Lawrence Berkeley National Laboratory

Recent Work

Title

CRYSTAL FIELD ANALYSIS OF Tm3+ AND Yb3+ IN YPO4 AND LuPO4

Permalink

https://escholarship.org/uc/item/6t36h2dt

Author Becker, P.C.

Publication Date 1984-04-01

-BL-1744

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. LBL-17443

Crystal Field Analysis of Tm^{3+} and Yb^{3+}

in YPO_{4} and $LuPO_{4}$

P. C. Becker, T. Hayhurst,[†] G. Shalimoff, J.G. Conway, and N. Edelstein Materials and Molecular Research Division Lawrence Berkeley Laboratory and Department of Physics University of California Berkeley, California 94720

> L.A. Boatner and M.M. Abraham Solid State Division Oak Ridge National Laboratory* Oak Ridge, Tennessee 37830.

Abstract

The optical and near infrared absorption of dilute Tm^{3+} and Yb^{3+} impurities in YPO_4 and $LuPO_4$ single crystals have been measured at liquid helium and nitrogen temperatures. For Tm^{3+} , the spectral region from 5000 to 38,000 cm⁻¹ was examined and Zeeman spectra were obtained in the visible region. The observed transitions were assigned and fit to a semiempirical Hamiltonian with adjustable parameters via a least-squares procedure. Satisfactory fits and good agreement between the calculated and measured g values were obtained.

For Yb³⁺, there are more parameters than experimental levels, so ζ , B_0^2 , B_0^4 , and B_4^4 were adjusted, while B_0^6 and B_4^6 were fixed at the values found for Tm³⁺. Energy levels and Zeeman splittings calculated with these parameters are in good agreement with the measured quantities.

* Operated by Union Carbide for the U.S. Department of Energy under contract W-7405-eng-26.

⁺ Permanent address: The Aerospace Corporation, PO Box 92957/M2-251, Los Angeles, CA 90009.

I. Introduction:

The present study of the optical spectra of thulium and ytterbium in YPO_4 and $LuPO_4$ represents a continuation of previous investigations of the chemical and physical properties of rare-earth impurity ions in lanthanide orthophosphates.¹⁻⁷ The lanthanide orthophosphates in the form of polycrystalline ceramic bodies represent a promising new class of materials for use as a primary containment medium for the long term disposal of high level nuclear wastes.⁸⁻¹⁰ The solid state chemical properties of orthophosphates formed by mixed lanthanides are of particular interest since a relatively high concentration (> 30 wt. %) of various lanthanides is present in the waste resulting from reprocessing of light water reactor spent fuel.

The pure lanthanide orthophosphates are structurally divided into two classes: the first half of the series $(LaPO_4 \text{ to } GdPO_4)$ has the monoclinic "monazite structure" (space group P2₁/n), while the second half of the series (TbPO₄ to LuPO₄, plus YPO₄ and ScPO₄) is characterized by the tetragonal zircon sructure (space group I4₁/amd). Previous investigations of the solid state chemical properties of both structural types have included determinations of the site symmetries and valence states of both iron group and rare earth impurities by means of electron paramagnetic (EPR) spectroscopy.^{1-3,11} Additional studies of both doped and pure lanthanide orthophosphates have included x-ray diffraction structural refinements, ^{12,13,14} Raman investigations, ¹⁵ and previous optical absorption experiments on Pr^{3+} , Nd^{3+} , and Er^{3+} diluted in LuPO₄ and YPO₄.^{6,7} Knoll has previously reported and

-2-

assigned the visible absorption spectrum of Tm^{3+} diluted in YPO₄.¹⁷

In the present work optical absorption and Zeeman effect studies have been performed that complement the earlier investigations. Trivalent thulium and ytterbium were incorporated as dilute impurities in YPO₄ and LuPO₄ where they occupy substitutional sites with local D_{2d} symmetry. Energy levels corresponding to the irreducible representations of the D_{2d} point group were derived from the free ion f^{12} configuration for Tm³⁺ and the free ion f^{13} configuration for YD³⁺.

Parameters describing the electrostatic, spin orbit, and crystalfield interactions were adjusted using a least-squares minimization procedure in order to obtain a fit to a semiempirical Hamiltonian. The calculations were made using a full diagonalization of the Hamiltonian matrix in the (L,S,J,J_z) representation. Good agreement was obtained between the observed and calculated energies and g values. The Zeeman pattern for Yb³⁺ in YPO₄ was analyzed in detail since the accidental degeneracy of two of the excited states results in a mixing of these states when an applied magnetic field is not parallel to the S₄ axis. II. Experimental Procedure:

The Tm^{3+} and Yb^{3+} doped crystals employed in this work were grown by means of a flux technique that has been described elsewhere.^{8,16} Thulium and ytterbium doping levels of approximately 0.1 wt.% were employed.

In the case of Tm^{3^+} in YPO₄, the spectra from 250 to 1700 nm (40,000 to 5800 cm⁻¹) were measured using a Cary Model 17 spectrophotometer with sample temperatures of 2 and 77 K. Linear

-3-

polarization of the spectra was obtained in the directions perpendicular and parallel to the crystal axis. These transitions supplement previously reported photographic measurements.¹⁷

For Tm^{3+} in $LuPO_4$ a similar procedure was employed. The 3F_4 and 3H_5 lines were scanned at approximately 2K and 77K in the IR region. Photographic observations were made between 12,000 and 38,000 cm^{-1} on a 3.4 m Ebert spectrograph with a reciprocal dispersion of about 5.2 Å/mm in the first order. Linear polarization of the spectra was obtained in the directions perpendicular and parallel to the crystal axis. All spectra were photographed at both liquid He and N₂ temperatures and Zeeman splittings were recorded with the crystal in a magnetic field of 26.9 kG. No splittings were observed with the c axis perpendicular to the applied magnetic field.

In the case of Yb^{3^+} in YPO_4 and $LuPO_4$, scans were made at both pumped liquid He and N₂ temperatures from 9,000 to 11,000 cm⁻¹. Linear polarization of the spectra was obtained in the directions perpendicular and parallel to the crystal axis. The experimental g values for the ground state doublets were determined by means of EPR spectroscopy and have been reported previously.¹ Zeeman splittings in the 10,000 cm⁻¹ region were photographed at liquid He temperatures with the crystallographic c axis both parallel and perpendicular to the magnetic field of 26.9 kG.

III. Analysis and Discussion:

The energy levels within an f^n configuration in D_{2d} symmetry can be written in terms of the atomic free ion (H_{FI}) and crystal field

-4-

(H_{CF}) Hamiltonians as follows:^{18,19}

$$H_{FI} = \sum_{k=0,2,4,6}^{k} F^{k}(nf,nf)f_{k} + \zeta_{f} a_{so} + \alpha L(L+1)$$

+ $\beta G(G_{2}) + \gamma (R_{7}) + \sum_{k=0,2,4}^{k} M^{k}m_{k} + \sum_{k=2,4,6}^{k} P^{k}p_{k}$

and

$$H_{CF} = B_0^2 C_0^2 + B_0^4 C_0^4 + B_4^4 (C_4^4 + C_{-4}^4) + B_0^6 C_0^6$$

+ $B_4^6(C_4^6+C_{-4}^6)$

The $F^{k}(nf,nf)$'s and ζ_{f} represent, respectively, the radial parts of the electrostatic and spin orbit interactions between f electrons, while f_{k} and a_{so} are the angular parts of the interactions. α , β , and γ are the parameters associated with the two-body effective operators of configuration interaction. The M^k parameters represent the spin-spin and spin-other-orbit interactions while the P^k parameters arise from electrostatic-spin-orbit interactions with higher configurations. The crystal field interaction for D_{2d} symmetry is parameterized by B_{0}^{2} , B_{0}^{4} , B_{4}^{6} , B_{0}^{6} , and B_{4}^{6} ; and the angular operators, $C_{a}^{(k)}$, are the usual Racah tensors.¹⁸

IIIa. Absorption Spectra and Zeeman Effect of the Thullium Ion

 ${\rm Tm}^{3+}$ has an f¹² configuration. The crystal field eigenstates carry the Γ_1 through Γ_5 point group representations associated with the D_{2d} site symmetry. Selection rules for the allowed

electric dipole transitions are identical to those for Pr^{3+} .⁷

The Γ_5 representation is two dimensional and the corresponding levels can exhibit splitting under an applied external magnetic field parallel to the crystal axis. The observed Tm^{3+} spectra are well characterized by their group theoretical selection rules, and the D_{2d} symmetry sites of Tm^{3+} in the YPO₄ and LuPO₄ hosts are so similar that the wavelengths and relative intensities of the optical transitions are nearly identical in each crystal. The observed and calculated values of the energy levels and g values for Tm^{3+} are given in Table 1 along with the eigenvector composition and irreducible representations. Table 3 presents a listing of the atomic and crystal field parameters obtained from the analysis outlined previously.

Thirty-seven experimental eigenvalues were assigned for Tm^{3+} in YPO_4 , and 35 experimental eigenvalues and four g values were assigned for Tm^{3+} in LuPO_4 . Data for the low lying excited states were obtained from measurements made with the samples at liquid nitrogen temperature. The Zeeman spectra proved to be particularly useful in identifying the Γ_5 lines. The fits obtained for Tm^{3+} in YPO_4 and LuPO_4 were characterized by reduced rms energy deviations of 13.6 cm⁻¹ and 10.0 cm⁻¹, respectively. In the case of LuPO_4 , the g value agreements were quite good.

The level assignments reported previously for Tm^{3+} in YPO_4^{-17} were changed to agree with the present experimental results. In Table II of reference 17, the multiplet listed as ${}^3\text{F}_4$ was corrected to

 ${}^{3}H_{A}$. The line listed at 21260.15 cm⁻¹ was not used in our analysis since the ${}^{1}G_{a}$ multiplet contains only one level of Γ_{a} symmetry, which was selected to be the line at 21291.88 cm^{-1} . Two levels presented in that table differed substantially from the values we observed. We retained our experimental values for the purpose of the crystal field fit, namely 14467.18 cm^{-1} was replaced by 14451.0 cm⁻¹ and 14453.98 cm⁻¹ was replaced by 14439.0 cm⁻¹. ${\rm Tm}^{3^+}$ in ${\rm YPO}_{\rm A}$ has several unassigned lines at liquid helium temperature, 14424 cm^{-1} , 15085 cm^{-1} , and 21262 cm^{-1} ; their intensities relative to the assigned lines do not change from liquid helium to liquid nitrogen temperatures implying that they are not transitions from low lying excited states. Tm^{3+} in LuPO₄ has similar unassigned lines at 5796 cm^{-1} , 21239 cm^{-1} , and 21326 cm^{-1} . These lines could arise from magnetic dipole transitions, but we have not included them in our analysis. It is interesting to note that the low lying crystal field levels obtained for Tm^{3+} in YPO₄ and LuPO₄ agree well with the electronic Raman levels measured by Guha for pure TmPO_4 .²³ However, we assign the level at 84 cm⁻¹ to be of Γ_3 symmetry.

IIIb. Absorption spectrum of the Ytterbium ion

Yb³⁺ has an f¹³ configuration. The crystal field eigenstates carry the Γ_6 and Γ_7 representations associated with the D_{2d} symmetry group. The selection rules are identical to those for Nd³⁺.⁷

-7-

For Yb^{3+} in YPO_4 and $LuPO_4$, the small number of transitions allowed are insufficient to determine uniquely the crystal field and spin orbit parameters. The following procedure was employed. First, the corresponding parameters from Tm^{3+} were used to predict an energy level scheme that was fairly close to the experimentally observed levels, allowing their assignment. Four transitions having been thus selected, the spin orbit parameter and crystal field parameters B_{Ω}^2 , B_{Ω}^4 , and B_4^4 were adjusted to produce an energy level scheme that exactly reproduced the experimentally observed one. The resultant parameters were quite close to their corresponding values for Tm^{3+} . An additional feature was observed in both YPO₄ and $LuPO_4$ around 10,600 cm⁻¹ consisting of a main peak with shoulders and sidebands. This feature does not correspond to any pure electronic transitions of Yb^{3+} as predicted by our model. Further tests of our crystal field model for YD³⁺, from the observed Zeeman patterns, are discussed in the next section. Listings of observed and calculated energies and g values are compiled in Table 2.

IIIc. Zeeman study of the Ytterbium ion

Ground state g values are in excellent agreement with previously reported EPR measurements.¹ In the case of a magnetic field applied perpendicularly to the c axis, the Zeeman pattern of the excited states in the 10,200 cm⁻¹ region were obtained. For Yb³⁺ in LuPO₄, the measured g values agree well with the calculated values. For Yb³⁺ in YPO₄, the situation is more complex. The Γ_6 and

-8-

 Γ_7 levels, situated respectively at 10257.81 cm⁻¹ and 10258.36 cm⁻¹ are so nearly degenerate that they will be substantially mixed by the magnetic field Hamiltonian. The g values displayed in the tables are computed assuming that there is no mixing between adjacent states, so that a more rigorous treatment is needed. The Zeeman Hamiltonian is calculated within the subspace spanned by the two levels and then diagonalized. The Zeeman operator for any angle ϕ in the plane perpendicular to the c axis is:

$$\mathcal{H}_7 = \mu_B g H(L_x + 2S_x) \cos \phi + \mu_B g H(L_y + 2S_y) \sin \phi$$

where ϕ is the angle between the x axis of the local D_{2d} symmetry site and the magnetic field. A phase factor $e^{\pm i\phi}$ is thus introduced into the off diagonal matrix elements.²¹ For our measurements in Yb³⁺ in YPO₄ the magnetic field was oriented along a crystallographic axis which corresponds to $\phi = 45^{\circ}$. The calculated and experimentally observed transitions are given in Table 4 using the EPR values for the ground state splittings. The agreement is excellent.

Zeeman data were also measured with the magnetic field parallel to the c axis. In this case, however, not all the transitions allowed were observed due to selection rules and other unexplained reasons. Polarization data could not be obtained because of the long times needed to expose the photographic plates in this region. The data obtained are consistent with the calculated g values as given in Table 2. IIId. Discussion

The values of the crystal field parameters for ${\rm Ln}^{3+}/{\rm YPO}_4$ crystals appear to be fairly consistent across the lanthanide series (see Table 5) with perhaps the early members of the series ${\rm Pr}^{3+}$ and ${\rm Nd}^{3+}$, showing the largest deviations from the mean values. The data for Eu³⁺ and Ho³⁺ have not been analyzed with the inclusion of higher order terms in the free ion Hamitonian and the complete diagonalization of this Hamiltonian with the addition of the crystal field Hamiltonian.¹⁹ Therefore the parameter values for these ions must be regarded as preliminary. The values of the B⁶₄ are rather small and have large uncertainties which result in inconsistent signs for this parameter across the series. These results are similar to those found for the much more complete sets of crystal field parameters of ${\rm Ln}^{3+}/{\rm LaCl}_3$.²⁰

IV. Summary and conclusions

Investigations of the low temperature optical spectra of Tm^{3+} and Yb³⁺ impurities diluted in the zircon structure orthophosphates, YPO₄ (xenotime) and LuPO₄, were carried out. The optical data for Tm^{3+} in the two hosts were used in making assignments to the free ion 4f¹² states, and these results were used in a least-squares fit to a semiempirical Hamiltonian. In the case of the 4f¹³ configuration ion Yb³⁺ not all the parameters were fit, the ones not being adjusted being fixed to their corresponding value for Tm³⁺. This yielded satisfactory fits to the experimental results, in particular

-10-

for the Zeeman pattern of the excited state. Calculated g values for the ground state were found to be in good agreement with those determined by using EPR spectroscopy.

Acknowledgements

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. REFERENCES

- 1. M. M. Abraham, L. A. Boatner, J. O. Ramey, and M. Rappaz, J. Chem. Phys. 78, 3 (1983).
- M. Rappaz, L. A. Boatner, and M. M. Abraham, J. Chem. Phys. <u>73</u>, 1095 (1980).
- M. Rappaz, M. M. Abraham, J. O. Ramey, and L. A. Boatner, Phys. Rev. B 23, 1012 (1981).
- L. A. Boatner, M. M. Abraham, and M. Rappaz, Scientific Basis for Nuclear Waste Management, ed. by J. G. Moore (Plenum Press, New York, 1981), Vol. 3, p. 181.
- M. M. Abraham, L. A. Boatner, and M. Rappaz, Nuclear and Electron Resonance Spectroscopies Applied to Materials Science, ed. by E. N. Kaufman and G. K. Shenoy (Elsevier North-Holland, New York, 1981), Vol. 3, p. 475.
- T. Hayhurst, G. Shalimoff, N. Edelstein, L. A. Boatner, and M. M.
 Abraham, J. Chem. Phys. 74, 5449 (1981).
- T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A.
 Boatner, and M. M. Abraham, J. Chem. Phys. 76, 3960 (1982).
- L. A. Boatner, G. W. Beall, M. M. Abraham, C. B. Finch, R. J. Floran, P. G. Huray, and M. Rappaz, in Management of Alpha-Contaminated Wastes, IAEA-SM-246/73 (IAEA, Vienna, Austria, 1981), p. 411.
- 9. L. A. Boatner, G. W. Beall, M. M. Abraham, C. B. Finch, P. G. Huray, and M. Rappaz, Scientific Basis for Nuclear Waste Management, ed. by C. J. Northrup (Plenum Press, New York, 1980)

Vol. II, p. 289.

- 10. M. Petek, M. M. Abraham, and L. A. Boatner, Scientific Basis for Nuclear Waste Management, ed. by S. V. Topp (Elsevier North-Holland, New York, 1982), Vol. 4, p. 181.
- M. Rappaz, J. O. Ramey, L. A. Boatner, and M. M. Abraham, J. Chem. Phys. 76, 40 (1982).
- 12. W. O. Milligan, D. F. Mullica, G. W. Beall, and L. A. Boatner, Inorg. Chimica Acta. 60, 39 (1982).
- 13. W. O. Milligan, D. F. Mullica, G. W. Beall, and L. A. Boatner, J. Inorg. Nucl. Chem. (in press).
- 14. W. O. Milligan, D. F. Mullica, G. W. Beall, and L. A. Boatner, Acta Cryst. (in press).
- 15. G. M. Begun, G. W. Beall, L. A. Boatner, and W. T. Gregor, J. Raman Spectros. 11, 273 (1981).
- 16. R. S. Feigelson, J. Am. Ceram. Soc. 47, 257 (1964).
- 17. K. D. Knoll, Phys. Stat. Sol. (b) 45, 553 (1971).
- B. G. Wybourne, Spectroscopic Properties of the Rare Earths (Wiley, New York, 1965).
- W. T. Carnall, H. Crosswhite, H. M. Crosswhite, J. P. Hessler, N. M. Edelstein, J. G. Conway, G. V. Shalimoff, and R. Sarup, J. Chem. Phys. 72, 5089 (1980).
- 20. W. T. Carnall, H. Crosswhite, H. M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF₃, Argonne National Laboratory Report (1977).

- 21. T. Murao, F. H. Spedding, R. H. Good, Jr., J. Chem. Phys. <u>42</u>, 993 (1965).
- 22. C. Brecher, H. Samelson, R. Riley, and A. Lempicki, J. Chem. Phys. <u>49</u>, 3303 (1968).
- 23. S. Guah, Phys. Rev. B 23, 6790 (1981).
- 24. P.J. Becker, Phys. Stat. Sol. 38, 379 (1970).
- 25. C.A. Morrison and R.P. Leavitt, in "Handbook on the Physics and Chemistry of Rare Earths," K.A. Gschneider, L. Eyring, Ed., Vol. 5, 1982, pp. 461-692.

Table la

Observed and calculated energies and g values for Tm³⁺ in YPO₄.

Sym.	Energ	y (cm-1)	9 ₁₁		Eig. Com	positiona	
	cal.	obs.	cal. obs.	(2S+1) %)L(J,J _Z) largest	(2S+1)L %	(J,J _Z) second
<u></u>	0.0	0.0	, , , , , , , , , , , , , , , , , , ,	77	38(6,0)	23	3H(6 ±4)
1 F	20.5	20.7	2 5	65	$\operatorname{SH}(0,0)$	20	$\operatorname{SH}(\mathbf{C}, \mathbf{F})$
15	20.0	30.7	3.5	00	SH(0,-1)	23	38(0,-5)
^Г 3	89.2	76.2		98	3H(6 ,± 2)		
Г ₅	142.2	144.8	8.2	74	3H(6,-5)	. 14	3H(6,-1)
^г 2	191.8			99	3H(6,±4)		
Γ_1	244.4			77	3H(6 ,± 4)	23	3H(6,0)
Г4	253.5			86	3H(6 , ±2)	13	3H(6 ,± 6)
^г 5	272.7		-4.6	77	3H(6,3)	20	3H(6,-1)
^г з	330.4			98	3H(6,±6)		
^г 4	337.6			86	3H(6 ,± 6)	13	3H(6 , ±2)
Г3	5611.0			62	3F(4,±2)	30	1G(4,±2)
^г 5	5702.5	5692.0	-1.5	37	3F(4,-1)	26	3F(4,3)
Γ_1	5712.7			51	3F(4,±4)	12	3F(4,0)
г ₂	5743.7			64	3F(4 ,± 4)	28	1G(4,±4)
Г ₄	5776.0	5774.0		63	3F(4 , ±2)	29	1G(4,±2)
Г ₅	5850.7	5850.0	-3.1	38	3F(4,3)	26	3F(4,-1)
۲ ì	5864.8			52	3F(4,0)	23	1G(4,0)
Г2	8229.7	8242.0		71	3H(5,0)	29	3H(5 ,± 4)
Г ₅	8261.0	8264.0	0.1	72	3H(5,-1)	25	3H(5,3)

 Tm^{3+} :YPO₄ (continued)

Sym.	Energ	ју (ст-1)		9	(00.1)	Eig. Com	positiona	
	cal.	obs.	cal.	obs.	(25+1 %)L(J,J _Z) largest	(2S+1)L .%	.(J,J _Z) second
						· · · · ·		
^г 4	8281.6	8282.0			100	3H(5 ,± 2)		
^г 1	8342.7	·8357.0			100	3H(5,±4)		
^г 2	8389.3	8395.0			71	3H(5 ,± 4)	29	3H(5,0)
^г 5	8401.8	8397.0	-3.3		72	3H(5,3)	21	3H(5,-1)
Г3	8418.5				100	3H(5,±2)		
Г ₅	8467.9	8470.0	9.3		91	3H(5 ,- 5)	6	3H(5,-1)
г ₁	12543.1	12528.0			57	3H(4,0)	24	3F(4,0)
Г ₅	12562.2	12551.8	-3.4		42	3H(4,3)	18	3F(4,3)
^г 5	12677.1	12662.5	-0.4		42	3H(4,-1)	19	3F(4,-1)
г ₃	12687.2				58	3H(4 ,± 2)	28	3F(4,±2)
Г ₂	12730.9				59	3H(4,±4)	26	3F(4,±4)
Γ ₁	12744.6				56	3H(4 ,± 4)	25	3F(4,±4)
Г ₄	12789.0	12780.8			59	3H(4 ,± 2)	27	3F(4,±2)
^Г 5	14405.9	14409.2	-5.2		85	3F(3,3)	15	3F(3,-1)
Г ₅	14436.3	14439.0	0.9		85	3F(3,-1)	15	3F(3,3)
Г <mark>4</mark>	14444.0	14451.0			99	3F(3,±2)		
Г ₃	14456.0				100	3F(3,±2)		
Г ₂	14505.6				100	3F(3,0)		
Г ₄	14981.4	14970.1			76	3F(2,±2)	22	1D(2,±2)

L

-16-

Sym.	Energ	ју (ст-1)	a ^{II}	(00.0)	Eig. Com	position ^a	
	cal.	obs.	cal. obs.	(2S+1) %	L(J,J _Z) largest	(2S+1)L %	(J,J _Z) second
		<u></u>			<u></u>		- <u></u>
Г3	15080.3			77	3F(2,±2)	21	1D(2,±2)
^Г 5	15093.8	15106.7	1.5	77	3F(2,-1)	21	1D(2,-1)
Г1	15101.4			77	3F(2,0)	21	1D(2,0)
Г ₃	21035.0	21022.0		57	1G(4,±2)	33	3H(4, ± 2)
г ₅	21170.5		-0.6	39	1G(4,-1)	22	3H(4,-1)
Г <mark>1</mark>	21216.5			23	1G(4,0)	35	1G(4,±4)
Гд	21286.3	21291.9		57	1G(4 , ±2)	33	3H(4,±2)
г ₂	21296.5			58	1G(4,±4)	33	3H(4,±4)
Γ	21404.0	21404.5	-3.2	39	1G(4,3)	21	3H(4,3)
Г,	21412.1	21433.0		35	1G(4,0)	19	3H(4,0)
Г ₂	27766.5	27761.0		41	3P(2,±2)	40	1D(2,±2)
5 Г,	27801.5	27791.3		41	1D(2,±2)	39	3P(2,±2)
4 Γ_	27845.2	27870.0	2.3	41	3P(2,-1)	40	1D(2,-1)
ь Г	27869.4			41	1D(2,0)	40	3P(2,0)
т Га	34542.0	34568.0		98	$1I(6, \pm 2)$		
4 Ге	34561.3	34556.0	-0.8	60	11(6, -1)	37	11(6,3)
5 Г.	34580.2			71	11(6.0)	28	$11(6, \pm 4)$
1 Г.	34797 3			90	$11(6 \pm 2)$	Q	$11(6 \pm 6)$
-3 r	34806 6	34797 0	_1 8	50	11(6,3)	28	11(6 - 1)
'5 r	24012 0	54/3/.0	-1.0	22	11(0,3)	20	11(0,-1)
2	34812.0			33	11(0 , 1 4)		

 Tm^{3+} :YPO₄ (continued)

Sym.	Energy (cm-1)		9	(00)1	Eig. Com	position ^a	(,,,)
	cal.	obs.	cal. obs.	(25+1)L(J,J _Z) largest	(25+1)L %	(J,J _Z) second
^Г 1	34907.6			71	1I(6,±4)	28	11(6,0)
Г4	34942.3			98	1I(6 ,± 6)		
Г ₃	34952.1			90	1I(6 ,± 6)	9	1I(6,±2)
^Г 5	34956.8	34943.0	8.6	85	11(6,-5)	11	11(6,-1)
Γ ₁	35236.4	35256.0		93	3P(0,0)	6	1S(0,0)
Г2	36216.3			100	3P(1,0)		
^Г 5	36299.7	36287.0	3.0	100	3P(1,-1)		
Г4	37877.7			58	3P(2, ± 2)	38	1D(2 ,± 2)
^Г 5	38082.1	38069.0	2.6	57	3P(2,-1)	38	1D(2,-1)
^Г 3	38089.5			56	3P(2,±2)	39	1D(2 ,± 2)
^г 1	38094.0			56	3P(2,0)	39	1D(2,0)
^г 1	73572.8			94	1S(0,0)	6	3P(0,0)

^aWhen the symbol \pm appears in front of J_z the contributions from $+J_z$ and $-J_z$ are equal and have been summed. See reference 7 for a description of the eigenvectors of the Γ_i states.

Ta	b1	e	1b	

-19-

Observed and calculated energies and g values for Tm³⁺ in LuPO4.

Sym.	Energ	y (cm-1)		g ,,		Eig. Com	positiona	1
	cal.	obs.	cal.	obs.	(2S+1 %)L(J,J _Z) largest	(2S+1)L %	.(J,J _Z) second
Γ ₁	0.0	0.0			71	3H(6,0)	28	3H(6,±4)
г 5	21.9	25.2	4.6	3.3	55	3H(6,-1)	34	3H(6,-5)
г ₃	89.9	80.1	·		97	3H(6,±2)	3	3H(6,±6)
г ₅	131.8	124.8	6.7	7.7	62	3H(6,-5)	21	3H(6,-1)
Г ₂	182.6				99	3H(6 ,± 4)		
г ₁	248.2				71	3H(6,±4)	28	3H(6,0)
^Г 4	254.4		••		64	3H(6,±2)	35	3H(6,±6)
^Г 5	281.2		-4.3		73	3H(6,3)	24	3H(6,-1)
Гз	303.0				97	3H(6,±6)	3	3H(6,±2)
Г4	321.4				64	3H(6 ,± 6)	35	3H(6 ,± 2)
^Г 3	5587.0				62	3F(4,±2)	30	1G(4,±2)
^Г 5	5682.1	5674.0	-1.5		36	3F(4,-1)	27	3F(4,3)
^г 1	5700.2				50	3F(4,±4)	13	3F(4,0)
г Г2	5735.3				64	3F(4,±4)	29	1G(4,±4)
г 4	5769.3	5763.0			63 ⁻	3F(4,±2)	29	1G(4,±2)
^Г 5	5844.4	5842.0	-3.0		37	3F(4,3)	27	3F(4,-1)
^г 1	5856.7				51	3F(4,0)	22	1G(4,0)
۲ ₂	8222.6	8227.0			62	3H(5,0)	38	3H(5,±4)
۲ ₅	8257.7	8262.0	-0.2		67	3H(5,-1)	30	3H(5,3)

<u>ل</u>.

Tm³⁺:LuPO₄ (continued)

••••

Sym.	Energ	ју (ст-1)		g ₁₁	(00)	Eig. Com	position	
	cal.	obs.	cal.	obs.	(2S+1 %)L(J,J _Z) largest	(2S+1)L %	.(J,J _Z) second
			<u> </u>					
^г 2	8384.7	8381.0			38	3H(5,0)	62	3H(5,±4)
^Г 5.	8396.4	8395.0	-0.9		59	3H(5 , 3)	23	3H(5,-5)
^г 3	8425.2				100	3H(5,±2)		
^г 5	8444.6	8441.0	7.3		74	3H(5,-5)	16	3H(5,-1)
г ₁	12537.0	12530.8			55	3H(4,0)	24	3F(4,0)
^Г 5	12544.1	12535.2	-3.7	-3.7	45	3H(4,3)	19	3F(4,3)
Γ ₅	12672.6	12657.2	-0.1		44	3H(4,-1)	20	3F(4,-1)
^Г 3	12676.8				58	3H(4,±2)	28	3F(4 ,± 2)
^Г 2	12704.7				- 59	3H(4 ,± 4)	27	3F(4,±4)
Γ1	12723.3				54	3H(4,±4)	24	3F(4,±4)
Г4	12782.6	12778.2			59	3H(4 ,± 2)	27	3F(4,±2)
^Г 5	14404.6	14402.3	-4.3	-5.4 °	74	3F(3,3)	25	3F(3,-1)
^Г 5	14429.8	14435.3	0.0		74	3F(3,-1)	25	3F(3,3)
Г4	14438.4	14454.2			99	3F(3,±2)		
ГЗ	14452.2				99	3F(3, ± 2)		
^г 2	14497.3				100	3F(3,0)		
Г4	14976.7	14964.0			75	3F(2, ± 2)	22	1D(2,±2)
^Г 5	15080.5	15087.8	1.5		76	3F(2,-1)	21	1D(2,-1)
Γ ₁	15080.5				77	3F(2,0)	21	1D(2,0)
т ₃	15083.8				77	3F(2, ± 2)	21	1D(2, ± 2)

¥

m

Tm³⁺:LuPO₄ (continued)

Sym.	Energ	ıy (cm−1)	9 ₁₁	(00.1)	Eig. Com	positiona	
	cal.	obs.	cal. obs.	(25+1)	largest	(25+1)L %	(J,JZ) second
<u> </u>	20991.9	20983.0		57	1G(4 , =2) ·	34	3H(4 ,± 2)
Γ ₅	21133.6		-0.9	37	1G(4,-1)	21	1G(4,3)
Г Г	21178.9			21	1G(4,0)	37	1G(4 , ±4)
Г ₂	21257.5			57	1G(4,±4)	33	3H(4 ,± 4)
г Г	21267.5	21278.3		57	1G(4, ± 2)	33	3H(4 ,± 2)
^Г 5	21381.7	21394.1	-3.0	37	1G(4,3)	21	1G(4,-1)
Г1	21389.5			37	1G(4,0)	20	3H(4,0)
^г з	27755.7	27749.7		41	3P(2,±2)	40	1D(2,±2)
Г ₄	27793.6	27785.0		41	1D(2,±2)	39	3P(2,±2)
^г 5	27818.8	27838.9	2.3	41	3P(2,-1)	41	1D(2,-1)
Γ1	27837.6			41	1D(2,0)	40	3P(2,0)
^г 4	34576.2	34579.0		97	1I(6 , ±2)	2	1I(6, ± 6)
^г 5	34595.4	34595.0	-0.9	57	11(6,-1)	39	11(6,3)
^г 1	34613.4			65	11(6,0)	33	1I(6,±4)
^г 2	34834.3			99	1I(6,±4)		
^г з	34834.6			66	1I(6,±2)	33	lI(6,±6)
^г 5	34846.4	34842.0	-0.2	52	11(6,3)	24	11(6,-5)
^Г 4	34911.9			97	1I(6 ,± 6)	2	1I(6,±2)
^г з	34940.2			66	1I(6 ,± 6)	33	1I(6, ± 2)
Γ1	34951.7			33	11(6,0)	66	1I(6,±4)
^Г 5	34974.0		7.1	71	11(6,-5)	20	11(6,-1)

ب

Tm³⁺:LuPO₄ (continued)

Sym.	Energy (cm-1)		g.,		Eig. Composition ^a				
-	cal.	obs.	cal. obs.	(2S+1 %)L(J,J _Z) largest	(2S+1)L %	(J,J _Z) second		
Г1	35224.9	35238.0		93	3P(0,0)	6 [.]	15(0,0)		
^г 2	36216.9			100	3P(1,0)		-		
^Г 5	36276.5	36266.0	3.0	100	3P(1,-1)				
^г 4	37862.0			58	3P(2,±2)	38	1D(2, ± 2)		
^Г 5	38049.4	38045.0	2.6	57	3P(2,-1)	38	1D(2,-1)		
Г ₁	38049.5	·		58	3P(2,0)	38	1D(2,0)		
^г з	38091.4			57	3P(2,±2)	39	1D(2 ,± 2)		
^г 1	73579.9	•		94	1S(0,0)	6	3P(0,0)		
					•				

^aWhen the symbol \pm appears in front of J_z the contributions from \pm J_z and \pm J_z are equal and have been summed. See reference 7 for a description of the eigenvectors of the Γ_i states.

<u>Table 2</u>

Observed and Calculated energies and g values for Yb^{3+} in YPO4 and LuPO4.

Yb³⁺:YP04

Sym.	Energy (cm-1)			a ^{II}		9 <u>1</u>	() ()	Eig. Comp	ositio	n \\ (01.01.\
	cal.	obs.	cal.	obs.	cal.	obs.	(25*	largest	(25+1 %)L(2J,2Jz) second
^Г 6	0.0	0.0	1.7	1.3	3.1	3.2	81	2F(7,-3)	19	2F(7,5)
^г 7	90.0	90.0	-0.5		3.8		83	2F(7,-1)	17	2F(7,7)
^Г 6	305.4		-4.0		3.1		81	2F(7,5)	19	2F(7,-3)
^Г 7	315.0		-6.4		0.8		83	2F(7,7)	17	2F(7,-1)
Г 7	10257.8	10257.8	0.9		2.6		100	2F(5,-1)		
Г 6	10258.4	10258.4	0.5		1.8		70	2F(5,-3)	30	2F(5,5)
^Г 6	10508.5	10508.5	-2.2		1.7		70	2F(5,5)	30	2F(5,-3)

Yb³⁺:LuPO4

1

Sym.	Energy	(cm-1)		g ₁₁		g ,	(264	Eig. Compo	sitio	
	cal.	obs.	cal.	"obs.	cal.	obs.	(23+ %	largest	(23+1 %	second
^Г 6	0.0	0.0	1.6	1.3	3.2	3.2	80	2F(7,-3)	20	2F(7,5)
^г 7	99.0	99.0	-1.1		3.5		76	2F(7,-1)	24	2F(7,7)
^Г 6	279.3		-3.9		3.2		80	2F(7,5)	20	2F(7,-3)
Γ'7	288.6		-5.8		1.1		76	2F(7,7)	24	2F(7,-1)
^Г 6	10244.7	10244.7	0.4		1.8	1.9	68	2F(5,-3)	32	2F(5,5)
^Г 7	10271.8	10271.8	0.9		2.6	2.5	100	2F(5,-1)		
^Г 6	10475.5	10475.6	-2.1		1.8		68	2F(5,5)	32	2F(5,-3)

-23-

Tab	le	3a

Param.	Tm ³⁺	үь ³⁺
ζ	+2629.9(2)	+2903.0
F ²	101140.7(33)	
F ⁴	70810.2(104)	
F ⁶	50095.4(113)	
B ² 0	283(22)	339
B ⁴ O	98(51)	72
B ⁴ ₄	-620(27)	-648
в <mark>б</mark>	-694(40)	-694 ^b
B ⁶ ₄	4(45)	4 ^b
α	15.9(0.3)	
β	-587(18)	
γ.	2200	
м ^О	4.93 ^a	
м ²	2.72 ^a	
M ⁴	1.37 ^a	
P ²	729.6 ^a	
P ⁴	547.0 ^a	
P6	364.0 ^a	
σ (cm-1)	13.6	

Atomic and crystal field parameters for lanthanide ions in YPO4.

^aFrom reference 20. ^bFixed at Tm³⁺ value.

Param.	Tm ³⁺	4 ³⁺	
ζ	+2629.0(1)	+2903.0	
F ²	101250(28)		
F ⁴	70754(94)		
F ⁶	50051(89)		
B ² 0	203(22)	256	
B ⁴	117(52)	14	· .
в ⁴	-673(22)	-608	
B ⁶	-705(32)	-705 ^b	
8 <mark>6</mark>	16(33)	16 ^b	
α	17.5(0.3)		
β	-635(13)		
Y	2200		
м ^О	4.93 ^a		
. m ²	2.72 ^a		
M ⁴	1.374		
P ²	729.6 ^a		
р ⁴	547.0 ^a		
<mark>р</mark> б	364.0 ^a		
σ (cm ⁻¹)	10.0		

Atomic and crystal field parameters for lanthanide ions in LuPO₄

Table 3b

^aFrom reference 20. ^bFixed at Tm³⁺ value.

<u>Table 4</u>

Zeeman Pattern of the Γ_6 and Γ_7 Excited States for $Yb^{3+}{\rm :}\,YPO_4$

Predicted Transitions (cm ⁻¹)	Observed Transitions (cm ⁻¹)
10262.57	10262.56
10260.09	10260.44
10260.02	10259.67
10258.73	10258.57
10257.33	10257.39
10256.25	10256.46
10256.18	10255.68
10253.99	

-26-

Tal	b1	e	5
_			_

Crystal Field Parameters for RE:YPO4 (cm⁻¹)

RE	в <mark>2</mark>	в <mark>4</mark> 0	в <mark>4</mark>	в <mark>6</mark>	в <mark>6</mark> 84	Ref
*Pr ³⁺	78(18)	321(51)	-849(43)	-1376(67)	35(41)	7
*Nd ³⁺	302(33)	2 73 (53)	-777(43)	-1245(38)	-109(57)	7
Eu ³⁺	362	125	-757	-785	+67	25
Eu ³⁺	293	400	-707	-525	-559	22
Ho ³⁺	341	-38	-751	-713	-50	25
Er ³⁺	279	155	-756	-537	-141	6
*Tm ³⁺	283(22)	98(51)	-620(27)	-694(40)	4(45)	**
Yb ³⁺	339	72	-648	-694	4	**

*Values in parentheses are statistical error estimates for the parameters.

*This work.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable. TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720