candidate species and reactions for these assumptions need to be
known a priori [8]. Multiple algorithms exist for systematically identifying candidate species
for QSSA and reactions for PEA [32].

CSP methods are based on the dynamical systems approach [33–37]. ODEs of combustion
systems are usually stiff due to the very large differences in time scales of different reactions.
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The presence of very fast reactions requires extremely small timescales for integration of the
ODE system. While accounting for the bulk of the computation time, these fast reactions
are of less interest compared to the slower rate-controlling ones [8]. CSP methods attempt to
reduce the computation time dedicated to these fast reactions. These methods split the ODE
system into fast and slow modes for a given time period of interest. The fast modes dissipate
very fast, and they are exhausted after a short period of time and can be discarded thereafter.
For the same time period of interest, the very slow modes can also be neglected due to their
small contributions [34]. For each fast mode, CSP identifies species that can be accurately
solved for from equations of state—algebraic equations like those obtained from QSSA and
PEA, thus reducing the computation time. The main advantage of CSP-based methods is
that it does not require identification of QSSA species or PEA reactions a priori. Intrinsic
low-dimensional manifold-based methods [38, 39] simplify reaction models by identifying
the fast time scale of the reaction systems. They are also based on the dynamical systems
approach.

1.2.2 Soot modeling

An accurate predictive soot model is the key to the understanding of soot formation and
oxidation and to the designing of environmentally friendlier combustion devices. In contrast
to other well-specified species in reaction models, such as gas phase species, soot is not
a clearly defined substance [11]. It is not feasible to definitively state what species and
reactions are present in a soot reaction model because each soot particle is different and
unique [40]. Modeling of soot is, thus, mathematically highly challenging [21]. To date,
empirical and semi-empirical models have been widely used, but they are typically limited
to specific conditions and are shown to have many deficiencies [21]. Detailed theoretical
models containing all the components present in the soot formation with a high level of
detailed chemical and physical processes also exist. However, such comprehensive models
(detailed models) are, more often than not, computationally very expensive [21].

Soot formation is generally considered to include four steps: formation of soot precursors
and the following nucleation of the soot particles, particle coagulation, particle surface reac-
tions, and particle agglomeration [10]. Particle surface reactions refer to the heterogeneous
reactions occurring at the particle surface, including growth and oxidation reactions [10].
Modeling of particle surface reactions is a key to the development of predictive soot models
because the carbon mass accumulated in soot is determined mainly by surface reactions [10].
The detailed soot models developed by the Frenklach group [41, 42] were highly comprehen-
sive and had been considered as the state of the art [11]. Recent efforts of the Frenklach
group have been focused on soot modeling based on kinetic Monte-Carlo (KMC) simula-
tions, which takes into account steric effects and substrate curvatures [43, 44]. A kinetic
Monte-Carlo (KMC) simulation tracks the evolution of a graphene substrate in a flame-like
environment in which the surface growth and oxidation reaction events are modeled as a
Markovian process [45, 46]. At each time step of a given run, all applicable surface reactions
are determined by the current status of the edge sites of the substrate. Among all applicable
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surface reactions, one reaction is then selected using a stochastic algorithm [47, 48]. After
that, the selected reaction is applied, the substrate is updated, the geometry is optimized,
and this stochastic process is repeated until the end of simulation [43]. As is typical for
Monte-Carlo methods, multiple runs with different seed numbers are performed in a KMC
simulation, and the average over these runs is taken to derive the values of quantities of
interest (QOIs). The Frenklach group has worked on many aspects of soot modeling using
KMC simulations. They have investigated the graphene-edge growth chemistry [43, 49], edge
oxidation by OH [40, 50], by O2 [44, 51, 52], and by O [20, 44] in a series of studies. The
latest soot model [20] will be taken as the detailed soot model in this dissertation.

1.2.3 Uncertainty quantification

Computer models are widely used to study a broad range of scientific phenomena because
physical experimentation is too time consuming, too expensive, or even impossible for some
physical processes [53]. A computer model takes some quantities as input variables and
makes predictions for other quantities, which are termed output variables or responses of the
model [54]. During the process of model-based predictions, uncertainties arise from a variety
of sources, including uncertainties in the model parameters, model discrepancy (inadequacy)
caused by the difference between the computer model and the underlying physics of the
system, inherent randomness of the system, and algorithmic errors [55, 56]. Uncertainty
quantification (UQ) can be thought of as the task of determining appropriate uncertainties
during the process of model-based predictions [55]. UQ was also defined as “the end-to-end
study of the reliability of scientific inferences” [57]. Both definitions of UQ highlight the
breadth of UQ and the fact that UQ lacks a coherent general presentation [56]. Nonetheless,
there are many well-defined problems in UQ. One common UQ problem is the so-called
forward problem. In a forward problem, the uncertainties in the model parameters (input)
are propagated into the uncertainties in the model predictions (output) [14, 58–62]. Another
common UQ problem is the inverse problem, in which uncertainties in the model parameters
are determined based on the uncertainties of the observations of the output variables [14,
58, 63–67]. Other UQ problems include the model calibration problem and the certification
problem [55]. Forward and inverse problems in UQ will be addressed in this dissertation.

In combustion, particularly chemical kinetics, UQ has received increasing attention from
the community [14, 15, 17–19, 58, 59, 67–76]. There are mainly two classes of methods,
namely the probabilistic and the deterministic methods. In probabilistic methods, uncer-
tainties are propagated forward or backward using Monte-Carlo methods [18, 19, 59, 67, 72,
73]. One deterministic method, namely the Bound-to-Bound Data Collaboration (B2BDC)
method, combines response surfaces using solution mapping techniques with optimization
techniques to solve forward and inverse UQ problems [14, 58, 63, 68–71, 74–78]. The Method
of Uncertainty Minimization using Polynomial Chaos Expansions (MUM-PCE) has both fla-
vors of the probabilistic and deterministic methods [17, 79–81]. It calculates credible regions
in the model parameters and the associated uncertainties in the model predictions [15].
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1.3 Organization of dissertation

This dissertation aims at application of UQ analysis based on the B2BDC deterministic
framework to reduced models. Chapter 2 describes the B2BDC framework for uncertainty
quantification, the “detailed-reduction” method for reaction model reduction, and the kinetic
Monte-Carlo soot oxidation model. New developments are presented in Chapter 3, extending
the formalism of B2BDC to assessing and comparing uncertainties of reduced and detailed
models. The developed methodology is illustrated with a syngas combustion system in
Chapter 4 and with a KMC soot oxidation system in Chapter 5. Finally, I will summarize
the findings in Chapter 6.
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Chapter 2

Methodology

This chapter 1 describes the B2BDC framework for uncertainty quantification, the “detailed-
reduction” method for reaction model reduction, and the kinetic Monte-Carlo soot oxidation
model .

2.1 Bound-to-Bound Data Collaboration (B2BDC)

Bound-to-Bound Data Collaboration (B2BDC) is a deterministic uncertainty quantifica-
tion framework for combining models and training data from multiple sources to explore
their collective information content. The numerical methodology is built on specialized
constrained-optimization algorithms; it makes predictions on a rigorously determined feasi-
ble set, transfers the uncertainties of both model parameters and training-set experiments
directly into prediction, tests and quantifies consistency among data and models, explores
sources of inconsistency, discriminates among differing models, and enables analysis of global
sensitivities of uncertainty in prediction to the uncertainties in the data and model. The
B2BDC framework was developed and applied in a series of studies [14, 58, 68–71, 74–
78] and was shown to be congruent with the Bayesian sampling approach for uncertainty
quantification [82].

2.1.1 Prior knowledge of uncertain parameters

Consider a model fe(x) used to predict a quantity of interest (QOI), where x ∈ Rn is the
uncertain parameter vector, and the subscript e denotes the e-th QOI. In B2BDC, the prior
knowledge of x is represented by its bounds and is refined by incorporating constraints on
QOI predictions, typically through experimental data. This refinement process leads to
posterior knowledge of x, represented by bounds and polynomial constraints. The refined

1The material presented in Section 2.3 of this chapter is based on the paper published in Combustion
and Flame [20].



CHAPTER 2. METHODOLOGY 8

set of parameters x is used to make predictions of QOIs, represented by uncertainty intervals
and possibly reduced in size compared to those defined on the prior knowledge of x.

The prior knowledge of x is comprised of an n-dimensional hyperrectangle

H := {x ∈ Rn : li ≤ xi ≤ ui, i = 1, ..., n}, (2.1)

where li and ui are the lower and upper bounds of xi, the i-th element of x, as shown in
Fig. 2.1. These bounds are obtained from experimental data, literature recommendations, or
assessed by domain experts. They represent the current “literature recommendations” [58].

2.1.2 Surrogate models

Surrogate models, sometimes called model emulators, are used broadly in many engineering
fields because they are less expensive to evaluate than physics-based models [54, 60–62, 64,
83, 84]. In B2BDC, a surrogate model Me(x) is used to approximate fe(x), usually in a
polynomial form. A single evaluation of fe(x) may (and typically does) require solving a
system of differential equations and could be computationally expensive, whereas Me(x) can
be evaluated much faster. More importantly, expressing Me(x) in a quadratic (or rational
quadratic or other specific polynomial) form enables utilization of powerful optimization
algorithms for uncertainty quantification [78, 85, 86].

Surrogate models are built using the solution mapping methodology [54, 85–87]. First,
active model parameters are selected using sensitivity analysis. Not all model parameters in
x “contribute” equally to the model response, and hence, to the fitting of surrogate models
[54]. Oftentimes, only a small subset of model parameters are important for a given QOI.
This phenomenon was termed effect sparsity by Box and Meyer [88]. The local sensitivity
of the model prediction fe(x) with respect to the model parameter xi is given by

Sei =
∂fe(x)

∂xi
. (2.2)

However, the local sensitivity coefficient, Sei , does not take into account the uncertainty
of xi. A model parameter with a large local sensitivity but a very small uncertainty may
contribute minimally to the variation in the model response. In contrast, a model parameter
with a small local sensitivity but a very large uncertainty may lead to a large variation in
the model response. The impact of a model parameter on the model response is determined
by a quantity termed the impact factor

IF e
i =

∂fe(x)

∂xi
× (ui − li). (2.3)

The local sensitivity coefficient defined in Eq. (2.2) can be evaluated in a number of ways.
In the so-called “brute force” method, two computer simulations are performed, with xi set
to two distinct values, e.g., li and ui, whereas all the other model parameters are held at
their nominal values [54]. The sensitivity ∂fe(x)

∂xi
is then estimated from ∆fe(x)

∆xi
with the results
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from the two computer simulations. Other methods can be found in [54, 86]. The active
parameters are then determined by the ranking of the impact factors. The selection criteria
can be highly problem specific [78].

After that, Latin Hypercube Sampling (LHS) is used to generate a sample of design
points, {x(i)}mi=1, from the hyperrectangle H as defined in Eq. (2.1). The number of design
points m depends on the number of active model parameters. Then, the original model is
evaluated at these design points, leading to a sample of model predictions, {fe(x(i))}mi=1. The
next step is to fit a surrogate model using the sample of design points (input) and the sample
of model predictions (output). Depending on the form of the surrogate model, the sample is
split differently in the fitting process. If there are no hyperparameters in a surrogate model,
then the sample is split into a training set and a test set. If there are hyperparameters in
a surrogate model, e.g., a rational quadratic model, an extra validation set can be used to
help select hyperparameters [89]. Alternatively, k-fold cross-validation [89] can be used to
select hyperparameters without the use of an extra validation set; this scheme is adopted in
B2BDC in fitting rational quadratic models [90]. The sample is simply split into a training
set and a test set for a quadratic surrogate model because there are no hyperparameters.
A quadratic surrogate model is fitted by minimizing the sum of squared errors using points
from the training set, and then the mean absolute error is calculated using the test set:

εe =
1

mtest

∑
i ∈ Itest

|Me(x
(i))− fe(x(i))|,

where the subscript e refers to the e-th initial condition, Me is the fitted surrogate model,
fe is the original model, mtest is the number of points in the test set, and Itest is the set of
indices of the design points in the test set. The error defined in this fashion is the average
of the absolute error, which is suitable when models fe and Me are the natural logarithms
of quantities of interest (QOIs). Other forms of “mean error” such as the root-mean-square
deviation can be used to assess the accuracy of surrogate models as well. In practice, only
surrogate models with a low fitting error are included in the B2BDC UQ analysis. The
desired accuracy level of a surrogate model is problem dependent. Strategies like piece-wise
fitting [91] and iterative fitting [92] have been developed to deal with large fitting errors.

2.1.3 Posterior knowledge of uncertain parameters

In the B2BDC framework, the e-th QOI, associated with an experimental observation, is
represented by its lower bound, Le, and upper bound, Ue in the form of an interval, [Le, Ue].
This uncertainty interval, together with the corresponding surrogate model, define a dataset
unit, (Me, Le, Ue), and their collection, for e = 1, ..., N , forms a dataset [58]. QOI bounds
are applied to constrain the corresponding surrogate models, thus defining the feasible set

F :=
⋂

e∈{1,...,N}

{x ∈ H : Le ≤Me(x) ≤ Ue}, (2.4)
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where N is the number of QOIs in the dataset. For clarify of notations, all Me(x)’s have
x as the input. Yet x can mean different (small) subsets of active parameters for different
surrogate models, as discussed in the previous subsection. The union of different subsets
of active parameters forms the entire parameter set used in the B2BDC optimization. As
illustrated in Fig. 2.1, the shaded region in the parameter space is the feasible set F . The
green point in the parameter space is in the feasible set F because the associated values of
the surrogate models are within the QOI bounds in the QOI space. In contrast, the red
point is not in the feasible set F .

The feasible set F represents the posterior region of the uncertain parameter vector x.
A dataset is referred to as consistent if F is non-empty. In certain cases, the dataset is
inconsistent, which can be caused by model inadequacies or measurement errors in exper-
imental observations, etc. In such cases, analysis based on the scalar consistency measure
(SCM) [68] or the vector consistency measure (VCM) [76] can be used to reveal the sources
of inconsistencies.

Figure 2.1: Prior region, H, and posterior region, F , of the model parameters

2.1.4 Model predictions

If F is non-empty, the predicted interval of a QOI can be calculated as[
min
x∈F

Mp(x), max
x∈F

Mp(x)
]
, (2.5)

where Mp(x) is the surrogate model of a prediction QOI (the p-th QOI), which is typically
not used in the polynomial constraints in Eq. (2.4). The prediction interval captures the
uncertainties in the model predictions. For simplicity, let Mp and Mp denote the two interval

ends in problem (2.5), respectively. Problem (2.5) comprises two optimization problems:

Mp = min
x
Mp(x) (2.6)

s.t. li ≤ xi ≤ ui, i = 1, ..., n,

Le ≤Me(x) ≤ Ue, e = 1, ..., N,
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and

Mp = max
x

Mp(x) (2.7)

s.t. li ≤ xi ≤ ui, i = 1, ..., n,

Le ≤Me(x) ≤ Ue, e = 1, ..., N,

Problems (2.6) and (2.7) are usually difficult to solve [78]. In a general case, when the
optimization problem is not convex, it is computationally infeasible to find Mp and Mp.

The quadratic (rational quadratic, or certain polynomial) form of the surrogates makes it
possible to bracket Mp or Mp by two solvable optimization problems [78, 93]. Methods for

efficiently bounding these prediction intervals were developed in [78] and are part of the
B2BDC software package [90]. As shown in Fig. 2.2, a lower bound, Mp

L, and a upper

bound, Mp
U, such that Mp

L ≤ Mp ≤ Mp
U, can be obtained. The lower bound Mp

L is

obtained by relaxing the optimization problem in Eq. (2.6) to a semi-definite programming
(SDP) problem. An SDP problem is a convex optimization problem [93] and can be solved
efficiently with packages like SeDuMi [94]. The relaxation can either be done by the so-called
S-procedure [78, 93] or by dropping the rank-one constraint in formulating the problem as
an optimization problem with linear matrix inequality (LMI) constraints [78]. The upper
bound Mp

U can be obtained by any feasible x. A global optimization algorithm is used to

search for an upper bound Mp
U as close to Mp as possible. The MATLAB function fmincon

[95] is used for this purpose as part of the B2BDC software package [90]. Similarly, Mp
L

and

Mp
U

, such that Mp
L ≤ Mp ≤ Mp

U
, can be obtained. In optimization, an inner bound is an

upper bound for the minimum or a lower bound for the maximum, whereas an outer bound is

a lower bound for the minimum or an upper bound for the maximum. Therefore, [Mp
U,Mp

L
]

is termed the inner-bound interval of [Mp,Mp] and [Mp
L,Mp

U
] its outer-bound interval. The

latter are conservative estimates, but they certify containment of the interval [Mp,Mp]. Both
the inner- and outer-bound prediction intervals are used in assessing the prediction interval
[Mp,Mp]. In many cases, inner- and outer-bound prediction intervals are very close to each
other. To make the graphical and tabular presentation clear, the midpoints of the inner-
and outer-bound prediction intervals will be used.

Replacing the objective function Mp(x) in problem (2.5) with xi for any i = 1, ..., n leads
to a special case of problem (2.5), [

min
x∈F

xi, max
x∈F

xi

]
. (2.8)

The optimization problem (2.8) solves for the prediction interval of xi, i.e., the minimum
and maximum of the projection of the feasible set F onto the xi-axis.
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Figure 2.2: Inner- and outer-bound prediction intervals of [Mp,Mp]

2.1.5 Sensitivities of uncertainties in model predictions

B2BDC also offers an efficient way to determine the sensitivities of uncertainties in model
predictions with respect to uncertainties in both experimental observations and model pa-
rameters [69].

Methods used in B2BDC to solve problems (2.6) and (2.7) yield Lagrange multipliers
that are partial derivatives of Mp or Mp with respective to QOI bounds or parameter bounds

[69]. These Lagrange multipliers, ∂Mp

∂Ue
, ∂Mp

∂Le
,
∂Mp

∂Le
,
∂Mp

∂Ue
, ∂Mp

∂ui
, ∂Mp

∂li
,
∂Mp

∂li
, and

∂Mp

∂ui
, provide

important information on whether and by how much changing Le, Ue, li or ui would alter
the prediction interval. These Lagrange multipliers are the by-products of the algorithms
adopted in B2BDC and do not require any additional computational efforts, making B2BDC
highly efficient in assessing sensitivities. Since the prediction interval is Mp −Mp, the sen-
sitivity of the p-th QOI prediction interval length with respect to the e-th QOI bounds is
given by

Sp,e =
1

2

(
∂Mp

∂Ue
− ∂Mp

∂Le
+
∂Mp

∂Le
−
∂Mp

∂Ue

)
, (2.9)

and its sensitivity with respect to the i-th parameter bounds by

Sp,i =
1

2

(
∂Mp

∂ui
− ∂Mp

∂li
+
∂Mp

∂li
−
∂Mp

∂ui

)
. (2.10)

Sensitivities can be computed using either inner- or outer-bound prediction intervals.

2.2 “Detailed-reduction” method for reaction

mechanisms

The “detailed-reduction” method [22–24] is a reaction mechanism reduction method that
identifies non-contributing reactions by automated comparison of reaction and heat-release
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rates to selected thresholds, namely,

rf,i < εr max
j

(rf,j), j ∈ Jref

rr,i < εr max
j

(rr,j), j ∈ Jref (2.11)

|rnet,i ∆Hi| < εq max
j

(|rnet,j ∆Hj|), j = 1, . . . , n,

where rf,i, rr,i, and rnet,i = rf,i−rr,i are the forward, reverse, and net reaction rates of reaction
i, respectively, ∆Hi is the enthalpy change of reaction i, n is the number of reactions in the
detailed model, Jref is the set of indices of selected reference reactions, and εr and εq are
two cutoff coefficients that are less than unity. The reference reactions are usually the main
chain-controlling reactions of a reaction mechanism, e.g., H + O2 −−⇀↽−− OH + O. If criteria
(2.11) are satisfied during the phenomena of interest, e.g., over the entire induction period in
ignition delay times, a reaction is identified as non-contributing. Repeating this analysis for
selected values of εr and εq at a set of simulation conditions and removing the intersection
of the identified non-contributing reactions from the initial, full-size reaction set produces a
(εr, εq)-level reduced reaction model.

The “detailed-reduction” method is based on the postulate that if a reduced model can
faithfully describe the dynamics of both the thermal and chain reaction processes of a detailed
model in a simulation of reactive flows, then it will reproduce the chemical processes with
approximately the same degree of accuracy [22]. What Eqs (2.11) imply is that reactions
with low heat release rates and reaction rates can be safely removed without causing a
significant change of the dynamics of the system. The “detailed-reduction” method is highly
efficient in that it can remove reactions in batch and it is obtained alongside the solution
of a simulation with the detailed model. Moreover, different reduced models with varying
levels of accuracy (different (εr, εq)-levels) can be derived from one single simulation with the
detailed model. Another benefit is that the “detailed-reduction” method is very general and
can be adapted to reaction models beyond traditional mechanistic reaction models, e.g., the
KMC-based soot model.

2.3 KMC-based soot oxidation model

The latest detailed model of soot oxidation developed by the Frenklach group employs a
kinetic Monte-Carlo simulation with molecular mechanics relaxation (KMC-MMR) technique
[20]. The modeling of soot oxidation followed the generally accepted supposition that carbon
black and soot are structurally analogous to each other [96–98], soot particles are composed
of polycyclic aromatic hydrocarbon (PAH) molecules [10, 99, 100], and, hence, soot particle
oxidation was modeled as sequential oxidation of these PAH molecules, i.e., when one PAH
molecule is finishing its oxidation, the oxidation continues with another PAH molecule.

The PAH substrates selected for the modeling of soot oxidation are shown in Fig. 2.3.
Four of them—7, 19, 37, and 61 ring aromatics—are all of a similar shape, hexagon. The
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25-ring structure is of a different shape, rhombus. The PAH selection for the soot oxidation
model was employed to examine the influence of the substrate size and shape on the rate of
oxidation and to cover their reported size [20]. All substrate edge sites were assumed to be
saturated with H atoms.

Figure 2.3: Initial substrates for KMC-MMR simulations. The H atoms saturating the edge
carbon atoms are not shown for clarity.

The surface reaction model employed in the detailed soot oxidation model is reproduced
in Table 2.1. The kinetics of the surface reactions, (S1) – (S107), was modeled using KMC-
MMR, following the methodology established in the prior studies [43, 49, 51, 52]. Briefly,
a simulation tracked a single aromatic “molecule” evolving in a specified gas-phase environ-
ment. A simulation ran as a sequence of Markov processes, i.e., each reaction event depending
only on the current state of the molecular structure and not on the previous states. At each
KMC time step, the reacting site and the reaction were selected stochastically, following the
Gillespie algorithm [47, 48] adapted for surface processes [45, 46]. The algorithm can be
summarized as follows. Given an instant of a current reaction event, tn, the time of the next
reaction event to occur at aromatic-edge site i, tn+1,i, is

tn+1,i = tn −
ln(u)

Σjkj,i
, (2.12)
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where u is a random number distributed uniformly within [0, 1], kj,i is the per-site rate
constant of reaction j at site i, and the sum Σjkj,i is taken over all reactions possible to
occur at site i. The smallest among the tn+1,i values, computed for all surface reaction sites,
becomes the time instant of the next reaction event, tn+1, and the particular reaction to
occur at that time is chosen according its probability pj,i =

kj,i
Σjkj,i

upon drawing another

random number within [0, 1]. To account for the evolving curvature, at the end of the KMC
step, the molecular structure is subjected to molecular-mechanics geometry optimization
with the TINKER package [101] using the MM3 potential [102]. The process then repeats
itself. Simulations for each set of initial conditions were repeated multiple times, each with
a different starting random seed.

The algorithm requires that the kj,i values appearing in Eq. (2.12) are numerical con-
stants [48]. The surface reactions are of two types: unimolecular “decompositions” of surface
species, and bimolecular reactions between gaseous species and surface sites. The unimolec-
ular reactions follow the first-order rate law and, hence, their rate coefficients are numerical
constants by definition. The surface bimolecular reactions can be treated as pseudo-first-
order processes, through multiplication of their gas-surface rate coefficients by the concen-
trations of the corresponding gaseous reactants. When the latter remain constant during
the simulation, as in prior numerical studies [43, 49, 51, 52], the gas-surface KMC stochastic
events can also be treated as first-order processes of the respective surface sites. The detailed
soot oxidation model can work with changing gas-phase environments using the surface-gas
coupling algorithm developed in [20]. It was validated against the high-temperature shock-
tube experiments of Roth et al. [103]. The reaction model was able to reproduce the exper-
imental results, but it required the coupling to particle nanostructure: partial oxidation of
PAH molecules and the decrease in PAH initial sizes along the oxidation path.

For this dissertation, constant gas-phase environments will be used to study model reduc-
tion with the detailed soot model, similar to the simulations in [43, 49, 51, 52]. The gas-phase
environment is determined by the scenario variables, including the pressure, temperature,
and mole fractions of species such as H, H2, O2, O, and OH. The simulation terminates
after a preset simulation time. The counts of reactions in Table 2.1 can be used to identify
non-contributing reactions and construct reduced models, similar to the “detailed-reduction”
method introduced in Section 2.2.
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Table 2.1: Surface reactions of the detailed soot oxidation model.
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Chapter 3

B2BDC-based uncertainty
quantification of reduced models

In this chapter, I introduce different measures to assess how uncertainties in the model
parameters and in the model predictions behave for reduced models as compared to those
for the detailed model. The methods introduced can be applied to models outside the
combustion domain, although combustion models are used as examples in this dissertation.
To illustrate the methods, a detailed model, fD

e (x), and a reduced model, fR
e (x) will be

considered. Both models are used to predict the e-th quantity of interest (QOI) for e =
1, ..., N , where N is the number of QOIs in a dataset. Superscripts D and R are used to
distinguish the detailed and reduced models. Both models take as input x, the vector of
uncertain parameters, with xi being the i-th element of x. However, this does not mean
that all parameters in x need to be active for either model. Some parameters in x may not
be present at all in a reduced model. Typically, both the detailed and reduced models have
different (small) subsets of active parameters. For simplicity of notation, x is used as the
input for both models. Superscripts D and R are used for other variables as well, e.g., the
surrogate models associated with fD

e (x) and fR
e (x) are MD

e (x) and MR
e (x), respectively.

3.1 Comparison of predicted values

Deviations between QOI predictions computed with the detailed and reduced models are
examined here, and they can be expressed using three measures. The first measure is similar
to the typical approach [16, 22, 23, 25–27, 29, 32, 34, 37–39, 104, 105]; it is a difference
computed at a single parameter point and, thus, does not include parameter uncertainties,

δe =
∣∣MR

e (xnominal)−MD
e (xnominal)

∣∣ , (3.1)

whereMR
e andMD

e are the surrogate models associated with the reduced and detailed models,
respectively, for the e-th QOI. Both surrogate models are evaluated at xnominal, the nominal
uncertain parameter vector.
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The second measure expresses the deviations over the prior region of model parameters,
H,

δHe = max
x∈H

∣∣MR
e (x)−MD

e (x)
∣∣ , (3.2)

where H = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, ..., n}, as discussed in Section 2.1.1. The
objective function is the absolute value of the difference between the detailed and reduced
models in the above optimization problem, which requires solving two optimization problems,
minx∈H

(
MR

e (x)−MD
e (x)

)
and maxx∈H

(
MR

e (x)−MD
e (x)

)
. In this case, model parameters

can take any value within their initially prescribed individual bounds, but no target pre-
dictability is included in the analysis. This prior-knowledge only measure is similar to the
treatments of uncertainties in [17–19].

The third measure expresses the deviation over the posterior region of model parameters,
FD,

δFp = max
x

∣∣MR
p (x)−MD

p (x)
∣∣ (3.3)

s.t. x ∈ FD
−p =

⋂
e∈{1,...,N}

e6=p

{x ∈ H : Le ≤MD
e (x) ≤ Ue},

where Le and Ue are the e-th QOI lower and upper bounds, usually obtained from exper-
imental observations, FD

−p is the feasible set established in the detailed-model setting that
implements the leave-one-out scheme, in which the p-th QOI is excluded in the constraints;
the calculations of Eq. (3.3) can be repeated for p = 1, . . . , N . The deviations in this case,
δFp , represent, in addition to the assumed bounds on model parameters, the target toler-
ances of the dataset. This measure treats the uncertainties in the model parameters in a
similar fashion as the treatments of uncertainties in [67, 72, 73], in which posterior dis-
tributions of uncertain parameters were obtained using Bayesian analysis. The objective
function is the absolute value of the difference between the detailed and reduced models in
the above optimization problem, which also requires solving for minx

(
MR

p (x)−MD
p (x)

)
and

maxx
(
MR

p (x)−MD
p (x)

)
with the same constraints in Eq. (3.3).

The first measure, Eq. (3.1), can be computed directly at the nominal parameter values.
The second and third ones, in Eqs. (3.2) and (3.3), can be obtained by solving respective
optimization problems of the B2BDC framework, returning the inner and outer bounds of
δH or δF , as discussed in Section 2.1.4. The inner and outer bounds bracket the deviation
measures and are typically very close to each other. To make the graphical and tabular
presentation clear, the δH and δF values of individual QOIs are usually computed using
midpoints of the respective inner and outer bounds; i.e., δHe =

[
δHe (inner) + δHe (outer)

]
/2

and δFe =
[
δFe (inner) + δFe (outer)

]
/2.

While the first measure, defined in Eq. (3.1), is overly loose, the second measure, defined
in Eq. (3.2), could be overly strict. The third measure, defined in equation Eq. (3.3), over-
comes the overly looseness in the first case by allowing x to take any values in some sets in
order to account for the uncertainties in the model parameters, and it overcomes the overly
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strictness in the second case by restricting the search domain of x to the feasible set. This
is achieved by obtaining posterior knowledge of the uncertain parameters using QOI bounds
in the form of polynomial constraints on surrogate models.

3.2 Comparison of feasible sets

In B2BDC, the feasible set F , defined implicitly through Eq. (2.4), represents the posterior
region of the uncertain parameter vector x. In other words, the feasible set characterizes the
posterior uncertainties in the model parameters. Therefore, it is instructive to investigate the
difference between the feasible set obtained for the detailed model, FD, and that obtained
for a reduced model, FR, for the same collection of QOIs. Adding a superscript D or R to
appropriate terms in Eq. (2.4) leads to

FD :=
⋂

e∈{1,...,N}

{x ∈ H : Le ≤MD
e (x) ≤ Ue}, (3.4)

and
FR :=

⋂
e∈{1,...,N}

{x ∈ H : Le ≤MR
e (x) ≤ Ue}. (3.5)

The relative volume of the feasible set, defined as the ratio of the feasible set volume to
the volume of the associated hyperrectangle, V (F)

V (H)
, is an important quantity of the feasible

set. The relative volume of the feasible set for the detailed model, V (FD)
V (H)

, and that for a

reduced model, V (FR)
V (H)

, can be compared. For this purpose, the hyper-rectangular region of

the prior knowledge H is sampled uniformly, and rejection sampling [89] is then used to
estimate the relative volume of a feasible set by the fraction of points contained in H that
also fall within FD or FR. The number of points sampled inH can be determined empirically
to ensure the convergence of the estimated relative volume.

In addition, the feasible-set overlap can be estimated. Uniformly-distributed points
can be sampled from the feasible set using a Gibbs sampling algorithm [106] adopted to
B2BDC [107]. The number of points to be sampled in the feasible set can be determined
empirically by a convergence test [107]. After that, the fraction of points contained in FR

that also fall within FD can be calculated, and vice versa. The feasible-set overlap provides,
in addition to the volume, a direct measure of the difference between the posterior regions
of uncertain parameters.

3.3 Comparison of posterior distributions

A general approach for examining the propagation of uncertainty in reduced models is by
comparing QOI posterior distributions, which capture the posterior uncertainties in the
model predictions. This analysis is usually preformed in the leave-one-out scheme, in which
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the p-th QOI is excluded in the constraints in evaluation of MD
p (x), repeated for p = 1, . . . , N .

For the detailed and reduced models, the corresponding feasible sets are

FD
−p =

⋂
e∈{1,...,N}

e6=p

{x ∈ H : Le ≤MD
e (x) ≤ Ue},

and
FR
−p =

⋂
e∈{1,...,N}

e6=p

{x ∈ H : Le ≤MR
e (x) ≤ Ue},

respectively. A uniform sample of x can be collected from each of the FD
−p or FR

−p for each
p = 1, . . . , N , using the Gibbs sampling algorithm adopted to B2BDC [107]; the notation
F–p is used to denote the feasible set for a dataset with the p-th QOI removed. Evaluating
MD

p (x) or MR
p (x) with the points in the uniform sample collected from FD

−p or FR
−p leads to

a sample of posterior QOI predictions. The two posterior distributions for the same QOI
can then be compared, for example, by plotting the histograms of the two distributions.

In addition to the visual exhibition of the prediction histograms, their difference can be
quantified numerically. For this purpose, the Hellinger distance measure can be employed
[108],

h(P,Q) =

[
1

2

∫
ξ

(√
P (ξ)−

√
Q(ξ)

)2

dξ

]1/2

, (3.6)

which is designed to gauge the difference between two distributions, P (ξ) and Q(ξ). The
Hellinger distance metric ranges from 0 to 1, with values closer to 0 meaning the two distri-
butions are more similar to one another. Applied to the current case, this measure quantifies
the difference between the prediction distributions of the detailed and reduced models and
is expressed as

hH
p (D,R) =

[
1

2

Nbin∑
j=1

(√
ZD
p,j −

√
ZR
p,j

)2
]1/2

, (3.7)

where Nbin is the number of histogram bins, and Zp,j is the normalized count of the sampled
QOI predicted values that fall within the j-th bin, the subscript p refers to the p-th QOI,
and the superscript H indicates that the Hellinger distance is calculated from histograms. In
practice, Hellinger distances calculated using Eq. (3.7) are not stable in that they may change
significantly as Nbin changes. This is a common issue with histograms in density estimation.
To remedy this, kernel density estimation can be used because kernel density estimators are
smoother and converge faster [109]. Specifically, the MATLAB function ksdensity() [95]
was used for this purpose in this dissertation. After applying kernel density smoothing, a
suitable Nbin can be selected empirically to ensure the convergence of the Hellinger distance.
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3.4 Comparison of prediction intervals

Examination of posterior distributions, as discussed in the previous section, provides means
to evaluate to what extent the reduced model reproduces propagation of uncertainty by
the detailed model. However, such an approach based on direct sampling of x could become
particularly expensive because the feasible set could be an extremely small region with a very
complicated shape in a high-dimensional space. The underlying Gibbs sampling algorithm
adopted to B2BDC [107] used to sample the feasible set uniformly could be substantially
time consuming. The B2BDC framework offers an alternative by quantifying the propagated
uncertainty through numerically efficient computations of intervals of prediction uncertainty.

For each p = 1, . . . , N , the prediction interval of the p-th QOI computed with the detailed
model and that computed with the reduced model can be obtained by solving the following
B2BDC optimization problems:[

min
x∈FD

–p

MD
p (x), max

x∈FD
–p

MD
p (x)

]
(3.8)

where FD
–p =

⋂
e∈{1,...,N}

e 6=p

{x ∈ H : Le ≤MD
e (x) ≤ Ue},

and [
min
x∈FR

–p

MR
p (x), max

x∈FR
–p

MR
p (x)

]
(3.9)

where FR
–p =

⋂
e∈{1,...,N}

e6=p

{x ∈ H : Le ≤MR
e (x) ≤ Ue}.

The calculations also use the leave-one-out scheme, where the p-th QOI is excluded in the
constraints from the evaluation of the p-th prediction interval. The difference in the pre-
diction intervals can be quantified by calculating the Hellinger distance measure defined
in Eq. (3.6), assuming that the predicted QOI values are distributed uniformly within the
predicted QOI intervals and the two prediction intervals are not disjoint. Under these as-
sumptions, the Hellinger distance becomes

hU
p (D,R) =

[
1−

LO
p(

LD
p LR

p

)1/2
]1/2

, (3.10)

where LD
p and LR

p are the lengths of the p-th prediction intervals of the detailed and reduced
models, respectively, LO

p is the length of the overlapping region of the two intervals, and
the superscript U indicates that the Hellinger distance is calculated from uniform samples
on the prediction intervals, to be distinguished from the superscript H from the previous
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section. The interval lengths are computed from the solutions of Eqs. (3.8) and (3.9), and
are expressed as

LD
p = M

D

p −MD
p (3.11)

and
LR
p = M

R

p −MR
p , (3.12)

where M
D

p = maxx∈FD
–p
MD

p (x), M
R

p = maxx∈FR
–p
MR

p (x), MD
p = minx∈FD

–p
MD

p (x), and MR
p =

minx∈FR
–p
MR

p (x), and the length of the overlap region as

LOp = min(M
D

p ,M
R

p )−max(MD
p ,M

R
p ). (3.13)

Note that it is assumed that the two prediction intervals are not disjoint. If they are indeed
disjoint, LO

p would be a negative number following Eq. (3.13), leading to a Hellinger distance
greater than one. To accommodate this, the Hellinger distance can be set to unity if the two
prediction intervals indeed have no overlap.

3.5 Comparison of sensitivities

Addressing the capacity of a reduced reaction model to reproduce the uncertainty propaga-
tion of the associated detailed model, one may be interested in identifying the influence of
specific model parameters on model reduction; several authors have tackled some of these
aspects (e.g., [16, 19]). B2BDC offers an efficient way to determine the sensitivities of the
uncertainties in model predictions with respect to the uncertainties in both experimental
observations and model parameters [69]. Adding a superscript D to Eqs. (2.9) and (2.10)
yields the sensitivity of the p-th QOI prediction interval length with respect to the e-th QOI
bounds in the setting of the detailed model

SD
p,e =

1

2

(
∂M

D

p

∂Ue
−
∂M

D

p

∂Le
+
∂MD

p

∂Le
−
∂MD

p

∂Ue

)
, (3.14)

and its sensitivity with respect to the i-th parameter bounds

SD
p,i =

1

2

(
∂M

D

p

∂ui
−
∂M

D

p

∂li
+
∂MD

p

∂li
−
∂MD

p

∂ui

)
, (3.15)

where the partial derivatives appearing in these equations are obtained alongside the solution
of the general optimization ansatz of B2BDC [69]. In other words, one does not need to
perform additional calculations to obtain these derivatives; they become available with the
solution of Eq. (3.8) for the interval bounds. Similarly, SR

p,e and SR
p,i for a reduced model are

immediately available with the solution of Eq. (3.9),

SR
p,e =

1

2

(
∂M

R

p

∂Ue
−
∂M

R

p

∂Le
+
∂MR

p

∂Le
−
∂MR

p

∂Ue

)
, (3.16)
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and its sensitivity with respect to the i-th parameter bounds

SR
p,i =

1

2

(
∂M

R

p

∂ui
−
∂M

R

p

∂li
+
∂MR

p

∂li
−
∂MR

p

∂ui

)
. (3.17)

Comparing SD
p,e with SR

p,e and SD
p,i with SR

p,i can reveal changes in the sensitivity spectra due
to the removal of reactions in reduced models.

One can also examine the sensitivity of the overlap of prediction intervals of the detailed
and reduced models. For this purpose, the Bhattacharyya coefficient [110] can be employed

B(P,Q) =

∫
ξ

√
P (ξ)Q(ξ)dξ. (3.18)

It is related to the Hellinger distance (3.6),

B(P,Q) = 1− h2(P,Q), (3.19)

and provides a measure of the amount of overlap between two statistical samples or distri-
butions, P and Q.

Assuming uniform distribution for P and Q, as assumed in Section 3.4 in calculating
the Hellinger measure, one can obtain the Bhattacharyya coefficient for the overlap of the
prediction intervals of the detailed and reduced models:

BU
p (D,R) =

LOp(
LD
p LR

p

)1/2 . (3.20)

Differentiating Eq. (3.20) with respect to the uncertainty bounds, following [69], one obtains
the sensitivity of the Bhattacharyya coefficient to the uncertainty bounds of QOIs,

βR
p,e =

SOp,e
LOp
− 1

2

(
SD
p,e

LD
p

+
SR
p,e

LR
p

)
, (3.21)

and to the uncertainty bounds of the model parameters,

βR
p,i =

SOp,i
LOp
− 1

2

(
SD
p,i

LD
p

+
SR
p,i

LR
p

)
, (3.22)

where Sp,e’s and Sp,i’s are from Eqs. (3.14) and (3.15), respectively.

3.6 Summary

Within the B2BDC framework, methods to assess how uncertainties in the model parameters
and in the model predictions behave for reduced models as compared to those for the detailed
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model, were developed. I first established measures to quantify the deviations between the
predicted values of the detailed and reduced models when the model parameters are fixed at
the nominal values (δ), constrained to the prior region (δH), or constrained to the posterior
region (δF). Second, two measures to quantify the difference between feasible sets of the
detailed and reduced models were developed. These two measures are the relative volumes of
the feasible sets and the overlap between feasible sets computed with the detailed and reduced
models. Third, the Hellinger distance measure was adopted to quantify the “distance”
between posterior distributions of model predictions computed with the detailed and reduced
models. Fourth, another measure, also a Hellinger distance measure, was constructed to
quantify the “distance” between prediction intervals of the detailed and reduced models
by assuming uniform distributions on the prediction intervals. Finally, sensitivities of the
uncertainties in model predictions were established to measure the difference in influence of
the model parameters on the model predictions between the detailed and reduced models.
These methods will be illustrated with examples given in Chapters 4 and 5.
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Chapter 4

Reduced models of syngas combustion

In this chapter, a syngas combustion system employed on a set of ignition delays is considered.
The specifics of the selected full-size, detailed model and the reduced models developed from
it are described in the following section. The computations of the ignition-delay times with
the detailed and reduced models were performed using the ReactionLab code [111], assuming
adiabatic, isochoric, homogeneous combustion at a set of initial conditions described below.

4.1 Modeled system

4.1.1 Detailed reaction model

The detailed reaction model used in this chapter is a syngas combustion model with 55
reactions and 14 reactive species developed recently by Slavinskaya et al. [112]. This model
was obtained through uncertainty quantification analysis of an initial H2/CO reaction model,
assembled from 73 reactions and 14 reactive species. That initial model was optimized
using 167 experimental targets. The optimized model demonstrated improved agreement
with experiments compared to the initial model. This optimized model, specifically the one
obtained by the least-squares minimization over the feasible set (the LS-F model), was the
starting detailed model of the study in this chapter. The LS-F model was used as reported
in Supporting Information of Ref. [112]; its 55-reaction set is reproduced in Table 4.1.
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Table 4.1: Reactions of the detailed model, reproduced
from Slavinskaya et al. [112], and reduced models R25,
R17 and R12.

No. Reaction Multiplier λ R25 R17 R12

lower upper
bound bound

1 H2+O2=OH+OH 0.18 17.86 X X —
2 H+H+M=H2+M 0.26 2.59 X X —
3 H2+O=OH+H 0.42 1.05 X X X
4 OH+H2=H+H2O 0.79 1.99 X X X
5 OH+OH=H2O2 0.25 1.00 X X X
6 H+O2=O+OH 0.83 1.31 X X X
7 H+O2(+M)=HO2(+M) 0.87 1.17 X X X
8 O+O(+M)=O2(+M) 0.93 1.36 X — —
9 OH+H(+M)=H2O(+M) 0.67 1.00 X X —
10 H+O+M=OH+M 0.04 1.00 X X —
11 H+HO2=O2+H2 0.37 1.49 X X X
12 H+HO2=OH+OH 0.95 1.89 X X —
13 H+HO2=O+H2O 0.48 4.79 — — —
14 H+H2O2=HO2+H2 0.63 6.20 X X X
15 H+H2O2=OH+H2O 0.32 1.27 — — —
16 OH+OH=O+H2O 0.81 1.63 X — —
17 OH+HO2=O2+H2O 0.22 2.18 X — —
18 OH+H2O2=HO2+H2O 0.71 2.86 X — —
19 O+HO2=OH+O2 0.28 2.80 X — —
20 O+H2O2=OH+HO2 0.36 1.45 — — —
21 HO2+HO2=O2+H2O2 0.29 1.81 X — X
22 CO+O2=CO2+O 0.06 1.46 X X X
23 CO+OH=CO2+H 0.96 1.52 X X X
24 CO+O(+M)=CO2(+M) 1.00 4.00 X X X
25 CO+HO2=CO2+OH 1.00 9.88 X — X
26 HCO+O2=CO+HO2 0.40 2.50 X — —
27 HCO+O2=OH+CO2 0.17 1.07 — — —
28 H+HCO=H2+CO 0.25 1.01 X X —
29 O+HCO=OH+CO 0.94 3.77 — — —
30 O+HCO=H+CO2 0.26 1.06 — — —
31 HCO+OH=CO+H2O 0.26 1.05 — — —
32 HCO+HO2=OH+CO2+H 0.49 12.22 — — —
33 HCO+M=CO+H+M 1.00 4.00 X X —
34 O2+HCCO=2CO+OH 0.04 1.01 — — —
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35 HCCO+O2=HCO+CO+O 1.00 25.05 — — —
36 HCCO+O2=CO2+CO+H 0.18 4.47 — — —
37 HCCO+OH=2HCO 0.25 1.00 — — —
38 O+HCCO=2CO+H 0.25 1.01 — — —
39 CH+O2=CO+OH 0.22 2.14 — — —
40 O2+CH=CO2+H 0.17 1.72 — — —
41 CO+CH=HCCO 0.64 1.00 — — —
42 CH+CO2=HCO+CO 0.69 1.08 — — —
43 CH+O=CO+H 0.97 9.58 — — —
44 OH+CH=H+HCO 0.64 1.00 — — —
45 CH+O2=OH*+CO 0.98 3.92 — — —
46 O+H=OH* 0.26 1.06 — — —
47 OH*+Ar=OH+Ar 1.00 4.00 — — —
48 OH*+CO=OH+CO 1.00 4.00 — — —
49 OH*+CO2=OH+CO2 1.00 4.00 — — —
50 OH*+H=OH+H 1.00 4.00 — — —
51 OH*+H2=OH+H2 1.00 4.00 — — —
52 OH*+H2O=OH+H2O 0.26 1.02 — — —
53 OH*+O2=OH+O2 0.31 1.23 — — —
54 OH*+OH=OH+OH 0.93 3.70 — — —
55 OH*=OH 0.25 1.00 — — —

4.1.2 Reduced reaction models

Three reduced models were employed in the analysis of this chapter. Two of them were
obtained from the detailed reaction model by applying the “detailed-reduction” method,
as introduced in Section 2.2. Specifically, non-contributing reactions were identified by the
following criteria,

rf,i < εr max(rf,6, rf,7),

rr,i < εr max(rr,6, rr,7), (4.1)

|rnet,i ∆Hi| < εq max
j

(|rnet,j ∆Hj|), j = 1, . . . , 55,

where rf,i, rr,i, and rnet,i = rf,i − rr,i are the forward, reverse, and net reaction rates of
reaction i, respectively, ∆Hi is the enthalpy change of reaction i, and εr and εq are two
cutoff coefficients that are less than unity. The subscripts 6 and 7 refer to the selected
reference reactions, H + O2 −−⇀↽−− OH + O and H + O2 ( + M) −−⇀↽−− HO2 ( + M) in Table 4.1,
respectively, which are the main chain-controlling reactions of the modeled system. If criteria
(4.1) are satisfied during the phenomena of interest, over the entire induction period in this
case, a reaction is identified as non-contributing. Repeating this analysis for selected values
of εr and εq at a set of initial conditions and removing the intersection of the identified non-
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contributing reactions from the initial, full-size reaction set produces a (εr, εq)-level reduced
reaction model.

The two reduced reaction models were developed with different a priori levels of accuracy
by using εr = εq = 0.02 and εr = εq = 0.5. The computations for each of these levels were
performed over the following ranges of initial conditions: temperature 1000–1800 K, pressure
0.5–2 atm, equivalence ratio 0.04–1.5, and CO/H2 ratio 0–2. A set of 100 points within these
ranges was created according to the Latin Hypercube design [87]; these initial conditions are
reported in Table 4.2. The resulting sets contained 25 and 17 reactions, each containing 11
species, and, hence, will be referred to hereafter as R25 and R17 reduced reaction models,
respectively; these reactions sets are reported in Table 4.1. The developed R25 and R17
reduced models reproduced the ignition delays computed by the full-size model for the 100-
set of the initial conditions with an average relative error of 0.4% and 1.3%, respectively.
Note that the ε’s and ranges were selected such that the obtained reduced models allowed
for the exposure of the differences in their UQ properties.

Table 4.2: Initial conditions of the Latin hypercube sam-
pling (LHS) points used for building the reduced models
R25 and R17 using the “detailed-reduction” method; ig-
nition delay times τD are those computed with the de-
tailed model, and the relative deviations for the reduced

models are defined as |τ
R−τD|
τD

× 100%.

No. T (K) P (atm) Mole fraction φ τD (µs) Rel. dev. (%)

CO H2 O2 N2 R25 R17 R12

1 1100 0.79 0.03 0.27 0.15 0.55 1.02 92.10 0.01 0.09 5.60
2 1067 1.71 0.12 0.08 0.17 0.64 0.57 80.04 0.06 1.17 28.17
3 1662 1.04 0.02 0.32 0.14 0.52 1.24 7.83 0.02 0.76 14.82
4 1064 1.40 0.03 0.23 0.16 0.58 0.85 75.44 0.07 0.39 20.19
5 1241 0.81 0.10 0.09 0.17 0.64 0.54 50.35 0.27 0.92 1.62
6 1688 1.49 0.06 0.31 0.13 0.49 1.43 5.24 0.21 0.12 12.78
7 1467 0.98 0.22 0.13 0.14 0.51 1.28 17.22 0.59 0.49 9.00
8 1293 1.56 0.17 0.10 0.15 0.58 0.87 20.50 0.17 0.42 0.96
9 1023 1.59 0.18 0.12 0.15 0.55 1.00 122.03 0.54 1.10 87.21
10 1006 1.63 0.07 0.21 0.15 0.57 0.92 143.62 0.40 1.15 332.13
11 1602 1.27 0.06 0.04 0.19 0.71 0.28 11.89 1.40 6.32 3.84
12 1003 0.63 0.09 0.08 0.18 0.66 0.46 289.22 0.19 0.31 14.80
13 1029 0.90 0.15 0.08 0.16 0.61 0.69 174.96 0.37 0.36 17.93
14 1338 1.90 0.07 0.05 0.18 0.69 0.34 17.04 0.94 1.34 4.11
15 1112 0.78 0.21 0.13 0.14 0.52 1.25 98.17 0.41 0.27 5.04
16 1630 1.79 0.05 0.05 0.19 0.71 0.26 7.59 0.01 5.47 5.25
17 1376 1.41 0.06 0.06 0.19 0.70 0.31 19.35 0.63 1.71 2.04
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18 1058 2.00 0.05 0.03 0.19 0.73 0.20 142.41 0.05 3.76 49.53
19 1120 0.60 0.02 0.10 0.19 0.69 0.32 123.08 0.14 0.24 2.99
20 1016 1.25 0.05 0.16 0.17 0.62 0.64 134.09 0.11 0.73 41.26
21 1215 0.67 0.05 0.12 0.18 0.66 0.48 62.81 0.21 0.75 0.29
22 1750 1.98 0.17 0.20 0.13 0.50 1.40 3.66 0.59 0.45 15.29
23 1077 0.51 0.13 0.08 0.17 0.62 0.63 201.49 0.24 0.21 4.60
24 1043 1.64 0.06 0.03 0.19 0.72 0.23 161.27 0.56 2.81 44.19
25 1204 1.75 0.04 0.33 0.13 0.50 1.38 24.20 0.10 0.00 5.25
26 1138 1.82 0.18 0.21 0.13 0.49 1.48 36.61 0.16 0.16 11.93
27 1168 0.64 0.12 0.10 0.17 0.62 0.66 87.82 0.50 0.75 1.94
28 1385 1.15 0.03 0.03 0.20 0.74 0.15 30.99 0.09 2.65 4.02
29 1219 0.98 0.08 0.06 0.18 0.68 0.39 52.95 0.64 1.50 3.31
30 1583 1.74 0.11 0.09 0.17 0.63 0.60 7.14 1.25 2.44 2.10
31 1181 1.21 0.11 0.17 0.15 0.57 0.93 39.45 0.09 0.18 4.11
32 1785 1.89 0.08 0.08 0.18 0.67 0.43 4.24 0.03 4.72 1.08
33 1477 0.84 0.00 0.28 0.15 0.56 0.95 16.07 0.06 0.50 9.19
34 1744 1.00 0.21 0.11 0.14 0.54 1.10 9.15 0.06 1.32 15.45
35 1695 0.76 0.03 0.08 0.19 0.70 0.30 12.98 1.11 5.78 1.20
36 1096 0.73 0.01 0.05 0.20 0.74 0.17 153.00 0.37 0.00 6.23
37 1192 1.84 0.07 0.09 0.18 0.66 0.45 29.13 0.13 0.57 6.79
38 1449 1.46 0.06 0.12 0.17 0.65 0.50 11.53 0.16 0.88 2.01
39 1035 1.43 0.11 0.10 0.17 0.63 0.61 112.56 0.35 0.92 36.62
40 1759 0.75 0.11 0.15 0.16 0.59 0.83 10.09 1.10 2.36 24.31
41 1366 1.81 0.03 0.01 0.20 0.76 0.10 30.97 0.02 4.41 6.11
42 1391 1.50 0.10 0.06 0.18 0.67 0.44 17.37 0.00 2.08 1.60
43 1134 1.08 0.03 0.31 0.14 0.52 1.22 56.46 0.05 0.14 5.83
44 1119 1.38 0.02 0.01 0.21 0.77 0.06 199.51 0.60 1.39 11.68
45 1566 1.17 0.14 0.23 0.13 0.49 1.42 9.52 0.21 0.05 10.66
46 1330 0.58 0.16 0.17 0.14 0.53 1.16 43.35 0.37 0.91 4.93
47 1361 0.93 0.13 0.11 0.16 0.60 0.73 25.46 0.06 1.06 3.00
48 1230 0.70 0.18 0.10 0.15 0.57 0.91 61.17 0.70 1.20 0.51
49 1176 0.86 0.06 0.07 0.18 0.68 0.37 69.97 0.02 0.83 3.47
50 1150 0.94 0.15 0.08 0.16 0.61 0.68 72.90 0.44 0.64 5.08
51 1489 1.19 0.15 0.23 0.13 0.49 1.45 11.75 0.26 0.23 7.92
52 1197 0.55 0.16 0.11 0.15 0.58 0.87 88.00 0.48 0.82 0.30
53 1226 1.87 0.15 0.11 0.16 0.58 0.84 22.95 0.02 0.21 5.05
54 1589 1.94 0.07 0.06 0.18 0.69 0.35 6.99 0.97 4.69 3.79
55 1672 1.33 0.14 0.10 0.16 0.60 0.75 7.49 0.54 1.88 6.78
56 1322 1.32 0.18 0.12 0.15 0.55 1.01 20.51 0.37 0.97 0.96
57 1010 1.07 0.09 0.21 0.15 0.55 1.05 153.62 0.26 0.41 35.78
58 1431 1.86 0.04 0.16 0.17 0.63 0.59 8.85 0.26 0.01 1.45
59 1253 1.13 0.13 0.06 0.17 0.64 0.56 38.55 0.07 0.90 2.12
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60 1541 0.69 0.11 0.28 0.13 0.48 1.49 17.25 0.65 0.53 11.46
61 1161 1.69 0.00 0.04 0.20 0.76 0.10 61.52 0.67 0.82 8.43
62 1507 1.14 0.19 0.16 0.14 0.51 1.30 12.31 0.30 1.17 8.96
63 1312 0.95 0.24 0.13 0.13 0.50 1.39 30.89 0.09 0.02 2.76
64 1185 1.18 0.20 0.14 0.14 0.52 1.20 42.70 0.22 0.02 3.88
65 1073 0.65 0.02 0.03 0.20 0.75 0.12 243.36 0.79 0.39 8.54
66 1021 0.72 0.06 0.09 0.18 0.67 0.42 215.99 0.09 0.18 13.47
67 1287 1.93 0.09 0.09 0.17 0.65 0.53 17.33 0.53 0.67 3.17
68 1639 1.96 0.20 0.11 0.15 0.54 1.07 5.42 0.10 1.35 7.38
69 1610 1.45 0.02 0.05 0.20 0.73 0.18 9.75 0.60 3.91 5.03
70 1499 0.57 0.21 0.12 0.14 0.53 1.15 28.40 0.07 0.27 14.35
71 1083 0.91 0.03 0.02 0.20 0.75 0.13 209.29 0.53 0.28 12.61
72 1518 1.09 0.14 0.17 0.15 0.55 1.05 12.05 0.28 0.01 9.35
73 1104 1.79 0.08 0.17 0.16 0.59 0.78 46.07 0.18 0.34 16.83
74 1534 0.52 0.16 0.17 0.14 0.53 1.19 25.10 1.08 1.45 14.78
75 1047 0.54 0.17 0.16 0.14 0.53 1.13 201.95 0.28 0.13 6.90
76 1420 0.82 0.07 0.29 0.13 0.50 1.34 20.53 0.36 0.50 6.95
77 1559 1.54 0.20 0.16 0.14 0.51 1.33 7.85 0.49 0.51 9.38
78 1526 1.61 0.06 0.12 0.17 0.65 0.52 8.16 0.62 0.89 2.31
79 1246 1.52 0.14 0.17 0.15 0.54 1.08 23.05 0.23 0.09 2.03
80 1344 1.28 0.05 0.05 0.19 0.71 0.26 26.74 0.41 1.35 2.58
81 1412 1.42 0.01 0.02 0.20 0.77 0.07 30.43 0.01 3.77 5.82
82 1091 1.01 0.13 0.20 0.14 0.53 1.18 81.04 0.15 0.09 9.00
83 1261 1.62 0.14 0.11 0.16 0.59 0.79 22.10 0.21 0.02 2.20
84 1285 0.89 0.09 0.14 0.16 0.61 0.71 33.28 0.30 0.49 1.33
85 1052 1.58 0.23 0.14 0.13 0.50 1.35 87.85 0.55 0.46 35.39
86 1458 0.85 0.19 0.10 0.15 0.56 0.96 21.32 0.67 2.83 7.14
87 1144 1.10 0.18 0.11 0.15 0.56 0.98 58.90 0.27 0.32 5.77
88 1155 1.51 0.15 0.20 0.14 0.51 1.27 37.89 0.08 0.19 7.23
89 1403 1.67 0.19 0.15 0.14 0.52 1.23 11.61 0.05 0.51 2.92
90 1274 0.62 0.05 0.22 0.15 0.57 0.90 47.25 0.07 0.19 2.76
91 1710 1.92 0.06 0.03 0.19 0.72 0.23 7.05 1.41 10.21 5.24
92 1726 1.67 0.09 0.05 0.18 0.68 0.39 6.40 0.08 7.36 1.13
93 1306 1.31 0.22 0.13 0.14 0.51 1.31 22.46 0.00 0.32 0.71
94 1127 1.23 0.01 0.01 0.21 0.77 0.05 174.07 0.49 1.70 9.96
95 1040 1.25 0.14 0.11 0.16 0.60 0.77 113.70 0.45 0.44 25.60
96 1647 1.03 0.00 0.07 0.19 0.73 0.20 11.10 0.11 4.57 4.37
97 1270 1.35 0.18 0.20 0.13 0.49 1.46 23.79 0.06 0.09 0.51
98 1354 1.36 0.13 0.19 0.14 0.54 1.11 16.06 0.21 0.28 2.05
99 1789 1.77 0.07 0.19 0.16 0.59 0.81 3.54 0.45 1.01 18.23
100 1439 1.73 0.07 0.16 0.16 0.61 0.70 9.29 0.13 0.70 2.85
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A third reduced reaction model, was the one developed recently by Boivin et al. [105] for
syngas ignition delays. It was composed of the 12 reactions suggested by Boivin et al., but
all treated as reversible, because setting them irreversible, as in [105], led to much higher
relative deviations as compared to the detailed model. These 12 reactions are identified in
Table 4.1, and this reduced model will be referred to as R12. This reduced model reproduced
the ignition delays computed by the full-size model for the set of the 100 initial conditions
with an average relative error of 13%, significantly larger than those of R25 and R17.

4.1.3 Model parameters of reaction models

In this chapter, it is assumed that the uncertainty of the reaction models, including the
detailed and three reduced models introduced in the previous subsections, resides in the
reaction rate coefficients, and their uncertainties are represented by multipliers, λi’s, to the
nominal parameter expressions [86],

ki = λik
nominal
i , i = 1, . . . , 55, (4.2)

where ki is the rate coefficient of reaction i, ranging from 1 to 55 for the detailed model.
The nominal rate coefficients in the present study are those of the LS-F optimized model of
Slavinskaya et al. [112], as described in Section 4.1.1, i.e., knominal

i = kLS-F
i . The bounds of

the λi’s are taken from the same study [112]. Their values are reported in Table 4.1; these
values, which are multipliers to kLS-F, represent the posterior ranges of k’s that resulted from
the UQ analysis in [112].

The surrogate models, described in Section 2.1.2, were then developed in transformed
variables

xi =
ln λi/λi,min

1
2

ln λi,max/λi,min

− 1, i = 1, . . . , 55. (4.3)

Defined in this manner, all model parameters have [−1, 1] intervals, and the nominal set of
rate coefficients is specified by xnominal = x(λ = 1). Because the set of reactions in a reduced
model is a subset of the set of reactions in the detailed model, so is the set of uncertain
model parameters of a reduced model a subset of the set of uncertain model parameters of
the detailed model. There are 25, 17, and 12 uncertain model parameters for the reduced
models R25, R17, and R12, respectively.

4.2 A dataset with computer-generated ignition delay

QOIs

In this section, a dataset with 100 QOIs, namely ignition delay times under 100 different
initial conditions from the LHS points in Table 4.2, is investigated. The results of applying
the measures introduced in Chapter 3 to the three reduced models derived in Section 4.1 are
discussed.
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4.2.1 QOIs and surrogate models

The “observed” values of the QOIs were obtained from the solution of the detailed model
with the nominal set of rate coefficients, denoted τD. The QOI uncertainty ranges, i.e., Le’s
and Ue’s in Section 2.1, were assumed to be ±10% intervals of τD,[

0.9 τD
e , 1.1 τD

e

]
, e = 1, . . . , 100. (4.4)

In application of B2BDC to UQ problems, as discussed in Section 2.1, the QOI ranges
represent their respective uncertainties. In the present work, these QOI ranges prescribe the
desired level of reduced-model accuracy by specifying the accepted ranges of variations in
prediction of training targets.

For each of the 100 sampled initial conditions, a quadratic polynomial of ln τD in x
(defined in Eq. (4.3)) was built, as described in Section 2.1.2. Active parameters were
selected according to the ranking of the impact factors. The absolute impact factors of all
55 parameters, computed with the detailed model for QOI 68, are plotted in Fig 4.1 as an
example. The results show clearly that only a small subset of active parameters have a
large impact on the QOI prediction. A parameter was selected as an active parameter if
its absolute impact factor is either ≥ 0.01 or ≥ 5% of the highest absolute impact factor
among all parameters. In the case of QOI 68 and the detailed model, the number of active
parameters is 19. In the setting of the detailed model, the number of active parameters
ranges from 6 to 19 for the 100 QOIs listed in Table 4.2.

Similarly, quadratic polynomials for QOIs with the three reduced models were built. The
number of active parameters for all QOI and model combinations is tabulated in Table 4.3.
The union of active parameters of all 100 QOIs with the detailed model, R25, R17, and R12
have 32, 25, 17, and 12 parameters, respectively. The fitting errors of all these surrogate
models were below 0.01. The surrogate models will be referred to hereafter as MD

e (x) and
MR

e (x) for the detailed and reduced models, respectively, associated with the e-th QOI,
where R is a place holder for R25, R17, or R12.

Table 4.3: Number of active parameters of surrogate
models for 100 QOIs with the detailed model and three
reduced models, R25, R17, and R12.

QOI No. Number of active variables

detailed R25 R17 R12

1 7 7 7 6
2 9 9 8 7
3 9 8 7 7
4 6 6 6 5
5 6 6 6 5
6 10 9 9 5
7 11 12 7 7
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8 9 8 6 6
9 8 8 8 7
10 7 7 7 6
11 13 12 8 6
12 8 8 8 7
13 8 8 8 7
14 5 5 6 6
15 7 8 6 5
16 10 9 7 6
17 7 9 6 6
18 9 9 8 8
19 7 6 6 6
20 7 7 7 6
21 6 6 5 6
22 12 13 9 6
23 7 7 7 5
24 9 9 8 8
25 7 7 7 6
26 7 7 7 5
27 7 5 4 6
28 7 8 7 7
29 5 4 5 6
30 12 10 11 9
31 7 7 7 6
32 13 12 11 9
33 8 8 7 5
34 16 15 9 6
35 15 9 8 9
36 7 7 7 6
37 6 6 6 6
38 9 14 7 8
39 8 8 8 7
40 13 12 8 8
41 6 7 6 6
42 6 5 5 5
43 7 7 7 6
44 8 8 8 6
45 9 11 6 6
46 8 7 6 5
47 9 8 9 5
48 7 8 6 7
49 5 5 6 6
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50 5 6 5 5
51 8 10 7 5
52 6 6 5 7
53 7 7 7 6
54 10 8 12 5
55 16 14 10 9
56 9 8 7 5
57 7 7 7 6
58 8 9 7 5
59 6 6 6 7
60 7 8 8 5
61 7 8 8 6
62 8 10 9 5
63 9 8 6 6
64 7 6 6 5
65 6 6 6 6
66 7 7 7 6
67 7 7 6 6
68 17 12 8 9
69 11 12 8 5
70 15 14 7 8
71 7 8 7 6
72 10 10 6 5
73 7 7 7 6
74 11 9 9 7
75 7 7 7 5
76 9 9 6 5
77 9 11 9 9
78 9 14 8 7
79 7 7 6 6
80 7 5 5 7
81 8 9 6 6
82 6 6 6 5
83 7 8 6 6
84 8 8 6 5
85 8 8 8 7
86 13 13 8 7
87 7 7 6 5
88 6 6 6 5
89 8 7 8 7
90 8 7 5 5
91 12 13 10 5
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92 13 10 9 7
93 7 6 6 5
94 7 7 6 5
95 8 8 8 7
96 12 9 10 5
97 7 8 7 6
98 9 8 7 6
99 11 13 8 7
100 9 10 8 7

4.2.2 Comparison of predicted values

Three measures, δ, δH, and δF , as introduced in Section 3.1, were calculated for each of
the 100 QOIs and each of the three reduced models. The resulting values are reported
in Tables A.1 and A.2 of Appendix A. The inner and outer bounds bracket the deviation
measures and, as can be observed by inspecting Tables A.1 and A.2 of Appendix A, they
are very close to each other. To make the graphical and tabular presentation clear, the δH

values of individual QOIs were computed using midpoints of the respective inner and outer
bounds; i.e., δHe =

[
δHe (inner) + δHe (outer)

]
/2. Similarly for δFp .

The three measures for each QOI and each reduced model are displayed in Fig. 4.2, and
their summary statistics are listed in Table 4.4. Note that the y-axis limits are different for
the three subplots in Fig. 4.2. Inspection of the computed first measure, δ, indicates that
the deviations are small for both R25 and R17. Even in the case of R17, the deviations are
below 0.05 for 95 QOIs and do not exceed 0.092 for all 100 QOIs. Given that M(x)’s are
logarithms of ignition times and, hence, δ’s are logarithmic ratios of them, a 0.05 difference
between MR

e (x) and MD
e (x) translates approximately to a 5% relative change in ignition

delay times. Thus, considering the single-point evaluation, one may conclude that both R25
and R17 are relatively accurate reduced reaction models over the assumed ranges of the
initial conditions.

Table 4.4: Summary statistics of deviation measures (over 100 QOIs).

R25 R17 R12

Mean Max. Mean Max. Mean Max.

δ 0.002 0.007 0.011 0.092 0.096 1.074
δH 0.013 0.071 0.053 0.248 0.267 4.360
δF 0.012 0.070 0.049 0.240 0.249 4.349

However, the deviation in these models may be much larger for model parameters that
differ from their nominal values, for example, if one considers variation of parameters within
their respective uncertainty ranges. This indeed is the case, as can be concluded by inspection
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QOI 68, impactor factor
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Figure 4.1: Absolute impact factors of all 55 parameters, computed with the detailed model
for QOI 68.

of the δH values computed by Eq. (3.2) and plotted in Fig. 4.2. For instance, the deviations
between the predictions of R17 and those of D are quite large, with δH ≥ 0.05 for 34 of the
100 QOIs and the maximum deviation reaching ∼0.25. These results indicate that R17 does
not perform that well when parameter uncertainties are taken into account.

Yet the δH measure is expected to overestimate the deviation because it is computed by
considering variation of model parameters within their entire prior region, H, without taking
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Figure 4.2: Deviations, δ, δH, and δF , between the detailed (D) model and reduced (R25,
R17, R12) models for 100 QOIs.

into consideration parameter correlations. The latter originate from requiring the model to
predict experimental data [14]. Including in the analysis the desired tolerance levels for QOI
predictions by restricting variation of x to the feasible set, F , gives a more realistic measure
of reduced-model deviations, namely δF of Eq. (3.3). The resulting deviations, as expected,
were computed to be smaller than in the x ∈ H case of Eq. (3.2), yet by relatively small
amounts, as shown in Fig. 4.2.

The third reduced model, R12, produced deviations, both δ and δH, substantially higher
than those of R25 and R17, as can be seen from Fig. 4.2. This is not surprising because
R12, with the nominal model parameters, reproduced the ignition delays computed by the
full-size model for the set of the 100 initial conditions with an average relative error of 13%,
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as reported in Section 4.1.2.
Fig. 4.2 highlights large differences between δ and δH (or δF) for some QOIs in the case

of R17 or R12. It is also of interest to view the overall performance of the reduced models,
as shown by the histograms in Fig. 4.3. Note that the x-axis is in logarithmic scale due to
the large values of deviations for R12. There is a clear trend of increasing deviations from
R25 to R17 to R12.

Figure 4.3: Histograms of deviations, δ, δH, and δF , between the detailed (D) and reduced
(R25, R17, R12) models for 100 QOIs.

4.2.3 Comparison of feasible sets

Feasible sets FR25, FR17, and FR12 were compared with FD in two different ways, as described
in Section 3.2. First, the relative volumes of FR25, FR17, and FR12 were compared with that
of FD. The relative volume of the feasible set is defined as the ratio of the feasible set
volume to the volume of the associated hyperrectangle, V (F)

V (H)
, as described in Section 3.2.

Then, the overlap between FR25, FR17, or FR12 and FD was computed. Note that all 100
QOIs were used to obtain the feasible set for a given model, different from the leave-one-out
scheme in Section 3.3. For each of the 100 QOIs, the other 99 QOIs would be used to obtain
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the feasible set in the leave-one-out scheme, resulting in 100 different feasible sets for 100
different QOIs for a given model.

The hyper-rectangular region of the prior knowledge, H, was sampled with 1×107 points,
and the relative volume of the feasible set was estimated using rejection sampling [106] by
the fraction of points contained in H that also fall within the feasible set; these computations
resulted in 0.072, 0.071, 0.060, and < 1 × 10−7 for FD, FR25, FR17, and FR12, respectively
(not one of the 1 × 107 points fell into FR12). For the detailed, R25, and R17 models, the
estimated relative volumes converged with 1×107 points, meaning that a further increase in
the number of sampled points would not change the estimated relative volumes appreciably.
The change of the relative volume of FD with the number of sampled points is illustrated as
an example in Fig. 4.4. For R12, no more points were sampled because the current evidence
reveals the large difference between the relative volumes of FR12 and FD.
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Figure 4.4: The relative volume of FD vs. the number of sampled points.

To estimate the feasible-set overlap, the feasible-set regions were sampled with 1.5× 104

uniformly-distributed points using the Gibbs sampling algorithm [106] adopted to B2BDC [107].
Nearly all, 97% points of FR25 fell within FD, and 96% points of FD fell within FR25, but
only 75% points of FR17 fell within FD, and 64% points of FD fell within FR17. These results
indicate that FD and FR25 are basically overlap, and FR17 is moderately smaller in volume
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than FD. Not a single point of FD fell within FR12 and vice versa, thus showing that FR12

is very small and located completely outside FD.
The uniform sample collected in the feasible set may have missed some regions in the

feasible set, even if the test of uniformity based on the Gelman convergence test was passed
[107]. As discussed in Section 4.2.1, the union of active parameters of all 100 QOIs has 32
parameters in the case of the detailed model. For each of the 32 active parameters, the inter-
val formed by the minimum and maximum of that parameter among the sampled 1.5× 104

points in the feasible set FD were computed, termed the sampled-based interval. The cor-
responding optimization-based interval for each active parameter was obtained by solving
problem (2.8). The sample- and optimization-based intervals for all active parameters in the
case of the detailed model are plotted in Fig. 4.5. For each active parameter, the vertical
red line is the inner-bound interval, the vertical blue line is the outer-bound interval, and
the vertical black line is the sample-based interval. The inner- and outer-bound prediction
intervals for active parameters are highly close to each other for all active parameters; specif-
ically, all of them are very close to the [-1, 1] interval, which is the prior interval for all model
parameters, as discussed in Section 4.1.3. This implies that the feasible set FD can either
touch or is very close to all the sides of the initial hyper-rectangle H. The sample-based
interval for parameter 6 (associated with the reaction H + O2 −−⇀↽−− OH + O) is slightly nar-
rower than the optimization-based interval, as shown in Fig. 4.5. This indicates that the
sampling algorithm did not visit some parts of the initial hyper-rectangle H that are also in
the feasible set FD.
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Figure 4.5: Bounds of active model parameters computed with the detailed model; vertical
red lines are inner-bound prediction intervals, vertical blue lines are outer-bound prediction
intervals, and vertical black lines are sample-based prediction intervals.

Overall, the sample-based intervals of active model parameters are very close to the
optimization-based ones, implying that the uniform sample collected in the feasible set FD

has visited most parts of the feasible set. The comparison of sample- and optimization-based
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intervals of active model parameters can shed light on the difficulty in sampling all parts of
the feasible set.

4.2.4 Comparison of posterior distributions

For each of the 100 QOIs, uniform samples were collected from the feasible sets. Specifically,
a uniform sample of 1.5 × 104 points were generated in each of the FD

–p, FR25
–p , FR17

–p , and
FR12

–p , for p = 1, . . . , 100, using the Gibbs sampling algorithm adopted to B2BDC [107]. The
notation F–p denotes the feasible set for a dataset with the p-th QOI removed as a result of
the leave-one-out scheme, as discussed in Section 3.3. The points of a uniform sample were
then used to evaluate the corresponding surrogate model, and a sample of model predictions
was subsequently obtained. The histograms of ignition delay times computed for two selected
QOIs, demonstrating both good (QOI 2) and not-so-good (QOI 92) cases, are reported in
Fig. 4.6. The histograms of all 100 QOIs can be found in Fig. A.1 of Appendix A.

Figure 4.6: Histograms for selected QOIs of detailed (blue) and reduced (brown) model
predictions over feasible sets.

Inspection of the histograms indicates that the reduced model R25 reproduces closely
the posterior distributions of all QOIs computed by the detailed model, as demonstrated for
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QOIs 1 and 92 in Fig. 4.6. The predictions of the reduced model R17 somewhat deviate from
those of the detailed model, as can be observed from the histograms plotted for QOI 92, and
those of R12 deviate substantially. The histograms of R12 also give a wrong impression that
the posterior QOI distribution is narrower, thus falsely indicating a more accurate prediction
of the QOI, but this illusion is created by the much smaller and distorted feasible set of R12.
One should recall at this point that letting x vary outside FR12 will necessarily violate the
requirement for the reduced model to reproduce the QOIs within their assigned bounds.

Figure 4.7: Histograms of the Hellinger distance metrics computed for the prediction intervals
(left) and the posterior distributions (right) of the reduced models.

Hellinger distances hH, as computed by Eq. (3.7), for all 100 QOIs with the three reduced
models are reported in Table A.3 of Appendix A, the distributions of these values over the
100 QOIs are displayed in Fig 4.7, and their summary statistics are given in Table 4.5. The
Hellinger distance metrics, displayed in Fig. 4.7 and listed in Table 4.5, capture the visual
comparison among the distributions, illustrated in Fig. 4.6, and numerically demarcates the
performance of the three reduced models.
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Table 4.5: Summary statistics of Hellinger distances (over 100 QOIs).

R25 R17 R12

Mean Max. Mean Max. Mean Max.

hH 0.010 0.027 0.111 0.654 0.859 1.000
hU 0.007 0.031 0.061 0.346 0.588 0.715

4.2.5 Comparison of prediction intervals

For each p = 1, . . . , 100, prediction intervals of the detailed model and three reduced models
were obtained by solving the corresponding optimization problems, as described in Sec-
tion 3.4. Averaged over the 100 QOIs, the relative lengths of the inner-bound prediction
intervals with respect to the outer-bound prediction intervals are 95.8, 95.6, 96.0, and 90.0%
for the detailed, R25, R17, and R12 models, respectively. This indicates that inner- and
outer-bound prediction intervals are indeed very close to each other for the QOIs in this
dataset. The differences between inner- and outer-bound prediction intervals are discussed
in Section 2.1.4. The prediction interval results of these computations for the two selected
cases, QOIs 1 and 92, are shown in Fig. 4.8. The results for all 100 QOIs are presented in
Figure A.2 of Appendix A.

As shown in Fig. 4.8, for each QOI, four pairs of intervals are plotted, corresponding to
the detailed and reduced models. For each pair, colored in red is the inner-bound prediction
interval and colored in blue is the outer-bound one. The horizontal dashed lines mark the
prediction intervals obtained with the detailed model. In both cases, the prediction intervals
of reduced model R25 are very close to those of the detailed model. In contrast, the prediction
intervals of R17 are narrower than those using the detailed model for QOI 92. The same
outcome was obtained for several other QOIs, thus indicating, that R17 underestimates the
uncertainties in predictions, consistent with the assessment of the posterior distributions in
the preceding subsection. The prediction intervals of R12 are shortened to a much larger
extent and for all QOIs, again, consistent with the assessment by comparing the prediction
histograms.

Hellinger distances hU, as computed by Eq. (3.10), for all 100 QOIs with the three reduced
models are reported in Table A.3 of Appendix A, the distributions of these values over the
100 QOIs are displayed in Fig 4.7 (left column), and their summary statistics are given
in Table 4.5. Inspection of Fig. 4.7 and Table 4.5 indicates that the computed values of
the numerical measure, hU

p (D,R), reflect the visual assessment of the intervals, illustrated in
Fig. 4.8, and are consistent with the conclusions reached through the analysis of the posterior
QOI distributions for the UQ performance of the reduced models.

The average hU
p is smaller than the average hH

p for all three reduced models in Table 4.5,
also shown in Fig. 4.7. This may be explained by the assumption of uniform distributions
on the prediction intervals when calculating hU

p ’s—all values within the prediction inter-
val were treated equally. In contrast, posterior QOI prediction distributions contain richer
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Figure 4.8: QOI prediction intervals computed with the detailed, D, and reduced, R25, R17,
and R12, models; vertical red lines are inner-bound prediction intervals, vertical blue lines
are outer-bound prediction intervals, and horizontal dashed lines are prediction intervals of
the detailed model.

information in that they put different weights (probability density) on different values.
Despite possible loss of information, hU

p ’s can be computed much faster, as discussed
in Section 2.1.4. In addition to the lower computational cost, using prediction intervals
has another advantage—capturing extreme values in model predictions. For each QOI and
model combination, the prediction interval is formed by the minimum and maximum of
model predictions, as discussed in Section 3.4. In other words, the prediction interval is
optimization-based. As a result, the sample of model predictions for the same QOI and model
combination, as obtained in Section 4.2.4, should fall within the corresponding optimization-
based prediction interval. For each QOI and model combination, the interval formed by the
minimum and maximum of the sample of model predictions, termed the sample-based predic-
tion interval, was computed. After that, the relative length of the sample-based prediction
interval, defined as the ratio of the length of the sample-based prediction interval to the
length of the optimization-based prediction interval, was computed. For each model, the
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summary statistics of the relative lengths over the 100 QOIs are tabulated in Table 4.6.
On average, the relative length is approximately 0.7 for the detailed, R25, and R17 mod-
els, with the minimum among the 100 QOIs reaching as low as 0.4626. This indicates that
the sample of model predictions, i.e., the posterior distribution of model predictions in Sec-
tion 4.2.4, only covers roughly 70% of all possible values of model predictions, determined
by the optimization-based prediction interval.

Table 4.6: Summary statistics of the relative lengths of sample-based prediction intervals
(over 100 QOIs).

Mean Min. Max.

detailed 0.7147 0.4626 0.818
R25 0.7154 0.4760 0.8223
R17 0.7307 0.6184 0.8315
R12 0.1771 0.0600 0.2774

For each QOI and model combination, the sample-based prediction interval is shorter than
the optimization-based prediction interval. This is because the uniform sample collected
in the feasible set may have missed some parts of the feasible set, and points in these
parts may lead to extreme values in model predictions. The comparison of sample- and
optimization-based intervals of model parameters in the example with computer-generated
QOIs in Section 4.2.3, as illustrated in Fig. 4.5, suggests that the sampling algorithm indeed
missed some parts of the feasible set.

4.2.6 Comparison of sensitivities

Sensitivities of prediction interval with respect to the prediction intervals of other QOIs and
with respect to the uncertainty intervals of model parameters were computed, as described in
Section 3.5. The sensitivity coefficients computed for the selected QOIs 1 and 92 are shown
in Figs. 4.9 and 4.10, respectively. The sensitivity coefficients for all 100 QOIs can be found
in Figure A.3 of Appendix A.

Inspection of the results for QOI 1 shows that the sensitivity spectra are basically sim-
ilar among the two reduced, R25 and R17, and detailed models, consistent with the other
measures that indicated the close proximity of these models in the case of QOI 1. For
QOI 92, the sensitivity spectra of R25 are still similar to the spectra of the detailed model,
yet those of R17 are not, again, in accord with other indicators. It is interesting to note
that the sensitivity spectra of R17 is missing three of the appreciable peaks present in the
spectra of the R25 and detailed models—the peaks corresponding to reactions removed in
the model reduction (namely, OH + OH −−⇀↽−− O + H2O, OH + H2O2 −−⇀↽−− HO2 + H2O, and
HO2 + HO2 −−⇀↽−− O2 + H2O2)—and this removal has to be compensated by other reactions
remaining in R17. The sensitivity spectra of R12, as expected from other indicators, are
highly different from those of the detailed model.
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Figure 4.9: Sensitivity of prediction interval for QOI 1 with respect to the prediction intervals
of the rest of the QOIs (left panels) and with respect to the uncertainty intervals of model
parameters (right panels). Colored in red are the sensitivities corresponding to the model
parameters that are absent from the model displayed in the next panel below.

The sensitivities of the Bhattacharyya coefficients, which measure the overlap, were com-
puted as described in Section 3.5. The sensitivities of the Bhattacharyya coefficients for
QOI 92 are displayed in Fig. 4.11. The first feature to notice in this figure is that both βR

p,e’s
(wrt QOIs) and βR

p,i’s (wrt x) increase in their absolute values moving from R25 to R17 to
R12. With R25 reproducing closely the prediction interval of the detailed model, the over-
lap between the two does not change appreciably with the uncertainty bounds. Reduction
in model reproducibility from R25 to R17 increases the sensitivity values, as the predicted
interval bounds of the reduced and detailed models begin to respond differently to the same
variations in the uncertainty bounds. Further reduction of R12 leads to much larger values
and more populated sensitivity spectra.

To help in understanding the sign change of the sensitivity values, one can consider a
situation when the reduced-model interval is contained entirely within that of the detailed
model, i.e., the overlap region in this case is that of the reduced model, LOp = LR

p . The
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Figure 4.10: Sensitivity of prediction interval for QOI 92 with respect to the prediction
intervals of the rest of the QOIs (left panels) and with respect to the uncertainty intervals
of model parameters (right panels). Colored in red are the sensitivities corresponding to the
model parameters that are absent from the model displayed in the next panel below.

Bhattacharyya coefficient (3.20) in this case takes the form

BU
p (D,R) =

(
LR
p

LD
p

)1/2

(4.5)

and its sensitivities become

βR
p =

1

2

(
SR
p

LR
p

−
SD
p

LD
p

)
. (4.6)

For SR
p ≈ SD

p and LR
p ≈ LD

p , βR
p ≈ 0, as was discussed above for R25. With the increase

in the level of reduction, the sensitivity values generally increase and the prediction interval
shortens, thus leading to positive values of βR

p . However, as is seen in Figs. 4.9 and 4.10,
some sensitivity peaks disappear for the increased-level reduced models, resulting in SR

p = 0
and correspondingly with βR

p turning negative.
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Figure 4.11: Sensitivity of the Bhattacharyya coefficient of QOI 92 with respect to the pre-
diction intervals of the rest of the QOIs (left panels) and with respect to the uncertainty
intervals of model parameters (right panels). Colored in red are the sensitivities correspond-
ing to reactions of a given model that are absent from the model displayed in the next panel
below.

4.3 A dataset with experimental ignition delay QOIs

The second example for syngas combustion is a dataset constructed with QOIs selected
from the latest DLR-SynG dataset [113], which includes ignition delay times measured at
223 different initial conditions. In this section, R12 is not considered because of its large
deviations from the detailed model. Measures introduced in Chapter 3 were applied to the
two reduced models, R25 and R17.

4.3.1 QOIs and surrogate models

In contrast to the example in Section 4.2, the QOI bounds of the DLR-SynG dataset, i.e.,
Le’s and Ue’s, were compiled from experimental studies [113]. The ranges of conditions of the
223 initial conditions in the DLR-SynG dataset are wider than those used in Section 4.1.2
to develop reduced models: temperature 1000–1800 K, pressure 0.5–2 atm, equivalence ratio
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0.04–1.5, and CO/H2 ratio 0–2. Because the reduced models were developed for such ranges,
their applicability should be limited to such ranges—any extrapolation, if necessary, should
be treated with extreme care. Only 26 of the 223 initial conditions fall into the abovemen-
tioned ranges of temperature, pressure, equivalence ratio, and CO/H2 ratio simultaneously.

Table 4.7: Initial conditions of 22 QOIs remained in
the dataset for UQ analysis; ignition delay times τD are
those computed with the detailed model and the rel-
ative deviations for the reduced models are defined as
|τR−τD|
τD

× 100%.

No. T (K) P (atm) Mole fraction φ τD (µs) Rel. dev. (%)

CO H2 O2 N2 R25 R17

1 1125 1.10 0.071 0.103 0.172 0.654 0.506 75.59 0.14 0.54
2 1169 1.00 0.104 0.070 0.174 0.651 0.500 73.39 0.20 0.39
3 1026 1.10 0.104 0.070 0.174 0.651 0.500 187.47 0.01 0.91
4 1162 1.00 0.104 0.070 0.174 0.651 0.500 75.93 0.57 0.09
5 1072 1.10 0.071 0.103 0.172 0.654 0.506 108.96 0.33 0.48
6 1175 1.00 0.071 0.103 0.172 0.654 0.506 61.80 0.28 0.58
7 1151 1.00 0.035 0.139 0.174 0.652 0.500 63.61 0.44 0.33
8 1161 1.50 0.012 0.028 0.020 0.000 1.000 303.50 0.35 0.29
9 1227 1.74 0.030 0.015 0.015 0.000 1.500 264.07 1.23 0.98
10 1053 1.89 0.030 0.015 0.015 0.000 1.500 724.53 0.09 0.85
11 1200 1.81 0.016 0.015 0.016 0.000 1.003 288.90 0.39 0.55
12 1064 1.79 0.016 0.015 0.016 0.000 1.003 680.68 0.49 0.10
13 1027 1.04 0.000 0.035 0.035 0.000 0.496 683.82 0.31 0.21
14 1061 1.01 0.000 0.059 0.029 0.000 0.996 524.56 0.27 0.31
15 1026 1.01 0.000 0.008 0.040 0.000 0.100 1213.13 0.09 0.10
16 1267 0.82 0.000 0.008 0.040 0.000 0.100 364.37 0.57 0.26
17 1154 0.69 0.000 0.040 0.202 0.000 0.100 146.07 0.45 0.54
18 1675 1.05 0.000 0.040 0.202 0.000 0.100 14.35 1.74 8.63
19 1146 1.60 0.004 0.004 0.089 0.000 0.050 346.22 0.19 1.97
20 1135 1.19 0.116 0.089 0.103 0.448 1.000 96.00 0.31 0.41
21 1077 2.00 0.000 0.300 0.148 0.552 1.014 55.47 0.02 0.54
22 1026 2.00 0.000 0.300 0.148 0.552 1.014 109.75 0.05 0.67

Table 4.8: Experimental bounds of the 22 QOIs remained
in the dataset for UQ analysis.

No. Lower bound (µs) Upper bound (µs)

1 53.60 80.40
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2 46.40 69.60
3 122.40 183.60
4 45.60 68.40
5 69.60 104.40
6 44.00 66.00
7 51.20 76.80
8 155.35 322.65
9 159.00 265.00
10 330.85 687.15
11 189.75 316.25
12 359.10 666.90
13 611.20 916.80
14 436.00 654.00
15 901.50 1502.50
16 223.20 334.80
17 108.80 163.20
18 12.60 23.40
19 334.16 620.58
20 66.40 99.60
21 29.09 60.41
22 87.91 163.25

For each of the 26 initial conditions selected from the DLR-SynG dataset, a quadratic
polynomial of ln τD in x was built, as described in Section 2.1.2. Similarly, quadratic polyno-
mials for the reduced models were built. There were 24 QOIs with a fitting error, as defined
in Section 2.1.2, less than or equal to 0.01 for the detaild, R25, and R17 models at the
same time. Three datasets, each for the detailed, R25, and R17 models, with all of the 24
QOIs were built, and the dataset for R17 was shown to be inconsistent. In other words, the
associated feasible set F , as defined in Eq. (2.4), was a empty set. To resolve this issue, the
vector consistency measure (VCM) [76] analysis was performed, and two QOIs were removed.
The remaining 22 QOIs were used for UQ analysis in this section; the corresponding initial
conditions are listed in Table 4.7, and the experimental bounds of these QOIs are listed in
Table 4.8. At the nominal parameter values, the R25 and R17 reduced models reproduced
the ignition delays computed by the full-size model with an average relative error of 0.4 and
0.9%, respectively, on par with the average relative errors for the 100 QOIs in Section 4.2.
The union of active parameters of all 22 QOIs for the detailed, R25, and R17 models have
24, 21, and 15 parameters, respectively. The surrogate models will be referred to hereafter
as MD

e (x) and MR
e (x) for the detailed and reduced models, respectively, associated with the

e-th QOI.
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4.3.2 Comparison of predicted values

Three measures, δ, δH, and δF , as defined in Section 3.1, were calculated for each of the 22
QOIs and each of the two reduced models. The resulting values are reported in Table A.4
of Appendix A. As in the example with computer-generated QOIs in Section 4.2.2, the δH

values of individual QOIs were computed using midpoints of the respective inner and outer
bounds; i.e., δHe =

[
δHe (inner) + δHe (outer)

]
/2. Similarly for δFe .
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Figure 4.12: Deviations, δ, δH, and δF , between the detailed (D) model and reduced (R25,
R17) models for 22 QOIs.

The three measures for each QOI and each reduced model are displayed in Fig. 4.12, and
their summary statistics are listed in Table 4.9. The results show that δ’s are quite small for
both R25 and R17. For R17, only one of the QOI has a δ above 0.05, namely 0.063 for QOI
18. As in the example with computer-generated QOIs in Section 4.2.2, one may conclude
that both R25 and R17 are relatively accurate reduced reaction models over the assumed
ranges of the initial conditions when the model parameters are fixed at the nominal values.
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Table 4.9: Summary statistics of deviation measures (over 22 QOIs).

R25 R17

Mean Max. Mean Max.

δ 0.002 0.009 0.006 0.063
δH 0.015 0.042 0.030 0.169
δF 0.012 0.037 0.024 0.158

As in the example with computer-generated QOIs in Section 4.2.2, δH values, computed
by Eq. (3.2) and plotted in Fig. 4.12, are much larger than δ values for several QOIs. For
instance, the deviation δH between the detailed model and R17 reaches 0.169 for QOI 18.
Again, these results indicate that R17 does not perform that well when the model parameters
are different from the nominal values. For each QOI and reduced model, δF of Eq. (3.3) is
smaller than δH of Eq. (3.2), yet by relatively small amounts, as shown in Fig. 4.12. The
maximum value of δH (0.042) and δF (0.037) shows that R25 can accurately reproduce the
detailed model in model predictions under uncertainties in the model parameters.

4.3.3 Comparison of feasible sets

Feasible sets FR25, and FR17 were compared with FD in two different ways, as described in
Section 3.2. First, the relative volumes of FR25 and FR17 were compared with that of FD.
The relative volume of the feasible set is defined as the ratio of the feasible set volume to the
volume of the associated hyperrectangle, V (F)

V (H)
, as described in Section 3.2. Then, the overlap

between FR25 or FR17 and FD was computed. As in the example with computer-generated
QOIs in Section 4.2.3, all 22 QOIs were used to obtain the feasible set for a given model,
different from the leave-one-out discussed scheme in Section 3.3.

The hyper-rectangular region of the prior knowledge, H, was sampled with 1×108 points,
and the relative volume of a feasible set was estimated using rejection sampling [106]. For
the detailed, R25, and R17 models, the estimated relative volumes converged with 1 × 108

points. The convergence of the estimated relative volumes is discussed in the example with
computer-generated QOIs in Section 4.2.3. The estimated relative volumes for FD, FR25,
and FR17 are 1.02 × 10−6, 1.4 × 10−6, and 7 × 10−7, respectively. The relative volumes in
this section are significantly smaller than those in the example in Section 4.2.3. In addition,
the difference between the relative volume of FD and that of FR25 is much larger than in
the example in Section 4.2.3.

The feasible-set regions were sampled with 1.5×104 uniformly-distributed points using the
Gibbs sampling algorithm [106] adopted to B2BDC [107] to estimate the feasible-set overlap.
Compared with the overlap in the example with computer-generated QOIs in Section 4.2.3,
the overlap between FR25 and FD is much smaller. Specifically, 39.87% points of FR25 fell
within FD, and 50.64% points of FD fell within FR25. The overlap between FR17 and FD is
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even smaller—only 8.09% points of FR17 fell within FD, and 8.48% points of FD fell within
FR17.

As discussed in the example with computer-generated QOIs in Section 4.2.3, the uniform
sample collected in the feasible set may have missed some parts of the feasible set, even if
the test of uniformity based on the Gelman convergence test was passed [107]. The union
of active parameters of all 22 QOIs in the current dataset has 24 active parameters in the
case of the detailed model. For each of the 24 active parameters, the interval formed by the
minimum and maximum of that parameter among the sampled 1.5×104 points in the feasible
set FD was computed, termed the sampled-based interval. The corresponding optimization-
based interval for each active parameter was obtained by solving problem (2.8). The sample-
and optimization-based intervals for all active parameters in the case of the detailed model
are plotted in Fig. 4.13. For each active parameter, the vertical red line is the inner-bound
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Figure 4.13: Bounds of active model parameters computed with the detailed model; vertical
red lines are inner-bound prediction intervals, vertical blue lines are outer-bound prediction
intervals, and vertical blue lines are sample–based prediction intervals.

interval, the vertical blue line is the outer-bound interval, and the vertical black line is the
sample–based interval. There are several implications from these results. First, the inner-
and outer-bound prediction intervals of active parameters are highly close to each other for all
but one parameter, namely parameter 22. But the difference is very small for parameter 22.
Second, the inner- and outer-bound prediction intervals are very close to the [-1, 1] interval
for all active parameters except parameter 22. Recall that the uncertain parameter vector x is
transformed so that all model parameters have [-1, 1] intervals, as discussed in Section 4.1.3.
This indicates that the feasible set FD can touch almost all the sides of the initial hyper-
rectangle H, even though its volume is very small relative to the volume of H (1.02× 10−6).
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This may pose a substantial challenge to the sampling algorithm—the sampling algorithm
may miss some important parts of the feasible set. Third, the sample-based intervals for
multiple active parameters are significantly narrower than the optimization-based intervals,
as shown in Fig. 4.13. Compared with the results in the example with computer-generated
QOIs in Section 4.2.3, the sample-based intervals deviate significantly from the optimization-
based ones for multiple active model parameters.

The comparison of the sample- and optimization-based intervals of active model parame-
ters implies that the sampling algorithm missed many parts of the feasible set FD, suggesting
that the feasible set has a very complex shape. The complex shape of the feasible set may
be caused by the poor quality of the data (Le’s and Ue’s). Previous studies [112, 113] have
shown disagreement between models and data in that many QOIs had to be removed to ren-
der a dataset consistent. It should be emphasized that the QOI bounds of the DLR-SynG
dataset, i.e., Le’s and Ue’s, were compiled from different sources of experimental studies
[113]. The heterogeneous nature of the data could be problematic because data from dif-
ferent laboratories may have different biases and/or uncertainties, and some of them could
even be erroneous. What makes the problem more challenging is that it is typically difficult
to determine which subset of the data is of bad quality. As a result, a feasible set, defined
by a set of polynomial constraints like Le ≤ Me(x) ≤ Ue, could have a very complex shape.
In contrast, the data used in the example in Section 4.2 were computer generated, which
avoids such problems.

4.3.4 Comparison of posterior distributions

For each QOI and model combination, a uniform sample was collected from the corresponding
feasible set, as described in Section 3.3. Specifically, 1.5× 104 points were generated in each
of the FD

–p, FR25
–p , and FR17

–p , for p = 1, . . . , 22, using the Gibbs sampling algorithm adopted
to B2BDC [107]. The notation F–p denotes the feasible set for a dataset with the p-th QOI
removed in the constraints as a result of the leave-one-out scheme, as discussed in Section 3.3.
The points of a uniform sample were then used to evaluate the corresponding surrogate
model, and a sample of model predictions was subsequently obtained. The histograms of
ignition delay times computed for two selected QOIs, QOI 1 and QOI 18, are shown in
Fig. 4.14. The histograms of all 22 QOIs can be found in Fig. A.4 of Appendix A.

The top right subplot shows that the reduced model R25 reproduces closely the posterior
distributions of QOI 18 computed with the detailed model. However, the posterior distribu-
tion of QOI 1 using R25 deviates appreciably from that computed with the detailed model,
as shown in the top left subplot of Fig. 4.14. The predictions of R17 deviate significantly
from those of the detailed model, particularly for QOI 18—the two histograms are almost
disjoint.

Hellinger distances hH, as computed by Eq. (3.7), for all 22 QOIs with the two reduced
models are reported in Table A.5 of Appendix A, and their summary statistics are given in
Table 4.10. In the case of R25, the maximum hH among the 22 QOIs is much larger than
the maximum hH in the example with computer-generated QOIs in Section 4.2.4 (0.397 vs.
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Figure 4.14: Histograms for selected QOIs of detailed (blue) and reduced (brown) model
predictions over feasible sets.

0.027), as is the average hH (0.137 vs. 0.010). As discussed in the previous section, the
uniform samples may have missed some parts of the feasible sets and thus lead to larger
deviations in the measures computed from the uniform samples.

Table 4.10: Summary statistics of Hellinger distances (over 22 QOIs).

R25 R17

Mean Max. Mean Max.

hH 0.137 0.397 0.316 0.995
hU 0.036 0.085 0.067 0.417

4.3.5 Comparison of prediction intervals

For each p = 1, . . . , 22, prediction intervals of the detailed and two reduced models were
obtained by solving the corresponding optimization problems, as described in Section 3.4.
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Averaged over the 22 QOIs, the relative lengths of the inner-bound prediction intervals with
respect to the outer-bound prediction intervals are 92.1, 89.5, and 91.0% for the detailed,
R25, and R17 models, respectively. This shows that the inner- and outer-bound prediction
intervals are still close to each other for the QOIs in this dataset. The differences between
inner- and outer-bound prediction intervals are discussed in Section 2.1.4. The prediction
intervals for QOIs 1 and 18 are shown in Fig. 4.15. The results for all 22 QOIs are presented
in Fig. A.5 of Appendix A.
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Figure 4.15: QOI prediction intervals computed with the detailed, D, and reduced, R25, and
R17, models; vertical red lines are inner-bound prediction intervals, vertical blue lines are
outer-bound prediction intervals, and horizontal dashed lines are prediction intervals of the
detailed model.

As shown in Fig. 4.15, the inner-bound prediction intervals of the reduced model R25 are
highly close to those of the detailed model, whereas the outer-bound prediction intervals of
the reduced model R25 are somewhat wider. As for R17, whereas the prediction intervals
are relatively close to those using the detailed model for QOI 1, the prediction intervals are
shifted toward larger values for QOI 18.
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Hellinger distances hU, as computed by Eq. (3.10), for all 22 QOIs with R25 and R17 are
reported in Table A.5 of Appendix A, and their summary statistics are given in Table 4.10.
As in the example with computer-generated QOIs in Section 4.2.5, the average hU

p is lower
than the average hH

p for both R25 and R17. However, the gap is much larger between hU
p ’s

and hH
p ’s for the present system.

As discussed in Section 4.2.5, using hU
p ’s has an advantage—capturing extreme values in

model predictions. In a high-dimensional feasible set, e.g., FD with 24 active parameters
in the current dataset, a sampling algorithm will most likely miss feasible points in many
regions. These points may lead to extreme values in model predictions. As in Section 4.2.5,
for each QOI and model combination, the interval formed by the minimum and maximum of
the sample of model predictions, termed the sample-based prediction interval, was computed.
The relative length of the sample-based prediction interval, defined as the ratio of the length
of the sample-based prediction interval to the length of the optimization-based prediction
interval, was subsequently computed. For each of the detailed, R25, and R17 models, the
summary statistics of the relative lengths over 22 QOIs are tabulated in Table 4.11. On
average, the relative length is approximately 0.44 for the detailed, R25, and R17 models,
with the minimum among the 22 QOIs reaching as low as 0.3051. These numbers are much
smaller than those in Section 4.2.5, as listed in Table 4.6.

Table 4.11: Summary statistics of the relative lengths of sample-based prediction intervals
to optimization-based prediction intervals (over 22 QOIs).

Mean Min. Max.

detailed 0.4444 0.3623 0.6963
R25 0.4407 0.3239 0.6755
R17 0.4153 0.3051 0.7235

4.3.6 Comparison of sensitivities

Sensitivities of uncertainty of prediction with respect to the QOI bounds of other QOIs and
with respect to the uncertainty intervals of model parameters were computed, as described
in Section 3.5. The sensitivity coefficients computed for the selected QOIs 1 and 18 are
shown in Figs. 4.16 and 4.17, respectively. The sensitivity coefficients for all 22 QOIs can
be found in Figure A.6 of Appendix A. For both QOIs 1 and 18, the sensitivity spectra
of sensitivities with respect to QOI bounds (left column) are basically similar for all three
models, the detailed, R25, and R17 models. Only four to five of the other 21 QOIs seem to
have an impact on the model prediction intervals of QOIs 1 and 18. The sensitivity spectra
of sensitivities with respect to x (right column) are essentially similar for the detailed model
and R25 for both QOIs 1 and 18. The sensitivity spectra of R17 is missing one or three of
the appreciable peaks present in the spectra of the R25 and detailed models for QOIs 1 and
18, respectively.
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Figure 4.16: Sensitivity of prediction interval for QOI 1 with respect to the prediction
intervals of the rest of the QOIs (left panels) and with respect to the uncertainty intervals
of model parameters (right panels). Colored in red are the sensitivities corresponding to the
model parameters that are absent from the model displayed in the next panel below.

4.4 Summary

In this chapter, two examples with ignition delay QOIs were investigated to assess how
uncertainties in the model parameters and in the model predictions behave for reduced
models as compared to those for the detailed model. In the example in Section 4.2, the
QOI uncertainty ranges, i.e., Le’s and Ue’s, were computer generated, whereas the QOI
uncertainty ranges in the example in Section 4.3 were compiled from experimental studies.

In the example with computer-generated ignition delay QOIs in Section 4.2, three reduced
models, R25, R17, and R12 were assessed under uncertainties in the model parameters.
Predicted values of QOIs computed with R25 are very close to those with the detailed model
(low δH’s and δF ’s) even when model parameter uncertainties are taken into account. R25
also reproduces accurately the posterior uncertainties in the model parameters, and the
associated feasible set, FR25, has a large overlap with the feasible set associated with the
detailed model, FD, and their relative volumes are particularly close to each other as well.
The prediction intervals (low hU’s) and the posterior distributions of model predictions (low
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Figure 4.17: Sensitivity of prediction interval for QOI 18 with respect to the prediction
intervals of the rest of the QOIs (left panels) and with respect to the uncertainty intervals
of model parameters (right panels). Colored in red are the sensitivities corresponding to the
model parameters that are absent from the model displayed in the next panel below.

hH’s) computed with the detailed model are also reproduced faithfully by R25. In addition,
R25 reproduces the spectra of sensitivities of uncertainty in model predictions of the detailed
model. A less accurate model, R17, begins to exhibit deviations in all measures, and a much
less accurate model, R12, substantially distorts the UQ properties of the detailed model.
This example demonstrates several features. First, assessment of the quality of a reduced
model without considering parameter uncertainty may be misleading, as is evidenced by the
single-point δ test of R17. Inclusion of parameter variations over their uncertainty ranges
is more indicative of the reduced-model reproduction of not only the target values but also
of their uncertainties. Second, the reduced-model performance can be quantified by several
measures of model deviations, and those tested in this example showed mutually consistent
and qualitatively similar outcomes.

In the example with experimental ignition delay QOIs in Section 4.3, divergence between
different measures occurs. Predicted values of QOIs computed with R25 are quite close to
those computed with the detailed model (low δH’s and δF ’s) under uncertainties. R25 also
reproduces accurately the prediction intervals (low hU’s) and the spectra of sensitivities of
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uncertainty in model predictions of the detailed model. However, the feasible set FR25 has a
relatively small overlap with the feasible set FD, and their estimated relative volumes are sig-
nificantly different. In addition, the posterior distributions of model predictions computed
with R25 deviate appreciably from those computed with the detailed model (large hH’s).
This behavior is indicative of the quality of data rather than of the accuracy of R25. The
data (Le’s and Ue’s) used in this example were shown in previous studies [112, 113] to have
disagreement with the model. The data were collected from different sources and they may
have different biases and/or uncertainties and some of them could even be erroneous. As a
result, the feasible set FD in this example has a very complex shape such that the sampling
algorithm missed many parts of the feasible set. This is implied by the observation that
the sample-based intervals for multiple active parameters are significantly narrower than the
optimization-based intervals, as shown in Fig. 4.13. Therefore, measures computed from the
uniform samples collected in the feasible sets tend to be larger than those in the example
with computer-generated QOIs in Section 4.2. These results indicate that potentially bad
data (Le’s and Ue’s) can lead to challenges in UQ analysis. If no verifiably accurate experi-
mental data exist, computer-generated data from the solution of the detailed model offer a
reliable alternative, in which the desired level of reduced-model accuracy can be prescribed
by specifying the accepted ranges of variations in prediction of training targets. The results
also illustrate that measures based on optimization using the B2BDC methodology (δH’s,
δF ’s, and hU’s) are free from issues caused by the complex shape of the feasible sets.
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Chapter 5

Reduced models of soot oxidation

In this chapter, a KMC soot oxidation system is investigated. The specifics of the selected
full-size, detailed model and the reduced models developed from it are described next.

5.1 Modeled system

5.1.1 Detailed KMC model

The detailed model used in this chapter is a KMC soot oxidation model with 107 surface
reactions developed recently by Frenklach et al. [20, 44]. The model is introduced in Sec-
tion 2.3, and the surface reactions are reproduced in Table 2.1. The model was validated
against the high-temperature shock-tube experiments of Roth et al. [103]. In this chapter,
a constant gas-phase environment will be used in running the soot oxidation model, similar
to the simulations in [43, 49, 51, 52]. The choice of using a constant gas-phase environment
was to focus on the KMC oxidation model, removing the effects of gas-phase environments
on model predictions. For a given simulation, two quantities of interest (QOIs) will be used
for analysis, the total number of CO molecules and the number of C2H2 molecules released.

5.1.2 Reduced KMC models

Reduced models were developed from the detailed model by identifying non-contributing
reactions using the reaction counts from a simulation with the detailed model, similar to
the idea of the “detailed-reduction” method, introduced in Section 2.2. The temperature
and pressure used for this simulation were the same as in [20]. The concentrations (mole
fractions) of the gases used were taken from the gas-phase profiles in the high-temperature
simulation of [20] at the time instance of peak H-concentration. The temperature, pressure,
and mole fractions of major gases are listed in Table 5.1. The other gases in the gas-phase
environment, including C2H2, CH3, A1, and H2O, were assigned a value of mole fraction of
zero. The simulation time period was 2 ms, and the substrate used in the simulation is the
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19-ring PAH, as shown in Fig. 2.3. The rate parameters used are the nominal parameters of
the detailed model, as reported in Table 2.1.

Table 5.1: Gas-phase environment conditions for KMC oxidation simulation.

T (K) p (bar) xH2 xH xO xOH xO2

1990 0.72 0.0050 0.0088 0.0027 0.0023 0.0028

Multiple KMC runs, specifically 100 runs with 100 different seeds, were performed. The
reaction counts were averaged over these 100 runs. Three different reduced models were
constructed by removing reactions whose reaction counts were less than 1, 5, and 10, respec-
tively. These three reduced models will be referred to hereafter as R1, R5, and R10, where
the number in the name is the cutoff for reaction counts. The resulting reduced models, R1,
R5, and R10, include 62, 46, 38 reactions, respectively. The reactions retained in each of the
reduced models are reported in Table 5.2.

Table 5.2: Reaction counts of all 107 reactions in the
simulation with the detailed model, and identification of
reactions in reduced models R1, R5, and R10.

Reaction No. Reaction Counts R1 R5 R10

1 485.78 X X X
2 917.52 X X X
3 0.00 — — —
4 0.00 — — —
5 78.14 X X X
6 38.45 X X X
7 19.50 X X X
8 82.10 X X X
9 11.12 X X X
10 123.20 X X X
11 121.93 X X X
12 282.43 X X X
13 210.52 X X X
14 0.00 — — —
15 2.65 X — —
16 4.12 X — —
17 1.72 X — —
18 0.00 — — —
19 0.00 — — —
20 0.00 — — —
21 4.27 X — —



CHAPTER 5. REDUCED MODELS OF SOOT OXIDATION 69

22 0.47 — — —
23 3.27 X — —
24 16.27 X X X
25 4.19 X — —
26 0.00 — — —
27 0.00 — — —
28 0.02 — — —
29 0.12 — — —
30 0.02 — — —
31 0.22 — — —
32 0.01 — — —
33 0.00 — — —
34 0.00 — — —
35 0.00 — — —
36 0.00 — — —
37 0.00 — — —
38 0.00 — — —
39 0.00 — — —
40 0.00 — — —
41 0.00 — — —
42 0.00 — — —
43 0.00 — — —
44 0.00 — — —
45 0.26 — — —
46 1.87 X — —
47 4.81 X — —
48 5.81 X X —
49 6.37 X X —
50 28.93 X X X
51 7.52 X X —
52 15.97 X X X
53 26.23 X X X
54 25.45 X X X
55 10.93 X X X
56 24.35 X X X
57 30.06 X X X
58 33.07 X X X
59 141.67 X X X
60 4.47 X — —
61 10.11 X X X
62 13.61 X X X
63 13.59 X X X



CHAPTER 5. REDUCED MODELS OF SOOT OXIDATION 70

64 111.41 X X X
65 0.61 — — —
66 3.23 X — —
67 4.37 X — —
68 5.22 X X —
69 171.48 X X X
70 0.23 — — —
71 0.38 — — —
72 0.49 — — —
73 0.71 — — —
74 5.07 X X —
75 0.50 — — —
76 1.34 X — —
77 1.59 X — —
78 1.47 X — —
79 13.87 X X X
80 0.00 — — —
81 0.01 — — —
82 0.04 — — —
83 0.00 — — —
84 0.41 — — —
85 7.57 X X —
86 16.10 X X X
87 20.71 X X X
88 22.70 X X X
89 178.06 X X X
90 0.00 — — —
91 0.00 — — —
92 394.23 X X X
93 4.11 X — —
94 18.46 X X X
95 18.46 X X X
96 8.87 X X —
97 20.55 X X X
98 28.94 X X X
99 26.55 X X X
100 0.00 — — —
101 0.00 — — —
102 0.00 — — —
103 0.00 — — —
104 90.99 X X X
105 7.32 X X —
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106 1.21 X — —
107 0.09 — — —

The KMC simulations with the same environment were then repeated with the three
developed reduced models. The two QOIs—the total number of CO molecules and the total
number of C2H2 molecules released during the two-millisecond simulation—computed with
the detailed and reduced models are listed in Table 5.3. Note that the relative errors for R1
and R5 are much larger than those in the case of ignition delay times of syngas combustion,
as reported in Sections 4.2 and 4.3. Yet, this level of relative error is deemed acceptable
in soot modeling due to larger model and experimental uncertainties [20]. R10 deviates
significantly from the detailed model but will be included in the analysis for comparison.
Nominal parameter values were used for all three reduced models.

Table 5.3: QOIs calculated using the detailed and reduced models with nominal model
parameters.

QOI detailed R1 R5 R10

number of CO released 251.09 240.45 240.14 41.54
number of C2H2 released 103.56 99.60 82.95 11.77

5.1.3 Model parameters of KMC models

Although there are 107 surface reactions in the detailed KMC soot oxidation model, as listed
in Table 2.1, the number of model parameters is less than 107. This is because some surface
reactions are related to each other. Surface reactions 1 and 105 are the forward and reverse
directions of the same reaction. Surface reactions 55–59 are essentially the same reaction,
except for the difference in the location of the active site. Surface reactions 29 and 30 are
also coupled reactions in the detailed model [20]. As a result, these surface reactions were
organized into 42 groups, each with its associated model parameters, as shown in Table 5.4.

Table 5.4: Groups of reactions.

Group No. Reactions

1 [1, 105]
2 [2]
3 [3, 7]
4 [4, 5]
5 [6, 8]
6 [9, 21, 28, 37]
7 [10, 106]
8 [11]
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9 [12, 107]
10 [13]
11 [14, 15, 18, 19, 20, 22, 38]
12 [16]
13 [17, 33, 34, 39]
14 [23]
15 [24]
16 [25, 26]
17 [27]
18 [29, 30]
19 [31, 32]
20 [35]
21 [36]
22 [40]
23 [41]
24 [42]
25 [43]
26 [44, 45]
27 [46, 47]
28 [48, 49, 50]
29 [51]
30 [52]
31 [53, 54]
32 [55, 56, 57, 58, 59, 70, 71, 72, 73, 74]
33 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69]
34 [75, 76, 77, 78, 79, 80, 81, 82, 83, 84]
35 [85, 86, 87, 88, 89]
36 [90]
37 [91]
38 [92]
39 [93, 94, 95]
40 [96, 97, 98, 99]
41 [100, 101, 102, 103]
42 [104]

As in Section 4.1.3, it is assumed that that the uncertainty of the soot oxidation models
resides in the reaction rate coefficients, and their uncertainties are represented by multipliers
to the nominal parameter expressions [86],

kj = λik
nominal
j , j = 1, . . . , ni, (5.1)

where i is the group number (ranging from 1 to 42 in Table 5.4) and λi is the associated
multiplier, kj is the rate coefficient of reaction j, ranging from 1 to ni (the number of reactions
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in group i). The bounds of λi’s were assumed to be [0.5, 2]. The nominal rate coefficients
in the present study are those reported in Table 2.1.

The surrogate models were developed in transformed variables

xi =
ln λi/λi,min

1
2

ln λi,max/λi,min

− 1, i = 1, . . . , 42. (5.2)

Defined in this manner, all model parameters have [−1, 1] intervals, i.e., x ∈ [−1, 1]42, and
the nominal set of rate coefficients is specified by xnominal = x(λ = 1). There are 42, 29, 23,
22 groups in the detailed, R1, R5, and R10 models, respectively, as listed in Table 5.5. In
other words, there are that many uncertain parameters for each of the model. Note that a
group retained for a reduced model may have less reactions than that group for the detailed
model.

Table 5.5: Number of reactions and groups in the detailed and reduced models.

detailed R1 R5 R10

number of reactions 107 62 46 38
number of groups 42 29 23 22

5.2 Parallel computing using MPI

The detailed KMC soot oxidation model in [20] was written in Python 2 [114]. For this
dissertation, the code was updated and adapted for Python 3 [115]. As described in Sec-
tion 2.1.2, the original model, i.e., the detailed model in this case, has to be run for many
design points in building a surrogate model for each QOI. Depending on the number of ac-
tive parameters, the number of design points could vary between a few hundreds to a few
thousands. For example, there were 816 design points when the simulation was run with
the reduced model R10. Running one design point took approximately one hour. Therefore,
it would have taken about 34 days to run all the design points for R10 (recall that there
are three other models, the detailed, R1, and R5 models) when running on a single core. It
would still have taken roughly 9 days on a high-end desktop with 4 physical cores.

To reduce the computation time, large-scale parallel computing was leveraged in running
the code at the design points. In this specific problem, each design point is independent
from other design points, making it a so-called embarrassingly parallel problem. The Python
package of Message Passing Interface (MPI), MPI4PY [116–118], was used for this purpose.
Note that MPI is capable of running much more complicated jobs that do have core-to-core
communications. The specific computing resources used were Haswell compute nodes of the



CHAPTER 5. REDUCED MODELS OF SOOT OXIDATION 74

Cori super computer system of NERSC 1. Each Haswell compute node has 32 physical cores
[119]. Therefore, 26 nodes were requested in running the job with 816 design points. The
job took just about one hour, and there were no scaling issues because no communication is
necessary between cores in a embarrassingly parallel problem.

5.3 A dataset with soot oxidation QOIs

In this section, I illustrate the developed methodology with a dataset with soot oxidation
QOIs. The results of applying the measures introduced in Chapter 3 to the three reduced
models, R1, R5, and R10 derived from the previous section, are discussed.

5.3.1 QOIs and surrogate models

Due to the high computation cost, only one simulation with one gas-phase environment was
used in the analysis. The gas-phase environment was the same as in Section 5.1.2, as listed
in Table 5.1. Two QOIs were derived from this simulation, namely the total number of
CO molecules (QOI 1) and the total number of C2H2 molecules (QOI 2) released during a
two-millisecond simulation.

The “observed” values of the QOIs were obtained from solution of the detailed model
with the nominal set of rate coefficients, denoted yD. The QOI uncertainty ranges, i.e., Le’s
and Ue’s defined in Section 2.1, were assumed to be ±10% intervals of yD,[

0.9 yD
e , 1.1 yD

e

]
, e = 1 or 2. (5.3)

For each of the two QOIs, a quadratic surrogate of ln yD in x (defined by Eq. (5.2)) was
built following the steps described in Section 2.1.2. Similarly, quadratic surrogate models for
the reduced models were built. The number of active variables and the fitting errors of the
surrogate models, as defined in Section 2.1.2, are listed in Table 5.6. For the detailed, R1,
and R5 models, the fitting error was below 0.05, which is equivalent to a roughly 5% relative
change, as discussed in Section 4.2.2. The fitting errors for R10 were somewhat larger, but
R10 was known a priori to deviate significantly from the detailed model in that its predictions
were off by a substantial amount, as shown in Table 5.3. However, R10 is included in the
UQ analysis for comparison. The surrogate models will be referred to hereafter as MD

e (x)
and MR

e (x) for the detailed and reduced models, respectively, associated with the e-th QOI,
where R is a place holder for R1, R5, or R10.

1The results in this chapter used resources of the National Energy Research Scientific Computing Center
(NERSC) [119], a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231.
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Table 5.6: Number of active variables and fitting errors of surrogate models for QOIs 1 and
2.

detailed R1 R5 R10

number of active variables 10 11 10 15
fitting error (QOI 1) 0.0346 0.0401 0.0403 0.0573
fitting error (QOI 2) 0.0360 0.0421 0.0429 0.0772

5.3.2 Comparison of predicted values

Three measures, δ, δH, and δF , as defined in Section 3.1, were calculated for QOIs 1 and
2 for each of the three reduced models. The resulting values are reported in Table 5.7. As
before, the average of inner- and outer-bound values were taken for δH and δF .

Table 5.7: Deviations, δ, δH, and δF , between the detailed (D) and reduced (R1, R5, R10)
models for QOIs 1 and 2.

R1 R5 R10

δ (QOI 1) 0.0589 0.1007 1.8091
δH (QOI 1) 0.7463 0.9342 3.0054
δF (QOI 1) 0.6175 0.8814 2.6573

δ (QOI 2) 0.0697 0.2846 2.2427
δH (QOI 2) 0.8245 1.2009 3.6784
δF (QOI 2) 0.6352 1.0237 3.3022

The deviation at the nominal parameter values, δ, is about 0.06 and 0.07 for QOIs 1
and 2 in the setting of the reduced model R1, which can be considered as small deviations
in soot modeling. However, δH’s are much larger for both QOIs in the case of R1, namely
0.7463 and 0.8245, respectively. As expected, δF is less than δH for R1, although not by
much. All three measures grow from R1 to R5 to R10. It is noteworthy that only reactions
for which the reaction count is less than 1 were removed in constructing R1 in Section 5.1.2.
Moreover, 28 of the 47 reactions removed in R1 had zero counts, as listed in Table 5.2. Yet,
these reactions combined can lead to large values of δH. However, large values of δH do
not necessarily mean that R1 cannot reproduce with good accuracy the uncertainties in the
model predictions of the detailed model, as will be discussed in Sections 5.3.4 and 5.3.5.

5.3.3 Comparison of feasible sets

Feasible sets FR1 and FR5 were compared with FD in two different ways, as described in
Section 3.2. First, the relative volumes of FR1 and FR5 were compared with that of FD.
The relative volume of the feasible set is defined as the ratio of the feasible set volume to
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the volume of the associated hyperrectangle, V (F)
V (H)

, as described in Section 3.2. Then, the

overlap between FR1 or FR5 and FD was computed. The feasible set FR10 is an empty
set because the associated dateset was inconsistent, as discussed in Section 2.1.3. This is
not surprising because the deviations at the nominal parameters are very large for R10,
as shown in Table 5.3. As a result, not a single point exists in [−1, 1]42 such that both
L1 ≤MR10

1 (x) ≤ U1 and L2 ≤MR10
2 (x) ≤ U2 hold. Note that both QOIs 1 and 2 were used

to define the feasible set for a given model, different from the feasible sets in the leave-one-out
setting.

The hyper-rectangular region of the prior knowledge, H, was sampled with 1×107 points,
and the relative volume of a feasible set was estimated using rejection sampling [106]. For
the detailed, R1, and R5 models, the estimated relative volumes converged with 1 × 107

points, as explained in Section 4.2.3. The estimated relative volumes for FD, FR1, and FR5

are 0.3035, 0.342, and 0.1724, respectively. Whereas the relative volume of FR1 is close to
that of FD, the relative volume of FR5 is much smaller than that of FD.

To estimate the feasible-set overlap, the feasible-set regions were sampled with 1.5× 104

uniformly-distributed points using Gibbs sampling algorithm [106] adopted to B2BDC [107].
The majority, about 66% points of FR1 fell within FD, and approximately 73% points of FD

fell within FR1, but only about 15% points of FR5 fell within FD, and roughly 8% points
of FD fell within FR5. The results on the relative volumes and the overlap between feasible
sets show that the feasible sets FD and FR1 have large differences. However, these results
do not imply that R1 cannot reproduce with good accuracy the uncertainties in the model
predictions of the detailed model, as will be discussed in Sections 5.3.4 and 5.3.5.

The dataset constructed with the detailed model has 10 active parameters. For each
of the 10 active parameters, the interval formed by the minimum and maximum of that
parameter among the sampled 1.5× 104 points in the feasible set FD was computed, termed
the sampled-based interval. The corresponding optimization-based interval for each active
parameter was obtained by solving problem (2.8). Note that both QOIs 1 and 2 were used as
constraints to obtain the feasible set FD. The sample- and optimization-based intervals for
the 10 active parameters in the case of the detailed model are plotted in Fig. 5.1. The vertical
red lines ( the inner-bound intervals), the vertical blue lines (the outer-bound intervals), and
the vertical black lines (the sample-based intervals) are all highly close to the [-1, 1] interval
for all 10 active parameters. The results imply that the sampling algorithm was able to
collect points in all parts of the feasible set.

5.3.4 Comparison of posterior distributions

For each QOI, uniform samples were collected from the corresponding feasible sets. Specif-
ically, 1.5 × 104 points were generated in each of the FD

–p, FR1
–p , and FR5

–p , for p = 1 or 2,
using the Gibbs sampling algorithm adopted to B2BDC [107]. The notation F–p denotes the
feasible set for a dataset with p-th QOI removed as a result of the leave-one-out scheme, as
discussed in Section 3.3. The points of a uniform sample were then used to evaluate the cor-



CHAPTER 5. REDUCED MODELS OF SOOT OXIDATION 77

1 3 6 8 9 15 18 34 39 41
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5.1: Bounds of active model parameters computed with the detailed model; vertical
red lines are inner-bound prediction intervals, vertical blue lines are outer-bound prediction
intervals, and vertical blue lines are sample–based prediction intervals.

responding surrogate model, and a sample of model predictions was subsequently obtained.
The histograms of predicted values computed for QOIs 1 and 2 are displayed in Fig. 5.2.

The reduced model R1 reproduced closely the posterior distributions of predictions of
both QOIs computed with the detailed model, as shown in Fig 5.2. In contrast, the reduced
model R5 led to posterior distributions of QOI predictions that are quite different from those
of the detailed model. Whereas predictions of QOI 1 using R5 are higher, predictions of QOI
2 using R5 are lower. Recall that QOI 1 is the total number of CO molecules released in 2 ms
and QOI 2 is the total number of C2H2 molecules released in 2 ms. Both CO and C2H2 are
the results of soot oxidation, and they are produced from different competing mechanisms.
The release of CO is due to oxyradical decomposition and oxidation by H2O, OH, and O,
namely reactions S51–S54, S90, S96–S99, and S100–S104 in Table 2.1, whereas the release
of C2H2 is caused by thermal desorption, namely reactions S5, S7, S17, S25, and S45 in
Table 2.1 [20]. Examination of the reactions in Table 5.2 shows that there is no difference in
CO-related reactions for R1 and R5. Yet, more C2H2-related reactions were removed for R5.
Specifically, S17, S25, and S45 were removed for R5, whereas only S45 was removed for R1.
Reactions S17 (1.7 reaction counts) and S25 (4.2 reaction counts) combined are responsible
for the release of about 6 C2H2 molecules when the simulation was run with the detailed
model, as shown in Table 5.2. However, removing these two reactions in R5 can cause the
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Figure 5.2: Histograms for QOIs 1 and 2 of detailed (blue) and reduced (brown) model
predictions over feasible sets.

decrease in the number of C2H2 release to be significantly larger than 6, as shown in Fig 5.2.
Hellinger distances hH, as computed by Eq. (3.7), for both QOIs with the two reduced

models are reported in Table 5.8. The Hellinger distance metrics enable the quantification of
the differences among the posterior distributions of model predictions, illustrated in Fig. 5.2.

Table 5.8: Hellinger distances, hH and hU, between posterior distributions of QOI predictions
using the detailed (D) and reduced (R1, R5) models for QOIs 1 and 2.

R1 R5

hH (QOI 1) 0.0431 0.5086
hU (QOI 1) 0.0467 0.3700

hH (QOI 2) 0.1153 0.6489
hU (QOI 2) 0.0841 0.3792
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5.3.5 Comparison of prediction intervals

For both QOIs 1 and 2, prediction intervals computed with the detailed and two reduced
models were obtained by solving the corresponding optimization problems, as described in
Section 3.4. Averaged over the two QOIs, the relative length of the inner-bound prediction
intervals with respect to the outer-bound prediction intervals is 89.6, 91.9, and 99.2% for
the detailed, R1, and R5 models, respectively. This indicates that inner- and outer-bound
prediction intervals are relatively close to each other for QOIs in this dataset, although not
as close as in the example with the ignition delay QOIs in Section 4.2.5. The differences
between the inner- and outer-bound prediction intervals are discussed in Section 2.1.4. The
results of these computations for QOIs 1 and 2 are shown in Fig. 5.3.
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Figure 5.3: QOI prediction intervals computed with the detailed, D, and reduced, R1, and
R5 models; vertical red lines are inner-bound prediction intervals, vertical blue lines are
outer-bound prediction intervals, and horizontal dashed lines are prediction intervals of the
detailed model.

As displayed in Fig. 5.3, for each case, three pairs of intervals are plotted, corresponding to
the detailed and reduced models. For each pair, colored in red is the inner-bound prediction
interval and colored in blue is the outer-bound one. The horizontal dashed lines mark the
prediction intervals obtained with the detailed model. In both cases, the prediction intervals
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of reduced model R1 are very close to those of the detailed model. In contrast, the prediction
intervals of R5 are narrower than those using the detailed model for both QOIs. It occurs
again that a smaller reduced model, R5 in this example, underestimates the uncertainties in
model predictions. Hellinger distances, hU’s, as computed by Eq. (3.10), for QOIs 1 and 2
with the two reduced models are reported in Table 5.8. Inspection of Fig. 5.3 and Table 5.8
indicates that the computed values of the numerical measure, hU

p (D,R), reflect the visual
assessment of the intervals, illustrated in Fig. 5.8, and are consistent with the conclusions
reached through the analysis of the posterior QOI distributions for the UQ performance of
the reduced models.

Table 5.9: Relative lengths of sample-based prediction intervals to optimization-based pre-
diction intervals for QOIs 1 and 2.

detailed R1 R5

Rel. length (QOI 1) 0.4702 0.5068 0.4615

Rel. length (QOI 2) 0.4425 0.4657 0.4624

As in Section 4.2.5, for each QOI and model combination, the interval formed by the
minimum and maximum of the sample of model predictions, termed the sample-based pre-
diction interval, was computed. The relative length of the sample-based prediction interval,
defined as the ratio of the length of the sample-based prediction interval to the length of the
optimization-based prediction interval, was subsequently computed. For each of the detailed
model, R1, and R5, the relative lengths are tabulated in Table 5.9. The relative lengths
vary from about 0.44 to around 0.50. This indicates that the posterior distributions of QOI
predictions only cover roughly a half of all possible values of model predictions, determined
by the prediction intervals. This shows again that uniform samples collected in the feasible
sets miss certain regions in the high-dimensional feasible sets. In other words, sampling has
a small chance of finding a point in the feasible set that maximizes/minimizes the surrogate
model, which can be done very efficiently using optimization tools in B2BDC, as introduced
in Section 2.1.4.

5.3.6 Comparison of sensitivities

Sensitivities of prediction interval with respect to the uncertainty intervals of model param-
eters were computed, as described in Section 3.5. Because the two QOIs in this dataset were
derived from the same simulation, sensitivities of prediction interval with respect to the QOI
bounds of other QOIs are expected to provide little information and are, thus, omitted. The
sensitivity coefficients with respect to model parameters computed for both QOIs 1 and 2
are shown in Figs. 5.4 and 5.5, respectively.

Inspection of the results for both QOIs 1 and 2 shows that the sensitivity spectra are quite
different even among the detailed model and R1. As shown in Fig. 5.4, the sensitivities of the
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Figure 5.4: Sensitivity of prediction interval for QOI 1 with respect to the uncertainty
intervals of model parameters. Colored in red are the sensitivities corresponding to the
model parameters that are absent from the model displayed in the next panel below.

uncertainty in the prediction interval, Mp−Mp, with respect to parameters 4, 16, 19, and 40,
corresponding to the multipliers of groups 4, 16, 19, and 40, have relatively high sensitivities
in the case of the detailed model. Yet, the sensitivities with respect to these parameters are
close to zero in the case of R1. However, the width of the prediction interval of QOI 1 using
R1 is very close to that using the detailed model, as shown in Fig. 5.3. This can be explained
by the change in sensitivities with respect to other parameters. Specifically, the sensitivities
with respect to parameters 1, 11, 27, 32, and 33 are significant in the case of R1, whereas they
are small in the case of the detailed model. This change in the sensitivity spectra implies a
compensatory effect caused by the removal of some reactions. All sensitivities in the case of
R5 are smaller, consistent with the narrower prediction interval of QOI 1 in Fig. 5.3. Similar
patterns can be observed for QOI 2 in Fig. 5.5.
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Figure 5.5: Sensitivity of prediction interval for QOI 2 with respect to the uncertainty inter-
vals of model parameters (right panels). Colored in red are the sensitivities corresponding
to the model parameters that are absent from the model displayed in the next panel below.

5.4 Summary

In this chapter, an example with soot oxidation QOIs was investigated to assess how uncer-
tainties in the model parameters and in the model predictions behave for reduced models
as compared to those for the detailed model, a stochastic soot oxidation model. Large-scale
parallel computing with MPI4PY was leveraged to expedite the computer simulations by
multiple times.

Reduced models were developed from the detailed model, a stochastic KMC soot oxida-
tion model, by identifying non-contributing reactions, adapted from the “detailed-reduction”
method introduced in Section 2.2. Different reduction criteria resulted in three reduced mod-
els, R1, R5, and R10, in descending order of model size. The dataset built for the reduced
model R10 was inconsistent. The reduced model R5 exhibits large deviations in all measures.
The R1 reduced model reproduces accurately the prediction intervals (relatively low hU’s)
and the posterior distributions of model predictions (relatively low hH’s) computed with the
detailed model. Yet, predicted values computed with R1 have relatively large deviations
from those with the detailed model under uncertainties (relatively large δH’s and δF ’s). The
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feasible set associated with R1 has a moderate overlap (around two thirds) with the feasible
set associated with the detailed model, although their estimated relative volumes are quite
close to each other. The spectra of sensitivities of uncertainty in model predictions are quite
different for the detailed and R1 models. The results obtained for the different measures
indicate that the shifted feasible set associated with R1 can compensate, to some extent,
for the relatively large deviations between predicted values computed with the detailed and
reduced models. This compensation can result in the mitigation of deviation measures in pre-
diction intervals and posterior distributions of model predictions. Because the reproduction
of model predictions and their uncertainties is what ultimately matters in many problems,
the reduced model R1 may be accepted as sufficient for these purposes.
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Chapter 6

Summary and Conclusions

In this dissertation, several measures were developed to assess how uncertainties in the model
parameters and in the model predictions behave for reduced models as compared to those
for the detailed model. First, deviations between the predicted values of the detailed and re-
duced models when the model parameters are fixed at the nominal values (δ), constrained to
the prior region (δH), or constrained to the posterior region (δF), were established. The latter
two can be obtained in a numerically efficient way using the B2BDC methodology. Second,
two measures to quantify the difference between feasible sets of the detailed and reduced
models were developed. These two measures are the relative volumes of the feasible sets and
the overlap between feasible sets computed with the detailed and reduced models. The rel-
ative volumes of the feasible sets were estimated with a rejection sampling algorithm, while
the overlap between feasible sets was estimated by uniform samples collected in the feasible
sets using a Gibbs sampling algorithm adopted for B2BDC. Third, the Hellinger distance
measure was adopted to quantify the “distance” between posterior distributions of model
predictions computed with the detailed and reduced models. Fourth, another measure, also
a Hellinger distance measure, was constructed to quantify the “distance” between prediction
intervals of the detailed and reduced models by assuming uniform distributions on the predic-
tion intervals. The prediction intervals represent the uncertainties in the model predictions
and they can be computed in a numerically efficient way with the B2BDC methodology.
Finally, sensitivities of the uncertainties in model predictions were established to measure
the difference in influence of the model parameters on the model predictions between the
detailed and reduced models. The sensitivity measures are the by-products of the B2BDC
computations of the prediction intervals and do not require any extra computational efforts.

In the example with computer-generated ignition delay QOIs in Section 4.2, three re-
duced models, R25, R17, and R12 were tested. The results of this example provide several
implications. First, assessment of the quality of a reduced model without considering pa-
rameter uncertainty may be misleading in that the deviation can be much larger when the
uncertainties in the model parameters are taken into account, as is evidenced by the δ, δH,
and δF results of R17. Second, the reduced-model performance can be quantified by sev-
eral measures of model deviations. Both Hellinger distance measures, based on posterior
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distributions of model predictions (hH’s) and based on prediction intervals (hU’s), enable
the assessment of how uncertainties in the model predictions behave for reduced models as
compared to the detailed model. Comparison of the feasible sets, specifically the difference
in their relative volumes and in the overlap between the feasible sets, provide means to as-
sess how the posterior uncertainties in the model parameters behave for reduced models.
The measures tested in this example showed mutually consistent and qualitatively similar
outcomes.

In the example with experimental ignition delay QOIs in Section 4.3, a limitation of
measures based on sampling was observed. The experimental data (Le’s and Ue’s) used in
this example were shown in previous studies [112, 113] to have disagreement with the model.
As a result of the deficiency in the experimental data, the feasible set in this example has
a very complex shape such that the sampling algorithm missed many parts of the feasible
set. The results indicate that potentially bad data can lead to a substantial challenge for the
sampling algorithm. If no verifiably accurate experimental data exist, computer-generated
data from the solution of the detailed model offer a reliable alternative, in which the desired
level of reduced-model accuracy can be prescribed by specifying the accepted ranges of
variations in prediction of training targets. The results also illustrate that the measures
based on optimization using the B2BDC methodology (δH’s, δF ’s, and hU’s) are free from
sampling-related issues caused by the complex shape of the high-dimensional feasible sets.
Generally, measures based on direct sampling could become limited by the computational
cost when sampling uniformly in the feasible set is expensive. In such situations, the B2BDC
framework offers a more practical alternative by quantifying the propagated uncertainty
through numerically efficient computations of uncertainty intervals and their overlap, all
with the added benefit of obtaining the uncertainty sensitivities.

In the soot oxidation example in Section 5.3, three reduced models, R1, R5, and R10
were tested. The reduction of a stochastic KMC soot oxidation model was accomplished by
adapting the “detailed-reduction” method, which is otherwise difficult to achieve with other
reduction methods introduced in Section 1.2.1. The R1 reduced model reproduced accu-
rately the prediction intervals (relatively low hU’s) and the posterior distributions of model
predictions (relatively low hH’s) computed with the detailed model. The accurate reproduc-
tion of model predictions and their uncertainties by the reduced model R1 implies that R1
is an acceptable reduced model. Yet, predicted values of model predictions computed with
R1 have relatively large deviations from those with the detailed model under uncertainties
(relatively large δH’s and δF ’s). In addition, the feasible set associated with R1 has a mod-
erate overlap (around two thirds) with the feasible set for the detailed model, although their
estimated relative volumes are quite close to each other. The results obtained for differ-
ent measures indicate that the shifted feasible set associated with R1 can compensate for
the relatively large deviations in predicted values, and this compensation can result in the
mitigation of deviation measures based on prediction intervals and posterior distributions of
model predictions.
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Appendix A

Reduced models of syngas combustion

Table A.1: Deviations between predicted values com-
puted by the detailed and reduced models with the nom-
inal parameter values, δe, and over the prior region, δHe

e δe δHe (inner) δHe (outer)

R25 R17 R12 R25 R17 R12 R25 R17 R12

1 0.000 0.002 0.054 0.002 0.006 0.107 0.002 0.006 0.107
2 0.002 0.012 0.245 0.006 0.043 0.567 0.006 0.043 0.567
3 0.002 0.013 0.137 0.016 0.099 0.245 0.016 0.099 0.246
4 0.001 0.004 0.173 0.002 0.009 0.354 0.002 0.009 0.354
5 0.000 0.004 0.016 0.008 0.019 0.039 0.008 0.019 0.039
6 0.001 0.004 0.133 0.016 0.069 0.233 0.016 0.069 0.233
7 0.002 0.002 0.079 0.018 0.071 0.229 0.020 0.071 0.229
8 0.001 0.002 0.030 0.010 0.023 0.065 0.010 0.024 0.065
9 0.003 0.012 0.496 0.010 0.040 2.279 0.011 0.040 2.279
10 0.003 0.011 1.074 0.011 0.027 4.360 0.011 0.028 4.360
11 0.005 0.054 0.020 0.020 0.126 0.114 0.021 0.126 0.116
12 0.002 0.003 0.142 0.004 0.016 0.275 0.004 0.016 0.275
13 0.002 0.006 0.164 0.004 0.018 0.338 0.004 0.018 0.338
14 0.001 0.010 0.037 0.007 0.021 0.061 0.007 0.021 0.062
15 0.001 0.002 0.058 0.005 0.011 0.115 0.005 0.011 0.115
16 0.001 0.049 0.046 0.020 0.114 0.101 0.022 0.114 0.104
17 0.002 0.010 0.013 0.017 0.034 0.046 0.017 0.034 0.047
18 0.002 0.037 0.402 0.008 0.164 1.082 0.008 0.164 1.082
19 0.001 0.004 0.030 0.005 0.013 0.075 0.005 0.013 0.075
20 0.001 0.007 0.304 0.004 0.021 0.892 0.004 0.021 0.892
21 0.000 0.001 0.014 0.006 0.015 0.037 0.006 0.015 0.037
22 0.001 0.002 0.161 0.023 0.063 0.310 0.026 0.064 0.310
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23 0.002 0.001 0.047 0.007 0.011 0.111 0.007 0.011 0.111
24 0.001 0.029 0.365 0.006 0.118 1.002 0.007 0.118 1.002
25 0.001 0.003 0.050 0.002 0.007 0.108 0.002 0.007 0.108
26 0.001 0.003 0.114 0.003 0.010 0.222 0.004 0.010 0.222
27 0.002 0.003 0.028 0.010 0.014 0.062 0.010 0.014 0.062
28 0.001 0.034 0.039 0.019 0.069 0.071 0.020 0.069 0.071
29 0.001 0.005 0.031 0.007 0.017 0.065 0.007 0.017 0.066
30 0.000 0.022 0.001 0.022 0.074 0.090 0.023 0.075 0.090
31 0.000 0.000 0.050 0.004 0.013 0.092 0.004 0.013 0.092
32 0.004 0.052 0.036 0.027 0.144 0.154 0.031 0.144 0.158
33 0.001 0.005 0.077 0.010 0.054 0.157 0.010 0.054 0.157
34 0.004 0.016 0.130 0.036 0.248 0.446 0.039 0.249 0.446
35 0.005 0.044 0.004 0.028 0.134 0.149 0.030 0.135 0.149
36 0.001 0.009 0.063 0.006 0.020 0.130 0.007 0.020 0.130
37 0.000 0.004 0.070 0.007 0.012 0.138 0.007 0.012 0.138
38 0.003 0.003 0.015 0.018 0.033 0.094 0.020 0.035 0.094
39 0.002 0.013 0.288 0.005 0.029 0.771 0.005 0.030 0.771
40 0.003 0.016 0.257 0.027 0.170 0.560 0.027 0.171 0.560
41 0.001 0.035 0.055 0.017 0.063 0.082 0.017 0.065 0.083
42 0.002 0.013 0.016 0.016 0.041 0.037 0.016 0.041 0.038
43 0.001 0.003 0.053 0.002 0.006 0.108 0.002 0.006 0.108
44 0.001 0.018 0.131 0.020 0.083 0.280 0.021 0.084 0.280
45 0.002 0.003 0.103 0.015 0.050 0.207 0.015 0.050 0.207
46 0.004 0.004 0.043 0.010 0.030 0.107 0.010 0.030 0.107
47 0.004 0.009 0.012 0.012 0.038 0.084 0.013 0.038 0.084
48 0.000 0.003 0.010 0.011 0.032 0.052 0.011 0.033 0.052
49 0.001 0.002 0.033 0.006 0.012 0.082 0.006 0.013 0.082
50 0.002 0.001 0.052 0.006 0.010 0.109 0.007 0.011 0.109
51 0.002 0.002 0.068 0.013 0.036 0.144 0.013 0.037 0.145
52 0.005 0.005 0.013 0.028 0.028 0.041 0.028 0.029 0.043
53 0.001 0.001 0.062 0.004 0.014 0.114 0.004 0.014 0.114
54 0.003 0.047 0.035 0.016 0.082 0.081 0.017 0.082 0.082
55 0.001 0.019 0.055 0.032 0.230 0.310 0.036 0.230 0.310
56 0.001 0.005 0.008 0.009 0.028 0.052 0.009 0.028 0.052
57 0.002 0.006 0.282 0.004 0.016 0.665 0.004 0.016 0.665
58 0.000 0.001 0.009 0.009 0.034 0.072 0.009 0.034 0.073
59 0.001 0.006 0.022 0.010 0.022 0.063 0.010 0.023 0.063
60 0.001 0.009 0.121 0.012 0.063 0.176 0.013 0.063 0.176
61 0.001 0.012 0.087 0.012 0.034 0.185 0.013 0.034 0.185
62 0.001 0.000 0.081 0.012 0.052 0.210 0.013 0.052 0.210
63 0.001 0.001 0.013 0.012 0.037 0.095 0.012 0.038 0.095
64 0.002 0.001 0.045 0.004 0.010 0.090 0.005 0.010 0.090
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65 0.001 0.009 0.082 0.009 0.021 0.163 0.009 0.023 0.163
66 0.001 0.006 0.130 0.004 0.013 0.252 0.004 0.013 0.252
67 0.001 0.001 0.044 0.007 0.014 0.081 0.008 0.015 0.081
68 0.001 0.005 0.061 0.028 0.127 0.249 0.028 0.127 0.250
69 0.007 0.032 0.047 0.022 0.092 0.118 0.024 0.093 0.119
70 0.002 0.007 0.126 0.029 0.177 0.443 0.031 0.177 0.443
71 0.003 0.010 0.132 0.013 0.036 0.271 0.013 0.036 0.271
72 0.000 0.001 0.091 0.018 0.061 0.221 0.018 0.061 0.221
73 0.001 0.005 0.152 0.003 0.014 0.299 0.003 0.014 0.299
74 0.000 0.005 0.160 0.019 0.082 0.299 0.021 0.083 0.299
75 0.002 0.001 0.067 0.003 0.007 0.128 0.003 0.007 0.128
76 0.001 0.001 0.058 0.009 0.040 0.113 0.009 0.040 0.113
77 0.002 0.001 0.084 0.017 0.053 0.223 0.019 0.054 0.223
78 0.000 0.009 0.014 0.023 0.047 0.146 0.025 0.048 0.146
79 0.001 0.002 0.035 0.005 0.016 0.068 0.005 0.016 0.069
80 0.003 0.017 0.027 0.014 0.039 0.050 0.015 0.040 0.051
81 0.001 0.042 0.060 0.025 0.075 0.096 0.025 0.075 0.097
82 0.001 0.003 0.091 0.002 0.007 0.163 0.002 0.007 0.163
83 0.002 0.001 0.039 0.008 0.019 0.080 0.009 0.019 0.080
84 0.001 0.001 0.001 0.009 0.021 0.051 0.009 0.021 0.051
85 0.003 0.005 0.283 0.007 0.018 0.730 0.007 0.019 0.730
86 0.001 0.004 0.080 0.032 0.187 0.335 0.033 0.187 0.335
87 0.000 0.000 0.072 0.005 0.012 0.119 0.005 0.012 0.119
88 0.001 0.003 0.074 0.002 0.009 0.139 0.002 0.009 0.139
89 0.000 0.001 0.014 0.008 0.037 0.093 0.008 0.037 0.093
90 0.001 0.002 0.016 0.007 0.025 0.058 0.007 0.025 0.058
91 0.003 0.092 0.073 0.027 0.174 0.141 0.029 0.174 0.142
92 0.004 0.065 0.007 0.071 0.203 0.213 0.071 0.205 0.216
93 0.004 0.003 0.012 0.008 0.024 0.044 0.008 0.024 0.044
94 0.001 0.014 0.102 0.015 0.047 0.229 0.016 0.048 0.229
95 0.002 0.005 0.222 0.005 0.019 0.494 0.005 0.020 0.494
96 0.001 0.051 0.047 0.032 0.110 0.126 0.033 0.110 0.128
97 0.001 0.000 0.018 0.006 0.013 0.051 0.006 0.013 0.051
98 0.003 0.003 0.011 0.011 0.027 0.069 0.011 0.027 0.069
99 0.000 0.003 0.196 0.023 0.086 0.389 0.026 0.086 0.389
100 0.003 0.004 0.018 0.010 0.034 0.096 0.011 0.034 0.096
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Table A.2: Deviations between predicted values com-
puted by the detailed and reduced models over the pos-
terior region, δFp

p δFp (inner) δFp (outer)

R25 R17 R12 R25 R17 R12

1 0.002 0.005 0.101 0.002 0.006 0.101
2 0.005 0.035 0.486 0.006 0.035 0.491
3 0.013 0.098 0.244 0.016 0.099 0.246
4 0.002 0.006 0.338 0.002 0.007 0.338
5 0.007 0.017 0.036 0.008 0.018 0.038
6 0.015 0.068 0.230 0.016 0.068 0.231
7 0.017 0.070 0.222 0.019 0.070 0.224
8 0.007 0.022 0.060 0.010 0.024 0.061
9 0.009 0.031 1.941 0.010 0.034 2.043
10 0.009 0.026 4.345 0.010 0.027 4.353
11 0.018 0.115 0.113 0.021 0.119 0.116
12 0.003 0.010 0.254 0.004 0.014 0.257
13 0.003 0.013 0.309 0.004 0.015 0.312
14 0.006 0.020 0.059 0.007 0.020 0.060
15 0.005 0.010 0.108 0.005 0.011 0.109
16 0.014 0.104 0.096 0.022 0.108 0.104
17 0.015 0.033 0.039 0.017 0.033 0.046
18 0.007 0.130 0.924 0.008 0.137 0.945
19 0.005 0.010 0.068 0.005 0.012 0.070
20 0.003 0.014 0.738 0.003 0.017 0.779
21 0.003 0.010 0.034 0.006 0.014 0.034
22 0.023 0.060 0.303 0.026 0.064 0.306
23 0.004 0.008 0.104 0.007 0.011 0.104
24 0.006 0.097 0.819 0.007 0.098 0.856
25 0.002 0.006 0.103 0.002 0.007 0.103
26 0.003 0.009 0.210 0.004 0.010 0.212
27 0.010 0.012 0.057 0.010 0.014 0.059
28 0.019 0.066 0.070 0.020 0.067 0.070
29 0.006 0.014 0.060 0.007 0.015 0.061
30 0.020 0.072 0.088 0.023 0.073 0.088
31 0.003 0.010 0.087 0.004 0.011 0.087
32 0.025 0.131 0.116 0.031 0.135 0.158
33 0.008 0.053 0.151 0.010 0.054 0.151
34 0.033 0.237 0.424 0.039 0.242 0.429
35 0.022 0.129 0.148 0.029 0.130 0.149
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36 0.005 0.019 0.122 0.007 0.019 0.124
37 0.006 0.008 0.128 0.007 0.011 0.129
38 0.017 0.030 0.093 0.020 0.033 0.094
39 0.003 0.026 0.643 0.004 0.027 0.665
40 0.025 0.170 0.549 0.027 0.170 0.551
41 0.014 0.063 0.082 0.017 0.064 0.083
42 0.012 0.041 0.035 0.015 0.041 0.038
43 0.001 0.005 0.104 0.002 0.006 0.105
44 0.017 0.069 0.254 0.020 0.073 0.256
45 0.012 0.049 0.203 0.015 0.050 0.204
46 0.006 0.030 0.105 0.009 0.030 0.106
47 0.009 0.037 0.083 0.013 0.038 0.083
48 0.011 0.032 0.047 0.011 0.033 0.049
49 0.003 0.011 0.076 0.005 0.011 0.077
50 0.005 0.008 0.102 0.007 0.010 0.103
51 0.012 0.036 0.142 0.013 0.037 0.142
52 0.023 0.027 0.037 0.027 0.029 0.039
53 0.003 0.012 0.106 0.004 0.014 0.107
54 0.014 0.079 0.079 0.017 0.080 0.082
55 0.030 0.206 0.296 0.036 0.210 0.301
56 0.008 0.026 0.046 0.009 0.027 0.046
57 0.003 0.012 0.609 0.003 0.013 0.613
58 0.008 0.032 0.071 0.009 0.033 0.073
59 0.006 0.019 0.057 0.010 0.022 0.059
60 0.010 0.061 0.174 0.012 0.063 0.175
61 0.009 0.032 0.173 0.012 0.032 0.175
62 0.012 0.044 0.207 0.013 0.052 0.207
63 0.011 0.037 0.090 0.012 0.038 0.090
64 0.004 0.009 0.083 0.005 0.010 0.084
65 0.007 0.021 0.154 0.008 0.023 0.155
66 0.003 0.012 0.235 0.004 0.013 0.237
67 0.007 0.013 0.076 0.008 0.015 0.076
68 0.028 0.116 0.243 0.028 0.119 0.244
69 0.018 0.090 0.115 0.024 0.092 0.118
70 0.024 0.168 0.429 0.029 0.171 0.433
71 0.010 0.031 0.239 0.013 0.034 0.241
72 0.017 0.060 0.217 0.018 0.061 0.217
73 0.002 0.010 0.277 0.003 0.012 0.277
74 0.018 0.081 0.295 0.021 0.083 0.296
75 0.002 0.004 0.121 0.003 0.006 0.122
76 0.006 0.039 0.111 0.009 0.040 0.111
77 0.016 0.053 0.218 0.019 0.054 0.219
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78 0.021 0.044 0.143 0.024 0.045 0.146
79 0.004 0.011 0.064 0.005 0.014 0.064
80 0.013 0.037 0.046 0.014 0.038 0.050
81 0.015 0.072 0.086 0.024 0.075 0.097
82 0.002 0.006 0.154 0.002 0.006 0.154
83 0.007 0.016 0.073 0.008 0.019 0.075
84 0.008 0.021 0.039 0.009 0.021 0.044
85 0.006 0.014 0.616 0.006 0.016 0.629
86 0.031 0.181 0.328 0.032 0.183 0.331
87 0.005 0.011 0.113 0.005 0.012 0.113
88 0.002 0.006 0.129 0.002 0.008 0.130
89 0.007 0.035 0.088 0.008 0.036 0.088
90 0.006 0.025 0.056 0.007 0.025 0.056
91 0.026 0.169 0.124 0.029 0.169 0.142
92 0.070 0.183 0.194 0.070 0.192 0.207
93 0.008 0.023 0.038 0.008 0.023 0.039
94 0.012 0.044 0.213 0.016 0.046 0.216
95 0.004 0.017 0.433 0.005 0.018 0.435
96 0.031 0.104 0.124 0.033 0.106 0.127
97 0.004 0.013 0.046 0.006 0.013 0.047
98 0.010 0.026 0.065 0.011 0.027 0.065
99 0.021 0.086 0.385 0.026 0.086 0.386
100 0.009 0.034 0.091 0.010 0.034 0.092



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 92



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 93



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 94



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 95



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 96



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 97



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 98



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 99



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 100



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 101



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 102



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 103



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 104



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 105



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 106



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 107



APPENDIX A. REDUCED MODELS OF SYNGAS COMBUSTION 108

Figure A.1: Histograms for 100 QOIs of detailed (blue) and reduced (brown) model predic-
tions over feasible sets.
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Table A.3: Hellinger distance calculated for the predic-
tion intervals, hU

p , and for the sampled histograms, hH
p .

p hU
p (inner) hU

p (outer) hH
p

R25 R17 R12 R25 R17 R12 R25 R17 R12

1 0.001 0.017 0.499 0.000 0.009 0.509 0.010 0.040 0.860
2 0.003 0.042 0.584 0.002 0.050 0.575 0.007 0.033 0.869
3 0.012 0.038 0.635 0.013 0.034 0.630 0.006 0.128 0.971
4 0.003 0.021 0.469 0.001 0.014 0.486 0.013 0.034 0.890
5 0.002 0.036 0.598 0.004 0.037 0.604 0.010 0.087 0.747
6 0.003 0.036 0.605 0.002 0.028 0.597 0.013 0.111 0.971
7 0.009 0.067 0.576 0.006 0.063 0.575 0.006 0.034 0.906
8 0.003 0.024 0.536 0.002 0.025 0.546 0.004 0.043 0.725
9 0.004 0.055 0.563 0.006 0.055 0.664 0.017 0.037 0.881
10 0.002 0.054 0.617 0.001 0.058 0.562 0.005 0.099 0.971
11 0.007 0.175 0.659 0.003 0.173 0.640 0.009 0.430 0.947
12 0.003 0.031 0.549 0.004 0.040 0.549 0.009 0.036 0.764
13 0.003 0.027 0.515 0.002 0.029 0.520 0.006 0.041 0.760
14 0.003 0.036 0.622 0.005 0.045 0.592 0.004 0.132 0.858
15 0.001 0.011 0.484 0.003 0.011 0.495 0.010 0.052 0.737
16 0.019 0.134 0.692 0.018 0.152 0.653 0.008 0.417 0.998
17 0.015 0.063 0.652 0.008 0.062 0.590 0.006 0.170 0.921
18 0.009 0.077 0.673 0.003 0.088 0.667 0.006 0.179 0.940
19 0.004 0.023 0.641 0.003 0.024 0.636 0.005 0.087 0.879
20 0.002 0.034 0.658 0.002 0.037 0.716 0.011 0.045 0.979
21 0.006 0.037 0.644 0.002 0.037 0.649 0.007 0.091 0.803
22 0.019 0.047 0.669 0.009 0.038 0.649 0.005 0.083 0.990
23 0.002 0.025 0.519 0.002 0.018 0.531 0.005 0.052 0.737
24 0.001 0.090 0.627 0.002 0.094 0.642 0.004 0.123 0.929
25 0.000 0.023 0.511 0.001 0.015 0.516 0.012 0.034 0.868
26 0.002 0.015 0.482 0.003 0.015 0.494 0.011 0.053 0.750
27 0.008 0.026 0.558 0.008 0.018 0.561 0.007 0.052 0.739
28 0.005 0.062 0.640 0.005 0.057 0.565 0.005 0.184 0.953
29 0.008 0.040 0.594 0.001 0.028 0.590 0.004 0.115 0.759
30 0.008 0.073 0.601 0.017 0.083 0.605 0.009 0.165 0.864
31 0.013 0.014 0.522 0.006 0.015 0.531 0.015 0.028 0.729
32 0.017 0.145 0.687 0.025 0.170 0.682 0.007 0.320 0.938
33 0.004 0.053 0.541 0.002 0.060 0.541 0.006 0.100 0.845
34 0.008 0.161 0.635 0.004 0.138 0.547 0.013 0.298 1.000
35 0.002 0.257 0.729 0.005 0.224 0.702 0.005 0.245 0.898
36 0.006 0.010 0.633 0.008 0.016 0.606 0.005 0.124 0.901
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37 0.004 0.033 0.605 0.007 0.036 0.609 0.007 0.116 0.811
38 0.005 0.083 0.681 0.005 0.076 0.599 0.004 0.122 0.874
39 0.002 0.067 0.591 0.000 0.080 0.599 0.007 0.027 0.893
40 0.003 0.183 0.592 0.011 0.197 0.538 0.008 0.223 0.999
41 0.007 0.131 0.624 0.005 0.099 0.554 0.006 0.190 0.964
42 0.005 0.038 0.588 0.007 0.052 0.594 0.013 0.142 0.786
43 0.002 0.011 0.487 0.001 0.012 0.489 0.012 0.044 0.866
44 0.011 0.036 0.636 0.012 0.042 0.554 0.013 0.166 0.860
45 0.008 0.028 0.621 0.006 0.019 0.613 0.011 0.071 0.959
46 0.011 0.019 0.561 0.005 0.014 0.569 0.009 0.035 0.885
47 0.002 0.044 0.573 0.006 0.040 0.579 0.006 0.071 0.825
48 0.018 0.034 0.544 0.011 0.037 0.556 0.007 0.040 0.773
49 0.006 0.026 0.615 0.006 0.022 0.620 0.004 0.121 0.760
50 0.006 0.031 0.515 0.004 0.027 0.522 0.007 0.059 0.731
51 0.008 0.012 0.593 0.003 0.021 0.587 0.011 0.046 0.897
52 0.014 0.035 0.514 0.022 0.035 0.529 0.007 0.038 0.813
53 0.010 0.029 0.526 0.007 0.028 0.531 0.010 0.043 0.716
54 0.015 0.117 0.675 0.010 0.135 0.651 0.007 0.297 0.932
55 0.017 0.301 0.657 0.013 0.297 0.630 0.008 0.111 0.928
56 0.008 0.032 0.538 0.007 0.026 0.545 0.012 0.030 0.758
57 0.001 0.029 0.503 0.002 0.031 0.520 0.007 0.070 0.859
58 0.013 0.061 0.664 0.007 0.050 0.632 0.006 0.106 0.882
59 0.006 0.033 0.554 0.007 0.027 0.555 0.004 0.077 0.731
60 0.008 0.032 0.655 0.003 0.026 0.647 0.012 0.090 0.971
61 0.018 0.029 0.594 0.018 0.029 0.539 0.005 0.159 0.896
62 0.007 0.023 0.589 0.006 0.033 0.594 0.008 0.052 0.934
63 0.005 0.034 0.540 0.005 0.033 0.545 0.007 0.032 0.782
64 0.009 0.017 0.542 0.002 0.004 0.540 0.008 0.038 0.746
65 0.009 0.012 0.653 0.009 0.022 0.619 0.004 0.128 0.880
66 0.004 0.017 0.536 0.000 0.022 0.536 0.009 0.028 0.769
67 0.005 0.031 0.614 0.005 0.026 0.620 0.005 0.113 0.778
68 0.011 0.160 0.571 0.010 0.169 0.542 0.020 0.044 0.889
69 0.018 0.138 0.731 0.008 0.141 0.659 0.012 0.366 0.994
70 0.021 0.207 0.662 0.010 0.196 0.637 0.016 0.146 0.998
71 0.005 0.040 0.641 0.015 0.042 0.573 0.016 0.106 0.894
72 0.004 0.032 0.641 0.008 0.030 0.631 0.018 0.066 0.926
73 0.002 0.026 0.516 0.003 0.025 0.517 0.012 0.037 0.836
74 0.009 0.057 0.646 0.009 0.063 0.637 0.014 0.098 0.999
75 0.001 0.011 0.490 0.001 0.010 0.499 0.010 0.061 0.749
76 0.003 0.015 0.595 0.005 0.012 0.601 0.011 0.054 0.888
77 0.008 0.027 0.613 0.002 0.026 0.604 0.020 0.053 0.908
78 0.013 0.077 0.669 0.005 0.078 0.506 0.014 0.110 0.849
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79 0.002 0.015 0.527 0.001 0.015 0.533 0.027 0.024 0.736
80 0.006 0.061 0.619 0.002 0.047 0.582 0.010 0.156 0.856
81 0.007 0.089 0.677 0.008 0.075 0.550 0.022 0.203 0.996
82 0.010 0.011 0.519 0.003 0.009 0.537 0.016 0.046 0.774
83 0.004 0.029 0.529 0.005 0.028 0.539 0.008 0.052 0.718
84 0.005 0.029 0.618 0.006 0.029 0.624 0.004 0.068 0.771
85 0.003 0.077 0.532 0.005 0.087 0.535 0.012 0.056 0.856
86 0.008 0.288 0.623 0.012 0.287 0.632 0.017 0.098 0.934
87 0.002 0.009 0.548 0.004 0.014 0.562 0.007 0.044 0.740
88 0.032 0.017 0.528 0.002 0.013 0.545 0.011 0.042 0.768
89 0.007 0.028 0.579 0.006 0.019 0.586 0.005 0.022 0.767
90 0.006 0.019 0.611 0.005 0.019 0.620 0.005 0.052 0.847
91 0.007 0.229 0.672 0.003 0.216 0.628 0.005 0.654 0.998
92 0.030 0.340 0.690 0.032 0.352 0.695 0.016 0.389 0.916
93 0.004 0.007 0.510 0.003 0.015 0.514 0.009 0.023 0.759
94 0.024 0.007 0.651 0.018 0.007 0.533 0.017 0.186 0.909
95 0.004 0.048 0.542 0.004 0.052 0.532 0.017 0.034 0.812
96 0.009 0.110 0.620 0.003 0.129 0.596 0.010 0.328 0.950
97 0.004 0.013 0.520 0.005 0.014 0.523 0.010 0.032 0.730
98 0.004 0.014 0.581 0.008 0.015 0.592 0.012 0.033 0.763
99 0.016 0.121 0.702 0.011 0.105 0.666 0.019 0.119 0.999
100 0.010 0.053 0.669 0.008 0.053 0.637 0.005 0.094 0.821
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Figure A.2: QOI prediction intervals computed with the detailed, D, and reduced, R25, and
R17, models; vertical red lines are inner-bound prediction intervals, vertical blue lines are
outer-bound prediction intervals, and horizontal dashed lines are prediction intervals of the
detailed model.
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Figure A.3: Sensitivity of prediction interval for 100 QOIs with respect to the prediction
intervals of the rest of the QOIs (left panels) and with respect to the uncertainty intervals
of model parameters (right panels). Colored in red are the sensitivities corresponding to the
model parameters that are absent from the model displayed in the next panel below.
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Table A.4: Deviations between predicted values com-
puted by the detailed and reduced models with the nom-
inal parameter values, δe, over the prior region, δHe , and
over the posterior region, δFp

e|p δe δHe (inner) δHe (outer) δFp (inner) δFp (outer)

R25 R17 R25 R17 R25 R17 R25 R17 R25 R17

1 0.000 0.003 0.007 0.009 0.007 0.010 0.002 0.007 0.005 0.009
2 0.009 0.001 0.010 0.017 0.010 0.018 0.006 0.010 0.010 0.016
3 0.003 0.008 0.007 0.038 0.008 0.038 0.005 0.023 0.006 0.027
4 0.001 0.002 0.014 0.016 0.014 0.016 0.007 0.008 0.013 0.013
5 0.001 0.005 0.006 0.019 0.006 0.019 0.004 0.004 0.006 0.015
6 0.000 0.000 0.012 0.015 0.013 0.015 0.009 0.008 0.011 0.012
7 0.000 0.001 0.010 0.011 0.011 0.011 0.006 0.009 0.010 0.009
8 0.001 0.000 0.013 0.012 0.013 0.012 0.007 0.008 0.010 0.010
9 0.005 0.002 0.042 0.049 0.043 0.052 0.032 0.030 0.042 0.050
10 0.004 0.003 0.019 0.021 0.019 0.022 0.011 0.017 0.016 0.021
11 0.003 0.001 0.030 0.028 0.033 0.029 0.024 0.016 0.031 0.027
12 0.003 0.004 0.013 0.016 0.013 0.018 0.006 0.009 0.013 0.015
13 0.001 0.004 0.006 0.013 0.006 0.013 0.005 0.007 0.006 0.009
14 0.001 0.001 0.006 0.013 0.006 0.013 0.006 0.007 0.006 0.010
15 0.000 0.008 0.017 0.028 0.019 0.028 0.014 0.018 0.018 0.024
16 0.003 0.005 0.024 0.032 0.024 0.032 0.013 0.026 0.019 0.031
17 0.001 0.008 0.009 0.026 0.011 0.026 0.007 0.009 0.010 0.022
18 0.001 0.063 0.041 0.167 0.041 0.170 0.035 0.152 0.039 0.164
19 0.002 0.005 0.024 0.041 0.024 0.043 0.011 0.032 0.020 0.034
20 0.003 0.005 0.010 0.015 0.010 0.016 0.007 0.011 0.009 0.014
21 0.001 0.004 0.004 0.014 0.004 0.014 0.002 0.010 0.003 0.012
22 0.001 0.006 0.005 0.045 0.005 0.045 0.004 0.035 0.004 0.043
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Figure A.4: Histograms for 22 QOIs of detailed (blue) and reduced (brown) model predictions
over feasible sets.
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Table A.5: Hellinger distance calculated for the predic-
tion intervals, hU

p , and for the sampled histograms, hH
p .

p hU
p (inner) hU

p (outer) hH
p

R25 R17 R25 R17 R25 R17

1 0.001 0.058 0.058 0.051 0.184 0.269
2 0.003 0.024 0.023 0.049 0.258 0.219
3 0.012 0.053 0.026 0.054 0.193 0.092
4 0.003 0.038 0.052 0.036 0.074 0.054
5 0.002 0.076 0.042 0.053 0.221 0.244
6 0.003 0.066 0.027 0.072 0.138 0.442
7 0.009 0.062 0.008 0.061 0.093 0.469
8 0.003 0.028 0.025 0.028 0.138 0.392
9 0.004 0.085 0.024 0.108 0.184 0.437
10 0.002 0.009 0.016 0.020 0.125 0.075
11 0.007 0.063 0.035 0.077 0.247 0.402
12 0.003 0.055 0.022 0.082 0.180 0.068
13 0.003 0.020 0.030 0.019 0.036 0.048
14 0.003 0.101 0.061 0.041 0.091 0.344
15 0.001 0.050 0.088 0.035 0.229 0.564
16 0.019 0.005 0.027 0.008 0.018 0.036
17 0.015 0.127 0.081 0.049 0.397 0.748
18 0.009 0.422 0.040 0.412 0.039 0.994
19 0.004 0.016 0.019 0.012 0.019 0.060
20 0.002 0.071 0.046 0.055 0.064 0.461
21 0.006 0.113 0.027 0.059 0.047 0.162
22 0.019 0.014 0.003 0.015 0.030 0.361
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Figure A.5: QOI prediction intervals computed with the detailed, D, and reduced, R25, and
R17, models; vertical red lines are inner-bound prediction intervals, vertical blue lines are
outer-bound prediction intervals, and horizontal dashed lines are prediction intervals of the
detailed model.
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Figure A.6: Sensitivity of prediction interval for 22 QOIs with respect to the prediction
intervals of the rest of the QOIs (left panels) and with respect to the uncertainty intervals
of model parameters (right panels). Colored in red are the sensitivities corresponding to the
model parameters that are absent from the model displayed in the next panel below.
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[59] M. T. Reagan, H. N. Najm, P. P. Pébay, O. M. Knio, and R. G. Ghanem. Quantifying
uncertainty in chemical systems modeling. Int. J. Chem. Kinet. 37 (2005), pp. 368–
382.

[60] Ilias Bilionis, Nicholas Zabaras, Bledar A. Konomi, and Guang Lin. Multi-output sep-
arable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty
quantification. Journal of Computational Physics 241 (2013), pp. 212–239.

[61] Rohit Tripathy, Ilias Bilionis, and Marcial Gonzalez. Gaussian processes with built-in
dimensionality reduction: Applications to high-dimensional uncertainty propagation.
Journal of Computational Physics 321 (2016), pp. 191–223.

[62] Khachik Sargsyan. Surrogate Models for Uncertainty Propagation and Sensitivity
Analysis. Handbook of Uncertainty Quantification. Ed. by R. Ghanem, D. Higdon,
and H. Owhadi. Cham, Switzerland: Springer, Cham, 2017, pp. 673–698.

[63] David Miller and Michael Frenklach. Sensitivity Analysis and Parameter Estimation
of Dynamic Modeling of Chemical Kinetics. International Journal of Chemical Ki-
netics 15 (1983), pp. 677–696.

[64] Marc Kennedy and Anthony O’Hagan. Bayesian calibration of computer models. J.
R. Statist. Soc. B 63 (2001), pp. 425–464.

[65] Youssef M. Marzouk, Habib N. Najm, and Larry A. Rahn. Stochastic spectral methods
for efficient Bayesian solution of inverse problems. Journal of Computational Physics
224.2 (2007), pp. 560–586.

[66] P. Stark and L. Tenorio. A primer of Frequentist and Bayesian inference in inverse
problems. Large-Scale Inverse Problems and Quantification of Uncertainty (2010),
pp. 9–32.

[67] J. Bell, M. Day, J. Goodman, R. Grout, and M. Morzfeld. A Bayesian approach to cal-
ibrating hydrogen flame kinetics using many experiments and parameters. Combust.
Flame 205 (2019), pp. 305–315.

[68] R. Feeley, P. Seiler, A. Packard, and M. Frenklach. Consistency of a reaction dataset.
J. Phys. Chem. A 108.44 (2004), pp. 9573–9583.

[69] T. Russi, A. Packard, R. Feeley, and M. Frenklach. Sensitivity analysis of uncertainty
in model prediction. J. Phys. Chem. A 112 (2008), pp. 2579–2588.



BIBLIOGRAPHY 202

[70] T. Russi, A. Packard, and M. Frenklach. Uncertainty quantification: Making predic-
tions of complex reaction systems reliable. Chem. Phys. Lett. 499 (2010), pp. 1–8.

[71] X. You, T. Russi, A. Packard, and M. Frenklach. Optimization of combustion kinetic
models on a feasible set. Proc. Combust. Inst. 33 (2011), pp. 509–516.

[72] K. Braman, T. A. Oliver, and V. Raman. Bayesian analysis of syngas chemistry
models. Combust. Theory Model. 17 (2013), pp. 858–887.

[73] Jens Prager, Habib N. Najm, and Judit Zádor. Uncertainty quantification in the ab
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