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ABSTRACT

We present an isobar model formalism for analysing the re-
actiona+b > 41+ 2 + 3. Arbitrary spins are allowed for all the .
particles. Polarized particles and weak decays of an outgoing
particle are discussed. We also show how to extend the formalism
to allow an isobar analysis of a three-body subsystem of an n-

particle final state.

&
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INTRODUCTION
In this paper we discuss a general formalism for analysing reac-
tions of the form
atb—-1+2+3
. using the Isobar Model. Previous work has either specialized to the

case of TN — Nmri'9 10-12

or only covers parts of the formalism.
Our formalism is completely general in that it allows arbitrary spins
for ail the particles. The formalism was developed for an analysis of
7N - Nmwr data, 13 which appears as a companion paper.

In Section I we establish our notation and normalization of states,
review the angular momentum decomposition of two-particle states,
and develop formulae fér phase space and differential cross sections.
Section II deals with the T-matrix elements themselves and derives the
equations for the differential and total cross sections. Section III deals
with polarized particles, either incident or final, and with weak decayé
of an outgoing pérticle. Section IV treats the problem of analysing a
three-body subsystem of an n-body final state. The appendices include
a review of angular momentum, a discussion of the reaction
a+b - c¢c+d using our notation, and the details of some of the more
important derivations.

SECTION I

In this section we establish our notation. We consider the reaction
"a+b-1+2+3, where a is the beam, b the target, and 1,2,3 are
the three outgoing particles. We let j, k, and 1 represent any cyclic
permutation of 1,2, and 3. The diparticle is always composed of
particles k and 1. All Quantities pertaining to the diparticle are ilndexed
by a subscript jo The following quantities are summarized in Fig. 1.

a. Total CMS energy and angular momentum - W, J

b. CMS four-momenta - P, Py Qj Qk Ql

-2

c. Particle spins - 0,999 %y

d. CMS helicities - B Hp p.J. My My

e. Mass of diparticle - wj

f. Spin and CMS helicity of the diparticle - jJ. xj

g. Incident orbital angular momentum and total spin - L, S

h. Outgoing orbital angular momentum and total spin - Lj' Sj

In the diparticle rest-frame we have the quantities

i. Four-momenta of the decay particles - Qe q1
j» Helicities of the decay particles - Ve V1

k. Orbital angular momentum and total spin of decay particles -

1., s..
)y ] .
Angular momenta are coupled in the following mahner:’
§-= oa + ob
T=1+F%
sj= o, .10,
=T + 5.
5757
§-6.+7..
} ) J
T=L.+8. .
J )]

We assume that L, Lj' and 1j are chosen so as to conserve parity. We

use p to represent a fixed set (p.a My Hj My pl) of all five helicities. For

simplification in later sections, n represents the set of quantities
n=(;J;LS;L.S.; ;.1 s.), 1

{3 i 59955 ;) (1)
where j specifies the grouping of the final-state particles into a single
one (j) and the pair (kl).
We use the helicity formalism with the phase convention of Jacob

and Wick14 (hereafter called JW).
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Particle States, Phase. Spaces, and Cross Sections

One-particle states are defined with the phase convention of JW al-
though the normalization is different. If_\pr)\ represents a state with
momentum p alon‘g the z axis and helicity A, then the géne‘ral state is
defined by [cf. JW Eq. (6)]

[Br) = [p6&:2) = R($:0,-0)F ;. (2)
We choose the normalization to be '
(P10 N | pBoA) = 2ESF B)6 g0 3)

which differs from JW by the factor _2E/(27r)3. We also define -states

Xp)\ by v

_ s-\ _ s-\

X = (+1) R(O,n,O)Qp)\ = (-1) g[:_px. (4)

The genefa.l_x state is given by

| PA) = | -pO®A) = R($:0, 01Xy, - (5)
We shall denote these states by the minus éign on p. Thus

8-\
|-p8A) = (-1)""" |p w8 b +mA). (6)

Clearly these states have the same normalization as l.p9¢,)\ ).

We also need to know how the states |pé¢,)\> transform under
Lorentz transformations. Let the Lorentz transformation be 1, where
p' = 1lp and let U(l) be the unifary operatof for 1. Wick10 has shown

that

U)|pbe,N) =3 DI, (2R)[p'oe.v), (7)

where Q is called the Wigner angle and #fi is a unit ve.ctor along

}? X 1_;; if @ is always taken to be positive. This is clear, since in
the transformation the momentum vector makes a positive rotation
around the direction I—;X f;‘ and the spin lags behind, thus making a
negative rotation with respect to the momentum vector. We discuss

-

2 in detail in a later section.

4.

Multiparticle states are defined as the direct product of one-particle

states. Thus

PRSI REERT RSO A DA LS N PO REE] B AT ISV

and

YR Y ‘_>I R T e.
(BYNY B Npe o+ BN [ By s B2y Pty )

(9)

o 3

AT
i ii

For two-body states it is sometimes more convenient to use the vari-

ables
P=p, + P,
1 2 (10)
- _ 1(-> - -
P= 5P Pz) .
Letting (pf¢) be the polar coordinates of f;, we have
BpoeA N, ) = [ By ) [Br,) s | (11)

with the states on the right-hand side either § or x states. These

states are normalized such that

~ 3 3
- B ' dp 4
'6"1"'1 5)\2)\,2 = j( RO [?,pg¢,x1x2) 2E1'2"'}§g | (;2)

Now . d’p,d’p, = a°Pa’p = a’P p®dpda% , where d’w=dcos6d¢. If W

is the total energy, W = E1 + EZ’ then
E,-E ‘
aw = |W + Bl 21} [ 29R (13)
2 E,E .
: 2p 172
With these two relations it is easy to show that the normalization is
(B 5009, NN, | Popbeh h7)

i

(14)

E,-E
4 { = (BN 3 2
=2 lw+B 3 }6(W'-W)6 B -B)6%(w' -w)b 5. .,

PL ( 2p° > L MMy RN
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In the cen‘cer’ of mass system, P = 0, so this reduces to

<I—3b' = O’P'G'q)', )\'1)\'2 !P = 0,p6¢:>\1)\2 >
(15)

= %" 6(W'-W)63(§'—§)62(w'-w)6>\ O A

171 "2 2
To discuss the decomposition of the two-particle states into angular
momentum states, we work in the two-particle center of mass and
assume particle 2 to be in an y state. For this case, gsing Eq. (11),

we have
B =0,p06 A N,) = |BY, ) | -B%,) = R(¢,9,-¢)Qp)\1xp)\2. (16)
We now define a state of total angular momentum J and z-component
M by
1B = 0,pIM, M\, ) =N [DJ*(4,6,-4)[B=0,p04. 0\, ) d®w, (17)
P s My J ML PO PYP, 12 »

where \ = )_\1-)\2. Using Eq. 15 and the normalization properties of

the D-functions, we have

(P

]

1 ] —_
0,p'I'M ,)\'1)\2 | P - (),pJM,)\i)\Z )
(18)

- N.NF 4r_ 4W,

3 '
Ny 2T P BB w-w,

prrg18e 10 By o1
JI' MM )\1)\'1 xzxz
where W is the total CMS energy. Thus we choose

1/2 1/2
(2741
Ny= ( I ) <z$7> . (19)

The factor (p/4W)1/2 [cf. JW Eq. (22)] comes from our choice of
normalization for the one-particle states. Using Eq. (17), the trans-

formation matrix is

-6-

(B'= 0,p' 86\, N, | B = 0,pIM,\, N, )
e | S 20

1/2 -(1/2)
2T + 1 J % 3
=<T> i Dj (9.6, —¢)8 B -B)s(W-W)8y 8 -
1717272
In terms of the orbital and spin angular fnomentum, L and S, we have

the standard expansion:

|F=0,pIM, LS )

Y 27 +1

1/2
2L + 1
12

[P =0,pIM. AN, ),

with the normalization

(Br=0.prM,L'S'| B=0,pIM LS )= 6 6, .8 5 & B-B)sw-w

(22)
Ifparticle 1 is a photon, one instead usually uses the multipole
expansion
|j$ = 0, pIM, jm )
. . (21a)

=3 (21t 1/2(_1)"c(' S, TIN,, -})|B = 0,pIM, A\, )
| ZRTF D P2gr SRy mRHE = T PIML Ry Ry 7
2k

where the total {spin plus orbital) angular momentum and parity of the

photon are j and w = (-1)J+erespectively.\ For e = 0, we have the elec-
tric 2)-pole and for e = 1, we have the magnetic Zj-pole. These states

are normalized such that

<‘§|= 0,p'J'M', §'n' I P-o, pIM, ]TT'> = 6JJ" 5MM'6jj' 61””.63(?5' _i)")ﬁ(wl -W).
(22a)

In the rest of this section wedeal indetail withthe numerical factors
appearing in cross-section formulae. The normalization, Egs. (3) and

(10), are such that the number of particles of type i in a volume V is
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ZEiV/(Zn)?’.N In'a volume V the total number of states available is

v d3pi/_(2ﬂ’)3, so that the density of final states per particle is d3pi/ZEi'

Thus the number of three-particle final states available, dp_F, is given
3 :
by S, \ (o, \ [ _
' dpp =\ 75 2E2> 2E3> ‘ : (23)
1 2 3 .
The probability of transition (in all space and time, Vt =) is given by
4.0 o ie2
| & Pt - Pin)M| dpps _ (24)

where M is the tranéition matrix element with our normalization of

states, i.e., M = {out lT | in). The relation with the S-matrix is _

. 4 : . '
(out|S|in) = 8 ut,in * 18 (PP (out| T|in) . (25)

Equation 24 then gives

4 2 _lim vVt .4 2
e (PoutPinM | = Vt+w 7 Pout~Pin | M| (26)
- (2m)
so that the transition probability per unit volume per unit time is
4.4 2
(2m) "85 (P P, ) [ M| “dep . (27)

With the normalization of Eq. 3, the incident flux is

ZEa ZEb Pa Pb _ aF
3l ooa\EC TR )T 6 - 28
(2w) " L2m) a b/ (2m)
. . . : 2 2 2,1/2
where  F is the invariant flux factor and F ={ (pa- pb) —mamb] R

In the CMS, F = pW.
The density of final states dpp together with the 5% function of .
Eq. (27) give

_ 4
dp =6 Pyt

in
Berman and Jacob15 have discussed this phase space and reduced it to

1

dp = 3 dE1 dE2 dcos® d¢ de (30)

where ©,3, and a are the Euler angles specifying the orientation of the

)dpg- - (29)

-8-

final three-particle state with respect to the incident system. Equation

(30) canbe further manipulated to give

1 4% 2
dp = 3 wai dw1 dcose1 dcos® dé da ‘ (3A1a)
1 45 -
= g ~w dw, dcosf, dcos® d$da (31b)
= % (aw?)™? dwi dwg dcos® d§ da, (31¢)

where Wy is the invariant mass of partic‘ies 2 and 3, and 91 is the angle
between pafticles 1 and 2 in the (23) CMS, Q, is the momentum of
Particle 1 in the (123) CMS, and 4y is the momentum of particle 2 or 3'
in the (23) rest frame. |

The differential cross section for the ;:‘ase of spinless particles is

112 2 '
do = 3 |M|“dp, (32)
which is the basic expression we use in the .calculation of our formulae.
SECTION I

Initially we discuss the reaction proceeding through just one inter-
mediate isobar, i.e., j is always fixed at a certain value of 1,2,. or 3.
Later we treat the case of more than one type of diparticle.

In terms of the transition operator, T, the matrix elements in the

center of mass are

fp. = @SJ-Hj:ékaral p'l’TlpalJ'a' Pbe>' (33)
The operator T is assumed to be the product of a production operator
Tp and a decay opérator Td. Assuming that only two-body intermediate

states are produced, we have

/d3Qm d3Qn 3 3 3

e | Moty 2 Em 2 En n m n
o~ - - — - - — )—» -
<ij'j’ Qk“k’ Ql“l tTd[ Qm""m’ ann> <QmMm’ Qn“n ]Tp‘ paM:=1"pb}‘Lb>'

(34)
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Within the Isobar Model one assumes that the intermediate state con-
sists of an isobar state recoiling against a single particle and that Td

operates only on the isobar state, therefore

» <6j“’j’ ESk""k’-Ql"'!'lI Td I_Qmp’rn’ énp'n> |

~ 3
= 2E_% (6j'6m)6ujum @y Ry | T4 b’nun} , (35).
so that Eq. (33) becomes
fp‘ = iz <QkP-k, Qll-"l |Td|' -6_])\,]> <6Jp._]’ = 6])\] ITP IPaP-ar pbp.b> ‘ (36)
J

We have assumed the isobar to be in an y state [ cf. Eq. (5)] and have
changed the isobar helicity to )\j. One term represents the production
of the isobar and particle j; the other term represents the decay of the
isobar into particles k and . We now discuss each term separately.

Production Amplitude

Since we have assumed the diparticle to be in an x state, we use
- e "
. ] -Q.A. | i
Eq. (20) to decompose both 'pap.a,pbp.b) and (-quj, —Qj J.| into angular

momentum states. We have
Qo QN |T [Pors
<_JuJ i l praua Ppip/

1/2; 1/2 ’ :
27 +1 <4w) <4w> T anT
=X —— = —— D (j) D (beam) (37)
4m Q. Mp.-X\, Mu_-
IM p j M j oMy
X (@ =0,QIM,u\, |T_|P =0,pIM, .
( Mo AT | PIM, iy )
Since we have not as yet specified a coordinate system, we do not give
angles as arguments of the D-functions. We will return to this point
iater. Using Eq. (7) from Appendix A and converting from helicity

states to LS states, we have

-10-

D, -8, | T |Pe,p
@'Juj 5] ; | p| P, s Pyt )

1
- W 0) Tz [@L+1) @L. +1]1/2
T LS J
L.S.
i
(38)
X C(0,,0,,8 [u ,-p) CL,S, T 0,1 - )

X GO 135S, [ 1.y =M.} C(L.,S., 7| 0, .-X,
X Gl JiP'J i C0y J” By

J

-1
_ . _, (i~ beam)
By XJ- Mg -k

X D

X (@ = O,QjJM,LJ.SJ.I 'rp| B =0,pIM,LS) .

If particle a is a photon, instead of converting to LS states, one would
prefer to couple to the multipole states defined in Section I. We may
now use rotational invariance to write the reduced partial wave produc-

tion matrix element as
Jjj
0=-0,Q.JM,L.S.|T = =0,pJM,LS) =T W,w.). 3
( ] ] Jl p| p > LSLij( J) (39)

Decay Amplitude -

The decay amplitude is most easily evaluated in the rest frame of the
diparticle. We use Eq. (7) to transform the states. Recalling that the
diparticle is in a x state, its transformation is quite simple. (While
the X state reduces to a simple form in its rest frame, it also implies
a fixed direction for the z-axis, along the direction (—5]. in this frame.
The decay angles Gj and ¢j are then the angles of Ek in this coordinate
system; i.e., only ¢j is unspecified, since the x and y axes are not

yet defined. ) Thus



1=

(B By 1T, -B0)

=% D (6 ")D (6.8,)(q, v,,q.v. | T [j. - \.) . ' (40)
ViV Ve My j N By 1"V k k711 d.J j o o

Using Eq. (4) to convert the states of particle ] to X states, we can
then insert an angular momenturn decomposition. Converting to an LS

representation, we have

( ﬁk“k’élull 'I‘d| -_ijj )

1/2 _
- (e 2.+ 1) %¢ci. .0 s.|vi.-v) Cus.,.] 0,v, v
A %yl e ) Sy ey dil 0 v

)
e/ kN !
i * Op* 1, . J1% 1 01" %
XD (decay)D (6.4 )D (6.4,) (-1) (41)
-)\j VY Vi By Jnk V] 1

X{q =0,q.j.-N.»1s. [T, j.-N).
(= 0sqy ;N Lis, [Tyl 35200

The reduced decay matrix element is then just a function of wj,

(6 0, a5 - N 1sle|J )=BJ (w.)- - (42)
i’ J J J
Recalling the definition of n in Eq. (1) and combining equations 38, 39,

41, and 42 (remember that g stands for the set B By p.j My p.l),' we see

that fp' can be written as

£,° % g,() T,(W,w), | | (43
where
Jj j: .
T, (W, w)) = TLSL s, (W, w) Blj sJ<WJ~’ (44)
and

1/2 -
By = W 1 . _ 1/2
gr(§) = ( 0, qk) (L +1) (L. +1) (21, + 1)]

XClo 0,8 | Hs -y )C(L, S, T |0, Ho-i)

(Eq. 45 continued)

bar with gi.

2=
sz C(o‘,j.,s.lpt.,-_k.)C(L.,S.,:rlo,u.,-k.)DJ Do (j-ibeam)

j B T | )} -1 ) J ] |J‘J' _] a "‘Lb . (45)
XVZ v C(O'k,ol, sj|vk, -Vl)C(]’j’ Sj,_]j [O, _vk-vl) D_)\; Vv (decay)

k1 ;3 k1

g, % -V,

k 1

XD v Jnk) H(61111)( 1) .

Although it is included in' n, we have explicitly written the type of iso-

Since the isobar q\iantum numbers are included in n,
(43) is valid when there are more than one j-type isobar.
Up to this point we have made no mention of a coordinate system and

our formulae are completely general. Some simplification occurs with

various choices of axes.  We choose the Y-axis to be the normal to the

three-particle plane. (Another common choice is to take the Z-axis as

the normal to the three-particle plane.)

?:b’jxék:ékxbl:élxéj' (46)

In the case of the Isobar Model it is then conver_liént to choose the Z-axis
as apolar vector inthe thrée—particle plane. We choose Z along_éj. The

polar angles of the beamare®.and &, while the particles j, k, and lhave polar

angles (Qj,§j), © k’§k)’ and (61, §1) réspectively in the CMS. With our

choice of axes it is clear that <I>J., d ,P areeither 0 or v.and OJ ¥O. These

k' 1
angles are summarized in Fig. 2. In this case we also have
k = - ﬁ Y. For convenience we introduce the angles on B y , where
-1 -
R(aj, Bj,yj) = R{j = beam) = R(§J., -ej , - §j)R(§,@,- $). (47)

We then have the following simplifications in the expression for gg:
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57 1 T
- D
Dy iy 07 DR = DLy (B
0¥ (decay) - & (6.)
K _ ecay) - d - _ .)s
)\j vk Vl v )\j vk v1 j
o, * (48)
D nk) - d (9 )
Yk “’k
0' 0
1
(9 a) ~ 1 ely.
"1“1 J

At this time we can now consider the angles 0;( and 6; . Wick10 dis-

cusses these angles in detail and shows that

k_ , . .
cosej = (coshp - ‘coshO'kcosh o'k) / (smhok smhoi() ,

(49)
cosO} = (coshp - cc;sho'1 coshoi) / (sinh(;r1 sinhO’i) s

where
tanh p = vj = velocity of j in CMS,

tanh o =V

k= velocity of k in CMS,

tan.hok° = velocity of k in (kl) rest frame,
with similar equations for 1. We want to further clarify the sign of the
rotation angles.
rhation in a non-Euclidean plane. Remembering thaf the spin lags be-
hind the momentum during a Lorentz transformation, one sees that for
particle k a positive rotation about the Y-axis is needed, and for par-
ticle 1 a negative rotation about the Y-axis (corresponding to ﬁl =Y

above.) We understand 6;{ and %1 are always positive in Eqs. (48) and

(49). In terms of the Stapp“’ angle £ the Wigner angles are

=6 - 8- Gy

ej =61j +ej-fllj_ ,

(50)

Figure 3 illustrates the effects of the Lorentz transfor-

- : -14-

where ij and elj are the CMS angles between 5). and 61(, 61 re-
spectively.

The Reduced Production and Decay Transition Matrix Elements

We now look at the function Tn in more detail. Tn as defined in
Eq. (44) is composed of two factors and we consider each separately.

Production Matrix Element

J'
The first factor TLSL S. (W,WJ) is the production amplitude. For

convenience near threshold one can explicitly write the barrier pene-

tration factors 17
L. +(1/2)

-1/2 pL +(1/2) (4w)-1/2 J . (51)

(4W)
The charge dependence is also removed by including the isospin vector

addition coefficients. Thus
JJ'

TLSLJ

s. (W, w;)
L+ (1/2), L;+(1/2)
= e P12 Dca P 8,1l ) ———-—-—l-— TIjst_s.(w,wj)
)]
(52)
Jj.
where TLJSL.S.(W’Wj)iS a function slowly varying in wj’

2 and IZ are the i sospin and z-component of isospin for a, Ib and
I: are the isospin and z-component of isospih for b, Ij and Ii are tl;xe
isospin and z-component of isospin for j, ID and 12 are the isospin and
z-component of isospin for the isobar, and I 1is the total isospin.
F}l’rther explicit dependence on W.or wj can be intrcduced as factors in
'rLJstjsj(W,wj). One popular choice is a form factor of the form

-L./2
(1+RZQJ.2) I, (53)

which includes a radius of interaction R.
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Decay Matrix Element

Taking the charge dependence out of the decay term we have
BJ CAE c(is, 1t 1Pk, iy Al (w) (54)
J % ' i
where we have used the same notation as before.
. To evaluate 'Aljs (w ) one uses either the Watson fmal state interaction
i)

theorem or a modified Breit-Wigner function. Using the Watson the-

orem, one takes

. . /2 ' _
P i6 . 5 q :

j e sin k
AlLs 141 <4wj> ' ' = (35)

)] ]
RERCH)
where & is the elastic scattering phase shift at the mass wj. We

1/2

have added the extra factor (qk/4wj) to ensure the proper threshold
behavior in our normalization. With Breit-Wigners one may choose

either the relativistic or nonrelativistic form. For the relativistic case

one uses ‘
: AJ . (ﬁ)-1/2 [wor‘.(wjﬂi/z w
JJ (WoW)-1WoT‘(W)
where

. : : 11 . . .
“and- wg is the resonance mass. Jackson = has given a discussion of

the different forms for p(w). For the nonrelativistic case one uses’

e [rywn/21Y?
{wo -wj)-il"j (Wj)/2 '

is )
Al = (2mwg) (58)

1. s.
) )

where Fj(wjj ‘is defined as before. Both of these forms are defined

such that in the limit of zéro width we have

3; 2 2 2

lim IA.IJ (w)| = 8(wo-w) ‘ (59)
. 8. bl 3

Fj-.o Jd

-16-

Cross Sections and Threshold Dependence

We are still considering just one diparticle pair (k1) but there may
still be multiple isobars in this system. From Eq. 32,
the differential cross section is, for unpolarized incident particles

and without observing the polarizations of the final particles,

2 5 v 7
do = +— , :
do = & E lfp.l dp (60)
where R
- 1 -1 ) ,
—[(Zo'a+ 1) (20b +1)] E . . (61)

Since we are concerned with unpolarized cross sections, we may inte-
grate over a (the angle of rotation about the incident beam) in Eq. (31a)

to give
1'quQ

dp = gt dw2 deos 6, dcos © d3 . (62)
j

The total cross section then becomes

2 * 9, Q.
=V1;F z Z ogheh T (W w)T (W, w)———JJ—dw dcos 6, dcos © d§.
(63)

This expression can then be réduced (as in Appendix C) to give

T (2J+1
°‘pT?3 2o ¥1) (2o +1)le (W’WH dw < (64)

We note that isobars of different quantum numbers in the (kl) subsystem

do not interfere.

If we now use a Breit-Wigner form for AlJ s (w.) and take the limit

17
as I‘j(wj)—» , the cross section reduces to

s (@)

j: 2
. N S j
7777 & o, ) (2o, ) ‘TLSLjSJ.(W’W° ARFNCEY

p

Since in this limit the diparticle has become a stable particle, this

£
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equation should be the same as that for the reaction a+b - ¢ +d.

Comparing with Eq. B.7 of Appendix B, we do have agreement.

Other Isobars

Up to this point we have been dealing with j-type isobars only. Un-
fortunately one usually must include k- and 1 -type isobars as well.
Since we have included the type of isobar in the index n, Eq. (43) is
still valid. For k-type isobars we have

Ti

Ik ik
)B (w, ). (66)
k lk S k 7

T (W,w, )= T (W, w.
n k LSLkSk

and

1/2

W;
gf,(k) = % (Eakka-l_> [ (2L+1) (2L, +1) (21k+1)]_1/2

C(0,:0,S|k,, -1 )C(L, S, T[0, -11y)

X ClO e Ty Syl 2Oy Sy 7101y N 1 At iy i P Vi)
(67)
. I o
V?vjc(.cl,cj,skhl,-Vj)C(lank,Jklo,Vl-Vj)d~ V1’"j( K
Iod Lo, . oLV,
1oy qdd (gl i
d @)dd -6)(-1) .
Vi k vj K. k
For 1l-type isobars we have the equations
Ul i c8
T (Wawy) = TLSLlsl(W’Wl)Bll sl(wl) (68)

and

w 1/2 12
w 1 1
gg'(l) = = <m> [(2L+1) (2L+1) (21,+1)]

(Eq. 69 continued)
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Clo_, 0,8 ln_, -ub)C(L,S,JIO,ua—H-b)

(@) Bpovy)  (69)

J
Z C(0,, 15 1w -MICL, ST 0,0 A) 0, |, .
X3 A At Wt S | 1’"1 LR e TR T

j
| _ . _ 1
k' 51! vj, vk)c(ll’sl’Jl l O,v1 vj)d_)\1 Vj’vk

g%, C(oj,o (6

)
ik 1

. . @ o, -V
aj (ei)dvk (-el;) (-1) K
it KMk

k
In each case we have preserved the cyclic order of j, k, and 1. The
total transition amplitude in the case of more than one subsystem con-

taining isobars is then written as before:

e - [T
£ =T gh ()T (W, w)). (43)
hn
This coherent addition implies some double counting of the amplitudes
which has, in practicél situations, been shown to be small. 18
In the case when there are identical particles present,care has to be

taken to ensure that one uses a correctly symmetrized combination in
Eq. 43. Our cyclic ordering of the particles j, k, and 1 will not neces-

sarily ensure this and this has to be explicitly introduced.

Symmetry Properties of the Amplitudes

We next discuss the symmetry properties of gl’: under certain cir-
cumstances.
Parity: Consider the case of }J.; - W&, the result which occurs under

the operation of parity. In Appendix D we show that

i °b'“b(_1)°j+“

_ g g, + o+
gt =n(-1) * -1 Ry Mg g

J-1) h

where n is the product of all five parities. For any specific problem
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this reduceé the number of independent gﬁ. For the case of wN-»Nrm,

n = - 1 and we have
g M= (-1 lgﬁ%, - (1)
where By is the incident nucleon helicity and Mo is the final nucleon

helicity. Since Tn is independent of u, we have

- TR T ‘
f =z 8 T =28 T . . (72)

Interchange of two particles: We may also discuss the properties of

our amplitudes gi (W?, wi, Wf) under the interchange of two particles
k and 1. Such a change is relevant for discussion of symmetry proper‘-
ties in the presence of two idéntical particles.

In our formalism a c&clic order is always preserved and thus inter-

changing k and 1 leads to a change in the coordinate system; Y- -Y.

Associated with this, we have the changes

W - W, . o .
2 2 . 2 2 2—>w2

WJ—»WJ, Wk le Wl . k'’
© -0, §—~F+m,

3) —»E‘)J., Gk-fel, el—-ek,

—

; n;ej,-ek—» 11-9!-, 61» 1r—9k
2
k™ 9 6'k”’ek'
qi-»ej,o’ o

1 k.

@j :Oan:O’ ‘pk.—_O—»(bk:O,.rEl:Tr» @1:11-, - ' (73)
6
6.

Mg = Har Hp™ My
Hj - Hj' By ™ Fpe .P-l" Py

We find that (see Appendix E) for j-type isobars,
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Hatptibtye 2 2 2,
n] WJ’WI: k

. (74)
R T o L L T R N R I T
= (1) & i o1y ) 4y Jg @ PTIKRTL e
( ) ( 1) ( 1) gnj j'wk’wl )'-
for k-type isobars,
g Habpt; ”1“k(w2 w2 w?)
nk 77T Tk (75)
. [V VI TN TR T s,10.+0 T AR TR UV VY
N a PpPyTheM L S1TOTOR 1 Fabetch, 2 2 2
= ('1) ('1) ('1) gnl WJ,Wk’wl)’
and for l-type isobars,
g Hatpty Mk G2 2 wz)
nl b k (76)

a“b “k"l

s +U +0. | B U T TR T
1 k b""k"1, 2 2 2.
J( 1) gni J (wj, Wy Wy ).

SECTION III

Scattéring from Polarized Targets and the

Measurements of Final Particle Polarizations

"The formalism we have developed ‘can be used to discuss polarization

expe'rimex;ts when the particles have arbitrary spin. However, this
becomes involved and for the sake of_ simplicity' we consider the case
1 By~ M, M;B,, where Misa 0" meson and B is-a 1/2% baryon. 19
We use helicity states for the incident and final particles. The ref-
erence coordinate system we use in all our calculations is OXYZ where
OY is perpendicular to the three-particle decay plane and OZ lies in
the three-particle plane (see Fig.' 2). We have used the prescription

of Jacob and Wick for constructing general states, i.e.,
|p6o, X ) = R($,6,-9) | p00,)). (79)

Now Eq. (79) can be viewed in a passive sense; i.e., it gives the

orientation of the rest frame with respect to OXYZ in which the spin

e
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components \ are defined. This rest frame is.obtained from OXYZ by
the operation R(¢,6, -¢). These final coordinate axes are then the
helicity frame axes. These are described in Fig. 4 and we see that the
particle has spin component X along OZ''' in the coordinate system
Oox'"'y'tzre |

Final Particle Coordinate Systems: . For our final particles the

helicity frame axes are defined .by
oz' =p./ |p:|,
5/ |5l
Vi —_ >
oY - prPk/ ‘PJXPk] ’

ox'

(80)
= Q0Y'X0Z!
and are demonstrated in Fig. 5.

Initial State Coordinate System: In this case the helicities are de-

fined in a rest frame ox.iyizi,

throdgh the Euler angles $, 8, -$; thus, OZ1 is along the incident mo-

which is obtained from OXYZ by rotation

Now, if we use a polarized target, then we define a very

specific initial coordinate system. Let this coordinate system be

Oxyz with Oz along ;a' Then Oxyz is related to OXiY Z, by a rotation

171
a around the OZ1 axis. We have the following relations between co-
ordinate frames:
- OXYZ - OX,Y,Z,
- Oxyz

‘Euler angles $,0, -§,

OXiYiz1

OXYZ - Oxyz

Euler angles 0,0, ¢, (81)
Euler angles $,0,2-§ .

Transition Matrix Elements: We have calculated transition matrix

"elements from initial states defined in the frame OXiYizi, whereas we

require transitions from states defined in Oxyz to discuss scattering
from polarized .targets. If AP- is the amplitude for transition from

OXinz1 and Alp. is the transition amplitude from Oxyz, then

_22-

“ifp, -n e A

A=A e 2 "o ) (82)
T

If we consider only the reactions of the type 7N - Nwn,then Eq. (82). re-

duces to

(83)

Polarization Experiments: We assume we have a coordinate system

Oxyz in which the initial polarization is specified and the final baryon
polarization is described in the helicity frame.’
a) Unpolarized cross sections:

>
p' = (1/2)T. The differential cross section is then written as

The initial density matrix is

e .
= ity 1 12 _ 1 2
I0 = Trace[x' P X ] = > E | ALI = E-E IAP»' . (84)

2 . 1
s . . LR . . - 1 = -
b) Polarized target: The initial density matrix is now p' = E{‘T+ —ﬁbal:]'

We then have a differential cross section
- .
I =Trace[K'pIK'+] =1 1+P_.d01,
P 0 b
{(85)
1 — 2+
I d=i Trace [R' 5, &' 7],
0 b

where ﬁb is the polarization vector of particle b in the Oxyz frame.

-~

c) Final Polarizétion‘(of Particle 1): Here Iopf = (1/2)A'A‘+, where

- . .
Trace (pf) = 4, The final baryon polarization is given by

1 p - 1
0

1 5 (86)

Trace(X'K‘-"o'-I)

d) Depolarization Tensor: For final polarizatiéh from a polarized

target we have — "

L of=arpiat, (87)

R

where Trace ('pf) =1. The component of spin of particle 1 along an axis

M (=X, Y, or Z} is PlM and is given by

-

P = Trace (pfo'

M (88)

1M) )
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Then 4 .
1P, =Trace(d p’A'T 0. )
Y M
(89)
=1, Pt E Py Doy, v
and
1D =1 Trace (X'O' K'+cr ). (90)
0 bi, 1M 2 bi 1M

These results are summarized in Table 1.

e) Decay of Final-State Baryon: If the decay is weak, e g, A-pr’,
then this decay Aangular distribution will analyse the parent baryon
polarization, and thus this is an appropriate place for the discussion
of such situations. We introduce the decay amplitude directly into the
transition amplitude.

We have shown previously [Eq (43)] that the transition amplitude for

the process a+b -+ j+ k +1 can be written as

f =sghT ,
& n °n 'n

where n is summarized in Eq. (2). Now suppose we consider particle

j undergoing weak decay to two other particles and we define their

spin states with respect to the helicity frame axes of the parent particle.

_Then the amplitude for this decay is

D o ‘D
B = (g,m,o,m, | T o,
m, m, (0ym;m, J“J>
(91)
Lde ' pj-m
=3 B C(oi,oz,sdl mi,momi)C(Ld,Sd,o‘j pj-m,m)YL (6
L.S d
d~d
L4Sq
where B is the partial wave amplitude for the decay.

L.S

a%q _ D
B % %= (0,0,L,5,| T }ojuj)- (92)

Thus we find that the final amplitude for producing particles k and 1 in

states l Qkp.k) | le.1> together with the decay products in states

d’ ¢d):
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} oym, ’ <I41r12> with respect to the helicity frame axes of pa{ftiéle j

is

I !
£ ==z B C(0,,0,,5,Im, ,m-m,)
S L R 1rerra !

n

, ' p.-m " b iy . ‘
X (‘T(Ld.Sd,Ojlp.j-m,m) YLJd (64, 94) 8 2’ "3 Tn} (93)

In the case of A decay obtained, for instance, in the reaction

k'p - Avte”

L PTr-’

many simplifications result, o, = 0, m, = 0, and we have

£ =z = .5
holpmy gy BB Lg=0,1

atpMitit T }

1 .
d 1 1
{B C(Ld, 50 3 I“j_mi'mi)

B.-m

i " :
XYp, Cartd &y (95)

al”
Further, if we perform the reactions from polarized targets, defining

a specific initial coordinate system, then

o ’ . —i(ua-ub')a'
f' = e
N L B e L N | : (96)

SECTION 1V

Analysis of Three-body States Obtained in Production Reactions

Another fruitful area for application of the formalism we have de-
veloped is in the study of three-particle states formed in production
experiments. We are particularly concerned with reactions of the type

a+b—-c+X . )
Lo k1, : (97)
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of which therée are many examples being studied at present, e.g.,
T+p—>p+ (Ai’AZ’A3)'
k+p-p+(Q L), (98)
mk) +p— w(k) + N .
We now develop the slight changes necessary to deal with these reac-~
tions. We use a notation essentially the same as that described in
Section I. The only modifications are:

a) We have to define the quantities peftaining to the extra particle c.

We use
o, = intrinsic spin of ¢,
B, — helicity of c, |
P. — four-momentum of c.

b) All quantities referring to particles a,b, and c are measured in
the total CMS.

c) All quantities pertaining to particles j,k, and 1 are measured in
the (jkl) CMS. This includes variables used in the development of the
formulae for the decay of the three-particle state.

d) We do not make a spin-parity decomposition of the incident state,
so that L. and S are not needed. Further, J will represent the total spin
of the (jkl) system and not the overall angular momentum in the process.

e) We use two coordinate systems, S and S', both in the ({jkl)
rest frame. S is used to describe the decay of X ~ jkl. This system
is thé one defined W1th respect to the final state for the discussion of
2 - 3 particle processes in Section II. On the other hand, S' is that
particular coordinate frame, in the rest system of particle X, in which

we choose to describe the spin (or helicity) state [ IM } of X. Thus the

intermediate particle X has spin projection M with respect to the Z'

axis of S' . The choice of S' will reflect our prejudices about the type

-26-

of production process occurring, since one will try to choose S' in
such a way as to make the spin {(or helicity) density matrix of X, P! *
as simple as possible. Thus one would choose, e.g.:

i} S' as the Gottfried-Jackson system.if one is interested in 6ne—-
particle exchange, or generally if one expects a simple t-channel spin
structure;

ii) S' as the helicity frame (defined from the s-channel for the re-
action a + b - ¢ + X) if one is concerned with s-channel heli.city coﬁ-
servation.

The intermediate state ¢ + X will be characterized by a wave func-

tion of the form

nM
g = £ M .s,t)| aM) [ppu ), (99)
nﬁp.c SN ce
where f (M, s,t) is the amplitude to produce in the reaction
BBy

a+b - c+ X astate X with quantum numbers n, i. e, the set(j;J;Lj,SJ.;
jj,lj,sj), and spin projection M in the coordinate frame S'. This ampli-
tude depehds upon [y, the CMS helicities of a, b, and c; s and t,
the Mandelstam invariants for a + b - ¢+ X; and “h,, the mass of X.
For the‘ decay of X we use the coordinate system S, which we have

used earlier in Section II:

z=9y/18,],
Y =0,x0,/18,x8,] (100)
X =YXz

We require the following transition matrix elements for the decay of

X — jkl:
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S <6j”j’6k“k’51_”1 | T |aM)g,

=§1 s(ﬁp. ﬁkp,k lp.llTlnm> S(nm|nM> _ . (101)

_ - — . J' )

where a, B,y are the Euler angles defining the transformation from S
tc; S' . This matrix element depends on all the quantum numbers n, M
of the jkl state, as well as on the helicities “jp’kp'l and the continuous
variables describing .the_ jkl state, I ,a, ﬁ,y,w? and ‘W12{. We will
write briefly G:{:k“l for this decay matrix element. Its calculation
involves the evaluation of <6j“’j' 6}(“1(’ —Q'lp'l l T' nm), which is just the
transition matrix element calculated in Section II, provided that the

™~
factors associated with the partial wave decomposition of the incident

“beam are ignored. From the results of Section II we have -

1/2
uukul mw, 2 1/2
nM =z mM(a B,v) [——-—l—] [(ZLJ-H) (21j+1)] /
Q qk :
. ' T
XZ C.,}:»S |w., -\.) C(L.,S.,J|0,.-\,)D ,e,- .
z 038, |1y -2 ClLy y [ 001e5-2) o n @ é)
(102)
. P J
X T C(0,,0.,8.|v,,-v)Cll.,s.,j.|0,v, -v.)dJ] 6.
v, ©0e 0 55l vie =) Clyospnds 0, ve-vy) —)\J,vk-vl( 5!
O‘ 0 1 (Tl-v1
Xd (6 )4, (-&)(-1) T (h,w,)
Vit Vit ) n J
F'- Hkpl
= nm T (7»( (102a)
Where o JJJ J]
Lm ,wj) =T g (M ,wJ.)Bl < (wJ.) . (103)

1
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The forms and amplitudes we introduce into Tn were discussed in
Section IL
The amplitude for a final state derived from an intermediate state
X of quanturn numbers n, M is then represented by
S ‘
M e _ (104)

BB nM

and the differential cross section for the process is given by

do’ma“’b"L I"'k”'l lnm fl~lit “‘bP- tm.s t)G kapl {2 (105)

Symmietry properties due to parity conservation: If a conventional

choice for S' is made with the Z' axis a polar vector and the Y' axis

an axial vector as in the Cottfried—Jackson frame, then a familiar re-

’

sult is obtained:

[t 3 (o B
“a a(_“ b “b(_“ c c(_i)J-M’

(106)

M _ ma-M )
f::'a“'b’p'c ) fl'l}l'a).-""b_p'c Y!Inanbnc(-i)

where ny is the parity of the intermediate state X. Similar calculations

as those in Appendix D result in

LAl - odp, Optuy o Ophe

“pemHy <H ¥
= (0T Mgy TSy T ey R TRy U

£ aM Ea-M
(107)

Differential cross section:. In general we write the unpolarized

cross section as

.
- TTIY
do « f G {:k Zp fh L Gl 1) : (108)
b Myt n R Ty _
btk

" where do is the differential cross section over seven variables which

we take to be “m, t, a, 5,9, w?, w2 We can also write d¢ in the form

K
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do nn' 5 G“‘jp'kp'l B p'kp“l * (109)
EI MM B b nM ‘M' /,-’
n'M! \ ] 1
where we have defined an unnormalized density matrix
nn' : nM n'M' %
pan = X f f . (110)
MM Habpte HFabphte Habphe
This matrix has the properties
1 ! \ sle
nn - nn ix
PMMm! ~ ("M'M,’
_ J-M J'-M' nn'
=nmyg (-1) (-1) P MM (111)

Integration over afy leads to the well-known result that the Dalitz plot
- distribution is independent of the magnetic quantum number M with

which X is produced. Careful manipulation of Eqs. 102 and 109

leads to the other well-known result that waves of opposite parity do

not interfere in the Dalitz plot.

Use of Eq. (109) allows the measurement of the following parameters

of interest:

'
a) pnMnM, the pr'ocl_uction density matrix,
;. _
b) TLJS the coupling of the intermediate state to the various
i

decay channels.

In the case in which the intermediate state is composed of three

Mo B
pseudoscalar mesons, the expressions for Gn%\;k are simplified since
g. =0, =0, =0, Inthis case we have
i Tk
. . 1/2

Py M (Fmw. 7

TR oJ 1 1/2

M Z Do (@ By) ][ > 4 [(2LJ.+1) (21].+1)]

i\ Qqu i '

(112)

L
A\ m, - O(” ) (\ Tn(‘/n,wj)-

1 1 g

J %
X .z C(L.,j.,J{0,-X,)D 0., - J
(L35 I ;) \ (820, -8) d )
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An analysis of Ai’AZ production using a formalism similar to this has

been performed by Ascoli et al. 20

Clearly we can extend this formalism with only slight modification
to the case of Va group of particles recoiling against the particle X in-
stead of just oné particle c. The internal variables describing this
group of particles enter in the function fl:t g (s, 6,7, - - )

a [



-31-

APPENDIX A
In this appendix we review some of the properties ‘of rotations and
their representations. Most of the material should be familiar but we
wish to restate all the prope-rties used in the text using -our notation.
All sfgn conventions are those of Rose.21
Since a given rotation tﬁay be expressed in a number of different
ways, convenience is usually the"decidir.xg factor. We shall use either
qf two methods. A given fotation will Be specified either by its Euler
. angles, a By, or by the angle and axis of rotation, 6fi. In terms-of the
ahgular momentum operator J, the rotati.on operator R is

sial -ipT -iyJ.  -i6R: T . (A.1)
Ria,p,y) = ¢ Z e Ve Z-e : )

If in some coordinate system, B can be expressed by (-siné, cosd, 0)

then
R(61) = R(¢, 6, -4). . (A.2)
One other equality we use is
R(0,6,0) = R(27,0, -27) = R(-2T, 6, 27). (A.3)

Since the product of two rotations is again a rotation, we have
R(a,B,y) = R@",8",y" )R(@', B',y'). (A.4)
To discuss a matrix representation of the rotationsibR, we consider. .
the vector space spanned by the basis vectors ]Jm> , where
2. ‘s .
J%|jm) = j(+1) |im),
(A.5)
J]im> = mIJm) ,
with J = a.J'x + bJY + c.]'z. (The usual choice for Jis Jz. This choice
fnakes evaluating the matrix elements much easier but is not necessary.)
The elements of the matrix corresponding to R are then given by
D) (R) = (jm |R]jn) . (A.6)

In terms of the matrices, Eq. (A.4) is written
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j = J noan Gl (=L I
D (@ B.Y) > Dmp(a B YTID (et BT YY) (A7)
Expressing R in terms of the Euler angles and making the usua:l.

choice of J = Jz’ the matrix elements simplify to

D) (a,p,y) = e VIG5, (A.8)

where the functions dJrhn(ﬁ) are rea‘l". These functions satisfy the gen-

eral relations

-

®),

i) = ()Pl (g = ()PP &
B = (0™ )= (-™ el

i, _ j-n .j _ jtm Lj
a) m-p) = (-1Pal p) = (-0 AL B,

(A.9)
i - 2j g
al (p+zm) = (-1 &) (B),
j =al
d p=d_@.
The normalization integrals are
j i’ A '
' : L (A.10)
811'2 . -

.'ij(a’ B’Y)Dmlnl(a’ B,y) de dcésp dy N 1)6'jj'6mm'6nn'

We use the same conventions as the Particle Data Group for the

vector addition coefficients:22
Cliyrip0d Imy my) = (Gyimym, )i, 5,5m) . (A.11)
We have the following relations for these coefficients:
L Wit o
C(J1:JZ:J|m1»mZ)=(-1) C(JZ,J1,Jlm2,m1)
ji‘l;jz'j o (A.12)
= (-1) C(Ji,JZ,J l-mi,-mz).
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APPENDIX B

We consider the case of a+b — c +d using our normalization of

states. From Eqs. (29) and (32) we have the differential cross section:
2 3 3
T = 2 .4 d°p d’p
dg = ¥ E IfHI ) (pa+pb-pc—pd)2 Ez 5 Eg (B.1)
and
£, = (PeherPitg | TP i, Py, ) - (B.2)

Assuming that both b and d are in Y states, we have from Eq. (38):

-1/2 \ 1/2
fH = % (pq) / 2J>I:Js [(2L+1) (2L'+1)] / C("a"’b'sl“av -1y,)
L's
(B.3)

XC(L,S, Jlo, p i )CO 50 S -1y )CILY S, 710, -py)

J

(c Ybeam) (B =0,qiM, L's'IT! B= 0, pIM, LS ) .
BeHaHaHy

XD

For simplicity we take the beam to be along the z-axis, in which case

J -1 . pi -1
_ . (¢""beam) = D (¢ 7). (B.4)
Mol Mg My MeHg Ham My ‘
We now have
e a2 3 2
TI%C 'z"i%d = aS“T d°QdWd“w, (B.5)
c d

_ where  represents the polar angles of ¢ in the CMS. Using conser-

vation of energy and CMS momentum together with ¥ = pW, we have

do =(p2)-1 b

. 1/2
A [@L+)@L'+1)] 7/ “Clo_. 0, . S]n . -uy)

L'S' :
(B.6)

XC(Ly S, 710, -1 )Clo 04, S' I _, - )C(L', S, 3lo, botg)

X DY
o mhg My mby

Using Eq. (A.11) and integrating over dzw, using the normalization of

the vector addition coefficients, the cross section becomes

(1) (D=0, q7M, L's'ITIB=0, p7M, Ls)|2 ..

34

. T T .k SR D= st iTlp = 2
o= 5 ¥ e H)ES'(Q—O,qJ‘M,LS TP—O,pJM,LS),
p a b L'S

(B.7)
For the case of 7N — 7N, L and L' are determined by parity, S = §',

and we have

P
o7 =T 2P ITIsPy |2

P

(B.8)

Thus we see that our equations reduce to the usual equations for the
two-body process.
APPENDIX C

This appendix, .along with the following two appendices, details

derivations of text equations. Here we derive Eq. (64). The total
cross section is given by
'rr2 = TR Trquj 2
(o] j—; E r?:m €n8m Tn(W,wj)Tngﬂ;(W,wj) 8WWJ. dwj dcosGj dcos©@d$.
(63)

From Eq. (45), with our choice of axes, we have

Bk WZW. 1/2 ]

g g = —3——1——[ (2L+1)(2L'+1)(2L +1)(2L".+1)(21,+1)(21'+1)] (C.1a)

n"m pQ'qk J ] ] ]

|

XC(o,, 01,8 lu s ~my )C(L, 8, T10, k-1 )ClO 0, ' s -y)

1 1 ' -
X c(,s', g IO,p.a ) (C.1b)
X.Z C@.,j.»S. ks -N) C(L.,S.,T |0,m.-X.)C(0.,7".,S" ., -\
xj>\3 '3 JI“J i €Ly S | Bymhy) Clog. 3 JIHJ j
X C(L', S, I'|0, 1, -\ cA
(Li, S, I #y-h) (C.1¢c)
XD\, . G Byv) DY K, @,.B.v)  (C.1)
i Ha TN ey 1
X c ,slv, - Ls.ai.00,v - , 08" -
bivl (O'k,O'] SJ'vk vl)c(lj SJ JJ‘O Yk Vl)C(O'k ol‘s],‘vi(’ Vi)
Vi(vi XC1| ' 'll | 1
. (J.,ssj,Jj O,Vk-vl) (C.1e)
dej (6) dj3 (6.)
- - 1 A7 dooyt 3 (C.'lf)
)\j vk v1 j )\J, 1k vl j
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(o g
1 k 1 1
Peahas @ at a0t ey
L B Mk ] S

- _
dek 65y
M )

(C.1g)

To evaluate the total cross section, we will discuss each of the parts

separately. Using Eqs. (A.7) and (A.9) and summing over P and By
line (C.1g) becomes '
0 ' 0. (o2 g,V o, V!
: k 1. 1 1 1 1k 11
= d,f, (6 14, k (0D, (650d,, (65 (-0 TN
! k“‘k RS LS RS L D
(o o,-v g,-Vv
Kk q 17" 1™
d, . (0)d, ., (0) (-1) (-1) (C.2)
k k 11 :
=% 6v vt
k'k 11
In (C.1d) we have
J J' %
D} . (@.Bav) D) K, (@LBaY.)
Hj_)\j Bydy 30 p.j )\j w vy 3T
J S IR L
= D D , DJ 0, - c.3
MEM' ”’j')‘j MU ) %'*3 e U Y M u -y (2.9, -9) (C.3)

J!

XDM, .

(§ 9, -9).

Using the normalization Eq. (A.11) and integrating over dcos©dé
gives
J JV x
j(c 1d) dcos© d§ = MM, D“j_)\j M(J )DH )\5 M G- )ZJ+1 J’J'GMM'

J . 4r .

(C.4)

f

47 5 5
ZIFT "I )\jwj‘
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With the delta functions from Egs. (C.2) and (C.4), the integration

of line (C.1f) over dcos GJ. yields

ﬁjj (8.) dj3 (6.)d 6 28 (C.5)
Avo-v . 2w -y (8 cos = 5Ty 1 C. ]
ik J i k1 j . JJ JJJJ

~

With this we see that isobars with different total spin, jj, do not inter-
fere in the total cross section.

With the delta functions and the orthogonality of the vector addition

. coefficients, line (C.1le) reduces to

- l' -
1E<1C(° 0y 85 1V ~v)CUL 85, 55| 0, vy =v))C(0Y, 0y 85 [V, - )
XC(1',8',3.10, v, -v
(J j JJ‘ k 1)
2j.41
=7 %11 % s (C.6)
j i1
Similiarly
2741
= (C10) = 2o CLu bsgt
2T+
Zy (Cle) = 5773 8¢ b g
i S P75 0573

With these intermediate results the total cross-section is given by

1 1 274 rey (1)
o=ty 1 2L+1)(2L, +1 N M
so2 (20 #1120 +1)/ ( JCL) 275 B ) T2 REY

X 6.6 : 5
75 i O 11 %5505 5181 1106
i i 9 5% (C.8)
41 2
2341 Z_jj+1

2747 [T (W, w,)|%aw2.
(_zoa+1) (zob+1) n 3 ]

T, (W, v, )T (W, wJ)deJ

™
:_2_2
P n

(c.7y

c'}‘
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APPENDIX D

Here we derive Eq. (70) of the text. From Egs. (45) and (48) we have

1/2

W,
o _\T’rl {___.L_ } [(2L+1)(2Lj+1)(21j+1)]1/2

&a LN
XC(0,, 0,581 -1 s i) C(L,S,J'O,-p.a+p.b) (D.1a)
‘ ' T ,
X T CO.,j:, S.| -t -N) C(L., S, T 0, -u.-A,)D B
g Clogije Sil -y -y ClLy S T LIS N L
J 3 ] a
(D.1b)
X . C0,,0,,8.| v ,-v)C(.,s.,j. |0,v ~v)d]J (6.)
Vil kKT Tk 1 3773 k 1 ~)\j Vit vy
(D.1c)
Q. a. g,-v
xa X (e}.‘)dvl_ (-6t (-1) b1 (D.1d)
e YO S T T
Using Eq. (A.9),line (D.1d) becomes
o o g,-v v, tu v.otu, ©
k k 1 1™ 1T 9% k
et dvl_HL (-64)(-1) = (-1) ® TRy a® ek
kHe 3o MR ) PLS
g og,-Vv
Xal o (-6 ) (-1t (D.2)
M
T+ v, + [0 (o2
Kk, 01 1
Sy PP KRR gy,
kM ) L .
and line (D.1c¢) becomes
J. N -v +v1 j.
k i
a’ (€.)=(-1) 7 a,’ 6 .). (D.3)
-\, vl’(-vl j )\j -vk+v1 j
Since _
J _ a-b J =
Dab(aa B:Y) - ('1) Da—b(a’ﬁ’Y)’ (D‘4)
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line (D.1b) reduces to

- -)\+P- -
J # a M Tk
D (.. Bp,y.)=(-1) 1 D (@.,B.,Y.)
T N o (@5 By
Bymhy Rty T Hj+7\jP-aP~bJJJ
(D.5)
+X -
2 RN -
= (_1) J(_ ] ] a b Dii)\ . (ajgﬁj:\{ )
S T !
Using Eq. (A.10) and making all the substitutions,
1/2
L+s-3, 92978

[@L+1) L +1) (21j+1)]1/2(-1) (-1) #

W,
b WEE
€n ™ [anjqk]

XC(o 0,8 | Mo =) C(L,S, T lo, ey -y

0 +j.-S.

L 4S.-J

X g () d eI S. ., #X,) C(L.,S., T |0,u.4)
£ O dyr Syity#hy) Cllys S T 10 #Ay)

J

25, N o

X(-1)" (-1) (@.,B.,¥:)
A _ ]
“j+j“a’*b 373
(D.6)
lj+sj—jj 0k+01-sj
Xz (-1) {-1) C(0,,0,,s.|-v,,v}C(l.,8.,j.10,-v +v
v k’71 _]' k 1).»(3 JJ]! K
-X.-votv .
x(-1y 3K Tad 068
i kT )
0.t v.+u, O ol
1™ kK Mk Tk
x(-1) } L1 ak a6},
kMk M)

Since )\j’ Vi and v, are just dumimy variables, we can make the change

X > - - - - -
j )\J_, vk vk, and Vl vl. Thus

L+1 .41, o _+p g, - Ot
a a(_i) b Hb(_i)_) j

- G, tu o, e
IR VA N Ry K

(-1) (-1) .

(D.7)
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Since we have assumed that L, Lj’ and lj are choseﬁ to conserve

parity, we have that

PRI L+l
t=n, mnymeny (-1 =n(-1) (D.8)
where 7 is the product of all five parities. Finally“then.

c_+tpn. O —FL (o2 SV g, +u 0.+p.
- k B
g =) 2R PPy T gy TR gy g

APPENDIX E
In this appendix we derive Eqs. (74) - (76) for the interchange of
particles k and 1. From Eq. (73) we have the following changes under -

interchange:

W -Ww

2, .2 2 2 2

W} WJ, V-lk-’wl’-wl k’
8-*6,§*§+ﬂ,

@»e 6,~ 0, e’ o,

§._=0»§.-0 $ =0~ ¢ =0, §1:n-§l_n,

8, -7 - A, 6 - ““91’01"’"'91(

] i’
9k ol ol k
R R
1 k k 1
-6 k’

9]k“‘ 9]1 9]1* 9]1('_

a " Par BT By

By = Ry by B
Most of the changes are obvious. For .convenience we shall let
u' o= (p.apbpjplpk). We also indicate the type of isobar wivth an
additional subscription on g.

For j-type isobars, we have
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X C(L,s,Jlo,pa-Hb)

X 3 C(0., 5.0 8. per X)L Sy T| 04, -1,) DI (oz !
.xj(JJJ jlig 2y Oy 83 710 py-0) D J\Ju w43 Py
oo, v =) Cllys:,1:10, v, <v) @) (m-6.)
X = 0.0y 8. |V, , -V .,s.,j.‘l , Y, =V - _ m-0,
] PUkTj0kT 1 3771 k 1 )\j. VietY) j
[of ¢ g, -v
xal @ak ey kot
k™ 10 "
Now since QJ =~<§j = 0, we have a; = ¢, BJ. =0, Y= - $, thus
'=d+ T, tT =B, vy = -&-7m=y.- 7w, and
a'J o+ j ’ pJ BJ Y_] 3 YJ A
- N.) im
b . @) = 11r(HLJ ) im(p_ -y o7 )\
R s T b HP-bJ
From Eq. (A.9) we have
j. : j.o= N .
a’) m-6.) = (-1)7 I’} 6.),
2 vy 770 7 (0 - J)
0, s vV, -p, O
_ 1 kM %
a,b, @ =0 el e,
k™M kM d
O, V.- ag
17" Tk ok
a X (-85 = (-1) 4, (6%
M ) Mk
Since v, and v, are just dummy indices, we let Ve vl and
Thus

1/2 _

(E.1).

l

ﬁ"Yj)'
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“ijqk

X C(o,.0,s [h,o-m) CEL,S, T]0, -1y)

L J
TRIETVIPRTEC 3 W
b
X 2 C(6.,3.,8. | w.» -N.) C(L.,S., T |0, m,-1.)(-1) 2 7]
)\j(JJJ g ) OS5 70012 (1)
x p’ oy oy @By (E.4)
S e T o

' i T
xvivlcwk,ol, sl vie -v)) C(lj’ sj,ljl 0, v, -v;) (-1) (-1)

xajj (8.)
-\, Vi Y j
o o o, -V v, - V.-l
1 k k
xa X (69al ey -0k Fen® !
Mk 10" ]
1, s5.10. +0 TR VR VS TP
k "1 2 2 2
= () (-1) J R gy 2 TR g Wowp Wi (74)

For k or l-type isobars, the interchange is only meaningful when
k and 1 are the same type of particle. In this case similar calculations

give for k-type isobars:

. o 1 s, +0 . .+0 I ]
w2 2 2 ke Sk T e TRy TRy TR hoo2.2 2
gnk(wj wiyw, ) = (-1) 7 (-1) (-1) . gnl(ijkwl)
(75)
and for l-type isobars
1 s,+0.+0 B =l — e -
' 2 2 1 1 k a™Mp MR 2 2 2
gl Wi wiwi) = (-1) (- - T S ] ghy (W] e w).
(76)
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Table I Expressiox?s for all observable quantities in the reaction
MB - BMM. Amplitudes A with Heht, = + 1/2 are written as

bty = - e
D A PN
Igfh, =FRe [A_ A % + re [a_, A% &M%
I, =In (A, A+f> ejlo‘] + Tm [A_ A * 10
N S S e TR S PO
12l re 1A xR (4, A %]
10P§0)= “In (A, A 3] - In (A, A)
kAR IR O
ID . = Re [A, A_:e-'ia] + Re (a,, A* &%
ToDey = Im (A, A_I'e-ia] - In (A, A_* e
1D, =Re (A, A*e® - pela, Ax e
Iy = -In (A A% e s mia, ax KL
IDy =Re (A, &¥e® -rela,  aze®
IDy, = In (A, A% e -In (A A% )
IQDZX_7= Re [A A*]-Re[n 4%]
ID,, = -Im[A, A_t] + Im [A+._ A ¥
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Figure Captions
Fig. 1. Notation for the reactiona+b - j+ k + 1.
a) Quantities in the center of mass rest-frame.
b) Quantities in the diparticle rest-frame.
Fig. 2. Definition of angles in our coordinate system.
a) Beam angles in center of mass rest-frame.
b), Angles of particles j,k,1 in center of mass rest-frame.
c) Angles of particles k,1 in the diparticle rest-frame.

Fig. 3. Symbolic diagram of the effect of the Lorentz transformation
L. on the momentum vectors. Although the diagram is not
quantitative, it does show the correct direction for the various
angles.

Fig. 4. Illustration of the effect of the rotation R(-¢, O, ¢) on the
axes OXYZ.

Fig. 5. Final state helicity frame axes for particle j. -
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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