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Abstract

Essays on Environmental and Urban Economics

by

Wei Guo

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Maximilian Auffhammer, Chair

This dissertation examines the interplay between environmental disasters, renewable en-

ergy development, and housing markets through three interconnected chapters. Using quan-

titative methods and geospatial databases, I present empirical evidence on the economic

and social consequences of environmental challenges and the transition to renewable energy.

The findings contribute to a better understanding of the challenges and opportunities in de-

veloping effective, equitable, and sustainable disaster mitigation efforts and environmental

policies.

Chapter 1 is motivated by the reality that environmental disasters increasingly displace

people worldwide with little warning. The rapid expansion of the sharing economy has cre-

ated a new source of short-term housing for those affected. This chapter investigates the

welfare impacts of home sharing for short-term displacement caused wildfires in the Los

Angeles area. I develop a structural model of the home-sharing market that accounts for

information asymmetry between customer types (disaster evacuees versus regular travelers),
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identifying two welfare channels: the increased choice of housing options and altruistic shar-

ing by hosts. The results suggest that home sharing can mitigate 52% of welfare loss due to

displacement, with host generosity contributing one-quarter of this reduction. My analysis

highlights the equity benefits unlocked by home sharing, as altruistic behavior is primarily

carried out by better-off hosts as indicated by demographic and home characteristics. The

study also proposes a platform targeting displaced individuals to improve the efficiency and

equity of mitigation efforts. The findings speak to the fundamental question of economics

on the role of market economy and technology innovation in enhancing emergency response

and recovery.

Chapter 2, co-authored with Yanjun (Penny) Liao and Qing Miao, addresses the chal-

lenges coastal communities face in limiting population and property exposure to increasing

disaster risks while maintaining a strong local economy. This dilemma is often apparent in

government buyout and acquisition programs, which offer financial incentives for households

to voluntarily relocate from at-risk properties. This chapter examines a major post-disaster

buyout and acquisition initiative implemented by New York state after Hurricane Sandy, and

its effects on a wide range of property-level and community-level changes. Our results indi-

cate that acquisitions and buyouts can increase property values in the immediate area and

enhance business outcomes in the broader neighborhood. Consequently, these neighborhood

improvements attract different types of property buyers. By offering the first estimates on

general equilibrium effects spilling over to a larger portion of the neighborhoods, our find-

ings contribute to ongoing debates on managed retreat and provide a more comprehensive

perspective.

Chapter 3, in collaboration with Maximilian Auffhammer and Leonie Wenz, addresses the

contentious issue that renewable power, while increasingly important for its environmental

benefits, may impose externalities on local residents. This chapter assesses the social costs

of wind power generation in the US, focusing on its impact on property values due to visual
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disamenity. We construct a geospatial database on wind turbine visibility nationwide and use

a spatial difference-in-difference approach to estimate the impact of wind turbine visibility on

housing prices. Results indicate that wind farm developments reduce property values by up

to 8% in visible areas of close proximity, primarily in urban neighborhoods. We also explore

the adaptation efforts taken by local residents and discuss their implications for future wind

farm location decisions. By providing the first nationwide evaluation of the social costs of

wind power generation, this study offers essential insights for ongoing debates on the equity

implications of renewable energy development.
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Chapter 1

The Sharing Economy as Disaster

Remedy: The Case of Airbnb

1.1 Introduction

There have been significant increases in short-term displacement over the past decade (The

United Nations High Commissioner for Refugees 2022). We often think of most displace-

ment being induced by civil conflict and outbreak of pandemics, yet forced displacement by

extreme weather and natural disasters has been on the rise worldwide, some of which can

be attributed directly to the acceleration of climate change (Missirian and Schlenker 2017).

The onset of these disasters is impossible for individuals to predict; hence the ability to plan

ahead is limited. In the immediate aftermath of a disaster, considerable stress is placed on

transportation infrastructure and sheltering. There is generally a lack of public resources

available from traditional sectors to adequately accommodate all displaced populations. For

instance, the Southern California wildfires in 2017 displaced 300,000 people through evacu-

ation, while there were only 100,000 hotel rooms in nearby cities (Ronchi et al. 2021).

Facilitated by the development of cost-reducing technologies, online marketplaces have

popularized peer-to-peer housing transactions, which enable individual homeowners and ten-
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ants to offer their underutilized housing units to strangers in exchange for compensation.

Home-sharing platforms, such as Airbnb, VRBO, and HomeAway in particular, have greatly

improved the capacity and supply flexibility of the market for short-term accommodations

(Barron et al. 2021). Anecdotal evidence suggests that this channel sometimes unleashes hu-

man generosity during moments of emergency. For instance, Airbnb has initiated a so-called

“Open Homes Program” to motivate the offering of discounted or free homes to victims after

disasters

In this paper, I quantify the welfare loss of temporary displacement by a type of natural

disaster (wildfire), and explore how the peer-to-peer production of short-term accommo-

dations mitigates losses for the displaced. The analysis is focused on the response of the

prominent home-sharing platform, Airbnb, to the evacuation incidents prompted by wild-

fires in one of the world’s largest home-sharing markets – the Los Angeles area. I highlight

two welfare channels operating through Airbnb. First, the effect from an increased set of

accommodation choices due to Airbnb can benefit all customers, particularly through the

variety of housing options and the lower price relative to hotels. Second, some peer hosts

display altruistic behavior, by increasing supply and setting price to be lower than usual, to

further assist displaced households.

In order to test the hypothesis on the existence of altruistic sharing, I first present a set of

stylized facts on the response of Airbnb market outcomes during wildfire incidents. Based on

an event study framework using the issuance of evacuation orders as treatment, I find a supply

expansion immediately following wildfire in both extensive margin (new rooms/homes) and

intensive margin (rooms previously listed being made available), which add the offerings by

4% of the number of customers on Airbnb. There is systematic heterogeneity in the pricing

between the entries of both margins and the incumbents, which cannot be predicted by

housing characteristics alone. Relative to the incumbents, the new openings are superior

in property size and quality, are expected to operate for a shorter period, and are priced

significantly lower on days immediately after the wildfire. Together with a host of anecdotal

evidence on altruistic behaviors, these facts provide evidence in support of a mechanism of
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altruistic sharing at play when a wildfire evacuation is in place.

To rationalize these facts and to quantify the welfare impacts of Airbnb, I then construct

and estimate a structural model of the home-sharing market, where housing services are

provided by heterogeneous hosts, and are demanded differentially by regular travelers and

evacuees. The model incorporates three key innovations. First, because the customer type

is not observed in the data, I develop a mixed Poisson model to microfound the arrival

processes for different agents, which is identified by the nature of evacuation. Second, due

to the fact that the Airbnb market is mostly uncleared with excess supply, it is unable to

trace out the supply coefficients using the market equilibrium condition. Instead, I take

advantage of observations in the supply-side data, namely the price offered and the opening

status for each listing. Finally, by incorporating a rich set of interacted parameters, the

model captures the heterogeneity in the home-sharing cost and the altruism across residents

in different demographic groups.

The construction of the Airbnb demand model is shouldered on the literature of differ-

entiated products with constrained capacity (Huang 2022) and residential sorting models

(McFadden 1978; Bayer et al. 2007). I model the demand as a discrete choice problem over

accommodation decisions defined by neighborhood and housing type. In addition to differ-

ential price elasticities and housing tastes between disaster evacuees and travelers, the model

allows for heterogeneity in the horizontal preference over wildfire and smoke exposure. To

address the price endogeneity, I propose two novel instruments. The first relies on the fact

that manually adjusting price night by night is costly for resident hosts; as a result, the lack

of temporal variation in price may reflect the cost of price adjustment. The second follows

the standard BLP instrument on the characteristic space of competitors (Berry and Haile

2014). By averaging the individual-level time-invariant features to each neighborhood, the

panel variations over time provide identifying variations on the change of market composition

driven by the entry and exit.

I model the Airbnb supply of local residents as a discrete choice problem based on Calder-

Wang (2021), where each resident makes a choice on whether and how to share her home at
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the prevailing price. The decision involves a trade-off between the price offered and the cost of

providing such housing service. Motivated by the evidence of altruistic sharing, I incorporate

a component on the additional benefit from home-sharing for disaster incidents. To estimate

the coefficients in the presence of excessive supply, I leverage the high-frequency observations

on the supply side of each listing, which contain the offered price and opening status for both

occupied and unoccupied units. I employ an innovative adaptation of BLP methods (Berry et

al. 1995; 2004) in the estimation of a heterogeneous supply system, where agents are local

residents and products are home-sharing choices. I also exploit the individual-level data

from the American Community Survey to obtain a full vector of demographic characteristics

at the neighborhood level. The location of each Airbnb listing, together with the cross-

sectional variations in neighborhood demographics, allow me to estimate the distribution of

home-sharing cost and altruism by demographic features including income, education, family

structure and home ownership. To address the price endogeneity, I exploit the correlation in

demand shocks among different cities of California, and the lagged effect of disaster exposure

on customer arrival through its impact on reservations.

To recover the model primitives, I use the transaction data spanning September 2014 to

October 2016 for the Los Angeles Airbnb market, which has experienced numerous significant

incidents of wildfire evacuation. The model estimates allow me to evaluate the welfare

losses from short-term displacements, as well as the aggregate and distributional impacts of

Airbnb on the mitigation. I conduct a counterfactual analysis to measure how the welfare

consequences would change in the absence of altruistic sharing, in the absence of a home-

sharing market, or if the customer type is fully observable to altruistic hosts. There are four

primary findings.

First, there are large welfare losses of short-term displacement from disaster evacuation.

In the absence of home-sharing accommodations, an average displaced household would lose

a minimum of $232 per day from not having the option of staying in their home, which

equates to $89 per capita. A small set of displaced families suffers a much heavier loss, at a

magnitude of $1000 per day. Aggregating over all affected households, I find the displacement
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losses are equivalent to at least 31% of the property damages directly related to wildfire in

California.

Second, I find the option of Airbnb accommodations reduces the displacement losses by

more than half, and the altruistic sharing contributes roughly 25% of the mitigation effect.

Because of a failure to distinguish displaced households, there exists widespread free riding by

regular travelers taking advantage of altruistic hosts. I find the welfare gains from altruistic

sharing are of similar scale between evacuees and travelers, implying a substantial loss of

efficiency due to free riders.

Third, the altruistic behavior comes exclusively from a subset of residents who are at

a relatively high socioeconomic status, featuring high-income, well-educated, families with

children, and homeowners. The altruistic hosts suffer a loss of $28 per day on average due

to their generosity, as otherwise they would increase price by 5% and reduce supply by 2%.

Due to free riders, non-altruistic hosts also lose from spillovers of generosity, at a magnitude

comparable to the direct loss for altruistic hosts. This implies a failure in not only efficiency

but also equity of the mitigation consequences.

Finally, I suggest that the free riding and the induced spillovers result from a failure

to target displaced households. If one introduced a matching mechanism between altruistic

hosts and displaced families, for example by home ZIP code, regular travelers would face

a price increase of 4% and a supply expansion of 10% over the status quo. As a direct

consequence, the generosity losses for non-altruistic hosts would be cancelled out, as would

the gains from altruistic sharing for regular travelers. I find this would also slightly reduce

the losses for altruistic hosts, and further increase the displacement mitigation gains.

For policy-making, this paper highlights three fundamental reasons why the peer produc-

tion facilitated by digital innovation has a particular role to play in displacement mitigation.

First, peer-to-peer marketplaces can make the previously underutilized resources held by

local residents available online. These products, despite not being a perfect substitute for

commercial facilities offered by companies, are valued by some customers because of increased

variety and relatively lower price. The home-sharing products are particularly valuable to
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displaced households, who typically have a higher price elasticity and demand places that fea-

ture a more homey style for their entire family. Second, the traditional hospitality industry,

primarily constituted by hotels, is technically constrained by a fixed inventory over a short

term. This can result in a price increase and a failure to handle all arrivals during periods of

peak demands, such as in the immediate aftermath of large-scale evacuation. Home-sharing

production, instead, is rather flexible and can expand at exactly these emergencies, thus im-

proving the consumer surplus for all and in particular displaced people. Finally, the sharing

economy enables production by a wide distribution of peers, which also includes those who

are keen on altruistic engagement. This demonstrates a market tool for emergency relief

through human generosity. Contrary to typical policy prescriptions for disaster relief, the

welfare implications through generous sharing neither involve price compression nor antic-

ipate financial assistance. With a policy correction based on information disclosure, the

generosity through peer-to-peer production can further demonstrate efficiency improvement

and equity gain without intervention of policy makers.

Related Literature

This paper seeks to contribute to existing literature in three main ways. To the best of my

knowledge, this paper is the first to construct a model of peer production in the presence

of supplier altruism, while evaluating the economic impacts of a digital platform market-

place during emergency incidents. In carrying out the study, I contribute to the growing

empirical literature on the sharing economy, such as Einav et al. (2016) for peer-to-peer

production in general, Cohen et al. (2016) for Uber, Kroft and Pope (2014) and Seamans

and Zhu (2014) for Craigslist, and Aguiar and Waldfogel (2018) for Spotify. The structural

modeling in this paper enriches the growing body of reduced-form studies on the economic

impacts of home-sharing platforms from various angles, including Zervas et al. (2017) on

the hotel industry, Barron et al. (2021) and Horn and Merante (2017) on the rental market,

and Koster et al. (2018), Valentin (2021), and Garcia-López et al. (2020) on the housing
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market. This paper in particular complements the few existing studies that adopt struc-

tural modelling to explore the impact of Airbnb. Farronato and Fradkin (2022) examine the

welfare consequences of peer entry through Airbnb on the accommodation industry, high-

lighting the differential supply elasticities of resident hosts as opposed to incumbent hotels.

Calder-Wang (2021) examines the impacts of Airbnb on the rental market through housing

reallocation to quantify the welfare consequences on renters over the long term. Almagro and

Domınguez-Iino (2019) estimate the externality of home-sharing on the endogenous neigh-

borhood amenities, leveraging the substantial growth of Airbnb in Amsterdam. While they

carry out a welfare analysis of Airbnb from different aspects, this paper is the first to examine

the role of peer production on emergency incidents in the presence of supplier altruism.

The second main contribution of the paper is providing the first empirical estimate on

the welfare loss of short-term displacement due to natural disaster and a discussion of the

role of policy in its mitigation. An idealized disaster management cycle consists of three

stages, namely preparedness, response, and recovery (Council et al. 2007; Dari-Mattiacci

and Faure 2015). Existing literature on disaster mitigation is extensively focused on the first

and the third stages. On the one hand, there is a rich body of study on disaster precaution to

improve risk management and build resilience ex ante, such as Wagner (2022) and Bradt et

al. (2021) for increasing the take-up of disaster insurance, Boustan et al. (2012), Bakkensen

and Ma (2020), and Bernstein et al. (2020) for relocating residents away from disaster-prone

areas, and Kocornik-Mina et al. (2020) and Mulder (2021) for improving the information on

disaster predictions and recurring damages. On the other hand, there has been huge interest

in policy solutions for disaster recovery over a period of months or years after disaster, such

as Deryugina (2017), Baylis and Boomhower (2019), and Liao and Kousky (2022) for the

utilization of government aid to assist the affected populations, McCaughey et al. (2018)

and Mach et al. (2019) for the reconstruction of physical property damaged by disaster,

and Taylor and Druckenmiller (2022) and Karwowski (2022) for the enhancement of land

use and zoning regulations. This paper departs from existing literature by emphasizing the

character of relief actions in the immediate aftermath of a disaster, and examining the role
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of peer-to-peer production in accommodation of the displaced over the short term. In doing

so, I examine the peer production and generosity enabled by platform marketplaces as a

market-based prescription for disaster mitigation.

Finally, I contribute to the nascent stream of literature on policy design for peer-to-peer

marketplaces. Pan and Wang (2021) and Huang (2022) document the lack of price vari-

ation on Airbnb and attribute the frictions to menu costs and platform interface design.

Brown and MacKay (2021) discuss the adaption of pricing algorithms of online retailers.

In addition to the pricing rules, Belleflamme and Peitz (2020) explore theoretically a set

of non-pricing decisions, including the setup of consumer ratings, recommendation systems,

search rankings, price transparency, information accuracy, and certification systems. Empir-

ically, Jia et al. (2021) highlight the role of cancellation policy in the presence of platform

competition within the home-sharing industry, Hui et al. (2022) demonstrate the effect of a

quality standard using replacement of the “Power Seller” badge with a more stringent “Top

Rated Seller” badge on Ebay, and Lee et al. (2015) point out the effect of host reputation

on the pricing decisions of Airbnb. My work complements the above by shedding some light

on price discrimination and information asymmetry on platform marketplaces. In doing so,

I also examine the efficiency and equity gains from the introduction of matching between

altruistic suppliers and suffering customers. The findings suggest that some sort of third-

degree discrimination, such as information disclosure based on home address, can improve

the social welfare of platform companies for emergency responses.

The remainder of the paper is organized as follows. Section 1.2 discusses the background,

introduces the data, and documents stylized facts. Section 1.3 presents the structural model.

Section 1.4 discusses the estimation results. Section 1.5 presents counterfactual simulations

and implications. Section 1.6 concludes the paper.
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1.2 Background, Data, and Stylized Facts

In this section, I provide background on Airbnb and wildfire evacuation, discuss primary data

sources, and document stylized facts to motivate the structured model in the next section.

Background

There have been an increasing number of devastating wildfires in the U.S., which have

pushed many residents into challenging evacuation or displacement situations. California, in

particular, experienced more than 11 catastrophic wildfires that prompted an evacuation of

10,000 or more households in 2017-2019 (Wong et al. 2020). Wildfire evacuation is designed

to safeguard all households possibly in danger. In practice, a mandatory order is sent to all

homes immediately threatened by the flames, and a warning is sent to all homes possibly

threatened or under high-risk circumstances. Because utilities usually turn off power in

places with possible ignition to reduce further risks of flames, even more homes are affected

by a power outage and might choose to flee temporarily for power access.

In the immediate aftermath of a wildfire, considerable stress is placed on transportation

infrastructure and sheltering. People who have the means to do so generally seek shelter at

the homes of friends or relatives, followed by hotels and other commercial facilities, making

public shelters a refuge of last resort (Lindell et al. 2018). A survey on wildfire evacuation

suggests that more than half of evacuees do not have the option to stay with families or

friends (Wong et al. 2020). Due to limited space in public shelters, the majority of evac-

uees have to pay to shelter at short-term rental facilities, such as hotels (Wong et al. 2022).

Meanwhile, evacuation-induced costs remain largely under-insured and under-reimbursed.

Federal assistance for evacuation reimbursement only applies to presidential declared disas-

ters, and evacuees can seldom seek assistance from local agencies. 1 As a last resort, while

many home insurance policies include some sort of coverage for “additional living expenses”
1 Of the 81 wildfires in California that have received a governor’s declaration since 2015, only 16 have re-

ceived a presidential declaration. Local emergency agencies generally lack public resources to adequately
evacuate all populations in danger.
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induced by natural disasters, policyholders are generally advised to avoid filing claims for

evacuation-related expenses only, as the reimbursements are usually not large enough to

justify the permanent increase in the insurance premium.

Home-sharing platforms have created a novel market for a previously rare transaction –

the short-term rental of housing units supplied by residents directly to strangers. Among

various platform companies, Airbnb, founded in 2008 and having experienced rapid growth

over a decade, has become one of the dominant marketplaces in the U.S., accounting for

approximately 75% of the total market revenue of the home-sharing industry nationwide

(Schultz 2022). Los Angeles is the largest Airbnb market in California. More than 70,000

Airbnb listings experienced an active transaction during 2014-2016, representing 1.6% of all

housing units. As Figure 1.1 shows, the average level of Airbnb activity masks an extensive

geographic heterogeneity across neighborhoods.

Implied by its name, the sharing economy is built on the idea of collaborative consump-

tion, breeding trust, generosity, and compassion among people. In 2012, inspired by altruistic

hosts who requested permission to welcome people free of charge during Hurricane Sandy,

Airbnb launched the “Open Homes Program” to facilitate offering free and discounted ac-

commodations in times of emergency. This platform-wide initiative was formalized with the

creation of the foundation Airbnb.org in 2020. 2 Starting with the outbreak of COVID-19,

Airbnb has proposed a global initiative, the “Frontline Stays Program,” to provide free and

subsidized stays for health care professionals and relief workers. Instead of helping hosts

defray all costs, the platform stimulates generosity by waiving service fees and partnering

people in need with willing hosts during emergency incidents. 3 The recurring generosity

of hosts has facilitated a reputation system among hosts, as Airbnb.org grants a supporter

badge to hosts who have offered free or discounted stays to people during an emergency. 4

2 In 2020, Airbnb’s Open Homes program turned into Airbnb.org, a 501(c)(3) nonprofit.
3 Airbnb hosts don’t have to offer their properties for free, but will still have all fees waived by Airbnb.
4 Though Airbnb shares community members with Airbnb.org, Airbnb.org is an independent organization

with a different board of directors.
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Data

Airbnb Transaction

Data on the full sample of Airbnb transactions are obtained from a third-party data vendor,

AirDNA, which has scraped Airbnb.com comprehensively on a daily basis since 2014. For

each listing, the data consist of key characteristics, including listing type (entire home, private

room, or shared room), the number of bedrooms, and the number of bathrooms, along with

information related to Airbnb policies. The data allow for mapping each property to its

corresponding neighborhood based on longitude and latitude information. 5 Figure A.2

displays the geographic distribution of Airbnb listings based on the property type.

An important feature of the data is the high-frequency panel at a daily level. The data

contain the date on which a listing is first available and the date of its last appearance,

which provides insight on the operation status. For each listing and every day of operation,

the data allow for an observation on whether it is opened for booking, the offered price,

whether a reservation has occurred, and, if so, when the booking has been made. I eliminate

listings requiring a minimum stay of above 7 days, to limit the study to listings designed for

short-term stays. I also reclassify the listing type to combine “private room” and “shared

room” into a single category: “shared place.” As hosts may set their rates prohibitively high

in lieu of blocking off the calendar, I redefine an opening with a daily price above $1000 as

unavailable.

Dynamic patterns exist in the Airbnb market, as Figure A.3 suggests. The Airbnb

demand depicts a strong seasonality within a year, with peak demand in July and August

and a trough season between September and New Year’s Eve. In contrast, the price remains

rather stable without seasonal trends. The capacity of Airbnb has more than quadrupled

over the research period. In comparison, the growth of hotel room capacity has been less

than 1% over the same period. 6 Interestingly, the market-clearing condition does not
5 Airbnb adds a small perturbation to ensure privacy. The perturbation, up to 500 feet in distance, is un-

likely to cause any measurement error in the neighborhood mapping.
6 The hotel metrics come from Smith Travel Research (STR) Trend Reports and Farronato and Fradkin
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hold for the Airbnb market, as the occupied units are far fewer than the units available for

reservation. Table A.1 summarizes the statistics for the Airbnb transactions and property

features over the research period. An average Airbnb listing charges $155 per night, is open

71% of the time, and experiences an occupancy rate of 26%, very different from hotel rooms

that are on average priced at $220 per night, open throughout the entire year, and occupied

67% of the time. The standard deviations suggest great variation in listings on Airbnb. The

distribution of price is highly skewed to the left with a long right tail (top panel of Figure

A.4), indicating the broad availability of low-priced properties. Additionally, although an

average listing expects customers to book 30 days ahead of arrival, “short booking” within

10 days is generally available for a significant share of listings (bottom panel of Figure A.4).

These patterns indicate that Airbnb not only differs from hotels in terms of average price and

housing quality, but also in market composition and the extent to which market conditions

evolve over time.

Wildfire, Smoke and Evacuation Orders

The wildfire data come from the U.S. Geological Survey (USGS). As one of the most pre-

cise and comprehensive sets of wildfire observations, the data are created by merging and

dissolving fire information from 12 different original fire observation sources. 7 The data

include all fires in the US and consist of timelines of each fire, including ignition date, date

controlled, and containment date. I limit the data to fires that were sourced within driving

distance (300 km) from Los Angeles.

The smoke data come from the National Oceanic and Atmospheric Administration’s

Hazard Mapping System (HMS). HMS collects imaging information from seven NOAA and

NASA satellites on an hourly basis, to perform automation and digitization of smoke plumes.

(2022).
7 The data sources involve a variety of sources, such as satellite images, GPS points, and state and fed-

eral wildfire registries. The merged data are further corrected by an internal check based on topographic
maps to eliminate duplicate boundaries.
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8 The data consist of geo-referenced shapes of all smoke plumes on a daily basis, with an

estimate on the smoke-plume concentration categorized into three levels: 5µg/m3, 16µg/m3,

and 27µg/m3. I limit the data to plumes of 27µg/m3 density, to remove the anthropogenic

haze plumes mistakenly assigned as low-density smoke plumes and to better locate the source

of fire. 9

Smoke plumes data enable me to measure the smoke exposure for each property without

predicting a smoke transport model. As a downside, technically, the smoke plumes are not

paired with their fire sources. I connect each fire with its induced smoke, by constructing a

spatial overlay of the fire’s polygons with smoke plumes that happened between the ignition

date and the containment date of the fire. 10 As Figure A.5 displays, while some fires are

geographically small in scale, they have nevertheless generated significant smoke plumes that

travel long distances.

When officials of the fire agency have determined the locations to be evacuated in re-

sponse to a wildfire, formal documents are published to guide law enforcement agencies in

executing the evacuation order. As an example, Figure A.6 shows an evacuation warning for

the Soberanes Fire, issued on July 31, 2016. The document clearly states the fire name, the

time of issuance, affected jurisdictions or locations, and the level of enforcement (evacuation

order or warning). 11 I manually collect and digitize all wildfire evacuation documents to
8 Smoke detection is done with visible-band imagery and is occasionally assisted by infrared to distin-

guish between clouds and smoke when possible (Ruminski et al. 2006; Rolph et al. 2009). Geostationary
GOES acronym imagery, with its frequent refresh rate (typically every 15 minutes for each spacecraft), is
used almost exclusively for smoke detection, although on rare occasions polar orbiting satellite imagery is
used.

9 Smoke can sometimes be transported to areas with anthropogenic haze pollution and then mix with and
become indistinguishable from the anthropogenic haze pollution. Smoke and anthropogenic haze can-
not be distinguished or directed because no information about the vertical location or extent of smoke
plumes is provided. Smoke plumes of varying concentrations are often nested as higher-density plumes
occurring within a lower-density plume, implying smoke transportation.

10 I limit the data to high-density plumes to eliminate smoke that transported over a long distance with a
faded density and coincidentally overlays smoke from the fire of interest. A potential concern with the
pairing is that it does not allow separation of smoke from fires that happened within a small geographi-
cal range. This is unlikely to be an issue here, as a treatment event is defined as a day of fire instead of
a fire, as discussed later in Section 11.

11 When an evacuation order is relaxed, a similar document is published for the law enforcement agency
and on social media platforms (e.g. Twitter).
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construct the full history of wildfire evacuation over the research period. Furthermore, the

geo-referenced locations of evacuation zones allow me to obtain the demographic information

of evacuated populations, using the Population Density Grid data from NASA’s Socioeco-

nomic Data and Applications Center (SEDAC). Hereafter, I do not distinguish between

evacuation order and evacuation warning, and incorporate both in the analysis.

Figure 1.2 plots the location of fires that happened within driving distance (300km) from

Los Angeles and prompted an evacuation over the research period. Ninety wildfire events

occurring in 22 days led to evacuation, and none of them occurred within the Los Angeles

metropolitan area. Because the question of interest is the response in the Airbnb market

when an evacuation becomes active, I combine evacuation orders that were issued on the

same day or within three days. Figure 1.3 summarizes the timing and magnitude of the

15 evacuation events over the research period. On average, the number of people forced

to evacuate is more than 10 times the population directly affected by the flames. More

summary statistics of these evacuations are provided in Table A.2.

Stylized Facts

I begin by presenting evidence on the supply expansion of Airbnb in response to wildfire

evacuation, then compare the characteristics of the new listings relative to the incumbents.

I show that these facts are consistent with altruistic sharing. Technically, Airbnb hosts make

decisions about supply in two stages: whether to become a host and have their housing

service appear online, and whether to have their listing open for reservation on a given day.

I define these decisions respectively as the extensive margin and intensive margin of supply,

and document them separately.

Extensive Margin of Supply

I develop an event study framework to compare the number of Airbnb hosts across neighbor-

hoods, defined by Public Use Microdata Areas (PUMA), with different evacuation timing
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and fire intensity:

ln(# Hostnt) =
7∑

τ=−7
βτ Posttτ + α′Xnt + αt + αn + ϵnt

The dependent variable is the log transformation of the number of Airbnb hosts in PUMA

n for day t. The main regressor is a set of dummy variables together capturing an event time

frame starting from 7 days before the evacuation issuance and extending to 7 days after.

The variable Posttτ is an indicator of the τ -th day after the evacuation issuance. The model

includes a vector of controls, Xnt, which contains the acreage of the evacuation zone and the

number of people evacuated. The model also includes PUMA fixed effects αn to control for

time-invariant features at the neighborhood level, and a set of time controls αt, including

year-month, day-of-week and holiday fixed effects, to control for the general trends in the

market composition of Airbnb.

In Panel A of Figure 1.4, each coefficient corresponds to a day relative to the evacuation

issuance and estimates the response in the extensive margin of supply. These coefficients

trace out an immediate response in the number of Airbnb hosts equivalent to 0.5% of the

number of incumbents, a peak of an 0.8% increase at 5 days after the evacuation, and

a subsequent decline back to the pre-disaster level after 7 days. The responses are more

pronounced for the shared places, slightly less intense but still significant for the entire

units. This suggests that wildfire evacuation leads to an expansion of Airbnb supply by

favoring the entry of all types of listings. To see that the increasing entry is not caused

by a demand surge or market power, I re-estimate the event study framework using public

holiday events. If market power were a decisive determinant, we would see a similar supply

expansion following the demand shocks of holidays. As Panel A of Figure A.7 shows, in

contrast, the number of Airbnb hosts shows an imprecise drop after a public holiday. This

suggests that the expansion in the extensive supply after wildfire evacuation is not driven

by market power or demand surge.



CHAPTER 1. 16

Intensive Margin of Supply

Next, I document the response in the intensive margin of Airbnb supply, measured by the

probability of opening for reservation. Similarly, I exploit an event study framework with a

logistic linkage, to capture the response to a wildfire evacuation:

Pr(Open)it =
7∑

τ=−7
βτ Posttτ + α′Xit + αt + αi + ϵnt

where, similarly, the main regressor is a set of dummy variables together capturing an

event time frame starting from 7 days before and extending to 7 days after a wildfire evac-

uation. The main dependent variable is the indicator for opening of listing i on day t,

transformed by a logistic model. The vector of controls, Xit, is on the listing-by-day level.

Aside from controlling for the acreage and the number of households in the evacuation zone,

it further contains the property characteristics, including the number of bedrooms, the num-

ber of bathrooms, the rating score, and the cancellation policy. In addition to the full set of

time fixed effects αt, I also include the zip-code-by-listing-type fixed effects, denoted by αi,

to control for time-invariant features based on property type.

In Panel B of Figure 1.4, coefficients report the marginal effect at the mean (MEM) on

the intensive margin of supply. I find the average opening probability increases immediately

after the issuance of the evacuation order, peaking at 0.3% at 4 days after, and staying high

relative to the pre-evacuation level over the following week. Both entire and sharing units

experience a higher probability of opening; the responses for the sharing units are slightly

larger in percentage magnitude. Similarly, as a placebo test, I find the demand shocks of

public holidays instead cause a pre-trend reduction in the opening probability of 0.8% of the

pre-holiday level, and a slightly recovering post-trend that is not large enough to make up

for the pre-trend reduction. These contradictions suggest that the expansion in the intensive

supply following a wildfire evacuation is not a result of the demand surge caused by evacuees’

arrival.
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Comparison of New and Incumbent Listings

Knowing that an evacuation can lead to supply expansions in both extensive and intensive

margins, I then explore the differences between the new openings that became available

only after a wildfire evacuation order, relative to the incumbents. I utilize a event study

framework to compare the characteristics with different evacuation timing between the new

and incumbent listings:

Yit =
7∑

τ=−7
β1,τ Posttτ · I(Old)i +

7∑
τ=0

β2,τ Posttτ (New)i + α′Xit + αt + αi + ϵnt

where the main regressor is a set of dummies together capturing an event time frame

starting from 7 days before the evacuation was announced to 7 days after for the incumbents,

and from the day the evacuation was announced to 7 days afterwards for the new openings.

I define the incumbent properties as those that have ever been available in the month before

the evacuation. The vector of controls, Xit, includes the same set of property characteristics

as the previous model. Again, the model includes a full set of time fixed effects αt and zip

code by listing type fixed effects αi.

The set of dependent variables captures four property patterns of interest: the property

size measured by the number of bedrooms, the property quality measured by the rating

score, the time length of operation, and the price. The first three patterns are rather stable

at the property level. The results are shown in Figure 1.5. For the incumbent listings, I

find that the three time-invariant patterns do not respond to an evacuation, indicating a

stable composition of the incumbents during disasters. In comparison, the new openings

have a higher number of bedrooms, have a slightly higher rating score, and are expected to

operate for a significantly shorter period. In the bottom-right panel, I find the prices of the

new openings are significantly lower than the incumbents, after controlling for all relevant

property features and location fixed effects. Combining all the facts suggests that the new

openings are of larger size and better quality, but are priced substantially lower than the

incumbents, and they are likely intended only for disaster accommodation instead of long-
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term operation. These observations provide motivating facts for the existence of altruistic

sharing, which appears more pronounced among the new entries.

Anecdotal Evidence of Altruistic Sharing

Airbnb has self-reported that it has made more than 100,000 free or discounted stays available

to people in crises, including asylum seekers, essential workers on the front lines of the global

pandemic, and evacuees fleeing catastrophic disasters around the world (Lyons 2020). Since

the facilitation of generous offering and formalization of disaster response was initiated on

the platform level, there has been a good deal of anecdotal evidence of benevolent offerings

made by warmhearted hosts on Airbnb during moments of emergency.

For instance, in the aftermath of Superstorm Sandy, Shell, an Airbnb host in Brooklyn,

contacted Airbnb and asked if she could offer her place for free to people who had to evacuate,

and was approved by the platform. Soon afterwards, over 1,400 hosts had opened their

homes to those hit by the storm (Airbnb 2018). To date, generous offerings have been made

in hundreds of disasters and provided temporary housing for the displaced around the world

(Gibson 2019). For instance, in response to the 2018 wildfire season in California, over

2,500 people found temporary housing free of charge on Airbnb. After Hurricane Harvey

hit Houston in 2016, over 1,000 hosts opened their homes and housed over 1,400 people

impacted by the disaster. Other activations include Puerto Rico after Hurricane Maria, the

2017 Puebla earthquake in Mexico, Hurricane Florence in 2018, and currently for Ukrainian

refugees.

These lessons suggest that effective empathy and compassion are the root of the generous

offering and benevolent sharing. This is conveyed by many families who have made their

homes available to those in need. For example, after Hurricane Matthew, a host said, “the

fact that you get to meet great people that you would never have met if it wasn’t for the

terrible circumstances is the good side of any tragedy.” (Airbnb 2020) A family in Portland

has hosted five frontline workers for a total of 59 free nights, and described their appreciation
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of these offerings as, “I feel really grateful that we had an opportunity to feel like we were

part of trying to make things better... It was such a hard time, you felt like you wanted to

do something, and you just didn’t know what to do.” Many displaced people would have no

place to stay otherwise. A nurse in British Columbia, for example, “was feeling increasingly

desperate and was considering living in her car... [she] can’t thank [her] host enough for

inviting [her] to use their fantastic house that is well-stocked, safe, and quiet.”

1.3 Structural Model

This section introduces the structural model, which consists of three parts: (1) arrival of

customers of different types, (2) customer demand for Airbnb housing, and (3) the supply

decision on home sharing by resident hosts. The purpose of structural modeling is to estimate

the arrival parameters, demand primitives, and residents’ opportunity costs for home sharing,

which form the basis for market simulation under counterfactual circumstances.

The model features a random utility framework on the demand and supply sides of the

Airbnb market based on Calder-Wang (2021) and Huang (2022), with two key innovations.

First, I take advantage of the nature of evacuation to identify the customer arrivals of different

types. This allows me to separate out regular visitors and evacuees from the aggregate

data observed. Second, I incorporate “altruistic sharing” by allowing the opportunity costs

for home sharing to vary by evacuation status, which enables easy transformation of the

primitives for altruism to monetary value.

Arrival of Customers by Type

I begin by developing a mixture of a Poisson arrival model to separate out the arrival of

customers by type, namely regular travelers and evacuees. The necessity for modelling the

arrival process stems from the Nondiscrimination policy on Airbnb, which results in a failure
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to distinguish between travelers and evacuees from the aggregate data observed. 12

Two types of customers, denoted k = 1 for regular travelers and k = 2 for evacuees,

arrive at the Los Angeles Airbnb market. Customer i of type k looks for Airbnb housing

for day t. Her possibility for booking on day τ ≤ t follows a Poisson process at parameter

λk
tτ . 13 Thanks to the additivity of the Poisson process, the number of customers of type

k for day t, denoted as Mk
t , follows a Poisson process of parameter λk

t = ∑
τ≤t λk

tτ . The

aggregate number of customers for day t, denoted as Mt, also follows a Poisson process with

the parameter as the sum of parameters for travelers and evacuees, λ1
t + λ2

t .

I assume the arrival parameter of regular travelers depends on the wildfire exposure (the

share of residents exposed to fire), smoke exposure (the share of residents exposed to smoke),

the indicator for public holiday, the day-of-week and month fixed effects, and a quadratic

time trend, under an exponential linkage:

λ1
t = exp(γ1X1

t + u1
t ) , where X1

t = [Firet, Smoket, Holidayt, DOWt, Montht, t, t2]

I assume evacuees would only arrive if there is an evacuation in place. In other words, on

days without an active evacuation, all customers on Airbnb are regular travelers. Given a day

under evacuation, I assume the arrival rate of evacuees depends on the number of evacuated

households, the demographics of evacuees, including the share of white, black, Hispanic,

Asian, female-headed, young, and elderly evacuees, as well as the wildfire exposure, the smoke

exposure, the indicator for public holiday, and the day-of-week fixed effects. Specifically:

λ2
t = Et exp(γ2X2

t + u2
t ) , where X2

t = [#HHt, Demogt, Firet, Smoket, Holidayt, DOWt]

and Et is the indicator for active evacuation order on day t.
12 Nondiscrimination policy of Airbnb: https://www.airbnb.com/help/article/2867/nondiscrimination-

policy
13 In practice, how far in advance a customer can book depends on how far the host sets in the calendar.

Airbnb allows hosts to set up the calendar up to two years in advance, so τ ≥ t − 730.
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Customer Demand for Airbnb

I model the demand system as a random utility framework based on McFadden (1978),

Bayer et al. (2007), and Huang (2022). The two types of customers, regular travelers and

evacuees, have heterogeneous preferences over short-term accommodations. Each custumer

faces a discrete choice problem over Airbnb housing defined by neighborhood and property

type, which is generated from a re-categorization: Upscale (entire place with more than 2

bedrooms), Midscale (entire place with 1 bedroom), and Shared. In total, this results in 261

housing choices in the Los Angeles Airbnb market.

Customer i of type k looks for housing on Airbnb and chooses among neighborhoods

n ∈ N and property type h ∈ {Upscale, Midscale, Shared}, with the choice variable denoted

as j = (n, h). Her utility for housing choice j is

uD
ijt = βD

i Xjt + ξD
jt + ϵD

ijt

where the superscript D indicates parameters pertaining to customer demand. Xjt controls

for property features and neighborhood attributes, including the housing price, property

type, fire exposure, smoke exposure, and time-invariant features captured by the neighbor-

hood fixed effects. I also control for a set of time variables, including the indicator for public

holiday, the day-of-week and month fixed effects, and a quadratic time trend. ξD
jt captures

unobserved demand shocks such as temporary local events, which could be correlated with

price. ϵD
ijt is assumed to be a Type-1 extreme value error term.

The taste parameters βD
i are determined in a flexible way based on customer type, re-

flecting the differences in preferences between travelers and evacuees. I parameterize βD
i

as the sum of three components: a linear coefficient common to all customers, a heteroge-

neous component that is specific to evacuees, and a random component capturing unobserved

preference shocks:

βD
i = βD

0︸︷︷︸
linear coefficient

+ BD · I{k=2}︸ ︷︷ ︸
evacuee specific

+ ΩD · ωD
i︸ ︷︷ ︸

random part
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where ΩD is the variance covariance matrix of the random component, and ωD
i is the vector

of error terms, which is assumed to follow an i.i.d. normal distribution.

The outside choice of not staying in an Airbnb place is normalized as uD
i0t = 0. With this

structure, the demand for housing j on day t is obtained by integrating the individual choice

over all customers

Djt =
∫

i
I{uD

it,j>uD
it,−j}dP (ϵD

ijt)dP (k)

where P (k) is the empirical composition of customers of type k, between evacuees and

travelers. 14

Airbnb Supply from Resident Host

An important difference between home-sharing platforms and traditional commercial facil-

ities is the option for residents to host strangers at their homes. With this difference in

mind, I model the supply of Airbnb as a discrete choice problem on home sharing, where

each resident decides whether and how to share her home at the prevailing market price. Her

trade-off is based on the payment received from hosting and the perceived opportunity cost

from offering her home. The model features a novel extension of the canonical BLP methods

for demand estimation (Berry et al. 1995) to estimating a heterogeneous supply system.

Residents are differentiated into types k ∈ K by their demographic features, including

income, education, family structure, and homeownership. Resident i of type k living in

neighborhood n makes a decision on whether and how to share her home on a given day t,

between entire sharing or partial sharing, denoted as j ∈ {Entire, Partial}. Her utility for

home-sharing choice j is

uS
intj = βS

i XS
njt + ξS

njt + ϵS
injt

where the superscript S indicates parameters pertaining to the supply side. XS
njt captures the

benefits and costs related to home sharing, including three components. First, the monetary
14 Unlike most literature on demand system estimation, the customer proportions are not observed from

data. Hence, I will need to simulate the customer fractions Mk
t from the previous subsection.
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benefit of home-sharing is the income she makes from sharing her home, measured by the

market prevailing price pntj. Second, providing housing service is accompanied with a cost,

such as the opportunity costs from not being able to stay by herself, the noise made by

guests, and other hassles related to home sharing. Such cost depends on whether her home

is entirely or partially shared, so it is measured by an indicator for the home-sharing choice

j. Finally, to incorporate the altruistic incentive, I augment the model by a component on

the perceived benefit of home sharing in the presence of wildfire evacuation. Specifically,

XS
njt = ( pnjt︸︷︷︸

Monetary Benefit

, j︸︷︷︸
Home-sharing Cost

, j · I{Et=1}︸ ︷︷ ︸
Perceived Benefit from Altruism

)

where Et is a dummy for whether there is an evacuation in place on day t. XS
njt also includes

a set of neighborhood attributes and time variables, such as fire exposure, smoke exposure,

neighborhood fixed effects defined by PUMA, an indicator for public holidays, the day-of-

week and month fixed effects, and a quadratic time trend.

The model allows for unobserved home-sharing costs, ξS
njt, which could be correlated with

the prevailing price. ϵS
injt captures household-specific idiosyncratic taste shocks for home-

sharing and is assumed to be a Type-1 extreme value error term. The outside option of not

sharing is normalized as uS
int0 = 0. 15

The home-sharing decision depends on how the monetary and altruism benefits are valued

relative to the costs. To capture heterogeneity, I parameterize the taste coefficients βS
i as the

sum of three components: a common component, a heterogeneous component that depends

on observed demographic characteristics, and a random component capturing unobserved

heterogeneity:

βS
i = βS︸︷︷︸

common coefficient

+ BS · Di︸ ︷︷ ︸
by demographics

+ ΩS · ωS
i︸ ︷︷ ︸

random part

where Di captures demographic features including income, education, family structure, and

home ownership. ΩS is the variance-covariance matrix of the random component, and ωS
i is

the error term drawn from an i.i.d. normal distribution.
15 Under this assumption, the model incorporates entry and exit as switching between the sharing options

and the outside option.
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1.4 Estimation

The estimation of the structural model is composed of three steps. First, I estimate the

model of customer arrival using the aggregate data across all neighborhoods. Second, I

estimate demand using the customer size estimated from the first step. Finally, I estimate

supply using high-frequency observations on the opening status of Airbnb listings.

Estimating Customer Arrival by Type

Recall that the observation is the aggregate arrival for each day, which needs to be separated

into arrivals of travelers and of evacuees. The basis of identification is to restrict the evacuees’

arrival only to days with an active evacuation order. This assumption enables particular use

of the days in the absence of evacuation, where the aggregate arrivals observed are exclusively

from regular travelers. Additionally, because I allow wildfire and smoke exposure to affect the

arrival of both travelers and evacuees, identifying them separately would fail if the evacuation

timing coincides with the occurrence of wildfire or smoke. Therefore, the identification also

relies on misalignment in the evacuation timing with the occurrence of wildfire and smoke.

This is justified by the data, as Figure 1.6 shows. Because not every flame leads to an

evacuation, the occurrence of wildfire and smoke is more dispersed over time.

To recover the arrival parameters, I implement the estimation strategy using the mixture

of Poisson regression model from the statistics literature (Land et al. 1996; Wang et al. 2007;

Papastamoulis et al. 2016). 16 The log-likelihood function for the best linear unbiased

prediction (BLUP) is given by the sum of two components: the log-likelihood function

when the random effects are conditionally fixed, and the penalty of random errors for the

conditional log-likelihood. I implement the Expected Maximum (EM) algorithm to maximize

the observed log-likelihood. More details on the algorithm and the model fit are discussed

in Appendix A.1.
16 The mixture of Poisson regression modeling usually applies to the circumstance where the count data

are overdispersed, which is naturally satisfied here as the variance of the aggregate arrival far exceeds its
mean in the data.
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Table 1.1 presents the arrival parameters. For regular travelers, I find the wildfire ex-

posure in a destination has a pronounced yet imprecisely estimated negative effect on the

arrivals, while smoke exposure can significantly discourage the arrivals at a magnitude of

roughly a quarter of the additional arrival attracted on a public holiday. This is because

wildfire is usually concentrated in the northern hills of Los Angeles, which are far from

tourism attractions and business centers, while smoke is more dispersed over space. For

every 1000 households forced to evacuate, approximately 120 of them turned to the Airbnb

market for shelter. The arrival rate also varies by demographics. White and female-headed

households are more inclined to evacuate and stay at Airbnb, while elderly people are less

likely to choose Airbnb for shelter. The fire exposure of the destination place also strongly

discourages the arrival of evacuees.

Estimating Demand for Airbnb

Under the assumption of logit error, the probability for customer i of type k on housing

choice j is

Pr(j; i ∈ k, δD, BD, ΩD, t) =
exp(δD

jt + µD
ijt)

1 +∑
j′ exp(δD

j‘t + µD
ij′t)

where δD
jt is the mean utility from housing choice j, and µD

ijt is the heterogeneous utility

specific to customer i. Because the customer type is not observed from the data, I use the

estimates from Section 1.4. Then, the market share for housing choice j on day t can be

estimated as the probability that travelers and evacuees choose that housing type, weighted

by the model fits on their respective arrival size. I construct a moment condition to match

the market shares:

∀j : E
[
Pr(j; δD, BD, ΩD, t)

]
= sD

jt

where the left-hand side is the model prediction based on the fitted value of customer arrivals,

and the right-hand side is the empirical market share implied from the occupancy status from

the data.
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The model has an endogeneity issue, as the demand shifters ξjt capture shocks by unob-

served local events that might correlate with price. I instrument the price using two sets of

measures that can shift the supply exogenously. The first instrument leverages the extent of

pricing frictions on Airbnb. Because most hosts have to set price manually for each day of

opening, there are widespread intentions for uniform pricing across unrelated nights (Huang

2022). 17 The behavioral costs for manual pricing cause the prices of consecutive days, or

days of the same day-of-the-week, either to be persistent or to adjust at the same time. For

instance, Figure A.8 shows the clustering pattern of pricing for 20 randomly drawn listings;

roughly 80% of all listings show no more than two unique price levels every month. Based

on this observation, I construct a set of price instruments using the average price of the

same day-of-the-week in the previous month, the one-month lagged price of the same day,

and the average price in the lagged month. The second instrument takes advantage of the

rich scope of housing characteristics, and exploits the panel variations driven by the entry

and exit of listings of similar characteristics (Berry et al. 1995; Bayer et al. 2007). Some

characteristics tend to be time-invariant, including the rating score, the cancellation policy,

the cleaning fee, and the security deposit. After averaging them out to the neighborhood

level, what remains to drive the panel variation can only be the evolution of market com-

position driven by entry and exit. Therefore, I construct the instrument by averaging the

time-invariant characteristics to the neighborhood level. I find these instruments strongly

predict the prices, with an excluded-variable F-statistic on the order of 100 with the same

control of time and neighborhood fixed effects.

To estimate a demand system with 155,744 moment conditions on market share, I cast

the problem as a minimization routine over the GMM objective, applying a nested fixed

point algorithm. Table 1.2 summarizes the demand coefficients of travelers and evacuees.

In columns (1) and (2), I find the price coefficient is more negative for evacuees, implying
17 Starting November 2015, Airbnb introduced a smart pricing tool to assist its users in setting prices au-

tomatically. Over the research period up to October 2016, the majority of hosts had not yet chosen to
opt into the pricing tool.
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that evacuees are more price elastic to short-term housing than regular travelers. Columns

(3) and (4) report the derived willingness to pay (WTP) for Airbnb accommodations. An

average traveler is willing to pay $138, $202, and $97 for a day in Midscale, Upscale and

Shared listings respectively. The WTP of evacuees are generally lower, at $116, $192, and

$77 respectively. Evacuees hold lower WTP for two reasons: there remains an outside choice

of public shelter free of charge, and they are more price elastic due to the stringency of the

budget constraint resulting from other logistical needs associated with evacuation. I also find

a pronounced disutility from fire exposure for both travelers and evacuees; smoke exposure

reduces the WTP for Airbnb by a moderate magnitude.

Figure 1.7 shows the destination of evacuees to the Los Angeles Airbnb market. Evac-

uees are disproportionately concentrated over a handful of neighborhoods, featuring low

prices and smaller distances from their origins (Figure A.9). The majority of neighborhoods

are generally not popular for sheltering, attracting less than 1% of evacuees in aggregate.

Moreover, I find evacuees are more inclined toward housing units with larger size. 53.9%

of evacuees choose to shelter at an Upscale house, 34.5% of evacuees choose to stay in a

Midscale house, and only 11.6% of evacuees choose a shared place for sheltering. The al-

location of housing choice reflects the need for spatial and private accommodations during

evacuation to care for the entire family and material possessions. The destination is also

disproportionately distributed over space for each type of housing, as illustrated in Figure

A.10.

Estimating Home-sharing Supply from Resident Hosts

Although the BLP framework is typically used in demand system estimation, the data on

Airbnb supply make it possible to adapt it for estimating a random-coefficient supply system.

The key insight is to match the market share of home-sharing decisions implied from the

observations on opening status. Under the assumption of logit error, the probability of
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resident i in neighborhood n making home-sharing choice j is

Pr(j; i, δS, BS, ΩS, t, n) =
exp(δS

jnt + µS
ijnt)

1 +∑
j′ exp(δS

j‘nt + µS
ij′nt)

where δS
jnt is the mean utility of choice j in neighborhood n, and µS

ijnt is the heterogeneous

part of the utility specific to resident i. Then, the moment condition is to match the aggregate

supply of home sharing implied from the model estimates with the empirical supply observed

in the data.

The cost shifters ξS
jnt capture the unobserved opportunity cost of home-sharing, which

could be correlated with price. For instance, ξS
jnt includes the increased hassle of hosting

visitors during an overnight shared housing event, which remains observable to hosts and

may affect the hosting price. To tackle the endogeneity concern, I construct two sets of

instruments based on the demand shifters for Airbnb. First, I leverage the extent of demand

shocks that are common to all Californian cities and utilize their correlation. Specifically,

I construct the average occupancy rates and the average market prices for the same days

of the Airbnb market in San Diego and San Francisco. 18 Second, I take advantage of the

fact that Airbnb reservations happen 30 days ahead of arrival on average. Then, the wildfire

and smoke exposure of 30 days ago may reduce customer arrival today by discouraging

reservations. Meanwhile, the 30-day lagged exposure to wildfire and smoke is unlikely to

have an effect on home-sharing decisions today. 19 Based on this fact, I use the one-month-

lagged wildfire and smoke exposure for each property as a price instrument. 20 I find these
18 After controlling for a set of calendar-related effects, these instruments then exploit the variations in the

Airbnb demand of Los Angeles and San Diego that are idiosyncratic by time, for instance, an extreme
weather event in Southern California that affects the desirability of visiting both Los Angeles and San
Diego. There is unlikely to be any correlation remaining in the home-sharing cost between San Diego
and Los Angeles after controlling a host of calendar-related effects, including month, day-of-the-week,
and holiday fixed effects.

19 After limiting the sample to listings that remained open over the research period, the wildfire and
smoke events a month ago are unlikely to affect the cost of home-sharing at the time of study. Because
all evacuation orders of interest are in place for no more than three weeks, there is little concern for a
wildfire evacuation to continue affecting home-sharing behaviors one month after the fire.

20 Wildfire and smoke exposure can also have a persistent effect on customer demand, as customers can
update their expectations of the disaster risk based on historical information. Therefore, customers may
change their travel plans for the near future based on disaster exposure information.



CHAPTER 1. 29

instruments can strongly predict the prevailing price of Airbnb, with an excluded-variable F

statistic on the order of 100.

Similar to the demand analysis in the previous section, to estimate the supply system

with 132,302 aggregate supply conditions, I cast the problem as a minimization routine

over the GMM objective, applying a nested fixed point algorithm. Table 1.3 summarizes

willingness to accept (WTA) for home sharing in monetary value as transformed from the

raw coefficients (Table A.3). I find the home-sharing cost for an average resident is high,

$220 per night for entire sharing and $79 for partial sharing. The home-sharing cost varies

with the demographic features of the host; it is higher for those with high income, the

well-educated, families with children, and homeowners. In terms of altruism, as column (1)

shows, an average host does not obtain additional utility from home-sharing in the presence

of evacuation, so she chooses to not provide altruistic sharing. The additional WTA for

home-sharing during evacuation is negative only for households with high income, with a

college degree, and with children. This suggests that altruistic sharing is provided only by

hosts with relatively good socioeconomic status. In contrast, households of low income,

without a college degree, and without children have a higher WTA for home-sharing when

there is an active wildfire evacuation.

1.5 Counterfactuals

Given the estimates, I perform three counterfactual analyses to measure the welfare impacts

of Airbnb. The first removes the welfare gains from altruism. The second terminates the

Airbnb option to estimate its net impact. Finally, I discuss the welfare consequences if there

were a perfect pairing for altruistic sharing. Table 1.4 summarizes the changes in market

outcomes under the three counterfactuals relative to the baseline (the status quo).
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Analysis Strategy

No Altruistic Sharing

The first scenario looks at what would happen if the generosity were fully removed. In this

world, Airbnb hosts would not obtain additional gains or losses from home-sharing in disaster

times. Appendix A.2 describes how the counterfactual equilibrium is computed.

I find that Airbnb price and supply would change in a significant manner if there were

no generosity. The average price would increase by 4.8%, with the prices of entire sharing

and partial sharing increasing by 3.2% and 9.1% respectively. The counterfactual supply

would drop by 1.8%, which consists of an 18.4% reduction in entire sharing and a 19.5%

increase in partial sharing. In terms of heterogeneity over geography, Figure 1.8 suggests

that neighborhoods that have attracted more evacuees would see a higher counterfactual

price if the altruistic sharing became unavailable. 21 This is primarily driven by entire

sharing rather than partial sharing (Figure A.12), which is consistent with the dominance

of evacuees’ choice on Upscale and Midscale listings.

No Airbnb

To estimate the overall welfare impacts of Airbnb, I perform a counterfactual analysis where

Airbnb is removed. Airbnb accommodation is no long available for customers, and the option

for residents to host on Airbnb is terminated. This would result in all agents losing, and the

welfare loss measures the gains that Airbnb brings in the baseline. Appendix A.2 describes

how the counterfactual equilibrium is computed.

No Free-Riding

Due to an inability to limit offerings to evacuees, regular travelers can free ride on the

altruistic sharing offered at a lower price, and non-altruistic hosts are expected to suffer a
21 These places would also experience more reduction in supply if altruistic sharing were unavailable, as

Figure A.11 sshows.



CHAPTER 1. 31

loss from having fewer customers. As a result, both altruistic and non-altruistic hosts are

exposed to the welfare consequences from altruism. I next explore what would happen if such

free-riding were prohibited. This could be realized by some sort of platform intervention,

such as a matching between evacuees and altruistic hosts, or a disclosure of information on

customer home ZIP code.

In this scenario, regular travelers are hosted only by non-altruistic families, and altruistic

hosts can target evacuees. Therefore, there exist separate pricing levels for evacuees and

travelers, where the price for evacuees is determined by altruistic hosts, and the price for

travelers by non-altruistic hosts. Nor surprisingly, I find the price for travelers would increase

by 6.3%, with the supply from non-altruistic hosts rising by 11.9%. Meanwhile, the pricing

level for evacuees would drop by 7.8%, with the supply of altruistic sharing slightly lower,

by 0.6%. There are two drivers for the change in supply made by altruistic hosts. First, the

WTP for Airbnb is generally lower among evacuees, resulting in a reduction of the pricing

for altruistic sharing. Second, as altruistic hosts are less price elastic, their supply would not

drop as much as the price. 22

Displacement Costs

I first calculate the welfare losses from displacement in the absence of Airbnb, which can

illustrate the extent to which home-sharing accommodation mitigates losses for displaced

people. Intuitively, households who are forced to flee from their homes lose from displace-

ment, measured by the welfare difference between displaced status and staying home. Based

on the fact that many evacuated families choose a home-style accommodation for sheltering,

I assume that households are indifferent between staying home and staying at the Airbnb

free of charge. 23 Appendix A.2 provides more details on the welfare calculation.
22 The model ignores any behavioral response, as the intention for altruistic sharing might become stronger

if free-riding is removed.
23 This assumption likely produces a lower bound on the displacement cost, because displaced people may

actually choose a sheltering place inferior to their homes due to tightened budget constraints and a high
price elasticity. Moreover, the estimation ignores other logistical costs related to displacement, such as
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Not surprisingly, displaced people suffer a loss from not having the option of staying home.

An average household loses $231.99 per day from being displaced. In terms of heterogeneity,

I find the distribution of displacement loss features a heavy right tail, suggesting the bulk

of losses accrue to a concentrated few people (Figure A.13). The median loss is $119.8 per

day, while a household at the 95th percentile loses $849.2 per day from displacement.

In 2019, the four major wildfire incidents in California forced more than 375,000 house-

holds to evacuate (Wong et al. 2020). Integrating over all displaced households produces

a total welfare loss of $870 million. As the property damage induced by the same wildfire

season is approximately $2.8 billion (Ahrens and Evarts 2021), I find the displacement cost

amounts to at least 31% of the direct damage to physical property.

Correction of Free Riding

The Status Quo

Although altruistic sharing is intended for disaster refugees, regular travelers can also enjoy

the discounted price and expanded supply offered by generous hosts due to information

asymmetry. I find the welfare gains from altruistic sharing are of a comparable magnitude

for evacuees and regular travelers. An average evacuee gains $29.57 per day from altruistic

sharing, while an average traveler can obtain a surplus of $23.14 per day from free-riding.

The distributions of the gains are also similar between evacuees and travelers, as Figure A.14

and A.15 show.

Moreover, the non-altruistic hosts, who are likely to be in a lower socioeconomic status,

lose from altruistic sharing due to the free riding of travelers. Figure 1.9 plots the welfare

consequences from altruistic sharing by demographic groups. Considering income distribu-

tion, recall that only hosts in the top income quartile conduct altruistic sharing, while hosts

in the bottom income quartile charge a higher price for disaster incidents. By contrast,

transportation to the sheltering place and losses from missed working days. Thus, the estimated cost
likely provides a lower bound, meaning disaster refugees may have shouldered an even larger welfare loss
from displacement.
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although those who conduct altruistic sharing lose slightly more, almost all hosts suffer from

altruistic sharing at a comparable magnitude regardless of their generosity. Such spillovers

exist with other demographic categories, including education, family structure, and home-

ownership. This implies a failure in efficiency and equity, as the welfare consequences from

generosity spill over to regular travelers at a cost to non-altruistic hosts.

Evacuee Targeting

A direct correction of this failure is to allow for evacuee targeting, that is, enabling altru-

istic hosts to distinguish evacuees from other travelers based on some sort of information

disclosure, for example by billing ZIP code. Under this scenario, regular travelers are no

longer able to free ride on altruistic hosts. I find evacuees would gain more from altruistic

sharing, with the average gain rising from $29.57 to $31.06 per day. There are two drivers of

the increase in evacuees’ gains. First, the counterfactual price is determined by the supply

of altruistic hosts and the demand of disaster evacuees, which would equilibrate at a level

lower than the status quo. Second, without the peer effect of regular travelers, displaced

households now have more housing options offered by altruistic hosts. 24

Moreover, the removal of free-riding can provide equity improvements by reducing the

spillovers to non-altruistic hosts. Figure 1.10 plots the welfare consequences from altruistic

sharing by demographic groups with evacuee targeting. If non-altruistic hosts were no longer

exposed to the spillovers, a substantial share of hosts would no longer bear a welfare loss

from generosity. As the top left panel shows, high-income households suffer significantly more

losses than low-income households, consistent with their generosity. Such equity corrections

also exist for other demographic characteristics.
24 It is worth noting that there can also exist a behavioral channel of altruistic sharing, which is not cap-

tured by the model estimates. If regular travelers were not allowed to free ride, altruistic hosts would
likely become more motivated to perform in a generous manner. Thus, the estimated gains for evacuees
likely provide a lower bound, meaning the removal of free-riding could bring even larger mitigation ben-
efits.
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Summary of Welfare Implications

Table 1.5 summarizes the welfare consequences of wildfire displacement and Airbnb accom-

modation, for evacuees, travelers, and resident hosts, under the baseline (Column (1)) and a

counterfactual world where free riding is eliminated (Column (2)). There are four primary

findings.

First, I find large welfare losses from displacement in the absence of Airbnb, $231.99

per day for an average household (Panel A). This equates to a loss of $89.23 per day per

capita. As discussed, the welfare losses are equivalent to at least 31% of the direct property

damages caused by wildfire. Moreover, the displacement losses are not equally distributed

among households. As the confidence interval suggests, a small set of families suffers a much

heavier loss from being displaced, at a magnitude of $1000 per day.

Second, the Airbnb accommodations can substantially mitigate the welfare losses for the

displaced (Panel B), reducing 51.8% of the displacement losses on average in the baseline.

The channel of altruistic sharing contributes approximately 25% of the mitigation. If free-

riding of regular visitors is prohibited, the mitigation effect increases slightly, by 1%, and the

contribution of altruistic sharing remains roughly constant. As discussed, the model only

captures the response in price and induced supply, but not the behavioral response in supply

as altruistic hosts become more self-motivated. Therefore, the estimates likely underestimate

the contribution of altruistic sharing under perfect targeting.

Third, I find large spillovers of altruistic sharing as a result of free riding (Panel C). The

loss of efficiency can be observed from two perspectives. On the one hand, the spillovers to

regular travelers are comparable to the gains of evacuees ($23.14 relative to $29.57), while

eliminating free-riding can entirely remove such spillovers. On the other hand, the average

generosity loss in the supplier surplus is $23.96 per day, which is not significantly different

between altruistic hosts ($27.67) and non-altruistic hosts ($23.41). Meanwhile, correcting

free riding can fully eliminate the generosity losses for non-altruistic hosts, and slightly

reduces the losses for altruistic hosts to $24.99 per day.
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Finally, the existence of Airbnb brings about substantial welfare benefits to all agents

involved in disaster incidents. As Panel D suggests, an average evacuee can gain $120.24 per

day from Airbnb accommodations, and an average traveler enjoys a surplus of $146.17 per

day from Airbnb. Despite the losses from generosity and their spillovers, resident hosts can

still gain from the option of Airbnb supply, on average $62.76 per day of hosting. Under

the scenario with a correction of free riding, the welfare benefits would become even more

pronounced for evacuees ($122.91) and resident hosts ($67.22), and less significant for regular

travelers ($128.05). This suggests an equity gain from the removal of free riding over altruism.

1.6 Conclusion

The spread of digital technology has facilitated peer production in various industries. Despite

heated social disputes and debates among policy makers, the implications of the sharing

economy during emergency incidents remain largely unknown. This paper explores the

role of home sharing in the accommodation of families suffering short-term displacement,

an essential aspect for disaster relief that has been rarely discussed. For quantification,

I construct a structural model of the home-sharing market, where disaster evacuees and

travelers consume housing services offered by local residents. The model highlights two

channels of welfare impacts, the increased choice set and altruistic sharing, as the main

drivers for the beneficial implications for the displaced.

I first show evidence that wildfire evacuation has led to a supply expansion on Airbnb,

where the new entries are superior in various characteristics, but are priced lower than the

incumbents. This provides intuition for the mechanism of altruistic sharing at play when a

disaster occurs. To rationalize the facts, I build a structural model of the Airbnb market with

customers of unobserved types and heterogeneous resident hosts. The estimation draws on

advanced tools from the statistical and empirical industrial organization literature. Unlike

studies on demand system estimation with well-observed customer composition, I micro-

found the data generation processes of travelers’ and evacuees’ arrival using a mixed Poisson
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model, which is identified using the nature of evacuation. As the Airbnb market differs from

most marketplaces analyzed in equilibrium estimation by featuring excess supply, I leverage

the high-frequency observations on the supply side and endogenize the heterogeneous cost

of home-sharing across residents. I further incorporate altruistic sharing as an additional

perceived component of the utility from home-sharing, and estimate how it varies among

residents of different socio-economic status.

Armed with the estimated model, I explore the welfare impacts of Airbnb on the displaced

people. First, I find substantial losses from being displaced in the absence of Airbnb, at a cost

of 31% of the direct damage to physical property. Enabling home-sharing accommodations

can alleviate the losses by more than half. The primary contributor is the peer effect, as

Airbnb provides an increased consumer choice set, which gets strengthened by the variety of

housing options that are usually priced lower than hotels. The contribution from altruistic

sharing is material but smaller in size, amounting to 25% of the total mitigation. The

heterogeneity allowed in supply estimation suggests that altruistic sharing is provided more

by residents with high income, high education, children, and home ownership. However,

the inability of altruistic hosts to target displaced families leads to spillover effects, allowing

travelers to free ride on altruistic sharing. This results in widespread losses for all resident

hosts regardless of their altruism.

The analysis informs a message on the platform design of home-sharing marketplaces,

particularly on the rules for price discrimination. I find that enabling matching between

altruistic hosts and displaced disaster evacuees by home ZIP code can correct the free-

riding problem and thus provide an improvement in welfare. Besides cancelling out the

spillovers, this would generate additional surpluses for both altruistic hosts and displaced

households. This also has important equity implications by forming a market-based transfer,

from unaffected households who possess better social economic status, to displaced people

who suffer more from the disaster.

This paper highlights three fundamental reasons why a home-sharing platform has a role

to play in displacement relief. First, home-sharing marketplaces allow for better utilizing



CHAPTER 1. 37

the housing resources of local residents. Such housing, despite not being a perfect substitute

for hotel rooms, is valuable to some customers because of increased variety and lower price.

Home sharing is particularly valuable to displaced households, who typically hold a higher

price elasticity and want places that feature a more homey style for their family. Second,

the hotel sector has a fixed capacity, which cannot be easily expanded in a short time. This

can result in a failure to be able to accommodate all customers, as well as high prices during

periods of peak demand, such as in the immediate aftermath of large-scale displacement.

Home-sharing production can expand at exactly these times of emergencies, thus improving

consumer surplus for all, and in particular for displaced people. Finally, the home-sharing

platforms enable production from a wide distribution of peers, which includes those who are

keen on altruistic engagement. This demonstrates a market tool for emergency relief through

human generosity. Similar altruistic behaviors have not been observed in the hotel sector.

The findings also add to our understanding of policy-making for displacement mitigation.

In contrast to most studies that focus on disaster destruction over the long term, this paper

sheds light on the immediate aftermath of a disaster, which involves temporary displacement

of substantial populations. This poses a critical challenge for policy-makers, as it aggregates

to substantial welfare losses for all displaced populations, yet the loss for each individual

is usually too small to justify compensation. Furthermore, this paper expands the scope of

policy prescriptions for disaster relief to the novel industry of the sharing economy. Different

from traditional tools such as government aid, the sharing economy can mitigate damages

in a market-based, spontaneous, and equitable manner. With policy adjustments for cus-

tomer targeting and sharing incentives, it can further improve equity gains for displacement

mitigation.

Although this paper concerns wildfire evacuation and the home-sharing industry of the

U.S., the key findings can be applied more generally to a global context and to other peer-

to-peer industries, such as the ride-sharing sector. It also has policy implications beyond the

natural disaster I study — wildfires — including conflict- and climate-driven displacement.

Displaced households can benefit from peer production of scarce resources and services be-
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cause the entry of peer providers can improve the flexibility of inventory, enrich the choice set

of consumers, increase the competition of incumbent industries, and potentially induce al-

truistic behaviors. These effects are particularly strong when existing providers have binding

capacity constraints, which are likely to be the case, for example, in developing countries or

in the transportation industry. The altruistic channel may also be pronounced in countries

with particular religious beliefs.

This paper has explored the welfare implications of home sharing on wildfire incidents,

with a focus on the agents directly involved, including evacuees, travelers, and resident hosts.

There are other parties involved in the short-term accommodation market, who also may

be affected by natural disasters, such as hotels (Farronato and Fradkin 2022). Over the

long run, the dynamics and composition of home-sharing platforms are likely to evolve in

response to disaster risks. These issues provide an engaging avenue for future work.
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Figure 1.1: Percentage of Housing Units on Airbnb

Notes: The color displays the share of housing units on Airbnb relative to the total number of
housing units, at the level of Public Use Microdata Area. The number of housing units in total
is approximated from the U.S. Census Grids of 2010 at a resolution of 30 arc-seconds.
Source: AirDNA, SEDAC.
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Figure 1.2: Wildfire with Evacuation Order/Warning

Notes: The graph shows all fires that have prompted an evacuation and their associated smoke
plumes, within 300km from Los Angeles over the research period. Red polygons represent fire
extent, brown polygons represent smoke plumes.
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Figure 1.3: Summary of Evacuation and Associated Fire

Notes: The graph plots the date of the wildfire evacuation order and warning, and the magnitude
of the effect in terms of geographical area and population affected. Red represents fire, brown
represents evacuation, bars represent geographical area measured in km2, square points represent
affected population. The vertical axes are transformed by a log function.
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Figure 1.4: Event Study Based on Evacuation Issuance

Panel A: Extensive Margin of Supply - Log of the Number of Hosts

Panel B: Intensive Margin of Supply - Probability for Opening

Notes: Top panels show event study regression coefficient on the log of the number of hosts at
the PUMA level, controlling for evacuation acreage, evacuation population, PUMA fixed effects,
year-month fixed effects, day-of-week fixed effects and holiday fixed effects. Bottom panels run
a event study logit regression on the opening dummy at the property level, controlling for the
evacuation acreage, the evacuation population, the full set of property characteristics including
the number of bedrooms, the number of bedrooms, the number of bathrooms, the rating score,
and the cancellation policy, as well as the zip code by listing type fixed effects, year-month fixed
effects, day-of-week fixed effects and holiday fixed effects, and the coefficients reported are the
marginal effects at the mean (MEM). Both panels use a 14-days window around the evacuation
issuance day (day 0), and controls for the acreage and the number of households affected by the
evacuation zone. Bars show 95% confidence intervals constructed using standard errors clustered
at the PUMA level for Panel A, and at the zip code level for Panel B.
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Figure 1.5: Property Features of New and Incumbent Listings

Notes: All four panels plot the average outcomes of the Airbnb market within a 14-day window
around the evacuation issuance (day 0), controlling for the evacuation acreage, the evacuation
population, the full set of property characteristics (the number of bedrooms, the number of
bathrooms, the rating score, and the cancellation policy) other than the dependent variable of
each panel, as well as the day-of-week fixed effects and the zip code by listing type fixed effects.
Dark color reflects new openings after the evacuation, light color reflects incumbent openings.
Top left panel shows the number of bedrooms, top right panel shows the average rating score,
bottom left panel shows the number of operational days, bottom right panel shows the daily price
rate. Bars show the 95% confidence intervals constructed using standard errors clustered at the
zip code level.
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Figure 1.6: Incidence of Wildfire, Smoke, and Evacuation Order

Notes: The colored bar shows the day with wildfire exposure, with smoke exposure, and with
active evacuation order, in the three panels respectively. Data ranges from 2014-09-01 to 2016-
10-01
Source: Evacuation documents.
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Figure 1.7: Percentage of Evacuees’ Destination on Airbnb

Notes: The share of evacuees’ destination defined as the number of housing units taken by evacuees
relative to the total number of evacuees, at the level of Public Use Microdata Area. The number
of evacuee arrivals is estimated from the mixed Poisson regression model in section 1.4.
Source: model predictions.
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Figure 1.8: Percentage Change in Airbnb Price if No Altruistic Sharing

Notes: The percentage change in the average market price of Airbnb if the utility gains from
altruistic sharing are removed, at the level of Public Use Microdata Area. Samples are limited to
the days with an evacuation order in place.
Source: model estimate.
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Figure 1.9: Welfare Loss from Altruistic Sharing, by Demographics

Notes: The panels plot the distribution in welfare consequences from altruistic sharing, by different
demographic groups. The top left panel is by income quartiles, the top right panel is by college
degree, the bottom left panel is by having children or not, the bottom right panel is by home
ownership. The labeled numbers indicate the category median. The box in the center indicates
roughly the 95% confidence intervals of the distribution.
Source: model estimates.
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Figure 1.10: Welfare Loss from Altruistic Sharing if No Free Riding, by Demographics

Notes: The panels plot the distribution in the welfare consequences from altruistic sharing if free
riding is eliminated, by demographic groups. The top left panel is by income quartiles, the top
right panel is by college degree, the bottom left panel is by having children or not, and the bottom
right panel is by home ownership. The labeled numbers indicate the category median. The box
in the center indicates roughly the 95% confidence interval of the distribution.
Source: model estimates.
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Table 1.1.
Parameter Estimates for Customer Arrival

Dependent Variable (1) λ (2) # Arrival
Coef. Stn. Err. Coef. Stn. Err.

Panel A. Regular Travelers (Mean = 6479)

Destination Fire Exposure −0.333 (0.645) −2410.918 (4673.921)
Destination Smoke Exposure −0.042∗∗∗ (0.013) −288.077∗∗∗ (95.795)
Holiday = 1 0.179∗∗∗ (0.010) 1002.361∗∗∗ (75.404)

DOW FE Y Y
Year-Month FE Y Y
Quadratic Time Y Y
N 731 731
Log Likelihood 887.966 887.966
Adj. R2 0.958 0.947

Panel B. Evacuees (Mean = 1339)

# Evacuee HHs (×1, 000) 0.075∗∗∗ (0.015) 120.836∗∗∗ (22.156)
White Share (Mean = 0.708) 0.012∗∗∗ (0.003) 126.137∗∗∗ (42.227)
Hispanic Share (Mean = 0.155) 0.032 (0.041) 38.681 (63.444)
Black Share (Mean = 0.018) −0.117 (0.119) −168.136 (182.859)
Asian Share (Mean = 0.044) −0.088 (0.081) −99.435 (124.189)
Female-Headed Share (Mean = 0.012) 1.643∗∗∗ (0.483) 2315.894∗∗∗ (740.229)
Age < 18 Share (Mean = 0.168) −0.075 (0.089) −107.139 (135.747)
Age > 60 Share (Mean = 0.162) −0.222∗∗∗ (0.060) −264.318∗∗∗ (91.455)
Destination Fire Exposure −3.068∗∗∗ (0.714) −3247.659∗∗∗ (1093.556)
Destination Smoke Exposure 0.008 (0.009) 6.816 (14.540)
Holiday = 1 0.087∗∗∗ (0.016) 94.595∗∗∗ (24.676)

DOW FE Y Y
Year-Month FE Y Y
N 170 170
Log Likelihood 887.966 887.966
Adj R2 0.987 0.977

Notes: * p<0.1, ** p<0.05, *** p<0.01.
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Table 1.2.
Parameter Estimates for the Airbnb Demand

Utility (Instrumented, F-Stat= 128) Willingness To Pay ($)

Common Part Evacuee-specific Travelers Evacuees
(1) (2) (3) (4)

Daily Rate ($) −0.077∗∗∗ −0.010∗∗∗

(0.000) (0.001)
Compact House 10.586∗∗∗ −0.605∗∗∗ 138.241∗∗∗ 115.691∗∗∗

(0.062) (0.097) (1.177) (1.663)
Luxury House 15.450∗∗∗ 1.101∗∗∗ 201.758∗∗∗ 191.843∗∗∗

(0.117) (0.044) (1.968) (2.186)
Shared House 7.406∗∗∗ −0.803∗∗∗ 96.712∗∗∗ 76.538∗∗∗

(0.042) (0.053) (0.814) (1.022)
Fire = 1 −20.254∗∗∗ −0.813∗∗∗ −264.488∗∗∗ −244.181∗∗∗

(0.115) (0.001) (2.219) (2.487)
Smoke = 1 −3.894∗∗∗ 0.500∗∗∗ −50.845∗∗∗ −39.335∗∗∗

(0.052) (0.074) (0.741) (1.098)

Neighborhood FE Y Y Y Y
DOW FE Y Y Y Y
Holiday FE Y Y Y Y
Month FE Y Y Y Y
Quadratic Time Y Y Y Y
N 155, 744 155, 744 155, 744 155, 744
GMM objective 24580.569 24580.569 24580.569 24580.569

Notes: Column (1) and (2) report the estimation results for demand coefficients on the utility
of Airbnb accommodation. Column (3) and (4) further transform them into monetary value by
dividing all by the corresponding price coefficient. Standard errors are clustered at the PUMA
level. * p<0.1, ** p<0.05, *** p<0.01.
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Table 1.4.
Change of Counterfactual Outcomes Relative to the Status Quo

Change in Supply (%) Change in Price (%)

Average Entire Shared Average Entire Shared

No Altruism −1.77 −18.43 19.52 4.81 3.22 9.06
No Airbnb −100.00 −100.00 −100.00 Not Applicable
No Free Riding 10.02 3.58 28.38 4.14 3.69 5.39

Altruistic Host −0.60 −26.17 20.23 −7.80 −7.22 −9.30
Non-Altruistic Host 11.93 6.61 32.27 6.29 5.11 9.47

Notes: This table displays the percentage change of market outcomes (Airbnb supply and
price) on average, of entire places, and of shared places, under the three counterfactual
scenarios relative to the status quo.
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Table 1.5.
Welfare Consequences of Airbnb ($ per household per day)

(1) (2)
Actual World No Free-Riding

Panel A: Welfare Losses of Displacement

Displacement Loss −231.99 −231.99
[−1287.93, −6.01] [−1287.93, −6.01]

Panel B: Disaster Mitigation Effect

Overall Evacuee Gains 120.24 122.91
[2.72, 788.42] [2.72, 789.76]

From Altruistic Sharing 29.57 31.06
[1.08, 76.84] [1.99, 76.84]

Panel C: Spillover of Altruism

Regular Traveler Gains 23.14 0
[−16.71, 76.12] [0, 0]

Average Host Loss from Generosity −23.96 −2.92
[−109.15, 48.88] [−49.76, 0.00]

Altruistic Host −27.67 −24.99
[−110.12, 44.01] [−80.05, 74.29]

Non-Altruistic Host −23.41 0
[−106.38, 47.33] [0, 0]

Panel D: Overall Gains from Airbnb

Evacuee 120.24 122.91
[2.72, 788.42] [2.72, 789.76]

Regular Traveler 146.17 128.05
[2.72, 1068.04] [0.65, 665.15]

Resident Host 62.76 67.22
[1.70, 261.45] [1.93, 268.59]

Notes: This table displays the welfare consequences ($ per household per day) for all agents (evacuees,
regular travelers, and hosts) under the status quo and the no-free-riding scenario. The coefficients
displayed are the average value, with the 95% confidence intervals in parentheses.
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Chapter 2

Managed Retreat and Flood

Recovery: Evidence from Property

Buyout and Acquisition Program

2.1 Introduction

Many coastal communities are struggling to balance the need to protect their population and

properties from the increasing risk of disasters while maintaining a thriving local economy

and tax base. This tension is often addressed through buyout and acquisition programs,

which offer households financial incentives to move out of risky areas voluntarily.

However, these federally-funded programs have stirred controversy. Local governments

tend to view them unfavorably because of their potential negative impacts on the local

economy and tax base. Residents are often skeptical about how such programs might alter

the fabric of their community, as well as their implications for social justice and equity.

Despite these concerns, there are several reasons to expect the actual economic impacts

of buyout and acquisition programs to be less negative than often projected. For one, such

programs may enhance the community’s overall resilience by treating the most vulnerable
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properties and providing more amenities to the neighborhood. Furthermore, large-scale

buyouts and acquisitions often occur after a disaster, presenting a unique opportunity for a

community to upgrade and reorganize its housing stock during the recovery process, which

might create positive general equilibrium effects at the community level. However, there is

little empirical evidence on the extent of these effects.

In this paper, we examine the impact of a major post-disaster buyout and acquisition

program, the NY Rising Program which was administered by the state of New York following

Hurricane Sandy. We aim to evaluate a comprehensive set of outcomes to capture not

only property-level but also community-level changes. Specifically, we investigate three key

aspects: (i) the effect of a buyout or acquisition on nearby property values, (ii) whether these

neighborhood changes attract a different set of property buyers in terms of key demographics,

and (iii) how a buyout or acquisition affects the nearby business and commercial environment

using a unique database of business establishments.

To investigate the causal effect of acquisition and buyout programs, we employ a spatial

difference-in-difference design that utilizes both temporal and spatial variations in the pro-

grams’ occurrence and locations relative to Hurricane Sandy’s actual damage. Specifically,

we estimate response in areas in proximity or including participating properties after they oc-

curred, relative to changes in areas not proximate or containing the same participating prop-

erty. We also examine how the selection of acquisition and buyout programs might depend

on factors other than the damage level to Hurricane Sandy and find that the demographic

factors of all populations play a crucial role in program selection across neighborhoods. This

highlights the necessity to account for neighborhood-specific time trend parameters through-

out our analysis. Additionally, we carefully account for Hurricane Sandy’s destructive effects

as an important confounder. As such, our estimates capture how the post-disaster buyout

and acquisition program functions in the market dynamics in the recovery process. More-

over, we distinguish between the effect of buyout and acquisition in our estimation, as well

as how the effects vary with the intensity of program treatment..

Our primary findings include three components. First, we find that acquisition and buy-
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out programs are effective in aiding the recovery of disaster-stricken properties, as they help

properties recover to their pre-disaster levels. The recovery effects differ between programs.

Acquisition programs have a significantly positive effect on property values, with the most

substantial effects observed in close neighborhoods that decay as the distance from the pro-

gram site increases. Furthermore, these effects persist over time and even strengthen. In

contrast, the effects of buyout programs are much smaller in size, quickly decaying over

space and attenuating over time. We also test the robustness of our findings by varying the

model settings, including the distance range of control groups, using only repeated sales, and

assigning pseudo-treatment to control groups.

Second, we find that acquisition and buyout programs significantly affect the intentions

and patterns of internal migration flows across neighborhoods. Specifically, they attract

new families to settle down in disaster-stricken areas, with the migration intentions skewed

towards high-income households, and play a role in correcting pre-existing racial inequalities

within community. The magnitude of these effects is more pronounced in communities with

more than five participating properties and remain relatively small and statistically insignif-

icant in places with low program intensity. Evidence from comparisons between programs

suggests that while both acquisition and buyout programs help attract wealthy families to

move in, the effect of acquisitions is more significant. Furthermore, while both acquisi-

tions and buyouts can help attract more racial minority migrations, their effects operate

through different channels. The effect of acquisitions is more focused on attracting families

from minority groups, while the effect of buyout programs is more centered on reducing the

desirability of families from the dominant group to move in.

Lastly, our analysis of the impact on economic performance of local businesses indicates

effectiveness in the business recovery effect of acquisition and buyout programs, in terms of

increased business growth rate primarily driven by a reduced death rate after the programs’

occurrence. Our results also indicate an effective recovery effect on employment, as these

programs have helped the disaster-stricken areas to partially recover from Sandy’s damage

with increased job creation and larger employment size per enterprise. Moving on to the
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differential effects between programs, we find that both acquisitions and buyouts have a

positive impact on the growth of local businesses but through different channels, with ac-

quisition programs more on an increased birth rate of new businesses and buyout programs

more on a reduced death rate of survived firms. The job creation effects are more salient

within communities near buyout properties, while acquisitions did not play a significant role

in affecting the employment of local businesses. We further identify significant differences

across industries, which can be attributed to three factors: the nature of the acquisition and

buyout programs, the effect of land and property values, and the demographic distribution

of migration flows. Our analysis reveals that the most pronounced recovery effects occur in

the Service, Retail Trade, and Construction industries.

Our study provides significant policy implications for managed retreat strategies in

disaster-prone areas. First, our findings suggest that acquisition and buyout programs can

be effective tools for aiding in the recovery of disaster-stricken properties and correcting

migration patterns by income and race. These programs also have positive effects on busi-

ness growth, job creation, and employment in affected areas. Policymakers can use this

information to support high-risk communities after disasters and to boost local businesses

and employment in disaster-stricken areas. Second, our study suggests that the effectiveness

of acquisition and buyout programs as components of managed retreat strategies is associ-

ated with various factors, such as program intensity within neighborhoods, distance from

the program site, and demographic distribution and industrial structure of local businesses.

These factors must be considered when designing and implementing such programs as part

of managed retreat strategies. Moreover, our study highlights the importance of taking a

holistic perspective when designing and implementing policies to address the interconnected

challenges faced by communities affected by natural disasters. This underscores the need

for interdisciplinary approaches that consider the complex interactions between economic,

social, and environmental factors in managed retreat strategies.

The rest of the paper is organized as follows. We first review the related literature to this

paper. Section 2.2 introduces the policy background of the acquisition and buyout programs
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after Hurricane Sandy, followed by the description of data used in the analysis in Section

2.3, Section 2.4 discusses the identification challenges and our empirical framework, followed

by Section 2.5, which presents our primary results. Finally, we conclude in Section 2.6,

Literature Review

This paper is related to several bodies of literature. First, we contribute by providing some

of the first empirical evidence on economic impacts of managed retreat actions. While there

have been studies on households’ decisions to rebuild or relocate (Binder et al. 2015; Swapan

and Sadeque 2021), development of a conceptual model of managed retreat (Hino et al. 2017;

Mach and Siders 2021), and commentary on policy options that reduce inequities in buyout

outcomes (Kraan et al. 2021; Shi et al. 2022), empirical economic analyses on managed re-

treat are very limited. There are only a few recent analyses that look at the determinants and

consequences of acquisitions and buyouts, primarily relying on statistics and machine learn-

ing strategies. For example, Mach et al. (2019) determine common variables across counties

that receive buyouts, using a random forest model to show prior flood damage, population

size, and population density are likely influential determinants of a county having a federal

buyout. Elliott et al. (2020) studies the impact of racial inequality in the implementation

of the program, estimating the probability of participation in the federal program at the

county and census tract levels.

A few studies have examined household participation decisions in the voluntary buyout

programs to identify the primary factors that influence relocation decisions. For example,

Bukvic et al. (2015) conclude that a relocation decision is primarily influenced by household

characteristics, including the residents’ age, disaster exposure, stress related to recovery, and

personal financial concerns, using a survey. In another survey-based study, Frimpong et

al. (2019) find that the offer price plays an important role in homeowners’ decision to accept

government acquisition contracts, and the price responsiveness varies based on non-price

characteristics such as the timing of the offer.
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Only a few studies have examined the economic and demographic consequences of acqui-

sition and buyout programs following a disaster, most of which have emerged very recently.

For example, Jowers et al. (2022) examines the equity implications of managed retreat by

analyzing the role of race and ethnicity in buyout bargaining and how those outcomes affect

long-run neighborhood change. The only paper of similar topic and as a complementary

component to our analysis is Hashida and Dundas (2022), which estimates the effects of

managed retreat activities on surrounding housing values in parts of New York City and

Long Island. However, using the same research context but not considering the confounding

effect of Hurricane Sandy, they find a negative effect of buyout and acquisition programs on

nearby property values. As we argue later, we believe that our strategy performs a more

empirically valid and robust analysis of the hedonic valuation of managed retreat efforts.

Moreover, to the best of our knowledge, no economic studies have empirically inferred the

causality between a managed retreat program and a potential change in migration patterns

and business performance.

As a final note, our analysis is related to the vast literature documenting flood-related

damage in coastal areas. Many studies have documented large negative price effects following

hurricanes and other catastrophic events (Hallstrom and Smith 2005; Atreya et al. 2013;

Bin and Landry 2013; Zhang 2016). Our paper is also related to studies on the general

economic effects of climate change and recovery policies. For instance, McIntosh (2008)

and Deryugina et al. (2018) examine the long-term effects of Katrina-related relocations on

the urban labor market and individual economic performance, suggesting strong evidence

of persistent geographical displacement. Some other papers, such as Deryugina (2017),

shed light on the relief effect of recovery policies following climate disasters. In a similar

context to our analysis, McCoy and Zhao (2018) use data on building permits to analyze the

effects of Hurricane Sandy on house improvements in New York City. Ortega and Tas.pınar

(2018) analyze the effects of Hurricane Sandy on the New York City housing market and

find a persistent negative impact on flood zone housing values. Our analysis complements

these studies by showing the differential damage of Hurricane Sandy in the policy design of
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managed retreats.

2.2 Background

Hurricane Sandy was a catastrophic storm that struck the northeastern United States in

late October 2012. The storm caused significant damage to coastal areas in New York, New

Jersey, and other states, with storm surge and high winds leading to widespread flooding,

power outage, and property damage. In addition to the immediate impacts of the storm,

Hurricane Sandy also highlighted the vulnerability of coastal communities to the effects of

climate change, including sea level rise and increased frequency and severity of storms.

The storm led to significant changes in disaster preparedness and response efforts, includ-

ing the implementation of new programs. In the aftermath of the storm, New York State

launched a comprehensive recovery program called “New York Rising.” The program aimed

to help communities impacted by the storm rebuild and become more resilient to future

natural disasters.

The acquisition and buyout programs were implemented as a key component of the re-

covery effort. These programs aimed to provide homeowners in affected areas with options

for dealing with substantial damage to their properties or high-risk locations. Both acquisi-

tion and buyout programs were designed to provide a voluntary and equitable solution for

homeowners who were facing substantial damage to their properties due to the storm.

The acquisition programs offered homeowners the opportunity to sell their properties to

the state. After acquiring properties through the programs, the state government typically

auctions off these properties to interested buyers. In some cases, the properties acquired

through the buyout and acquisition programs are converted into open space or other com-

munity uses directly by the state. However, in many instances, the properties are sold at

auction to private buyers, who may use the land for a variety of purposes such as housing

or commercial development. The auction process involves setting a minimum bid price for

the property based on its fair market value, with additional incentives for buyers who plan



CHAPTER 2. 61

to use the land for community or open space purposes. For commercial and residential us-

age, the state government typically requires that any new construction or renovations on

the property meet certain elevation requirements to reduce the risk of future damage from

natural disasters. In sum, the acquisition and auction processes are designed to ensure that

the properties are sold to individuals or organizations that can make the best use of the land

while also promoting community resilience and sustainability.

The buyout programs also offered homeowners in areas that were severely impacted

by the storm to sell their properties to the state at a price that reflected the pre-storm

value of the property. These programs are also voluntary, but unlike acquisition programs,

the properties acquired through buyout programs are typically demolished to reduce the

risk of future damage from natural disasters. The demolition process involves removing all

structures from the property and restoring the land to its natural state. Once the demolition

process is complete, the land is typically restored to its natural state or converted into open

space or other community uses. By strategically relocating people and property away from

high-risk areas, the buyout programs can help reduce the risk of future damage from natural

disasters and promote community resilience.

The acquisition and buyout program of “New York Rising” were one of the largest and

most successful disaster recovery programs of their kind. Through these programs, the state

was able to acquire more than 1200 properties across the state, primarily in areas that

were severely affected by the storm, as well as those at high risk of flooding or other natural

disasters. The programs were widely praised for the innovative approach to disaster recovery

and the emphasis on community-driven solutions.
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2.3 Data

Housing Acquisition and Buyout Programs post Storm Sandy

Data on the full sample of the acquisition and buyout programs were obtained through a

FOIL request to the New York State Governor’s Office of Storm Recovery. This provides

us with information for all properties that participated in the New York Rising programs

after Hurricane Sandy. For each of the 1289 participating properties, the data include key

characteristics, including the program type (acquisition or buyout), the related municipal

agency, the street address, the purchase price, along with date information related to program

actions, such as the closed date for all properties, the action date and action closing date for

acquisition programs, and the demolition date for buyout programs. We conduct geocoding

for all properties using the USA Local Composite locator, which is available through the

Business Analyst service of ArcGis, to map each participating property to its corresponding

longitude and latitude coordinate.

To obtain the damage caused by Hurricane Sandy on these properties, we complement

surge measurements from field-verified aerial imagery by FEMA’s Modelling Task Force. The

inundation map was constructed based on observations from permanent monitoring sites in

the USGS network and the NOAA network, calculated as the difference between the observed

water level and normal (predicted astronomical) tide level. We also rely on the damage

assessment measures provided by FEMA, which complemented aerial imagery with observed

inundation depths for each building structure. An important advantage of the damage

assessment data is the inclusion of damage estimates for all affected properties beyond those

that were surged or applied for assistance. The assessment data contain estimates for all

of the 147,702 buildings that were either in the Sandy inundation zone or outside affected

properties for which aerial imagery damage determinations were made, including the geo-

referenced location, the damage type (wind, surge, or both), the categorical measure of

damage broken into four levels (affected, minor damage, major damage, or destroyed), along
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with the depth of flooding level. To determine the flooding damage of the acquisition and

buyout programs, we connect each participating property with the nearest building point

within 100 meters for which the damage assessments were determined.

Figure 2.1 displays the geographic distribution of acquisition and buyout programs rela-

tive to the inundation zone of the storm. Most of the participating properties are geograph-

ically close to or in the inundation zone. The distribution of participating properties display

a clustering pattern, with a significant majority of them are concentrated in the coastal areas

of Staten Island and Long Island. In particular, more than half of the programs occurred

in communities near Oakwood and Midland beach of New York City. Interestingly, a small

but nontrivial number of buyout programs was selected into areas that were not affected by

the storm surge, including inland of Rockland and Orange counties. Panel A of Table B.1

summarizes the summary statistics of participating properties by program type.

Housing Transaction

We obtain data on the universe of property transactions from Zillow’s ZTRAX database

(2021 version), which is one of the most comprehensive sets of housing transaction records

available. The data were created by combining transaction observations from the buyer’s,

the seller’s, and the county assessor’s point of view, along with records from county as-

sessments on an annual basis. This allows us to observe the date and the sale price for

each transaction, as well as key characteristics of the property, such as the property type,

the year of construction and renovation, the square footage of building area, the number

of bedrooms, the number of bathrooms, and other amenity features incorporated in assess-

ments. Each property or parcel point is geographically identified by its street address, and

we conduct geocoding using the USA Local Composite locator of ArcGis to obtain the exact

geo-referenced location. The complete records of housing transactions are available between

1997 and 2020, allowing us to observe repeated sales over time.

To conduct hedonic valuation, we limit the samples to residential properties of New York
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State and eliminate observations that feature non-arm’s length transactions (below $10,000)

or outlier properties (above $2,000,000). We also eliminate transactions that occurred less

than three months from the previous sale, as one transaction might be recorded multiple

times by different agents (buyer, seller, and county assessor) at different time points. To

determine the flooding exposure to Hurricane Sandy for each property, we assign it with

the damage measures of the nearest building point within 500 meters for which the damage

assessments were evaluated by FEMA. We restrict the analysis to properties that can po-

tentially receive an effect of Hurricane Sandy or the acquisition and buyout programs, by

limiting to properties that are either located in the inundation zone of Sandy, classified as

“affected” or above by Sandy’s damage according to FEMA’s assessments, or within 1000

meter from acquisition and buyout programs. The final full sample data consist of 467,229

transaction observations, with their summary statistics presented for in Panel B of Table

B.1 .

Home Mortgage Application

To examine the response of internal migration after the acquisition and buyout programs, we

rely on the data of a full sample of home mortgage applications spanning the years of 2000-

2020, obtained from the National Archives of Federal Reserve Board of Governors Division

of Consumer and Community Affairs. The data contain comprehensive information on every

application for a home mortgage received by a lender, as required to report under the Home

Mortgage Disclosure Act. This includes key socioeconomic characteristics of the applicant,

such as race and ethnicity, gender, and annual income, along with basic information of the

loan and securing property, such as loan amount, mortgage application year, census tract of

the property, loan purpose, and whether the loan was successfully approved. Thus, the data

allow for tracking the intentions and demographic patterns of inter-neighborhood migration

flows over time.

We limit the mortgage sample to properties within the 16 counties that were either
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explicitly exposed to the storm (i.e. having been inundated or having received the damage

assessments by FEMA), or received acquisition or buyout programs afterwards. Since some

application entries of early years were coded by hand, to best avoid potential mistyping and

measurement errors, we exclude mortgages with a loan amount below $5,000, and redefine an

annual income below $1,000 or above $10,000,000 as a missing value. This results in 8,072,856

mortgage applications spanning across 3090 census tracts, with 81 tracts having ever received

an assignment of acquisition or buyout programs and the remaining 3009 having never been

treated. As observations on the exact location of securing property are unavailable, we map

each property to its corresponding neighborhood by collapsing the loan-level data into a

panel of the census tract by year level, which allows us to best characterize the patterns of

inter-neighborhood migration flows over time. The summary statistics of the collapsed panel

are presented in Panel C of Table B.2 .

National Establishment Panel

We obtain data on the universe of business performance from the National Establishment

Time-Series (NETS) database, which is one of the most comprehensive databases of firm-level

information on business establishments in the United States. The data cover all industries

and the period from 1976 up to the present, containing detailed information on establishment

characteristics, such as geo-referenced location (longitude and latitude), 4-digit industry

classification, employment size, and revenue. Additionally, the data are updated annually

and provide a host of time-series information on business performance, including births,

deaths, and job creation and destruction. To limit our research scope to the damage and

recovery of Hurricane Sandy, we restrict our business samples to within 1000 meters of the

inundation zone.

One challenge in testing the business effects over the life cycle is the potential bias

introduced by selection effects that occur before a firm’s birth or after its death. For instance,

the screening process may hinder potential entrepreneurs from starting a business, biasing



CHAPTER 2. 66

the sample of observed firms towards those with more resources and capabilities and not

representative of the population of all potential firms. Moreover, the data are likely to be

unbalanced since we cannot observe a firm before its birth or after its death. To analyze

the business life cycle without selection bias at a granular geographic level, we collapsed

the firm-level data into hexagons by creating a set of hexagonal grids that cover the entire

research area„ namely the inundation zone and 1000 meters nearby. We group businesses

based on their geographic location and aggregate their data within hexagonal cells. This

approach enables us to compute multiple measures of business activity for each hexagon,

such as the number of active firms, new births, and deaths, as well as total and average

employment for each year. We also construct these measures for each industry categorized

by 2-digit SIC code. The hexagon size is selected to have a radius of 100 meters, similar to a

large block, resulting in a manageable number of businesses per hexagon while still capturing

meaningful spatial variation. The summary statistics of the business performance data on

the hexagon level are presented in Panel D of Table B.2 .

2.4 Empirical Strategy

The goal of our analysis is to estimate the impacts of acquisitions and buyouts on local

communities. We measure these impacts in three ways: first, by analyzing the capitalization

effect of participating properties on neighboring property values using housing transaction

data; second, by tracking the sorting outcomes across neighborhoods using data on the

demographic distribution of actual and intentional migration flows from mortgage application

data; and third, by focusing on the commercial performance, firm survivability, and job

creation of local businesses. To isolate the causal relationship between acquisition/buyout

programs and these outcomes, we rely on an identification assumption that these programs

are plausibly exogenous shocks. However, the assignment of programs may be correlated

with other factors that affect local communities, such unobserved effects of Hurricane Sandy.

Acknowledging these confounders, we present a set of estimation specifications that help rule



CHAPTER 2. 67

out biases resulting from such factors. By adopting these methods, we aim to provide robust

estimates of the effects of acquisition and buyout programs on local communities.

Unobservable Effects of Hurricane Sandy

One might consider using a standard difference-in-differences framework that utilizes the

temporal and spatial variations driven by acquisition and buyout programs. However, our

primary concern is the omitted variable bias resulting from unobserved disaster effects, which

could lead to biased estimates if they are also correlated with the selection of acquisitions

and buyouts. For example, if the programs are targeted towards communities with less

natural ability to recover from flooding, we might underestimate the positive effects or even

obtain negative estimates of how acquisitions and buyouts affect local communities after

the disaster. Figure 2.3 visualizes this issue and presents the unbiased DiD estimator in an

ideal context (Panel A) and how it would be biased if there exists a correlation between the

program selection and the storm effect (Panel B). 1

To test the correlation between the Sandy’s damage with the selection of acquisitions

and buyouts, we first compare the damage assessments and inundation depth of neighboring

areas relative to those farther away from the acquisition and buyout programs, as presented in

Tables B.1 and B.2. FEMA assessments suggest that acquisition and buyout programs were

spatially selected in areas with more severe property damages. To provide visual evidence

that the selection was also contingent on factors other than the property damage caused by

Hurricane Sandy, we compute the residuals for measure of housing market as component

that cannot be explained by time trends and property damage assessments. By comparing
1 An ideal solution would be to limit our analysis to a small subset of samples that were affected by Sandy

and remained comparable to the participating properties, and only focus on the evolution of these sam-
ples in the post-Sandy time periods. However, this strategy would require us to discard a large number
of observations that were not affected by the storm as well as exclude the evolution that occurred before
Sandy. For the data available only on a yearly basis, such as the mortgage application and the business
performance data, the time gap between Sandy and an acquisition or buyout program typically only in-
cludes 2 to 4 years. Removing the time periods before Sandy would substantially reduce the sample size
and eliminate the temporal variations, potentially resulting in low precision and large measurement er-
rors.
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them of different time stage as a function of distance to acquisition and buyout programs,

we are able to roughly gauge the correlation between the program selection and the storm

effect.

In Figure 2.2, we compute the residuals for property values by regressing the log of prices

on interactions of property damage and inundation level with post-Sandy indicator, fixed

effects of county-by-year, census tract, and sales month, along with property characteristics

included in the main specification. Comparing the residualized prices before Sandy and

right afterwards, we find a spatial correlation in the change of property value by how far

it is located from acquisition or buyout programs. Contingent on controls for property

damage assessments, houses that lie within 300 meter from acquisition or buyout programs

have experienced significantly more adverse effects of the storm on their property values, as

opposed to those 300 meters away. This provides justification for the selection of acquisitions

and buyouts in more disaster-struck areas in terms of detriment on the housing market. 2

Selection of Acquisition and Buyout Programs

Another major concern in identifying the causal effect of acquisition and buyout programs

is the potential for selection bias based on factors unrelated to the disaster. For instance,

the under-representation of minority groups among governors and emergency managers has

led to a failure to prioritize minority and disadvantaged communities in disaster recovery

efforts. On the other hand, specific state and local recovery funds are intended to serve

the most vulnerable disaster survivors, who typically involve minority populations and low-

income communities. Moreover, factors such as pre-existing disparities in disaster exposure

and recovery ability by racial and socioeconomic status, administrative burdens of eligibility

requirements and paperwork, and concerns about the loss of income and property tax revenue

by local governments, can also contribute to the selection of acquisition and buyout programs
2 We also tested the effects on the number of active businesses by how far they are located from the ac-

quisition and buyout programs. As Figure B.1 shows, after controlling for property damage assessments
and county-specific time trends, we did not find supporting evidence for correlation between the spatial
selection of programs and the adverse effect of the storm on local business.
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based on pricing and demographic characteristics of targeted communities rather than on

property damage and recovery needs.

Here, we examine the extent to which observable factors, such as demographic and eco-

nomic characteristics of local communities, influence the selection of acquisition and buyout

programs. To explicitly test for this dependency, we use a cross-section specification that

regresses measures of selection effects on demographic and economic observables while con-

trolling for the damage level caused by Sandy. Specifically, our model takes the following

form

Selectioni = β1Di + β2I(Sandy)i + β3Damagei + αc + ϵi

Here, the regression unit is a census tract, which represents a unit of community throughout

the analysis. We include county fixed effects to control for average selections based on a

broader jurisdictional level. Di represents the demographic and economic factors of interest,

including the median household income level, the racial distribution of the total population

and those affected by Sandy, and the median housing value. I(Sandy)i is an indicator for

whether community i is under the inundation zone of Sandy. Damagei includes various mea-

sures of the storm’s damage to residential properties, including the number and percentage

of households affected by flooding, the number of housing units in each categorical damage

level, and the average depth of inundation. Our primary concern with selection is whether

a community has been assigned acquisition or buyout programs based on factors other than

Sandy’s damage. Therefore, we measure the selection effect using an indicator for whether

the community has been assigned with acquisition or buyout programs.

The results are presented in Table 2.1. Panel A shows that none of the economic factors

of interest, including the median household income level and the median housing value,

have a significant effect on the selection of acquisition programs. However, after controlling

for the damage level of Hurricane Sandy, we find that the demographic distribution of all

populations has a role in acquisition programs. All else being equal, communities with

a higher proportion of white residents are significantly more likely to experience housing
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acquisitions after Hurricane Sandy. In contrast, the demographic distribution of the affected

populations does not play a role in the selection of acquisition programs. Finally, as shown

in Panel B, we find that neither the economic nor demographic factors of interest serve as

significant drivers for the selection of buyout programs. 3

Estimation Models

Our exploration of identification highlights several concerns regarding the use of a standard

DiD approach. Therefore, we base our analysis on the setting of DiD model with multiple

treatments, which utilizes both the variations driven by the acquisition and buyout programs,

as well as the differences before and after the storm Sandy. While a standard DiD model

would only allow us to use the limited subset of sample of the post-disaster period, applying

the multiple treatments setting enables us to use all the data we have on hand. 4 This not

only significantly improves the precision of our estimates but also enables us to answer a

broader set of questions, including the differential effects of Sandy on participating properties

and control groups.

Property Value

Thanks to the detailed information on property location and sales date provided by the

ZTRAX data, we are able to account for the program selection effect by incorporating

neighborhood-specific time trends into the model for property value analysis. Specifically,
3 To test for robustness, we also examine other economic and demographic factors, such as population

density measured by the number of housing units, average rental price, and average income level of dif-
ferent races (see Appendix). We find that the effect of these factors is immaterial for the selection of
acquisition and buyout programs. We also explore the selection effect from different dimensions, such as
the intensity measured by the number of programs, as well as the urgency captured by the timing of the
first program (see Appendix). The results suggest that none of the economic and demographic factors
of interest have a role in determining the intensity and the urgency of acquisition and buyout programs.
Therefore, conditional on being treated, the intensity and the timing of acquisitions and buyouts are not
further contingent on the economic or demographic features.

4 Our sample periods range from 10-15 years before Sandy to 8 years afterwards, and the acquisition and
buyout programs typically occurred 2-3 years after the disaster.
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our specification takes the following form

ln(Pit) =β1Ti · BP
it + β2Ti · BS

t + β3B
S
t + β4Ti + [β5I(Sandyi) + β6Damagei] · BS

t

+ β7Xi + αjy + ϵit

Here, each observation corresponds to a transaction for property i that happened on date t,

with the outcome variable being the log of sales price Pit. Ti is an indicator that denotes

whether a property was assigned to the “treated” group, which in the context of housing

transactions means whether the property is close to acquisition and buyout programs. BP
it

is the indicator that denotes whether the property was transacted after the corresponding

program had taken place. BS
t is an indicator that denotes whether the transaction happened

after Hurricane Sandy. Since the treatment timing differs across properties, it is unclear how

to assign a treatment for the untreated group. In the baseline regression, the control group

is assumed to never have been treated under any circumstances; hence, a pseudo treatment

is not assigned to them. This reduces the primary interaction term of interest, Ti · BP
it, to a

single indicator BP
it. 5 To better control for damage caused by Sandy, the model includes an

indicator for whether the property has been inundated, as well as a set of damage measures

that are interacted with the post-Sandy indicator. Additionally, we also include a handful

of property characteristics Xi, including the year the property was built or renovated, the

number of bedrooms and bathrooms, and the lot size acreage.

To control for selection bias in acquisition and buyout programs, we adopt a compre-

hensive approach by assuming that each community has its own unique time trend after

Hurricane Sandy.This approach fully captures any community-specific factors that may have

influenced the selection process. Our rich dataset at the location and date level allows us to

incorporate these community-specific temporal indicators into our regression analysis. We

include fixed effects at the census tract by year level, denoted as αjy for census tract j and

year y. This ensures that any factors that correlate with the program selection will be ab-
5 In further robustness checks, we relax this assumption by assigning a pseudo treatment for the control

groups. See section 2.5.
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sorbed by these fixed effects, and that the DiD estimator of interest, β1, is not affected by

endogenous selection effects.

As a final note, we define the treatment group as properties within a 1000-meter radius

of at least one acquisition or buyout program. To ensure that we compare similar properties

that are geographically proximate and consistent and not likely to be affected by the program,

we define all other properties affected by Sandy, including those impacted by inundation

or included in FEMA’s damage assessment, as the control group. If a property is within

proximity to multiple acquisition and buyout programs, we use the earliest closing date of all

nearby programs to construct the event variable. Additionally, our analysis suggests that the

treatment effects decay as we move further away from the programs spatially, as shown in

Figure 2.2. We also hypothesize that the effects could vary over time and between acquisition

and buyout programs. Therefore, we will use corresponding event study frameworks to test

these hypotheses.

Inter-Neighborhood Migration

Because the mortgage application panel is collapsed into the census tract and year level, it

is not possible to comprehensively include neighborhood-specific time trends in the model

to fully eliminate the selection effect. Instead, we analyze migration using the following

specification:

Yjy =β1Tj · BP
jy + β2Tj · BS

y + β3B
S
y + β4Ti + β5Damagej · BS

y

+
∑

τ≥2012
β5τ Di · I(y = τ) + α1cy + α2cy

2 + αj + αy + ϵit

where Yjy is the migration outcome for census tract i and year y. The treatment indicators,

BP
jy and BS

y , are analogous to the previous specification. Tj also denotes whether the commu-

nity j was assigned to the “treated” group, while in this context we define the treatment as

whether there have ever been any acquisition and buyout programs within the community.

Similarly, because the treatment timing is differential across communities, we assume the

control communities were never treated under any circumstances, reducing the interaction
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term Tj ·BP
jy down to a single indicator BP

jy. To control for Sandy’s damage, we include a set

of damage measures interacted with the indicator of post-Sandy, Damagei · PSandy
t , includ-

ing the indicator for being inundated, the number of residential properties in each damage

category of FEMA’s assessments, and the average inundation depth.

As the migration data are only available at the census tract by year level, we cannot

include a full set of idiosyncratic time trends by neighborhood to control for the program

selection effect. Instead, we explicitly control for the confounds that may enter the selection

process. As previous sections show, only the racial distribution of all populations enter

the selection process of the programs. Thus, we incorporate the 2010 level of the white

population share interacted with the year indicators for the post-Sandy periods, denoted

as ∑τ≥2012 β5τ Di · I(y = τ). Additionally, apart from the census tract fixed effects, we

incorporate county-specific linear and quadratic time trends to account for prior trends

related to storm damage and program assignment at the county level.

Business Performance

Because the firm-level data are collapsed into hexagons that have a size similar to a block, we

can treat each hexagon as a small proportion of a community, instead of an entire community.

We use the following specification to analysis the effects on business performance

Yiy =β1Ti · BP
iy + β2Ti · BS

y + β3B
S
y + β4Ti + [β5I(Sandyi) + β6Damagei] · BS

y

+
∑

τ≥2012
β7τ Di · I(y = τ) + +α1cy + α2cy

2 + αi + αy + +ϵiy

The dependent variable, Yiy, refers to the performance of a firm located in hexagon i at

the end of year y. The treatment indicators BP
jy and BS

y , as well as the the damage con-

trols I(Sandyi) and Damagei, are are analogous to the previous specification. Ti indicates

whether the hexagon i was assigned to treatment, with the treatment defined as within a

neighborhood range of 1000 meters from acquisition or buyout programs. Similarly, because

the treatment timing is differential across programs, we choose to not assign a pseudo treat-

ment for the group, reducing the interaction term Ti · BP
iy down to a single indicator BP

iy.
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We also incorporate the 2010 level of the white population share interacted with the year

indicators for the post-Sandy periods, ∑τ≥2012 β7τ Di · I(y = τ), to account for the selection

effect of acquisitions and buyouts that relies on neighborhood-specific factors. Finally, the

model effectively include a full set of hexagon and year indicators as well as county-specific

linear and quadratic trends, to account for time-invariant location-specific differences and

common trends across counties.

2.5 Results

Impact on Property Value

To begin, we test how the property value responds to the acquisition and buyout programs

using a DiD framework with multiple treatments, and present the baseline regressions in

Table 2.2. Our preferred specification in Column (2) indicates that acquisition and buyout

programs can significantly increase the property value within a 1000-meter radius by 3.47%.

We also identifies a selection effect where these programs were often implemented in places

severely impacted by disaster. Contingent on the controls for FEMA damage assessments, we

find that places close to these programs remain to have seen a reduction of 4.23% in property

value after Hurricane Sandy relative to places farther away. As Column (1) presents, we note

that a standard DiD model without an inclusion of this differential response to the storm

would underestimate the magnitude and significance of the program effect on property value.

Furthermore, we find that the geographical intensity of acquisition and buyout programs

matters. Column (3) suggests that places close to more than 20 programs experience an

8.28% increase in property value, compared to an average increase of 3.11% for places exposed

to less than 20 programs, after the programs occurred.

We examine the differential impacts of buyout and acquisition on property value, and

our results reveal that the effect of acquisition on property value is more significant than

that of buyout, as indicated in Column (4). We also observe differential selection effects
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for buyouts and acquisitions, with acquisitions occurring in places where the property value

has been impacted by the storm by 4.96% more than an average inundated property, while

buyouts have occurred in places where the property value has reduced by 3.55% less after the

storm relative to an average inundated property. Column (5) further suggests that spatial

intensity of acquisitions and buyouts also plays a role. Places with more than 10 acquisitions

within 1000 meters have experienced an 8.14% growth in their property value, compared to

a 4.07% increase in the less intensive acquisition places. Similarly, for buyouts, only places

that experienced more than 10 buyouts within 1000 meters have experienced a significant

growth, which is on average 3.9%, relative to an insignificant effect for the less intensive

buyout places.

We conduct three robustness tests to validate these findings and present their results

in Table B.3. Firstly, we test the robustness of the results by limiting the range of the

control group to 5 km from acquisition and buyout programs, allowing us to compare treated

properties only to their geographically similar counterparts. Secondly, we test the robustness

by limiting to repeated sales only, namely sales for which the property have been sold at least

once before the storm and afterwards. This strategy reduces the sample size by less than

one-third while better controlling for omitted variables on property level. Finally, we relax

the assumption made in the baseline regression that the properties of the control group would

never be treated. We assign a pseudo-treatment date for the control properties by defining

it as the date of the first acquisition or buyout program of its county, if there is any, or the

average date of all programs across the state if there were not any participating properties in

its county. We find that the significant effect of acquisition and buyout programs on property

value, the differential effect by program intensity, and the dominant effect of acquisitions to

buyouts remain robust to these tests.

As indicated in Figure 2.2, the impact of acquisition and buyout programs on property

value can vary depending on the distance from the program site. To test this relationship, we

re-run the baseline specification on the log of sales price, where the indicators of interest were

interacted with the indicators of distance bin of a 50-meter range defined by the distance
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from the nearest acquisition or buyout program. 6 The coefficients by distance bin are

presented in the top panel of Figure 2.4, and the results suggest that the average program

effects decay as being farther away. Within a close neighborhood range (up to 250 meters),

the acquisitions and buyouts can increase the property value by up to 10%. However, after

300 meters away, the effects become imprecisely estimated and negligible. Furthermore, we

examine how the effects of acquisitions and buyouts separately respond to distance, as shown

in the middle and bottom panels of Figure 2.4. We find that both effects decay as being

farther away, with the effect of acquisitions being significant and large up to 15% within

a neighborhood range. In contrast, the effects of buyouts are much smaller and become

negligible after a block range (100 meters).

One important policy question is whether acquisition and buyout programs are effective

in aiding the recovery of disaster-stricken properties. To assess the recovery effect, we use

residualized property values, which account for the component that cannot be explained by

property characteristics and time trends. By comparing the residuals at different stages, as

shown in Figure 2.2, we find that properties located near acquisition and buyout programs

were severely affected by the disaster, but also experienced more noticeable recovery effects

after the program. Our results suggest that acquisition and buyout programs have played

a crucial role in helping disaster-stricken properties to recover back to their pre-disaster

level. Therefore, we can infer that these programs are effective in aiding the recovery of

disaster-damaged properties.

Lastly, we explore the possibility that the impacts of acquisition and buyout programs

could change over time. To test this hypothesis, we expand the baseline specification to an

event study framework, defining the event as the first acquisition or buyout program within

a close neighborhood of 200 meters. Unlike a standard event study framework, we normalize

the response to zero just before Hurricane Sandy, setting the reference year to 3 years before

the programs. As shown in the top panel of Figure 2.5, we find that these programs have
6 We also include the interactions on the post-Sandy indicator, as the specification follows a DiD frame-

work with multiple treatment.
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a positive effect on nearby property values immediately afterwards. Importantly, the effects

do not attenuate but instead continue to strengthen over the near future. Six years after the

program, nearby properties experience an average growth of 20% in property value relative

to the pre-disaster level, compared to properties farther away. The middle panel of Figure 2.5

indicates that the persistent effects were primarily driven by acquisition programs. Finally,

the bottom panel shows that the effects of buyout programs on property value were negligible,

both contemporaneously and over time.

In conclusion, our analysis suggests that acquisition programs have a significant and

lasting positive effect on property values, with the greatest impact observed in close neigh-

borhoods that gradually decreases as the distance from the program increases. Further-

more, these effects persist over time and even strengthen. In contrast, the effects of buyout

programs on housing markets are much smaller in size, quickly decaying over space, and

attenuating over time.

Residential Sorting

In this section, we examine the effects of acquisition and buyout programs on the intentions

and patterns of migration across neighborhoods, using mortgage application data and fo-

cusing on three key measures: 1) the number of mortgage applications for houses located

in communities with participating properties, 2) the income of intentional migrants looking

to move in, and 3) the racial distribution of families intending to move in. We control for

a comprehensive set of factors, including indicators at the neighborhood and year levels,

county-specific linear and quadratic trends, and demographic factors that enter the selec-

tion process interacted with the year indicators for the post disaster period, ensuring that

any observed effects revealed by the regression results cannot be attributed to differential

pre-existing trends among neighborhoods.

Table 2.3 presents the baseline results, with the average effects shown in Panel A. Col-

umn (1) tests how these programs attract new families to move in, and we find that the
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number of mortgage applications for houses inside participating neighborhoods increased by

an average of 35.3 per year after the program occurred, equivalent to approximately 28.6% of

applications on the pre-disaster level. Columns (2) nd (3) indicate that migration intentions

are skewed towards high-income households, with the average income of mortgage applicants

increasing significantly by 2.1%. We also compare the income levels of mortgage applicants

with the county’s median level of 2015 and find that the share of high-income households

intending to move in rose noticeably by 1.4 percentage points in places with participating

properties after their occurrence. Moreover, acquisition and buyout programs play a role in

correcting pre-existing racial inequalities. While places with these programs were more likely

to be dominated by white households beforehand, we find that the mortgage applications

for the treated communities have seen a 0.4 percentage point increase in the black share of

applicants and a 2.1 percentage points reduction in the white share of applicants, after the

programs occurred in these communities.

We also analyze the treatment effect by program intensity within communities. We divide

the treated communities into high and low intensity based on whether there have been at

least 5 programs within the community. As shown in Panel B of Table 2.3, we find that

the program effects of attracting wealthy families and correcting racial disparity are more

pronounced in places where acquisition and buyout programs have occurred more intensively.

Specifically, in places with high program intensity, we observe approximately a half increase

in the number of mortgage applications, a 2 percentage point rise in the share of high-income

applicants, and a correction of racial inequality driven by a 2.7 percentage points reduction in

white applicants and 1.1 percentage points increase in black applicants. In contrast, in places

with fewer than 5 programs, these effects are relatively small and statistically insignificant

We further evaluate the differential effects between acquisitions and buyouts, and the

results are presented in Table 2.4. Panel A reports the average treatment effects for acqui-

sitions and buyouts separately. Column (1) suggests that while both programs help attract

new home buyers to settle down, the effect of acquisitions is more significant. Having acqui-

sition programs has increased the number of mortgage applications by approximately 30%
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afterwards, while buyout programs have only increased mortgage applications by roughly

10% for participating communities. Moreover, as shown in Columns (2) and (3), we find

that the average program effect of attracting wealthy families is primarily driven by acqui-

sition programs. Additionally, Columns (4) and (5) suggest both acquisitions and buyouts

can help attract more racial minority migrations, but their effects operate through different

channels. The effect of acquisitions is more centered on attracting families from minority

groups, while the effect of buyout programs is more focused on reducing the desirability of

families from the dominant group to move in.

Finally, we investigate how the spatial distribution of acquisition and buyout programs

affects their treatment effects across communities. Panel B of Table 2.4 presents our find-

ings on differential effects by treatment intensity for acquisition programs. We observe that

neighborhoods with high intensity of acquisitions experience a significant increase in mort-

gage applications afterwards, with migration intentions being skewed towards high-income

families. Additionally, the correction effect of racial distribution is only evident for neigh-

borhoods with more than five acquisitions. In contrast, neighborhoods with low acquisition

intensity show less significant effects in attracting wealthy homebuyers and reducing racial

disparities. Interestingly, we find no significant difference in the intensity of buyouts in deter-

mining their effects on migration flows. Neither neighborhoods with high nor low intensity

of buyout programs have experienced noticeable changes in mortgage applications after their

occurrence.

Business Growth and Job Creation

The aim of this section is to investigate the impact of acquisition and buyout programs on

the economic performance of local businesses using the NETS data. We focus on two key

aspects of business performance: firm growth and job creation. Firm growth is measured

by the growth rate of active businesses, the birth rate (number of new firms as a share of

existing firms), and the death rate (number of death firms as a share of all existing firms).
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Job creation is measured by the growth rate of employment and the average firm size.

We begin by evaluating the effect of acquisition and buyout programs on businesses across

all industries. The results are presented in Panel A of Table 2.5. We find that businesses

located in close proximity to acquisition and buyout programs were disproportionately af-

fected by the storm, as indicated by the coefficients on the interactions between the program

treatment and the indicator for post-Sandy. However, as shown in Column (1), we also find

that these programs helped with business recovery, with treated places experiencing a 0.92%

increase in the growth rate of local businesses after the program occurrence. This recovery

was primarily driven by a 0.65% reduction in the death rate of local businesses, with a less

significant contribution from a 0.33% increase in the birth rate, as suggested in Columns (2)-

(3). Regarding employment, our results show that Hurricane Sandy led to a 2.4% greater

reduction in total employment in places located close to these programs compared to places

farther away, and hence the average employment per firm increased by 2.7% due to the

reduced growth rate of local businesses, as indicated in Columns (4)-(5). However, after

the acquisitions and buyouts occurred, we find that the treated places experienced a higher

recovery of 1.3% in total employment and a 1.5% increase in the average firm size, relative

to places located 1km away from acquisition and buyout programs.

In Panel B of Table 2.5, we examine the differential effects between acquisitions and

buyouts. The results reveal that businesses located in places soon to be assigned with

acquisitions and buyouts were affected differently by Hurricane Sandy. Those located close to

acquisition programs experienced a significant reduction in business birth rates, a moderate

reduction in total job creation, and a noticeable growth in average firm size, after Hurricane

Sandy. In contrast, places close to buyout programs experienced a substantial reduction in

the number of active businesses due to the reduced birth rate and increased death rate, and

saw a significant reduction in the growth of total employment with no significant change

in the average employment per firm after the storm. Moving on to the differential effects

between programs, we find that both acquisitions and buyouts have a positive impact on the

growth of local businesses but through different channels. Acquisitions result in a significant
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increase in the birth rate of 5.0%, accompanied by an imprecisely estimated reduction in the

death rate of 3.7%. In contrast, buyouts primarily drive a reduction in the death rate by

8.1%. In terms of the impact on employment, the results indicate that only buyout programs

have a significant effect on job creation and employment size. The average community treated

by buyout programs experienced a growth of 2.0% in total employment and an increase of

2.8% in the average employment per firm. Acquisitions, however, did not play a significant

role in affecting the employment of local businesses.

We further investigate the response of firm performance to acquisition and buyout pro-

grams by examining the differences across industries. To do so, we rank the industries by the

number of businesses in 2010 and report their results sequentially in Tables 2.6 and 2.7. We

identify significant differences in the response of local businesses to these programs across

industries, which we attribute to three factors: the nature of the acquisition and buyout pro-

grams, the effect of land and property values, and the demographic distribution of migration

flows, which affects product demand and labor supply and costs. Our analysis yields four

key findings.

First, we find that the effects of acquisitions on firm growth and birth are significantly

more pronounced in the local businesses of Service and Construction industries. The expan-

sion of the Service sector can be attributed to the increased demand for service products,

such as dining and entertainment, due to the influx of high-income populations. In the

Construction sector, the growth of local businesses is mainly due to the nature of acquisi-

tions, which require reconstruction and renovation after the auction. On the other hand,

the growth rates of local businesses in Retail Trade, Finance, Insurance, and Real Estate

industries have declined after the acquisitions. The reduced growth in the Retail sector is

driven by the increased land price associated with change in property value, which pushed

new stores to locate farther away from the acquisition neighborhoods. The shrinking of the

Finance, Insurance, and Real Estate industry can be attributed to the fact that the auction

for acquisition programs typically requires all-cash payments, thereby reducing the demand

for finance and real estate agents.
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Second, we find that while acquisition programs did not have a significant effect on

the job creation aggregated across all industries, there are notable compositional effects on

specific industries. Our analysis reveals that acquisition neighborhoods experienced signifi-

cant job creation in the Construction, Transportation and Public Utilities, Wholesale Trade,

and Public Administrations sectors, while employment in the Finance, Insurance, and Real

Estate sector decreased. The effects on employment in the Construction and Real Estate

sectors are due to the nature of acquisitions, while we attribute the job creation in other af-

fected industries to the increased demand and reduced labour cost resulting from attracting

migrations of wealthy households. However, we did not observe a response in the number of

businesses in these industries, as the average employment size of a representative business

in these industries is relatively large, resulting in high fixed costs for new establishments.

Third, we find that the average positive effects of buyouts on business growth are primar-

ily driven by the Service sector, possibly due to a better survival rate resulting from better

natural amenities and unresponsive land prices after buyouts. In contrast, some industries,

such as Transportation and Public Utilities, Wholesale Trade, and Public Administrations,

have experienced reduced growth rates in local businesses after the buyout programs oc-

curred. These reductions are likely related to the decreased demand in aggregate due to

the nature of buyout programs, which eliminate residential properties and lead to increased

open areas, consequently reducing the number of residents.

Finally, we find that buyouts have a significant positive effect on job creation in aggregate,

which is primarily driven by the Service and Retail sectors. This expansion in employment

can be attributed to the increased inflow of low-income households following the occurrence

of buyouts, which reduces the cost of labor in these labor-intensive industries. Furthermore,

we observe an increase in the average employment size of the Retail sector post-buyouts,

indicating an general equilibrium consequences resulting from both the increased demand

due to new arrivals as well as high fixed cost of starting a new business.
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2.6 Conclusion

In conclusion, this paper examines the impact of the NY Rising Program, a post-disaster

buyout and acquisition program, on nearby property values, demographic changes, and the

business environment. Our findings suggest that these programs can effectively aid in the

recovery of disaster-stricken properties, attract new families to settle in disaster-stricken

areas, correct pre-existing racial inequalities within communities, and enhance the growth

of local businesses. Both types of programs have a positive impact on local business growth

and employment, albeit through different channels and industries. Our study also highlights

the importance of considering neighborhood-specific time trend parameters and demographic

factors when selecting programs across neighborhoods.

Although concerns exist regarding the negative impact of buyout and acquisition pro-

grams on the local economy and tax base, our study suggests that the actual economic

impacts may be less negative than projected. These programs present a unique opportunity

for a community to upgrade and reorganize its housing stock during the recovery process,

creating positive general equilibrium effects at the community level.

Overall, our findings suggest that managed retreat strategies, such as buyout and ac-

quisition programs, can effectively address the tension between the need to protect against

disasters and the need to maintain a thriving local economy and tax base. Therefore, we

recommend that policymakers consider these programs as part of their disaster risk manage-

ment strategy, particularly in areas prone to natural disasters. We also suggest that future

research explore the long-term impacts of these programs and identify additional factors that

may influence their effectiveness, as well as how they interact with other policies aimed at

disaster risk reduction and climate change adaptation.
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Figure 2.1: Acquisition and Buyout Programs

Notes: The red area displays the inundation map of storm Sandy. The colored points show the
geographical location of acquisition and buyout programs.
Source: New York State Governor’s Office of Storm Recovery and FEMA’s Modelling Task Force.
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Figure 2.2: Gradient effect of distance from participating properties on property value

Notes: Log price is residualized by property features, Sandy damage level, inundation depth,
county by sales year FEs, census tract FEs, and sales month FEs. Smoothing curves are obtained
through a polynomial model fit. Shades show the 95% confidence intervals clustered twoway by
census tract and sales year.
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Figure 2.3: Omitted Variable Bias from Sandy’s Effect
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Figure 2.4: Program Treatment Effect on Log(Property Value) by Distance

Notes: The three panels display the coefficients from the baseline specification of DiD model
with multiple treatment on the log of sales price, where the indicator of interest (post-treatment
interacted with being treated) is interacted with the indicators of distance bin of a 50-meter range
range defined by the distance from the nearest acquisition or buyout program. The top panel
accounts for both acquisition and buyout programs, the middle panel accounts for acquisition
programs only, and the bottom panel considers buyout programs only. Shades represent 95%
confidence intervals constructed using standard errors clustered twoway at the census tract and
year level.
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Figure 2.5: Dynamic Program Effect on Log(Property Value) for Close Neighborhood

Notes: The three panels displace event study regression coefficients based on the baseline speci-
fication of DiD model with multiple treatment on the log of sales price. The treatment group is
limited to within 200 meters of the acquisition and buyout programs. The top panel accounts for
both acquisition and buyout programs, the middle panel accounts for acquisition programs only,
and the bottom panel considers buyout programs only. All panels span 15 years before to 6 years
after the treatment, and normalize the coefficient for year -3 (one year before the storm) to zero.
Shades represent 95% confidence intervals constructed using standard errors clustered twoway at
the census tract and year level.
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Table 2.1.
Regression Results for Program Selection by Economic and Demographic Factors

Economic Factor Demographic Factor

log(HH Income) log(HU Value) % Wh % Wh Sandy % Bl % BL Sandy
(1) (2) (3) (4) (5) (6)

Panel A: Indicator for having acquisition or buyout programs
Di 0.237 0.109 2.15* 1.88 -2.66 -2.27

(0.199) (0.0848) (1.12) (1.38) (1.64) (1.92)
Pseudo R2 0.618 0.617 0.623 0.620 0.622 0.620

Panel B: Indicator for having acquisition programs
Di 0.222 0.0804 0.917 0.939 -1.39 -1.32

(0.225) (0.0527) (0.674) (0.996) (1.3) (1.59)
Pseudo R2 0.673 0.672 0.673 0.673 0.674 0.673

Panel C: Indicator for having buyout programs
Di 0.0128 0.0484 2.48 1.38 -2.66 -0.78

(0.136) (0.18) (2.24) (2.32) (3.22) (3.09)
Pseudo R2 0.563 0.563 0.569 0.564 0.567 0.563

Observations 4367 4367 4367 4367 4367 4367
County FE Y Y Y Y Y Y
Clusters Y Y Y Y Y Y

Notes: Estimation results for the dummy for having acquisition programs (Panel A) and the dummy
for having buyout programs (Panel B), as a function of the economic and demographic factor indicated
in the column title. The sample is a census tract unit, and each regression includes county fixed effects.
Standard errors are clustered at the county level. * p<0.1, ** p<0.05, *** p<0.01.
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Table 2.3.
Average Program Impacts on Mortgage Applications

#Loans Log(Med Inc) %(>Med Inc) %(White) %(Black)
Mean=126 Mean=11 Mean=63 Mean=65 Mean=14

(1) (2) (3) (4) (5)

Panel A: Average Program Effect
Treated × Post-Program 35.3*** 0.0209*** 1.36* -2.07** 0.372***

(11.8) (0.00691) (0.782) (0.861) (0.124)
Treated × Post-Sandy -14.5 -0.013 -1.28 2.85** -0.143

(17.5) (0.00992) (0.867) (1.2) (0.497)
Adj R2 0.725 0.877 0.739 0.895 0.888

Panel B: Average Program Effect by Treatment Intensity
Treated × Post-Program:

× low intensity 19 0.0178** 0.88 -1.29 -0.278
(13.6) (0.0068) (0.786) (0.914) (0.345)

×high intensity 57.3*** 0.0236* 1.99* -2.69* 1.13*
(9.1) (0.012) (1.05) (1.43) (0.563)

Treated × Post-Sandy
× low intensity -6 -0.0153 -1.08 3.6** -0.421

(20.4) (0.0109) (0.99) (1.53) (0.516)
× high intensity -27.5 -0.00732 -1.57 1.1 0.528

(25.1) (0.0133) (1.26) (1.29) (0.836)
Adj R2 0.725 0.877 0.739 0.895 0.888

N 90867 77925 78202 77826 77826

Notes: Estimation results for the measures of mortgage application on the average effect of acquisition
and buyout programs. Each regression utilizes the specification of DiD with multiple treatments, includ-
ing interaction terms between the indicator for being treated and for post-Sandy. Dependent variable
is the number of mortgage applications in column (2), the log of median household annual income of
applicants in (2), the share of applicants with household annual income above the county’s median level
in (3), the share of applicants with household annual income below the county’s median level in (4), the
number of white applicants as a share of total applicants in (5), and the number of black applicants as a
share of total applicants in (6). Panel B further accounts for the differential effects by program intensity,
with treatment intensity classified as "low" or "high" depending on whether there are less or more than
5 programs within the census tract. Each specification controls for the fixed effects of the census tract
and year level, the linear and quadratic time trends interacted with county dummies, and the share of
white populations in 2010 interacted with the year dummies for the post-Sandy period. Standard errors
are clustered twoway at the census tract and year level. * p<0.1, ** p<0.05, *** p<0.01.
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Table 2.4.
Impacts by Program on Mortgage Applications by Program Type

#Loans Log(Med Inc) %(>Med Inc) %(White) %(Black)
Mean=126 Mean=11 Mean=63 Mean=65 Mean=14

(1) (2) (3) (4) (5)

Panel A: Effect by Program Type
Treated × Post-Acquisition 38.8*** 0.0277** 1.8* -1.09 0.469***

(9.25) (0.0113) (0.91) (0.74) (0.146)
Treated × Post-Buyout 12.7* -0.0146 -1.06 -3.86*** 0.3

(6.65) (0.0178) (0.927) (1.31) (0.338)
Adj R2 0.725 0.877 0.739 0.895 0.888

Panel B: Effect by Program Type and Treatment Intensity
Treated × Post-Acquisition

× low intensity 26.4** 0.0177 1.23 -0.917 0.201
(9.43) (0.0119) (0.852) (1.26) (0.324)

× high intensity 60.6*** 0.0485*** 2.88** -1.28 0.771
(9.12) (0.0114) (1.29) (1.5) (0.568)

Treated × Post-Buyout
× low intensity 8.96 0.00212 -0.905 -5.13** 0.401

(14) (0.0202) (0.951) (2.29) (0.468)
× high intensity 1.73 -0.0537*** -2.1 -1.87 -0.0686

(6.3) (0.0173) (1.37) (2.62) (1.01)
Adj R2 0.725 0.877 0.739 0.895 0.888

N 90867 77925 78202 77826 77826

Notes: Estimation results for the measures of mortgage application on the separate effect of acquisition
and buyout programs. Each regression utilizes the specification of DiD with multiple treatments, including
interaction terms between the indicator for being treated and for post-Sandy. Dependent variable is the
number of mortgage applications in column (2), the log of median household annual income of applicants
in (2), the share of applicants with household annual income above the county’s median level in (3), the
share of applicants with household annual income below the county’s median level in (4), the number of
white applicants as a share of total applicants in (5), and the number of black applicants as a share of total
applicants in (6). Panel B further accounts for the differential effects by program intensity, with treatment
intensity classified as "low" or "high" depending on whether there are less or more than 5 acquisitions or
buyouts within the census tract. Each specification controls for the fixed effects of the census tract and
year level, the linear and quadratic time trends interacted with county dummies, and the share of white
populations in 2010 interacted with the year dummies for the post-Sandy period. Standard errors are
clustered twoway at the census tract and year level. * p<0.1, ** p<0.05, *** p<0.01.
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Table 2.5.
Impacts of Acquisition and Buyout Programs on Business Performance

Firm Growth Job Creation

% Dif #Firms % Birth % Death Dif Ln(#Jobs) Ln(Avr Emp)
(1) (2) (3) (4) (5)

Panel A: Average Program Effect
Treated × Post-Program 0.00918*** 0.00331 -0.00647** 0.0134*** 0.0146*

(0.00331) (0.00248) (0.00255) (0.0045) (0.00812)
Treated × Post-Sandy -0.0115*** -0.0114*** -0.00108 -0.0235*** 0.0269***

(0.00445) (0.00266) (0.00303) (0.00615) (0.00969)
R2 0.153 0.179 0.175 0.079 0.807

Panel B: Effect by Program Type
Treated × Post-Acquisition 0.00785** 0.00497* -0.00371 0.00607 0.00441

(0.00395) (0.0027) (0.00291) (0.00496) (0.00841)
Treated × Post-Buyout 0.00733 -0.0015 -0.00807* 0.0201*** 0.0277**

(0.0065) (0.0046) (0.0042) (0.00773) (0.0138)
Acquisition × Post-Sandy -0.00483 -0.0093*** -0.0041 -0.0148** 0.0269**

(0.00421) (0.00286) (0.00281) (0.00575) (0.0109)
Buyout × Post-Sandy -0.0163* -0.00689 0.00586 -0.0279*** -0.0013

(0.00883) (0.00502) (0.00536) (0.00883) (0.0131)
R2 0.153 0.179 0.175 0.079 0.807

N 430849 462865 462865 481637 518686

Notes: Estimation results for the measures of business performance on the effect of acquisition and buyout
programs. Each regression utilizes the specification of DiD with multiple treatments, including interaction
terms between the indicator for being treated and for post-Sandy. Panel A presents the average program
effect, and Panel B presents the separate effects of acquisitions and buyouts, Dependent variable is the
difference in the number of active businesses as a share of all active business of the previous year in column
(1), the number of new firms as a share of all active business of the previous year in (2), the number of
terminating firms as a share of all active business of the previous year in (3), the difference in the log of
the number of employments of all businesses between the current and previous year in (4), and the log of
the average number of employment per enterprise in (5). Each specification controls for the fixed effects
of the hexagon level and year level, the linear and quadratic time trends interacted with county dummies,
and the share of white populations in 2010 interacted with the year dummies for the post-Sandy period.
Standard errors are clustered at the zip code level. * p<0.1, ** p<0.05, *** p<0.01.
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Table 2.6.
Impacts on Business Performance by Industry

Firm Growth Job Creation

% Dif #Firms % Birth % Death Dif Ln(#Jobs) Ln(Avr Emp)
(1) (2) (3) (4) (5)

Panel A: Service (53% of all businesses in 2010)
Treated × Post-Acquisition 0.0127** 0.00746** -0.0057 0.0089 -0.00503

(0.00537) (0.00346) (0.0037) (0.00706) (0.153)
Treated × Post-Buyout 0.0165** 0.00325 -0.0126*** 0.0338*** 0.226

(0.00714) (0.00528) (0.00449) (0.00709) (0.29)

Panel B: Retail Trade (14% of all businesses in 2010)
Treated × Post-Acquisition -0.0148* -0.0115** 0.00265 -0.000878 -0.0139

(0.00792) (0.00486) (0.00544) (0.0105) (0.0139)
Treated × Post-Buyout 0.00826 -0.00831 -0.0177** 0.0232** 0.0477**

(0.01) (0.00543) (0.00837) (0.0093) (0.0241)

Panel C: Finance, Insurance, Real Estate (10% of all businesses in 2010)
Treated × Post-Acquisition -0.0165* -0.00906* 0.00707 -0.017* -0.00656

(0.00878) (0.00499) (0.00661) (0.00901) (0.0154)
Treated × Post-Buyout -0.0126 -0.0016 0.0109 -0.0109 -0.0169

(0.0162) (0.00837) (0.013) (0.0188) (0.0296)

Panel D: Construction (8% of all businesses in 2010)
Treated × Post-Acquisition 0.0191** 0.000901 -0.0183*** 0.0255** 0.0206

(0.00888) (0.00473) (0.00691) (0.00989) (0.015)
Treated × Post-Buyout -0.00945 -0.0147*** -0.00444 0.0011 0.0242

(0.00887) (0.00398) (0.00728) (0.00996) (0.0172)

Notes: Estimation results for the measures of business performance on the effect of acquisition and
buyout programs, by 2-digit SIC industry. Each regression utilizes the specification of DiD with multiple
treatments, including interaction terms between the indicator for being treated and for post-Sandy. Each
specification controls for the fixed effects of the hexagon level and year level, the linear and quadratic
time trends interacted with county dummies, and the share of white populations in 2010 interacted with
the year dummies for the post-Sandy period. Standard errors are clustered at the zip code level. * p<0.1,
** p<0.05, *** p<0.01.
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Table 2.7.
Impacts on Business Performance by Industry (Continued)

Firm Growth Job Creation

% Dif #Firms % Birth % Death Dif Ln(#Jobs) Ln(Avr Emp)
(1) (2) (3) (4) (5)

Panel E: Transportation & Public Utilities (6% of all businesses in 2010)
Treated × Post-Acquisition -0.00167 -0.00613 -0.00494 0.0315** 0.0344**

(0.00167) (0.00676) (0.00893) (0.015) (0.017)
Treated × Post-Buyout -0.0292** -0.0246** 0.00421 -0.0177 0.0305

(0.0136) (0.0112) (0.0114) (0.0199) (0.0273)

Panel F: Wholesale Trade (5% of all businesses in 2010)
Treated × Post-Acquisition 0.00983 -0.00172 -0.0106 0.0227* 0.0173

(0.0125) (0.0068) (0.00837) (0.0121) (0.0195)
Treated × Post-Buyout -0.0304** -0.01 0.0224* -0.0303* 0.00261

(0.015) (0.00696) (0.0133) (0.0157) (0.0286)

Panel G: Manufacturing (3% of all businesses in 2010)
Treated × Post-Acquisition 0.0123 -0.00637 -0.0165 0.0178 0.0614**

(0.0122) (0.00443) (0.0107) (0.0167) (0.0279)
Treated × Post-Buyout -0.00527 -0.0126** -0.00444 0.00171 -0.000748

(0.019) (0.00591) (0.0167) (0.0219) (0.0305)

Panel H: Public Administration (1% of all businesses in 2010)
Treated × Post-Acquisition 0.0199 0.00693 -0.0116 0.143** 0.201*

(0.0162) (0.0108) (0.0133) (0.069) (0.12)
Treated × Post-Buyout -0.0532* 0.00626 0.061* -0.0963 -0.307

(0.0313) (0.02) (0.0321) (0.17) (0.235)

Notes: Estimation results for the measures of business performance on the effect of acquisition and
buyout programs, by 2-digit SIC industry. Each regression utilizes the specification of DiD with multiple
treatments, including interaction terms between the indicator for being treated and for post-Sandy.
Each specification controls for the fixed effects of the hexagon level and year level, the linear and
quadratic time trends interacted with county dummies, and the share of white populations in 2010
interacted with the year dummies for the post-Sandy period. Standard errors are clustered at the zip
code level. * p<0.1, ** p<0.05, *** p<0.01.
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Chapter 3

Social Cost of Wind Power: Assessing

the Externality of Visual Disamenity

on Housing Prices

3.1 Introduction

Renewable power generation has gained significant attention and investment in the United

States in recent years, driven by concerns over climate change and the need for more sus-

tainable energy sources (Chu and Majumdar 2012). However, the production of renewable

energy may impose external costs on local communities (Westlund and Wilhelmsson 2021;

Gowrisankaran et al. 2016). Wind turbines, in particular, have been a topic of controversy

due to their potential to create low-frequency noise, cast shadows, create flickering, and vi-

sually degrade the landscape (Schmidt and Klokker 2014; Dröes and Koster 2021; Saidur

et al. 2011; Krekel and Zerrahn 2017). Visual impacts are particularly concerning because

wind turbines are designed to be massive and are often located on high-elevation areas with

extensive visibility (Gibbons 2015; Alphan 2021). They are widely perceived as unattractive

and disruptive to the landscape, with some polls suggesting that more than 25% of respon-
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dents find wind turbines to be “ugly monstrosities” and “horrendous machines” (YouGov /

Renewables UK Survey Results 2012).

Wind turbines are no longer only erected in rural areas with sparse populations, and

their increasing presence in more populated and urbanized areas raises concerns about their

impact on urban residents (Hoen and Atkinson-Palombo 2016; Rand and Hoen 2017). Their

communities are often concerned about the potential reduction in the appeal and value of

local houses due to wind power construction (Heintzelman and Tuttle 2012; Hoen et al. 2015;

Carr-Harris and Lang 2019). Furthermore, the public opposition raised by local residents

can have a significant impact on the siting decision of wind power infrastructure (Ki et

al. 2022; Pepermans and Rousseau 2021). In response to these externalities, local residents

may adapt and take precautionary measures to mitigate the potential impact of wind farm

developments (Dröes and Koster 2016; Joly and De Jaeger 2021).

This paper presents a national-level analysis of the externality costs of wind power gener-

ation in the United States, focusing on the visual disamenity caused by wind power facilities

and its impact on the loss of visual landscape amenities. We rely on the value of residen-

tial properties retrieved from the universe of housing transactions to reveal local residents’

preferences for views of wind turbines, following the theory of hedonic evaluation in public

economics, Previous studies have either focused on wind facilities outside of cities in Europe

or on selected U.S. metropolitan areas, making their results difficult to generalize to the en-

tire country (Gibbons 2015; Hoen et al. 2011; Vyn and McCullough 2014; Lang et al. 2014;

Dröes and Koster 2016). Therefore, our study makes a significant contribution by providing

some of the first estimates on the impact of wind facilities across the entire U.S., covering a

wide range of land use from rural to urban places.

One of our primary contributions is the creation of a geospatial database on wind turbine

visibility throughout the nation. We accomplish this by combining digital elevation models

of the landscape with the location and height information of turbines and creating viewshed

for each wind facilities, allowing us to precisely characterize whether and when a place is

subject to visible impacts from wind facilities, along with information on the visible turbines
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in view. The computation required to calculate viewsheds for each windmill is substantial,

but we utilize advanced geospatial tools from geomorphometry and computer science to

address this issue (Zhao et al. 2013; Tabik et al. 2013; Tabik et al. 2014). This database

provides a comprehensive and accurate assessment of the visual disamenity created by wind

power facilities across the nation, which serves as a crucial component of our analysis on the

external costs of wind power generation.

To investigate the causal effect of wind farm development on housing prices, we employ

a spatial difference-in-difference design that takes advantage of both temporal variation in

turbine installations and spatial variations in proximity and visibility induced by the under-

lying topography of the landscape. Our analysis estimates the average change in housing

prices in areas visible to a wind turbine when it becomes operational, relative to the average

change in housing prices in areas not visible to the same facility. The high-resolution housing

transaction data, which includes precise property locations, allow us to relax the identifica-

tion assumption as the exact location and installation of wind turbines being exogenous from

nearby housing markets. We also control for other sources of endogeneity, such as location,

general economic trends, and housing quality.

Our baseline findings indicate that wind farm developments have a detrimental effect on

the property value in locations where the turbines are visible, which is primarily driven by

impacts on urban areas. We find a reduction in property values of up to 8% for housing with

visibility exposure within a neighborhood range from wind facilities, which decays as the

distance from the turbines increases, falling to an average 1% reduction for housing within

10 km of wind turbines. Our analysis also suggests that the price reductions are mainly

attributed to visibility, rather than other confounding factors caused by wind facilities, as

evidenced by comparisons within a narrow neighborhood where noise and job creation effects

are more prominent. We confirm the robustness of the findings through various model speci-

fications and by restricting the study to places with low-height buildings only. Furthermore,

we examine the heterogeneity of the effects and find that the visibility impact on property

value increases with the number of visible wind turbines on site, but does not vary with the
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height and size of the wind turbines in view.

The reduction in property value resulting from wind farm developments raises questions

about the potential adaptations and precautions that local residents may take and how

they might affect siting decisions for future wind farms. To investigate these hypotheses,

we examine the differential impacts of wind power developments on housing construction

in locations where turbines are visible and not in view. Our findings suggest that urban

residents adapt to the visual disamenity of wind turbines by making renovations to improve

the elevation of their properties, while rural residents make new constructions with larger

sizes in non-visible places. These findings support the notion that reduced desirability of

investing in property with damaged views after wind turbine installation leads to significant

adaptation behaviors of affected residents to mitigate the negative externalities associated

with wind farm developments. Furthermore, our analysis of wind turbine siting indicates

that more intensive wind farms as well as larger and taller turbines are less likely to be placed

in areas that are highly visible to local residents. This effect is more pronounced in areas with

heavily impaired views due to wind power developments. These findings are consistent with

public opposition from residents who perceive negative impacts from existing wind turbines

and raise concerns and objections to new wind farm developments in their areas, and may

inform future decision-making in the wind energy industry.

This paper is highly relevant for wind power developments and offers several significant

academic and policy implications. Firstly, this paper sheds light on a fundamental question

in environmental economics about the costs and benefits of renewable energy. Besides envi-

ronmental benefits of reduced carbon emissions and improved air quality as well as economic

costs associated with installation and operation, this paper provides insights into the social

cost of renewable power generation by examining the implied losses in visual amenity due

to wind power developments. Secondly, the findings help inform policymakers about the

potential economic impacts of wind power development on local communities. The results

suggest that wind turbines have a detrimental effect on property values in urban areas where

turbines are visible, indicating that policymakers need to weigh the benefits of wind power
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against the externalities to determine if the wind farm development is suitable for a given

location. Lastly, this paper provides important implications for equity. Our analysis suggests

that the social costs associated with renewable power generation are unevenly distributed

over space. The wind farm developments have a negative impact on property values through

visibility, which can disproportionately affect low-income communities that may not have

the resources to relocate or mitigate the negative effects through housing renovation.

The remainder of this paper is structured as follows. Section 3.2 provides background

description on wind power developments and associated externalities. Section 3.3 describes

the data, followed by the strategy of viewsheds aggregation and the empirical framework

discussed in Section 3.4. In Section 3.5 we report the results, and Section 3.6 concludes.

3.2 Background

In recent years, renewable power generation has gained significant attention and investment

in the United States, driven by concerns over climate change and the need for more sustain-

able energy sources. Wind power is one of the fastest-growing sources of renewable energy

in the country, accounting for a significant portion of the total renewable energy genera-

tion. In 2020, wind power accounted for more than 7% of total electricity generation in the

United States, and it has been projected to continue to grow in the coming years (Costoya

et al. 2020). In addition, the development of smaller, more efficient wind turbines has made

it possible to generate renewable energy in urban areas, where energy demand is high (Wat-

son et al. 2019). Urban wind power can also reduce transmission losses and increase grid

resilience by providing a source of renewable energy that is closer to where it is needed (Yang

et al. 2016).

However, the development of wind turbines is not without challenges, as some local

residents may object to their presence due to the potential negative effects on the local

environment and residents. One of the most common concerns raised by local residents is

the visual impact of wind turbines, which can be significant due to their size and height.
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In some cases, the visual impact can become a major obstacle to the development of wind

power projects. For example, a proposed wind farm in the town of Somerset, New York,

faced opposition from local residents in 2019 due to concerns about the visual impact of the

turbines. The proposed project aimed to install 47 wind turbines, which would have reached

heights of up to 680 feet and been visible from many miles away (Town of Somerset 2020).

The opposition to the project centered on concerns about the impact on property values and

tourism in the area, as well as the potential alteration of the area’s character and natural

beauty. Ultimately, the project was rejected in 2020 by the town board, citing concerns

about the visual impact on the surrounding area.

Public opposition raised by local residents can have a significant impact on the siting

decision of wind turbines. Wind turbine developers and local authorities must carefully

consider the concerns of the local community when planning and siting wind power projects.

If there is significant public opposition to the development of a wind farm, it can lead to

delays or even the cancellation of the project. In some cases, local authorities may require

developers to take steps to mitigate the negative impacts of wind turbines, such as reducing

their height or altering their location to minimize the visual impact on the surrounding

landscape.

Furthermore, local residents may adapt and take precautions to mitigate the impacts on

their property values and quality of life. For instance, they may opt to make renovations to

their homes or properties to reduce the negative visual impact of wind turbines. This could

involve planting trees or installing fencing to block the turbines from view. Additionally,

some residents may choose to build their homes on higher elevations to avoid the direct

visual impact of the turbines. However, these adaptations can be costly and may not always

be effective in fully mitigating the negative effects of wind farm development on property

values and desirability of the area.

In sum, while wind power generation has numerous benefits, concerns related to the neg-

ative impacts of wind turbines on the surrounding environment and communities must be

addressed. Quantifying the impact of visual disamenity on property values, and understand-
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ings its implications on housing construction and siting decisions of future wind farms, are

crucial for the sustainable development of wind power projects.

3.3 Data

The analysis primarily utilizes data from three sources: the wind turbine installation panel,

the real estate transaction records, and the digital elevation models.

Wind Turbine Operation

We obtain the full sample of wind turbine installations from the United States Wind Turbine

Database (2022 Version) of USGS, which has collected and compiled comprehensive records

of wind turbines from various public and private sources on a quarterly basis. The data

consist of all utility-scale turbines that have ever generated and fed power into the grid to

supply utilities with energy, including both the newly installed as well as the dismantled

across the nation. For each facility, the data provide geo-referenced information of longitude

and latitude, dates of announcement, construction, and operation, along with technical spec-

ifications on turbine make and model such as nameplate capacity, hub height, rotor diameter,

and facility size.

To generate a balanced panel, we limit the sample to wind turbines that have started

installation or have been in operation anytime since 1997. This includes 68,649 facilities in

the continental US, with their summary statistics presented in Table 3.1. These facilities have

been predominantly concentrated in rural areas (99.8% of turbines), and have systematic

differences between urban and rural locations. Relative to urban wind farms, those located

in rural places are significantly greater in terms of the number of turbines on site and

their cumulative capacity. Moreover, the average wind facility of rural areas features higher

productivity and efficiency, as they are designed with higher capacity, taller height, and larger

swept area. While none of urban wind farms have been retrofitted, 9% of wind facilities in
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rural areas have experienced partially or entirely retrofitting after the initial construction.

Figure 3.1 displays some facts about the wind power generation across the nature. Panel

A illustrates the spatial distribution of wind farms as well as their concentrations measured

by the number of turbines on site. Geographically, wind power infrastructure spans across

43 states of the continental US, and their facilities have been clustered in a handful of states

with abundance of wind resources. The top five states account for more than half of wind

power infrastructure across the nation, i.e. Texas (24.7%), California (9.5%), Towa (8.7%),

Oklahoma (6.8%), and Kansas (5.4%). In contrast, urban wind farms are concentrated in a

different set of places, led by Massachusetts (18.2%), Ohio (12.7%), New York (12.1%), and

Rhode Island (10.3%). Panel B plots the historical development of wind power generation

from 1980. Over a 40-year period, rural areas have seen a drastic growth in wind power

generation, increasing from below 100 mw to more than 100,000 mw of annual generating

capacity. This, in principle, amounts to sufficient power for about 60 million homes (or

45.8% of all households across the US) on full capacity. In urban areas, the wind power

facilities have also been continually on the rise, from non-existence before 1990 to above 100

MW of generating capacity in 2021.

Housing Transaction

Data on the universe of property transactions are obtained from Zillow’s ZTRAX database

(2021 version), which is considered one of the most comprehensive databases of housing

transaction records. The data are created by combining transaction observations from mul-

tiple sources, including records from the buyer’s, seller’s and county assessor’s points of view,

along with records from county assessments on an annual basis. This results in a rich dataset

that allows us to observe the date and sale price of each transaction, as well as key char-

acteristics of the transacted property, such as the property type, year of construction and

renovation, building area, number of bedrooms and bathrooms, and other amenity features

included in assessments. Each property or parcel point is geographically identified by its
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street address, and we conduct geocoding using the USA Local Composite locator of ArcGis

to obtain the exact geo-referenced location. The data cover complete records of housing

transactions from 1997 to 2020, enabling us to observe repeated sales over time.

To conduct hedonic valuation, we limit our analysis to residential properties within the

continental US, and exclude non-arm’s-length transactions (below $10,000) or outlier prop-

erties (above $4,000,000), which account for 3.1% of the total samples. We also exclude

transactions that occurred on the same parcel within three months of the previous sale to

avoid duplicate observations. To examine the impact of visibility disamenity on property

values, we further limit our sample to properties within 10 kilometers of wind turbines, as

discussed below. The final data comprise 180,682,544 transaction observations, and their

summary statistics are presented in Table 3.2.

Digital Elevation Models

Digital elevation models (DEMs) are an important data source for our study as they provide

crucial information on the ground topography of the study area. The DEMs we utilize are

based on the Shuttle Radar Topographic Mission produced by NASA, which employs remote

sensing technology to gather laser light measurements of the earth’s surface. The resulting x,

y, z measurements are then used to create a comprehensive and accurate map of elevation for

the entire globe. In particular, we use the most recent version of the DEMs, which are from

the year 2018, and are available at a high resolution of 90 meters for the entire continental

US. The high level of accuracy and resolution of the DEMs is essential to our analysis, as it

allows us to capture subtle variations in elevation and terrain that could have a significant

impact on the sight of view.
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3.4 Empirical Strategy

Viewshed Analysis

One of the key contributions of our analysis is the creation of a comprehensive database

that measures the visibility of wind turbines across the United States. This is achieved

by generating and aggregating viewsheds from the location point of each wind turbine.

Viewshed is a term used in geography and cartography that refers to the area visible from

a specific observation point or vantage point, based on the topography of the surrounding

terrain and any obstructions that may block the view. Unlike typical viewshed analyses

that calculate the viewshed to each property, we compute the viewshed from the site of

wind turbines thanks to the duality of vision, which requires less computational effort since

the number of wind turbines is much smaller than the number of housing properties. This

approach greatly increases computational efficiency.

Our analysis of viewshed generation involves combining the site and height data of each

turbine with information on the underlying topography of the landscape and the curvature

of the earth. By utilizing the viewshed module in GRASS GIS, we are able to differentiate

neighboring residential properties based on their ability to view the facility. The module relies

on the direct algorithm based on the line of sight and its geographical intersection with the

terrain was used, which offers significant advantages in terms of accuracy, reliability, and

efficiency.

The visual significance of an object decreases as its distance from the observer increases,

and increases as the observer’s location elevates or as their height increases. To account for

air quality conditions across the nation, we assume a maximum visible range of 10 kilometers.

Given that the horizontal distance of observation and the hub height of wind turbines are

significantly greater than the height of a representative person, assuming the observer’s

height is unlikely to have a significant effect on the visibility analysis. Therefore, we assume

a representative observer’s height of 1.75 meters.
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One concern with visibility analysis is that topographic features that obscure a wind farm

from view might also reduce the noise level, and as a consequence, comparisons between the

visible and non-visible groups could also capture differences in noise levels. However, this

is unlikely to be true for the spatial range of visibility to giant features like wind turbines.

The predicted combined noise level from a typical wind farm with a ten turbine array falls

to around 40 dBA by 1 km, which is below the background noise level in an average home

(Haac et al. 2019). Moreover, much of the nuisance noise from wind farms is low frequency,

and low frequency sound, in particular, is not attenuated by large topographic features due

to refraction. As the blade movement of a typical wind turbine can be easily visible from

1 km away, comparisons between locations with visible and non-visible turbines are very

unlikely to pick up noise-related effects.

To visually illustrate the visibility analysis, we present an example of viewshed generation

for a wind turbine in Figure 3.2. This is a wind facility of the Patterson Pass Wind in

Altamont, California, which became operational and began providing power in 1985, has

the turbine capacity of 65 kilowatts, the hub height of 24 meters, and rotor diameter of 16

meters. This is a fairly typical wind farm development in the sample. Panel A illustrates the

topographic features of the neighboring surface to the facility, which is represented by the

blue point of center. Located in an approximately 50,000-acre area that extends across the

northeastern hills of Alameda County and into a small portion of Contra Costa County to

the north, the facility finds the visibility sight to itself largely void by the mountain ridges

at high elevations in the north and remains visible from the south side only. This can be

seen in Panel B, where the dark shaded areas represent places from which the view to the

facility is obscured by geographical elevations, and the light yellow shading indicates lands

where the hub of turbine blades are visible. Empirical results presented in the next section

will rely on comparisons of outcomes occurring with the start of wind farm operation in the

areas where the turbines are visible, and those occurring where they are non-visible.

In Figure 3.3,we present a map that shows the aggregated viewsheds of all wind power

facilities in the US, highlighting the spatial distribution of visual impact of wind turbines.
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As of the end of 2020, wind power facilities have led to visual disamenity across more than

a quarter of the continental US, resulting in exposure for approximately 37.2 million homes,

which accounts for 30.6% of all households in the nation. A significant proportion of the

affected populations are under the effect of multiple or clustering wind power facilities, with

more than 75% of the affected lands exposed to the visibility of more than 10 wind turbines.

Notably, while only a small proportion of wind power infrastructure is located in urban

areas, many places experiencing visibility disamenity are concentrated in lowland cities of

the Midwest, the Southwest, Northeast, and Pacific West states. While only 0.02% of wind

turbines are installed in cities, 4.2% of the affected lands are within urban areas, and a vast

majority of affected populations are clustered in cities. Approximately 33.6 million urban

households, equivalent to 31.1% of all urban populations in the country, are exposed to the

visibility disamenity of wind turbines, and 10.1 million of them are subject to an adverse

effect of more than 10 facilities.

Estimation Model

Our aim in this analysis is to quantify the visibility disamenity of windmills once they are

operational. To accomplish this, we utilize a spatial difference-in-differences (DiD) approach,

which compares changes in housing prices in areas where the wind farm is visible after its

installation, to the average change in housing prices in non-visible areas. Additionally, we

explore the heterogeneity between urban and rural areas, in terms of visibility intensity, as

well as how the effect varies by distance from the turbine site. We will also investigate the

potential adaptation effect by examining the impact on property construction. Finally, we

discuss how wind turbine siting decisions may be influenced by visibility exposure across

space.
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Property Value Effect

We start by utilizing a standard difference-in-differences (DiD) framework to compare the

effects of wind farm development on the property value of homes in visible areas after the

wind turbines become operational, relative to places where the turbines are not visible. The

specification is as follows

log(Pit) = β1Treati · Postit + β2Treati + β3Postit + β4Xit + αny + αcm + ϵit

Here, each observation corresponds to a transaction for property i that occurred on date

t, with the outcome variable being the log of sales price Pit. Treati is an indicator that

denotes whether a property was assigned to the “treated” group, which refers to whether the

property is located in areas with any wind turbine in view either currently or in the future.

Note that the division between treatment and control group depends only on the location

of property i, rather than on the transaction date or wind turbine installation status. Postit

is the indicator that denotes whether a property was transacted after the wind turbine in

view became operational. Thus, the coefficient β1 for the interaction term between Treati

and Postit captures the effect of wind turbine installation on visible properties. To account

for potential changes in building characteristics that could affect property values, we also

include several property characteristics Xit that could vary over time, including the most

recent year the property was built or renovated, the number of bedrooms and bathrooms,

and the lot size in acres.

Crucially, there might exist time-varying location-specific factors that correlate with the

visual disamenity created by wind farms. For instance, the spatial distribution of pre-existing

windmills may influence the siting decisions for future wind turbines, potentially due to the

participation of local communities in policymaking. This correlation might also exist when

wind farms are not randomly assigned across space, or if areas close to wind farms where

turbines are visible may not be comparable to those further away in terms of other amenities

affecting housing prices. To address this, we assume that each community has its own

time trends, fully capturing any community-specific factors that impacted the siting of wind
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turbines. We include these trends in the analysis by incorporating fixed effects on census

tract by year level, denoted as αny for census tract n and year y. Moreover, to control for

the seasonal trends in the housing markets that might be specific to each county, we include

the fixed effects on the county by month level, denoted as αcm for county c and sales month

m. This way, we can ensure the DiD estimator of interest, β1, is not be contaminated by

correlation with the time effects driven by the endogenous selection of wind farm siting and

the general trends in property value over time.

We define the treatment group as properties located within a neighborhood range between

1km to 10km and visible from at least one wind turbine, either currently or in the future.

The lower bar of 1km is set to remove the confounding effect of noise, which decays quickly

and becomes inseparable from home noise beyond 1km from the turbine site. We set the

upper limit of visibility distance as 10 km to ensure a sufficient number of properties in the

analysis while balancing measurement precision and efficiency. The control properties are

defined as those located within a range of 1 km to 10 km from wind turbines but not visible

from any of them. We define the post-treatment indicator as transactions that occur after

the installation of the first wind turbine visible to the treatment properties. For control

properties, the post-treatment indicator is defined based on the installation timing of the

first wind turbine within their visibility range (1-10km).

As a final note, the effects of visibility disamenity are likely to decrease as we move further

away from the turbine site. Additionally, we hypothesize that the effects could vary between

urban and rural places, by the number of turbines in visibility, and by the characteristics

of the turbines in view. Therefore, we also utilize corresponding DiD and event study

frameworks to test these hypotheses. To evaluate the impact of visibility disamenity in

addition to the effect of proximity to wind farms, we will expand the DiD model to a triple

and quadruple difference framework, adding dimensions of spatial proximity to windmills

as well as the installation of wind turbines nearby. We define proximity as being within

a visibility range from wind facilities and accordingly enlarge the sample size to include

control properties within 50km from wind farms. Compared with the spatial DiD model in
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the baseline, the triple and quadruple specifications allow us to estimate the effect of wind

farm proximity to property value as well.

Housing Construction Effect

In addition to being capitalized in property value, it is likely that the visibility disamenity

of wind turbines may also affect the desirability of constructing new buildings and lead

to adaptation of local residents. To test this hypothesis, we employ an analogous spatial

difference-in-differences framework:

Yit = β1Treati · Postit + β2Treati + β3Postit + β4Xit + αny + αcm + ϵit

Here, the treatment indicators and control variables are the same as in the previous speci-

fication. The outcome variable of interest, denoted by Yit, measures housing construction,

and we develop three sets of measures to examine the effects. Firstly, we investigate whether

the visual disamenity resulting from wind turbine installation alters the willingness of local

residents to make constructions by examining measures on property renovation. Secondly,

we explore whether homeowners adapt to the impaired view by elevating their properties.

Finally, we investigate whether the unfavoured view from wind turbines affects homeowners’

willingness to expand their property into larger sizes.

Windmill Siting Effect

Public opposition from local residents can significantly impact wind farm projects, and it is

possible that the visual disamenity created by wind turbines, which is capitalized into the

housing market and affects new construction, may also influence the placement of wind power

generation. One potential transmission effect is that larger turbines might face more scrutiny

and be more difficult to get approved in areas that remain highly visible to local communities.

We aim to investigate this siting effect by examining how wind turbine characteristics, such as

size and location, impact the siting decision with respect to their visibility to local residents:

Siy = β1 log(Ci) + αc + αsy + ϵiy
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Here, each observation corresponds to the cross section of a wind turbine i, which was

installed in year y, and the outcome variable Siy refers to the visibility measure of the

wind turbine i. Our primary variable of interest is Ci, which represents the wind turbine

characteristics that may affect the siting decision by correlating with the visibility disamenity.

These characteristics might include the intensity of facilities on site, the size of the turbine,

as well as the height of the turbine. We also include a set of controls, such as census tract

fixed effects and state-specific time trends, to eliminate the time-invariant factors across

neighborhoods and the common trends within states that potentially determine the siting

decision of wind power development. Ultimately, this specification allows us to examine how

wind turbine characteristics affect the siting decision and whether larger turbines are more

difficult to site in areas that remain visible to local communities.

3.5 Results

Impact on Property Value

We begin by examining the impact of visual disamenity created by wind farm developments

on property values for local communities. We present the baseline results in Table 3.3, which

reports estimates for the spatial DiD model with sequentially added controls in Columns (1)-

(4). Column (1) suggests no significant difference in average property values between visible

and non-visible areas before and after the wind turbine installation, which persists after

adding property characteristics to control for changes in housing conditions, as shown in

Column (2). However, after accounting for fixed effects on the census tract by year level

and seasonal trends specific to each county, as shown in Columns (3) and (4), we find a

significant reduction in property values of 1.12% more in the visible areas than in the non-

visible areas after the wind turbine installation. This indicates detrimental impact of visual

disamenity created by wind farm developments on local communities as reflected in property

value. In contrast, properties in non-visible areas do not experience significant changes in
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their property value after wind farm development.

Additionally, we observe a significant gap of 1.01% in the average property value be-

tween visible and non-visible areas, regardless of the wind facility installation status. This

gap cannot be explained by differences in observed property characteristics or disparities in

neighborhood factors and housing market evolution. Our best explanation for this gap is

that wind turbines are sited in areas where their visual disamenity is more likely to affect

communities of lower housing values, indicating the potential issue of gentrification resulting

from windmill siting. More discussions on the determinants of windmill siting are discussed

in the following section.

We investigate how the impact of wind turbine visual disamenity varies with the intensity

of visibility using two measures: the number of wind turbines in view and the intensity

classified by whether there are more than 20 turbines in sight. The results are presented

in Columns (5)-(6) of Table 3.3. We find that the detrimental effect of visual disamenity

is largest for the first wind turbine in view. Exposure to the first visible wind turbine

significantly reduces the property value by 0.9%, while every additional 10 wind turbines in

view further reduces the property value by an additional 0.2%. Furthermore, wind farms

with more than 20 turbines reduce the property value in visible areas by an average of 2.48%,

while those with less than 20 turbines have a reduction effect of only 1.02% on visible areas.

These findings suggest that the intensity of wind facilities in view plays a significant role in

the impact magnitude of wind turbine visibility on property value.

It is possible that the capitalization effect of windmill visibility on urban and rural housing

markets differs due to pre-existing views of tall constructions in urban areas. To test this

hypothesis, we re-run the baseline regressions separately for urban and rural markets, and

the results are presented in Table 3.4. Comparing Columns (1) and (4), we find that wind

turbines have negligible effects on property values in non-visible areas for both urban and

rural properties. However, urban markets experience a significant reduction in property value

due to the visual disamenity of wind farm, while the effect on rural properties is insignificant.

We also observe a salient gentrification effect of wind turbine visibility on urban areas, with
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property values in visible areas being 0.8% lower than in non-visible areas regardless of

the wind turbine installation status. Furthermore, we investigate the effect by visibility

intensity on urban and rural housing markets separately. Columns (2) and (5) show that

the first visible wind turbine has a more pronounced effect on urban property values, while

treatment intensity in additions after the first turbine plays a more significant role in rural

areas. Exposure to an additional 10 wind turbines reduces urban property values by 0.76%

and rural property values by 1.67%. The difference in the response to treatment intensity is

also highlighted in the comparison of Columns (5) and (6).

Our analysis suggests that the effect of windmill visual disamenity on urban properties

exhibits decreasing returns to scale, likely due to the high density of tall constructions that

have already compromised their views. Conversely, the initial turbine in rural areas does not

have a noticeable effect due to the abundance of available views remaining. However, as the

density of visible turbines increases, rural areas experience a more substantial reduction in

property values, primarily because of the absence of tall buildings to obstruct sightlines and

the larger base of view resources available to be impacted by wind turbine installations.

The impact of visual disamenity created by wind turbines may vary depending on the

distance from the nearest visible turbine and the characteristics of the wind facility. To

test how the effect varies by distance, we re-run the baseline specification with indicators

of interest interacted with distance bin indicators of a 500-meter range. The coefficients by

distance, as presented in the top panel of Figure 2.4, suggest the effects of wind turbine

visibility decrease as distance increases, with the visual disamenity reducing property values

by up to 8% within a neighborhood range of 1.5 km. This impact is more significant in

urban areas and diminishes after 8 km, while it is negligible for rural properties after 4 km,

as indicated in the middle and bottom panels. Moreover, comparing the results within 1 km

and just beyond, we find that the effect of wind turbine visibility is smaller for communities

in narrow proximity, where more confounding factors such as noise and job opportunities

may be involved. This suggests that positive effects of wind farms on local communities,

such as job creation and business attraction, may perform more strongly in visible areas than
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non-visible areas, potentially offsetting some of the detrimental effects of increased noise and

visual disamenity..

We investigate the relationship between wind turbine characteristics and their impact on

visual disamenity, by re-running the baseline specification with characteristics of the nearest

visible facility interacted with the DiD interaction term of interest. The result, as presented

in Table C.1, show that only the installation year of the facility has a statistically significant

albeit economically negligible effect on the nearby property value. In contrast, factors such

as power generation capacity, height, and rotor size do not have a significant impact on the

housing market. This suggests that the characteristics of visible wind turbines do not play

a significant role in affecting property values.

To better understand the cross-sectional effects of wind farm developments on housing

markets, we modify the baseline DiD specification in various ways to account for different

dimensions. The modified specifications, as presented in Table 3.5, only account for the

spatial difference by visibility and by proximity (within 10 km) in Columns (1) and (2),

incorporate the installation timing of visible wind turbines (baseline DiD model) in Column

(3), add another dimension of proximity to expand the model to a triple difference in Column

(4), and further allow for effects of proximity to interact with installation in Column (5). The

results confirm the detrimental effect of visibility to wind turbines on property value found in

the baseline model. Moreover, we find that properties within 10 km from wind turbines are

1.12-1.7% lower in sales price than those 10-50 km away. Within 10 km, properties in visible

areas are 1.15-1.62% lower in value relative to non-visible areas, regardless of the installation

status of visible turbine. These gaps are not driven by differences in the housing condition

of properties located in different communities. Therefore, the cross-sectional difference in

property value between visible and non-visible areas as well as between proximate and distant

areas, indicates a potential selection effect that leads to the siting of wind turbines in places

with lower property values.

Lastly, to validate our primary findings, we conduct two robustness tests. The first test

involves using repeated sales only, allowing us to control for unobserved housing quality using
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indicators for each property. The results, as presented in Table C.2, suggest that the visual

disamenity effects are twice as large as those revealed in the baseline regressions. The second

test rules out the potential bias of tall buildings blocking the view of wind turbines. We use

data on average building height from USGS, as discussed in Appendix C.1, and categorize

places into four groups by their average building height and re-run our baseline regression for

each group. The results, as presented in Table C.3, confirm the detrimental effect of visual

exposure to wind turbines on property value, particularly in properties located in urban

areas with average building heights below 3 stories, which becomes insignificant in places

with primarily tall buildings. Taken together, these findings validate our primary results and

support the conclusion that visual disamenity created by wind turbines significantly reduces

property value.

Impact on Housing Construction

The preceding analysis suggests that wind farm developments have a negative impact on

nearby communities due to impaired views, resulting in noticeable capitalization effects in

housing markets. The reduction in property value could potentially affect the willingness of

local residents to invest in property renovation and improvement, as the decreased property

values may not provide a good return on investment. Moreover, the visual disamenity

may make the area less attractive to live in, leading to a reduction in housing demand

and further decreasing the potential return on investment for homeowners. Ultimately, the

visual disamenity of wind turbines can have a cascading effect on the housing market and

willingness of local residents for investment on property improvement. Therefore, this section

aims to investigate the impact of wind turbine installations on housing construction through

the visibility channel, which can provide insights into the potential adaptation effects of wind

turbine developments on local residents.

We investigate the impact of wind turbine visibility on property construction by creating

three sets of measures from the transaction data. First, we assess the desirability of renova-
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tion by utilizing an indicator for renovation and the most recent year of renovation. Second,

we use the number of stories to measure property elevation. Lastly, we measure property

expansion by the number of units on the parcel, number of rooms, and number of bedrooms

within the property.

The results, presented in Table 3.6, show the impact of wind turbine visibility on building

construction. In Panel A, we find that exposure to wind turbine visibility significantly

increases building height, with an average building in visible areas seeing its height increase

by 0.055 stories, equivalent to 3% of the building height. This suggests that local residents

adapt to the impaired view due to wind farm developments by making elevations to their

property. The elevation efforts involve expansions of the building size in terms of the number

of rooms, without a significant horizontal effect to set up more construction units within their

parcel.

Comparing the cross-sectional differences between properties in visible and non-visible

areas to wind farms, we find that properties in visible areas are more likely to experience

property renovation and the renovations tend to happen earlier than their counterparts. This

is possibly driven by the adaptation and precaution of local residents in making elevations

to their properties that have already been affected or are soon to be affected by the visible

disamenity created by wind turbines.

Panel B and C present the differential effects on housing construction for urban and rural

areas. We find that urban homeowners respond to the visual disamenity of wind turbines with

a higher likelihood of renovation following the turbine installation. Specifically, we observe a

0.2% increase in the probability of renovation compared to the pre-installation level of 10%,

which primarily involves improving property elevations to adapt to the impaired views and

expanding housing size due to higher stories. Additionally, we find that urban residents in

non-visible areas respond to the wind turbine installation with lower chances of renovation,

which may be due to new constructions without a need for renovation. We also observe that

properties in non-visible areas experience lower height and larger size after wind turbine

installation, which may be due to the construction of lower buildings with fewer rooms.
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These findings suggest differential responses to wind farm developments in the renovation

efforts of properties located in visible and non-visible areas.

Lastly, as indicated in Panel C, the installation of new wind turbines in rural areas results

in a significant reduction in the likelihood of home renovation for rural homeowners by 0.74%.

Rural properties exposed to the visual disamenity experience a reduction in property size in

terms of the number of units on the parcel after the turbine installation, with an average

reduction of 0.057 units or a decrease of 4.4% compared to those in non-visible areas. The

reduced renovation and property size could be due to the decreased desirability of renovation

as a result of the worsened visual amenity caused by the wind turbines. Additionally, we

find that properties in non-visible areas have a higher renovation rate after the turbine

installation, leading to an increase in the average number of units per parcel. The differential

responses in adaptation efforts indicates a migration of renovation investment from visible

areas to their neighboring areas that are not affected by the visual disamenity after wind

farm developments.

Impact on Windmill Siting

The previous analyses have demonstrated that the presence of visible wind turbines can

lead to a decrease in property values for homes located in close proximity. This negative

effect can result in adaptation and precaution behaviors of local communities, such as making

elevations to their affected homes or relocating renovations to non-visible places. As a result,

local communities may express opposition to wind farm development in areas that lead to

visual disamenity for their residents, especially in cases where the wind farm installation is

intensive with a significant number of large and tall turbines.

In this section, we aim to examine how the characteristics of wind turbines can affect

the siting decision of wind farms and the creation of visual disamenity to local communities.

To accomplish this, we employ two-way-fixed-effect regressions on the cross section of wind

turbine location, testing the dependency of windmill siting in terms of visual disamenity
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created on characteristics of wind facilities. We construct two measures of siting decision:

the indicator for whether the wind turbine is located in places that are visible to local

communities, and the indicator for whether the location has heavily impaired views due to

windmill visibility. The first measure helps test the hypothesis that local opposition will

lead wind facilities with giant size to locate in non-visible places to local communities. The

second measure will address the question of whether, if a location is already exposed to

significant disamenity resulting from wind farm visibility, local opposition will direct large

wind facilities to site away from these places with heavily damaged views.

We analyze three sets of windmill characteristics: 1) the intensity of facilities on site,

measured by the number of turbines within the farm and their cumulative capacity of power

generation; 2) the turbine height, measured by the height from the turbine hub as well as the

total height from the tip; and 3) the size of the turbine blade, measured by the rotor diameter

and the power generation capacity of the turbine. The results are presented in Table 3.7. As

shown in Panel A, we find that all of these turbine characteristics have a both statistically

and economically significant negative effect on the likelihood of the turbine being sited in

places visible to local residents. Specifically, we observe an 87% reduction in the likelihood

of turbine siting in visible locations when the associated wind farm increases its turbine

number by 10%, a 37.8% reduction when the cumulative capacity of power generation of the

farm increases by 10%, a 40.7% reduction when the total height of the turbine increases by

10%, a 34.6% reduction when the rotor size increases by 10%, and a 26.6% reduction when

the turbine capacity increases by 10%.

To ensure that these effects are not driven by selection of wind facilities into neighbor-

hoods of specific factors that accidentally correlate with visibility exposure, we incorporate

a full set of indicators at the census tract by year level. Therefore, these findings suggest

that wind turbines are sited in places that are less likely to be visible to local residents

within neighborhoods when the wind farm is intensive in power generation and the turbine is

tall and large. This confirms the hypothesis that more intensive wind power developments

are more likely to be sited in places from which the view is largely obscured by the large
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geographical product on the surface, leading to less exposure of visual disamenity to local

communities.

Panel B of Table 3.7 provides additional insight into the effect of turbine characteristics

on siting decisions of wind farms in areas with heavily impaired views. The dependent

variable is an indicator for whether the siting location has been visually affected by at

least 50 turbines. Our analysis shows that wind farms with larger size and higher capacity

are significantly less likely to be located in these heavily impaired places. Specifically, the

likelihood of wind turbines being sited in places exposed to more than 50 turbines decreases

by 47% if the number of wind turbines on site increases by 10%, by 30% if the turbine

height increases by 10%, by 26.6% if the turbine rotor size increases by 10%, and by 13.7%

if the power generation capacity grows by 10%. These findings suggest that the decision

to site a wind facility in areas with heavily impaired views relies on the characteristics of

the turbine, including wind farm intensity, height, and size. More intensive wind farms

and larger turbines are less likely to be sited into places where the views have already been

heavily impacted by wind power facilities.

In summary, our analysis indicates that the visual disamenity created by existing wind-

mills can affect the siting decisions of future wind farm development. Our findings suggest

that local opposition is likely to direct the location of large and more intensive wind turbines

away from places that are visible to local residents and from places with heavily impaired

views due to existing wind facilities.

3.6 Conclusion

This paper provides a national-level causal evaluation of the externality costs of wind power

generation through the visibility impacts on property value in the United States. We take

advantage of the densely populated geographic setting across the nation, with rich geological

features such as undulating terrain and prominent elevations on the surface, and numerous

wind farms developed within sight of residential properties. To address computational dif-
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ficulties, we use advanced geospatial tools from geomorphometry and computer science to

construct a comprehensive database on the wind turbine visibility throughout the nation.

Our analysis relies on the universe of housing transactions spanning over a 20-year period

across the country and employs a spatial difference-in-difference design based on a quasi-

experimental setting that compares the response to wind power installation in areas visible

to the turbines with the change in areas not visible to the same facility.

The findings indicate that wind farm developments have a detrimental effect on property

value in locations where the turbines are visible, which is primarily driven by impacts on

urban areas. House prices decrease by up to 8% after the construction of a wind turbine in

sight of view within close neighborhood range from the property, with the effect decaying

as the distance increases. The average effect falls to a 1% reduction for housing within 10

km of visible wind turbines. We also investigate the heterogeneity of the effects and find

that the visibility impact on property value increases as the number of visible wind turbines

intensifies.

The reduction in property value resulting from wind turbine installations raises questions

about the potential adaptations and precautions that local residents may take and how

they might affect siting decisions for future wind farms. Our analysis reveals that urban

residents adapt to the visual disamenity of wind turbines by making renovations to improve

the elevation of their properties, while rural residents make new constructions with larger

sizes in non-visible places. Furthermore, our analysis of wind turbine siting indicates that

more intensive wind farms as well as larger and taller turbines are less likely to be placed

in areas that are highly visible to local residents. In sum, this paper highlights the social

cost of wind power developments as they are capitalized in the housing markets, as well as

the responses in adaptation behaviors of local residents and their public objections that can

alter the siting decisions of future wind power developments.

This paper provides a crucial message on the equity implications of wind power genera-

tion. Although wind power provides environmental benefits, the negative externality costs

associated with it disproportionately affect local residents who directly experience visual
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disamenity. While the broader populations benefit from the increased access to renewable

energy, this paper emphasizes the need to address the social cost for those impacted by

externalities associated with its generation. Additionally, low-income communities may be

disproportionately affected by these social costs, as they may lack the resources to mitigate

or adapt to the negative effects. Therefore, this paper highlights a need to consider eq-

uity in renewable energy development and address potential negative impacts on vulnerable

communities.
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Figure 3.1: Facts of Wind Farms across the United States

Panel A: Spatial Distribution of Wind Turbines

Panel B: Development of Wind Power Generation

Source: United States Wind Turbine Database (2022 Version) of USGS.
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Figure 3.2: Surface and Viewshed of Patterson Pass Wind in Altamont of California

Panel A: Landscape Topology Panel B: Viewsheds

Note: These figures depict the landscape topology and viewshed of a wind turbine located in the
Patterson Pass Wind facility in Altamont, California. This wind facility became operational since
1985 and and has the turbine capacity of 65 kilowatts, the hub height of 24 meters, and rotor
diameter of 16 meters. The blue point located at the center of both figures represents the wind
turbine. In Panel B, light-colored areas indicate locations from which the turbine is visible, while
dark-colored areas indicate areas where the turbine is not visible.
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Figure 3.3: Number of Wind Turbines in Visibility

Note: This figure depicts the number of wind turbines in visibility for urban and rural areas across
the United States. Each point represents a 10km by 10km grid.
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Figure 3.4: Visibility Effect on Log(Property Value) by Distance

Note: The three panels display the coefficients from the baseline specification of spatial DiD model,
where the indicator of interest (post-treatment interacted with being treated) are interacted with
the indicators of distance bin of a 500-meter range range defined by the distance from the nearest
wind turbine in view. The top panel accounts for all transactions, the middle panel accounts for
urban places only, and the bottom panel considers rural transactions only. Shades represent 95%
confidence intervals constructed using standard errors clustered twoway at the census tract and
year level.
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Table 3.1.
Summary Statistics of Wind Turbines.

All (N = 68649) Urban (N=165) Rural (N=68484)

Mean SD Max Min Mean SD Mean SD

Operational Year 2011.15 8.01 2021 1981 2011.12 4.1 2011.15 8.01
# Turbines 105.41 95.41 731 1 3.82 7.62 105.66 95.4
Cum. Capacity (mw) 167.41 103.3 525.02 0.05 6.6 16.8 167.76 103.14
Capacity (kw) 1926.08 711.38 6000 50 1111.09 958.78 1927.86 709.73
Hub Height (m) 80.26 12.47 131 22.8 61.94 22.26 80.3 12.41
Rotor Diameter (m) 94.41 23.86 155 13.4 62.66 32.57 94.47 23.8
Rotor Swept Area (m2) 7447.13 3289.6 18869.2 141.03 3910.05 3245.54 7454.25 3285.88
Total Height (m) 127.63 22.95 199.6 30.4 93.62 37.98 127.7 22.86
Retrofit = 1 0.09 0.28 1 0 0 0 0.09 0.28

Source: United States Wind Turbine Database (2022 Version) of USGS.
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Table 3.2.
Summary Statistics of Housing Transactions.

All
(N=54,415,117)

Visible
(N=9,282,588)

Non-Visible
(N=45,132,529)

Mean SD Mean SD Mean SD

Sales Year 2008.2 6.61 2012.11 5.43 2007.4 6.54
Sales Price ($) 234484 256268 235914 249986 234190 257540
Lot Size (sq ft) 37971.13 173684.4 28147.72 140674.5 40122.01 180035
Year Built 1972.57 30.79 1973.57 31.6 1972.36 30.61
Number of Rooms 4.73 3.68 4.96 3.77 4.68 3.65
Number of Bedrooms 2.92 1.33 3 1.27 2.91 1.34
Number of Bathrooms 1.85 1.04 1.86 1.03 1.85 1.05
Number of Visible Turbines 8.61 56.14 50.45 127.93 0 0
Dist Nearest Visible Turbine (m) 16623 9703 16623 9703
Number of Turbines <50km 66.27 215.68 172.89 371.83 44.34 157.57
Dist to Nearest Turbine (m) 24725 12614 15276 8835 28648 11845

Source: Zillow’s ZTRAX database (2021 version).
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Table 3.3.
Baseline Regression Results of Windmill Visibility on Property Value

Average Effect Effect by Intensity

(1) (2) (3) (4) (5) (6)

Treated × Post-Treatment 0.00454 -0.0147 -0.0112** -0.0112** -0.00901**
(0.0338) (0.0382) (0.00433) (0.00431) (0.00421)

× # Turbines (×10) -0.00209***
(0.000512)

× # Turbines <20 -0.0102**
(0.00422)

× # Turbines ≥ 20 -0.0248**
(0.00958)

Post-Treatment 0.227*** 0.191** 0.00883 0.00896 0.0102* 0.00979*
(0.0726) (0.0949) (0.00595) (0.00589) -0.00575 (0.00576)

Treated -0.23*** -0.206*** -0.0101** -0.0101** -0.0101** -0.0101**
(0.0303) (0.0251) (0.00439) (0.00439) (0.00439) (0.00439)

N 9885084 5705597 5705597 5705597 5705597 5705597
Adj. R2 0.029 0.089 0.515 0.516 0.516 0.516
Property Char. X X X X X
FE: Census Tract × Year X X X X
FE: County × Sales Month X X X
Std. Errors Clustered at Census Tract and Year Level

Note Estimation results for the property value on the effect of wind turbine visibility. Dependent variable
is the log of sales price. Columns (1)-(6) represent different specifications of the model. Column (1) applies
the standard spatial DiD specification without further controls. Column (2) adds controls on property
characteristics. Column (3) further includes the fixed effects on census tract by year level. Column (4) adds
the fixed effects on county by sales month level on top of (3). Columns (5) and (6) further account for the
differential effects by treatment intensity, with treatment intensity measured by the number of turbines in
view (divided by 10) in Column (5), treatment intensity classified into two categories by whether there are
less or more than 20 turbines in view in Column (6). Standard errors are clustered twoway at the census
tract and sales year level. * p<0.1, ** p<0.05, *** p<0.01.
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Table 3.4.
Effects of Windmill Visibility on Property Value for Urban and Rural Places

Urban Rural

(1) (2) (3) (4) (5) (6)

Treated × Post-Treatment -0.00937** -0.0079* -0.0202 -0.0159
(0.00454) (0.00443) (0.0156) (0.0157)

× # Turbines (×10) -0.0076*** -0.0167**
(0.000575) (0.000665)

× # Turbines <20 -0.00875* -0.018
(0.00446) (0.0157)

× # Turbines ≥ 20 -0.0212* -0.0274
(0.0122) (0.0182)

Post-Treatment 0.00709 0.00795 0.00769 0.00653 0.00801 0.00723
(0.00572) (0.0056) (0.00559) (0.017) (0.017) (0.017)

Treated -0.00895* -0.00895* -0.00895* -0.0204 -0.0205 -0.0204
(0.00459) (0.00459) (0.00459) (0.0159) (0.0159) (0.0159)

N 5290690 5290690 5290690 414907 414907 414907
Adj. R2 0.524 0.524 0.524 0.409 0.409 0.409
Property Char. X X X X X X
FE: Census Tract × Year X X X X X X
FE: County × Sales Month X X X X X X
Std. Errors Clustered at Census Tract and Year Level

Note Estimation results for the property value on the effect of wind turbine visibility, for urban and
rural places separately. Dependent variable is the log of sales price. Columns (1)-(3) represent different
specifications of the model for urban places. Column (1) applies the standard spatial DiD specification.
Columns (2) and (3) further account for the differential effects by treatment intensity, with treatment
intensity measured by the number of turbines in view (divided by 10) in Column (2), treatment intensity
classified into two categories by whether there are less or more than 20 turbines in view in Column (3).
Columns (4)-(6) analogously present different specifications for rural places. Each specification controls
for a full set of property characteristics and fixed effects of the census tract by sales year level and the
county by sales month level. Standard errors are clustered twoway at the census tract and sales year level.
* p<0.1, ** p<0.05, *** p<0.01.
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Table 3.5.
Single, Double, Triple and Quadruple Differences Specifications

Single Diff DiD Tri. Diff Quad. Diff

(1) 10km (2) 50km (3) 10km (4) 50km (5) 50km

Post-Treatment (Visibility) 0.00896 2.84e-05 0.00313
(0.00589) (0.00568) (0.00646)

Treated (Visibility) -0.0162*** -0.0162*** -0.0101** -0.0124*** -0.0115***
(0.00397) (0.00394) (0.00439) (0.00411) (0.00424)

Proximate -0.0116 -0.0132 -0.017*
(0.00761) (0.00807) (0.00868)

Post-Proximity 0.0016
(0.0172)

Proximate × Post-Proximity 0.0107
(0.0111)

× Post-Treatment 0.00207 -0.00353
(0.00574) (0.00759)

× Treated × Post-Treatment -0.0112** -0.00827* -0.00899**
(0.00431) (0.00428) (0.00429)

N 5705597 30398120 5705597 30398120 30398120
Adj. R2 0.516 0.523 0.516 0.523 0.523
FE: Census Tract × Sales Year X X X X X
FE: County × Sales Month X X X X X
Std. Errors Clustered at Census Tract and Year Level

Note Estimation results for the property value on the effect of wind turbine visibility, using different
specifications. Dependent variable is the log of sales price. Column (1) uses all transactions within 10
km from wind farms and applies a single difference framework that compares between visible and non
visible areas. Column (2) uses all transactions within 50 km from wind farms and incorporates another
cross-sectional difference by proximity (within 10 km). Column (3) applies our baseline specification of
spatial DiD model on all transactions within 10 km from windmills. Column (4) expands the sample
size to all transactions within 50 km and adds an interaction term with the indicator for proximity.
Column (5) further incorporates another interaction dimension with the indicator for the transaction
after the wind turbine installation in proximity. Each specification controls for a full set of property
characteristics and fixed effects of the census tract by sales year level and the county by sales month
level. Standard errors are clustered twoway at the census tract and year level. * p<0.1, ** p<0.05, ***
p<0.01.
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Table 3.6.
Regression Results of Windmill Visibility on Housing Construction

Renovation Elevation Expansion

Reno = 1 Reno Year #Stories #Units #Rooms #Bedrooms
Mean=0.1 Mean=1992 Mean=1.8 Mean=1.3 Mean=4.7 Mean=2.9

(1) (2) (3) (4) (5) (6)

Panel A: All Transactions (N = 9885084)
Treated × Post-Treat 0.00118 0.167 0.0553* -0.091 0.0487** -0.00864

(0.00114) (0.147) (0.03) (0.128) (0.0203) (0.00829)
Post-Treatment -0.00203 -0.183 -0.0479* 0.0601 -0.0343 0.00385

(0.00124) (0.22) (0.0263) (0.124) (0.0246) (0.00971)
Treated 0.00371*** -1.1*** -0.0571 -0.0755 -0.0235 0.0087

(0.0012) (0.226) (0.0359) (0.0982) (0.0148) (0.00857)
Adj. R2 0.670 0.701 0.798 0.342 0.804 0.549

Panel B: Urban Transactions (N = 8930417)
Treated × Post-Treat 0.00209* 0.126 0.0574* -0.1 0.0428** -0.0127

(0.00122) (0.148) (0.0322) (0.138) (0.0206) (0.00872)
Post-Treatment -0.00312** -0.164 -0.0506* 0.0668 -0.0441* 0.00387

(0.00138) (0.224) (0.0276) (0.134) (0.0257) (0.0106)
Treated 0.00345*** -1.15*** -0.0618 -0.0829 -0.0184 0.0104

(0.00128) (0.233) (0.0383) (0.103) (0.0147) (0.00883)
Adj. R2 0.690 0.718 0.799 0.343 0.814 0.555

Panel C: Rural Transactions (N = 954667)
Treated × Post-Treat -0.00741*** -0.0511 0.0108 -0.0573*** 0.0175 0.0306*

(0.00252) (0.6) (0.00826) (0.0206) (0.0428) (0.0175)
Post-Treatment 0.00713** 0.756 -0.00729 0.0697** 0.0484 -0.0235

(0.00302) (0.744) (0.00885) (0.0261) (0.0448) (0.0197)
Treated 0.00859*** 0.135 -0.00817 0.0339** -0.0387 -0.0128

(0.00262) (0.624) (0.00762) (0.0141) (0.0432) (0.0186)
Adj. R2 0.387 0.407 0.293 0.579 0.678 0.491

Note Estimation results for the property characteristics on the effect of wind turbine visibility. Columns
(1)-(6) represent different dependent variables: (1) on the indicator of being renovated, (2) on the year
of most recent renovation, (3) on the number of stories, (4) on the number of units of the parcel, (5)
on the number of rooms, and (6) on the number of bedrooms. Each specification applies the standard
spatial DiD specification with controls on the fixed effects of the census tract level and the county by
sales year level. Standard errors are clustered twoway at the census tract and sales year level. * p<0.1,
** p<0.05, *** p<0.01.
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Table 3.7.
Regression Results for Windmill Siting

Wind Farm Intensity Turbine Height Turbine Size

# Turbines Cum.Capacity Hub Height Total Height Rotor Diameter Capacity
(1) (2) (3) (4) (5) (6)

Panel A: Dependent Variable = I(Visible), Logit Model.
log(C) -8.7*** -3.78*** -4.02*** -4.07*** -3.46*** -2.66***

(0.00499) (0.00302) (1.14) (0.9) (0.797) (0.72)
N 69158 65663 63961 63961 64205 64662
Pseudo R2 0.951 0.947 0.945 0.945 0.945 0.947

Panel B: Dependent Variable = I(# Visible Turbines > 50), Logit Model.
log(C) -4.7*** -4.35 -3.09** -2.98*** -2.66*** -1.37***

(1.19) (2.98) (1.2) (1.09) (0.897) (0.419)
N 69158 65663 63961 63961 64205 64662
Pseudo R2 0.943 0.946 0.944 0.944 0.944 0.945

FE: Census Tract × Installation Year
Std. Errors Clustered at Census Tract and Installation Year Level

Note: Estimation results for the dependency of siting in locations affected by windmill visual disamenity
on the characteristics of turbine. Each observation is a wind turbine. In Panel A, the dependent variable is
the indicator for whether the turbine is located in places that remain visible to local residents. In panel B,
the dependent variable is the indicator for whether the number of windmills in view from the turbine site
is above 50. Columns (1)-(6) utilize different turbine characteristics as independent variable: (1) uses the
number of turbines in the wind farm, (2) uses the cumulative capacity of all turbines in the farm, (3) uses
the height from the hub of the turbine, (4) uses the total height of the turbine, (5) uses the rotor diameter,
and (6) uses the capacity of the turbine. The turbine characteristics in each specification are transformed
by a log function. Each specification utilizes a logistic linkage and controls for the fixed effects of the census
tract by installation year level. Standard errors are clustered twoway at the census tract and installation
year level. * p<0.1, ** p<0.05, *** p<0.01.
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Appendix A

Appendix for Chapter 1

A.1 Mixed Poisson Model Estimation and Fit

The BLUP log-likelihood function is l = l1 + l2,

l1 =
∑

t

[
−(λ1

t + λ2
t ) + Mt log(λ1

t + λ2
t ) − log(Mt! )

]
l2 = −1

2

[
T log(2πσ2

1) +
∑

t u1
t

′u1
t

σ2
1

+ T log(2πσ2
2) +

∑
t u2

t
′u2

t

σ2
2

]

where σ1 and σ2 are the standard errors of random terms for travelers and evacuees respec-

tively.

The EM algorithm is based on maximizing the expectation of the log-likelihood condi-

tionally on a parameter vector, and updating the parameter space iteratively, so a New-

ton–Raphson approach is considered. The EM algorithm consists of an expectation step

(E-step) and a maximization step (M-step). The E-step involves evaluating the expected

complete log-likelihood, that is equivalent to compute the conditional probability given the

current parameter vector. In the M-step, given a model parameterization and conditional

probability, the expected complete log-likelihood is maximized with respect to the parameter

space.

In this context, log-likelihood function l is parameterized by Φ = (γ1, γ2, σ2
1, σ2

2). Given
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an initialization of Φ(r) = Φ0 at iteration r, the iterative equation is

Φ(r+1) = Φ(r) + H−1(Φ(r)) · ∇(Φ(r))

where ∇(·) and H(·) respectively denote the gradient vector and Hessian matrix of the log-

likelihood function l with respect to Φ. The EM iterations are repeated until convergence. In

practice, the iteration is considered as converged if the increase of the log-likelihood between

two successive iterations is less than a small tolerance level.

Figure A.1 plots the model fit relative to the data. I find the model predictions can fairly

match with the observed aggregate customer arrival in the research period, and can reflect

the seasonality and the trend of demand variations over time.

A.2 Counterfactual Analysis and Welfare Calculation

No Altruism

Under this scenario, I recompute the rental price p̂jnt and supply decision ĵjnt for all residents

and all evacuation days when βS
i (j ·I{Et=1}) = 0, by maximizing the expected utility of home-

sharing:

max
j,pjnt

ûS
jnt(pjnt) = uS

jnt(pjnt) · E
(

Djnt

S(pjnt)

)
, s.t. Djnt = DT (pjnt) + DE(pjnt)

where DT (pjnt) and DE(pjnt) respectively denote the Airbnb demand of travelers and evac-

uees if the prevailing market price is pjnt. Note that there could exist excessive supply, so

instead of setting the supply equals demand I compute the expected utility by multiplying

the utility of home-sharing with the occupancy rate, measured by the share of demand to

supply.

As the counterfactual price would increase if there were no altruism, both altruistic and

non-altruistic hosts lose from altruistic sharing due to price suppression. I define the loss

of generosity as the welfare difference between the status quo and the No Altruism world.
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With logit errors, the compensating variation for host i is

CVS
int = 1

αS
i

[
ln(1 + uS

intj(pjnt)) − ln(1 + ûS
intj(p̂jnt))

]
where αS

i is the price coefficient of the utility estimate in the supply model.

It is apparent that evacuees can gain from altruistic sharing. As hosts cannot differentiate

by customer types, regular travelers are also able to enjoy the discounted price offered by

altruistic hosts. Such free-riding creates a welfare gains for travelers as well, following

CVD
int = 1

αD
i

ln
∑

j,n∈Snj

exp(uD
ntj(pijnt)) − ln

∑
j,n∈Ŝnj

exp(uD
injt(p̂injt))


where αD

i is the price coefficient of the utility estimate in the demand model.

No Airbnb

With logit errors, the welfare gain from Airbnb hosting for resident i simply follows:

CVS
int = 1

αS
i

ln(1 + uS
intj(pjnt))

where αS
i is the price coefficient of the utility estimate in the supply model.

If the option to reside on Airbnb were no longer available, travelers could only choose

between hotels and the outside choice of not traveling. Because a typical hotel room offers

a private space with one bedroom, I assume the utility of hotel staying is the same as the

Airbnb staying of a compact room in the same location at the hotel price, uD
int(Hotel) =

uD
int(j = Compact, pHotel

nt ). Similarly, evacuees could only choose between hotels and public

shelters (outside option). Therefore, the welfare gains from Airbnb option for travelers and

evacuees follow:

CVD
int = 1

αT
i

ln
∑

j,n∈Snj

exp(uD
intj(pjnt)) − ln

(
1 +

∑
n∈N

exp(uD
int(Hotel))

)
where αD

i is the price coefficient of the utility estimate in the demand model.
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No Free-Riding

The separate pricing levels for evacuees and travelers follow

i ∈ Non-Alt: max
j,pjnt

ûS
NA,tntj(pjnt) =

∫
i
uS

intj(pjnt)dF (i ∈ Non-Alt) · E
(

DT
jnt(pjnt)

S(NA, pjnt)

)

i ∈ Alt: max
j,pjnt

ûS
A,tntj(pjnt) =

∫
i
uS

intj(pjnt)dF (i ∈ Alt) · E
(

DE
jnt(pjnt)

S(A, pjnt)

)
where F (·) denotes the demographic distribution a subset of hosts, S(NA, pjnt) and S(A, pjnt)

denote the home-sharing supply of altruistic hosts and non-altruistic hosts respectively. I

define a host as altruistic if she experiences additional utility gains for making home-sharing

on disaster moments, βS
i (j · I{Et=1}) < 0. Moreover, for non-altruistic hosts, I assume

βS
Non−Alt(j · I{Et=1}) = 0. As non-altruistic hosts serve the same set of customers with and

without disaster, their pricing problem should also keep consistent over time.

As a direct result, regular travelers would not gain or loss from altruistic sharing, as

they are not allowed to enjoy the discounted price offered by generous families. Similarly,

non-altruistic hosts would not suffer from the loss of generosity, as their pricing decision is

independent from the generous hosts’. For altruistic hosts, their welfare loss from generosity

is measured by the utility difference between this world and the scenario without altruistic

sharing:

CVS,Alt
int = 1

αS
i

[
ln(1 + uS

intj(pjnt)) − ln(1 + ûS
intj(p̂Alt,jnt))

]
It is worth-noting that the model tends to underestimate the true welfare loss from

generosity under perfect matching. Knowing that regular travelers are not able to free ride,

altruistic hosts might become more willing to perform generously by setting a even lower

price or making even more supplies to disaster refugees. Hosts who used to perform non-

altruistically under the status quo may want to switch to altruistic sharing as well. Therefore,

the model estimates suggest a lower bar for the true loss from generosity for both altruistic

and non-altruistic families. Similarly, evacuees would benefit from the altruistic sharing in

presence of perfect matching, and the model tends to underestimate their true gains.
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Welfare Calculation of the Displacement Costs

The absolute value of the welfare loss from displacements for evacuee i follows

1
αE

i

ln
∑

j,n∈Snj

exp(uE
intj(pjnt)) + αE

i pjint − ln
(

1 +
∑
n∈N

exp(uE
int(Hoteln))

)
where uE

int() represents the utility for evacuee i on Airbnb choice j, pjint represents the

price charged by her actual choice ji, uE
int(Hoteln) represents the utility of hotel choice in

neighborhood n, and αE
i represents the price coefficients in the demand model for evacuee i.

A.3 Supplementary Results



FIGURES 146

Figure A.1: Customer Arrival: Model Prediction and Data Fit

Notes: The line shows the number of aggregate number of Airbnb customers at the daily level.
The blue and red bars respectively show the model predictions for the arrival of regular travelers
and evacuees. In the bottom bar, red color suggests the days with evacuation order, and blue
color suggests the days without evacuation order. In the top bar, orange color suggests the days
with smoke exposure, while blue color suggests the days without.
Source: AirDNA and model estimates.
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Figure A.2: Airbnb Listings in Los Angeles

Notes: The figure plots the location of each listing that has ever been active on Airbnb in Los
Angeles, during 2014/8-2016/10.
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Figure A.3: Dynamic Patterns of Airbnb Market

Notes: The figure plots the dynamics of the daily average price (top), the daily number of openings
(middle), and the daily number of reservations (bottom) of all listings in the Los Angeles Airbnb
market over the research period. The type is reclassified as to combine "private room" and "single
room" as a single category "shared place".
Source: AirDNA.
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Figure A.4: Variations across Airbnb Listings

Notes: The figure plots the distribution in the number of days of booking ahead of checking-in
(top panel), and of the daily price rate (bottom panel), of all listings in the Los Angeles Airbnb
market.
Source: AirDNA.
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Figure A.5: Wildfire and Induced Smoke

Notes: The graph shows all fires and their associated smoke plumes within 300km from Los
Angeles in the research period. Red polygons represent fire extent, brown polygons represent
smoke plumes.
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Figure A.6: Evacuation Warnings for the Soberanes Fire, 2016-07-31

Notes: This figure shows the evacuation warnings for the Soberanes fire (Monterey county) for
the portions of Cachagua & Tassajar, published by Cal Fire on July 31, 2016.
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Figure A.7: Placebo Tests: Event Study Based on Public Holiday

Panel A: Extensive Margin of Supply - Log of the Number of Hosts

Panel B: Extensive Margin of Supply - Probability for Opening

Notes: Top panels show event study regression coefficient on the log of the number of hosts at the
PUMA level, controlling for PUMA fixed effects, year-month fixed effects, day-of-week fixed effects
and holiday fixed effects. Bottom panels run a event study logit regression on the opening dummy
at the property level, controlling for listing type fixed effects, zip code fixed effects, year-month
fixed effects, day-of-week fixed effects and holiday fixed effects, and the coefficients reported are
the marginal effects at the mean (MEM). Both panels use a 14-days window around the public
holiday (day 0). Bars show 95% confidence intervals constructed using standard errors clustered
at the zip code level.
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Figure A.8: Patterns of Airbnb Pricing

Panel A: Price Dynamics of 20 Randomly Drawn Listings

Panel B: Frequency of Price Adjustment

Notes: The top panel displays the price dynamics of 20 randomly drawn listings from the sample
over the research period. The bottom panel presents the distribution of the number of price
adjustments within a month for all listings.
Source: AirDNA.
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Figure A.9: Average Daily Rate of Airbnb Listings on Evacuation Days

Notes: The average price of staying one night on Airbnb of days under evacuation, at the level of
Public Use Microdata Area. Samples are all properties that are made available for occupancy at
a price below $1000 per day.
Source: AirDNA.
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Figure A.11: Percentage Change in Airbnb Supply without Altruistic Sharing

Notes: The percentage change in the number of Airbnb openings if the utility gains from altruistic
sharing are removed, at the level of Public Use Microdata Area. Samples are limited to the days
with an evacuation order in place.
Source: model estimate.
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Figure A.12: Counterfactual Price and Supply by Housing Type

Panel A: Percentage Change in Counterfactual Price

Panel B: Percentage Change in Counterfactual Supply

Notes: The figures present the counterfactual change in market outcomes if the altruistic sharing
is removed. Panel A presents the percentage change in the price of entire sharing and partial
sharing. Panel B presents the percentage change in the Airbnb supply of entire sharing and
partial sharing.
Source: model predictions.
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Figure A.13: Distribution of Displacement Loss

Notes: The figure displays the distribution of the displacement loss across evacuees, truncated at
$1500 per day.
Source: model estimate.
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Figure A.14: Welfare Gains of Evacuees from Altruistic Sharing

Notes: The figure presents the distribution of evacuees’ welfare gains from altruistic sharing. Top
panel displays the average distribution for all evacuees. The next three panels respective display
the distribution for evacuees who have chosen Upscale house, Midscale house, and shared house,
respectively.
Source: model predictions.
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Figure A.15: Welfare Gains of Travelers from Altruistic Sharing

Notes: The figure presents the distribution of travelers’ welfare gains from altruistic sharing. Top
panel displays the average distribution for all travelers. The next three panels respective display
the distribution for travelers who have chosen Upscale house, Midscale house, and shared house,
respectively.
Source: model predictions.
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Table A.2.
Summary Statistics for Evacuation Orders surrounding Los Angeles, 2014/08-2016/09

N Mean Median SD Min Max

Evacuation Issuance Date 16 2016-02 2016-06 223.76 2014-08 2016-09
Evacuation Days 16 7.25 4.00 7.39 2.00 29.00
Evacuation Zone Acres (1000) 16 4960.11 1092.13 7751.32 87.73 28794.47
Fire Acres (1000) 16 53.55 10.18 84.44 1.68 232.58
Population Ordered to Evacuate (1000) 16 12.20 2.32 26.06 0.01 98.43
Household Ordered to Evacuate (1000) 16 5.39 1.04 11.81 0.01 45.56
Housing Units in Evacuation (1000) 16 7.85 1.75 16.09 0.01 59.51
Population Exposed to Fire 16 265.12 54.00 516.21 1.00 1969.00
Distance from Los Angeles (km) 16 133.26 103.09 97.00 4.02 297.60

Notes: This table shows descriptive statistics for wildfire evacuation of wildfire that have been sourced
within 300km from Los Angeles, over the research period. I merge evacuation events that happened
on the same days or within 3 days. Eventually there are 16 evacuation events.
Source: USGS, HMS, and Cal Fire documents.
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Table A.3.
Parameter Estimates for the Airbnb Supply

Utility Estimate from the Random Utility Model (Instrumented, F-Stat = 185)
Linear Coef. Interaction Coef.

(1) (2) (3) (4) (5)
×Log(Income) ×College= 1 ×Having Child ×Tenant= 1

Price ($) 0.15∗∗∗ −0.06∗∗∗ −0.03∗∗∗ −0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00) (0.01) (0.00) (0.00)
Entire Sharing −25.03∗∗∗ 0.36 1.64∗∗∗ −2.19∗∗∗ 2.06∗∗∗

(0.68) (1.01) (0.37) (0.35) (0.22)
Partial Sharing −9.24∗∗∗ 0.18 0.81 −1.59∗∗∗ 1.55∗∗∗

(0.54) (0.31) (0.71) (0.47) (0.45)
Entire × Evacuation −3.16∗∗∗ 1.61∗∗∗ 2.18∗∗∗ 1.81∗∗∗ 0.86∗∗∗

(0.39) (0.41) (0.30) (0.22) (0.23)
Partial × Evacuation −3.24∗∗∗ 1.27∗∗∗ 3.86∗∗∗ 0.63 0.74∗∗∗

(0.67) (0.11) (0.07) (0.55) (0.18)
Fire= 1 −0.58

(0.59)
Smoke= 1 0.21∗∗∗

(0.10)
Holiday= 1 −0.15∗∗∗

(0.07)

Neighborhood FEs Y Y Y Y Y
DOW FEs Y Y Y Y Y
Month FEs Y Y Y Y Y
Quadratic Time Y Y Y Y Y
N 132, 302 132, 302 132, 302 132, 302 132, 302
GMM Objective 12560.60 12560.60 12560.60 12560.60 12560.60

Notes: Estimation results for supply coefficients on the utility of home sharing. Column (1) reports
the linear coefficient, with column (2)-(5) reporting the interacted terms with the log of income, the
indicator for college degree, the indicator for having kids, the indicator for not holding homeownership,
respectively. Standard errors are clustered at the PUMA level. * p<0.1, ** p<0.05, *** p<0.01.
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Appendix B

Appendix for Chapter 2

B.1 Additional Results
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Figure B.1: Gradient of distance from Programs on business performance

Notes: Log number of active businesses is residualized by Sandy damage level, inundation depth,
county by year FEs, and hexagon FEs. Smoothing curves are obtained through a polynomial
model fit. Shades show the 95% confidence intervals clustered twoway by census tract and sales
year.
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Table B.1.
Summary Statistics

Panel A: Acquisitions and Buyouts

All Programs (N=1289) Acquisition (N=566) Buyout (N=723)

Mean SD Min Max Mean SD Mean SD

Purchase Price ($) 377050 159986 4536 893199 373068 142298 380168 172607
Closed Date 2015-06 429 2013-07 2019-05 2015-08 318 2015-05 494
Demolition Date 2017-01 545
Auction Date 2016-04 335

Panel B: Housing Transaction

All Transactions (N=467229) Treated (N=90163) Control (N=377066)

Mean SD Min Max Mean SD Mean SD

Sales Price (1000$) 423.64 353.49 10.00 4000.00 373.10 237.38 435.73 374.97
Sales Year 2006.02 7.34 1995.00 2020.00 2006.14 7.42 2005.99 7.32
post-Sandy = 1 0.25 0.44 0.00 1.00 0.26 0.44 0.25 0.43
Inundated = 1 0.51 0.50 0.00 1.00 0.84 0.37 0.43 0.50
Inundated Depth 0.61 1.57 0.00 28.00 2.06 2.41 0.27 1.02
# Programs 3.61 20.66 0.00 328.00 18.70 43.94 0.00 0.00
# Buyouts 1.82 17.15 0.00 294.00 9.41 38.10 0.00 0.00
# Acquisitions 1.79 6.39 0.00 65.00 9.29 11.90 0.00 0.00
Distance (m) 6853.00 7054.66 0.00 33877.38 441.52 288.97 8386.09 7033.42
# Rooms 2.01 3.38 0.00 55.00 3.62 3.64 1.62 3.20
# Bedrooms 0.30 1.07 0.00 17.00 0.29 1.03 0.30 1.08
# Bathrooms 0.62 1.13 0.00 17.50 1.11 1.19 0.51 1.08
Year Built 1950.67 32.43 1728.00 2018.00 1957.69 29.80 1949.00 32.81
Building Area (sqft) 1984.29 2186.98 100.00 895015.00 1804.84 832.94 2027.20 2398.17
Lot Size (acre) 0.22 0.84 0.00 52.62 0.18 0.55 0.23 0.90

Source: New York State Governor’s Office of Storm Recovery, FEMA’s Modelling Task Force, Zillow’s ZTRAX
database (2021 version).
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Table B.2.
Summary Statistics (Continued)

Panel C: Mortgage Applications

All Census Tracts (N=64890) Treated (N=1701) Control (N=63189)

Mean SD Min Max Mean SD Mean SD

# Loans 124.41 148.10 0.00 1784.00 214.29 191.75 121.99 145.99
Avr Loan (1000$) 460.10 1968.86 6.00 190655.00 280.11 94.12 464.66 1993.36
Annual Income (1000$) 126.34 64.54 4.00 944.50 124.97 38.22 126.37 65.07
% > Median Income 67.39 16.53 0.00 100.00 60.79 13.55 67.56 16.56
% White Applicant 0.55 0.33 0.00 1.00 0.83 0.19 0.54 0.33
% Black Applicant 0.17 0.26 0.00 1.00 0.05 0.10 0.18 0.26
# Damaged Properties 16.90 104.00 0.00 1677.00 328.12 404.79 8.53 63.42
% White Population 0.56 0.33 0.00 1.00 0.87 0.15 0.55 0.33
% White Affected 0.63 0.28 0.00 0.98 0.85 0.15 0.61 0.28
% Black Population 0.21 0.28 0.00 1.00 0.05 0.10 0.21 0.29
% Black Affected 0.18 0.23 0.00 0.92 0.06 0.11 0.19 0.24

Panel D: Business Performance

All (N=518868) Treated (N=83412) Control (N=435456)

Mean SD Min Max Mean SD Mean SD

# Active Firms 12.65 41.43 0 1732 7.22 11.06 13.69 44.88
# Birth 1.22 4.61 0 313 0.68 1.6 1.32 4.98
# Death 1.11 4.69 0 925 0.61 1.42 1.2 5.08
Growth Rate of # Firms 0.02 0.29 -1 7 0.03 0.3 0.02 0.28
Total Employment 89.07 623.66 0 100771 32.16 119.61 99.97 678.21
Employment per Firm 4.88 26.75 0 8765 4 18.03 5.05 28.11
Inundated = 1 0.34 0.47 0 1 0.71 0.46 0.27 0.44
# Damaged Properties 1.5 6.97 0 124 5.97 12.94 0.64 4.6
# Programs < 1km 11.22 81.51 0 2625 69.8 192.97 0 0
# Buyouts < 1km 5.07 68.39 0 2543 31.51 168.12 0 0
# Acquisitions < 1km 6.16 27.53 0 391 38.29 59.03 0 0

Source: New York State Governor’s Office of Storm Recovery, FEMA’s Modelling Task Force, National
Archives of Federal Reserve Board of Governors Division of Consumer and Community Affairs, National
Establishment Time-Series (NETS) database, .
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Table B.3.
Robustness Checks: Impacts of Acquisition and Buyout Programs on Log(Property Value)

Average Effect Effect by Program

(1) (2) (3) (4)

Acquisition Buyout Acquisition Buyout

Panel A: 5km from the acquisition and buyout programs (N = 268143)
Treated × Post-Program 0.0352*** 0.0407*** -0.0017

(0.00514) (0.0105) (0.0171)
× low intensity 0.0318*** 0.029*** -0.0136

(0.00464) (0.00952) (0.0217)
× high intensity 0.0831* 0.0822*** 0.0364***

(0.0447) (0.0239) (0.00834)
Adj R2 0.553 0.553 0.553 0.553

Panel B: Repeated sales only (N = 306141)
Treated × Post-Program 0.0552*** 0.0461** 0.026

(0.0141) (0.0172) (0.0281)
× low intensity 0.0572*** 0.0444** 0.02

(0.0182) (0.0202) (0.0305)
× high intensity 0.0527 0.0509* 0.088***

(0.0503) (0.0259) (0.0131)
Adj R2 0.580 0.580 0.580 0.580

Panel C: Pseudo treatment assigned to control properties (N = 467229)
Treated × Post-Program 0.046*** 0.0449*** 0.0381***

(0.00912) (0.00529) (0.00646)
× low intensity 0.0441*** 0.0388*** -0.00118

(0.008) (0.0133) (0.0215)
× high intensity 0.0903* 0.0814*** 0.0548***

(0.0442) (0.018) (0.00979)
Adj R2 0.599 0.599 0.599 0.599

Notes: Robustness tests for the effect of acquisition and buyout programs on the property value. Panel A
limits the group group to 5 kilometers from acquisition and buyout programs. Panel B uses the repeated
sales only. Panel C assigns a pseudo treatment timing to the control properties. The specifications and
the definition for low and high intensity are analogous to the baseline model. Standard errors are
clustered twoway at the census tract and year level. * p<0.1, ** p<0.05, *** p<0.01.
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Appendix C

Appendix for Chapter 3

C.1 Average Building Height Data

Data on the average building height are obtained from the U.S. national categorical map-

ping of building heights from Shuttle Radar Topography Mission (SRTM). The data are

a categorical mapping of estimated mean building heights, by census block group, for the

conterminous United States.

The data were derived from the NASA Shuttle Radar Topography Mission, which col-

lected “first return” (top of canopy and buildings) radar data at 30-m resolution in February,

2000 aboard the Space Shuttle Endeavor. These data were processed to estimate building

heights nationally, and then aggregated to block group boundaries. Aggregation was done by

calculating a zonal sum by census block group of elevations from the SRTM urban area grid,

then dividing the sum by the land area of the block group in hectares . This resulted in a

sum of the elevations in meters per hectare (SEPH). This dataset was assessed in three ways:

(1) by comparing it by block group to the actual buildings heights of a detailed dataset from

the city of San Francisco, (2) by identifying the class for 858 random points over low-density

residential areas, and (3) by qualitatively checking the dataset against known tall landmarks

in major cities.
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Block groups were then categorized into six groups using the statistical distribution of

this average elevation, namely using multiples of standard deviation from the mean as break-

points. The categories were named “Low”, “Low-Medium”, “Medium”, “Medium-High”,

“High”, and “Very High”. The classifications were assigned as follows: the “Low” category

was assigned values where SEPH was in the range 0 to 0.5851; “Low-Medium” category:

SEPH = 0.5851 to 6.9151; “Medium” category: SEPH = 6.9151 to 19.5776; “Medium-High”

category: SEPH = 19.5776 to 32.24; “High” category: SEPH = 32.24 to 57.5651; and “Very

High” category: SEPH greater than 57.5651. Of the 216,291 block groups, 33.5% are Low,

36.7% are Low-Medium, 20.0% are Medium, 6.5% are Medium-High, 2.5% are High, and

0.8% (1,722) are Very High. Block groups categorized as “Very High” tend to be focused

in a small number of the very densest cities, such as Manhattan and Los Angeles. From

these means and standard deviations we also roughly make an estimate of how tall and how

many stories buildings typically would have in each category. Exact number of meters per

story varies widely, so an estimate of 3.5 was used, based on a height per story of 10-12

feet. Low category of building heights has primarily 1-2 story buildings; Low-Medium cate-

gory has primarily 2-3 story buildings; Medium category has primarily 3-4 story buildings;

Medium-High category has primarily 3-6 story buildings; High category has primarily 4-9

story buildings; Very High category of building heights has buildings average 10 stories or

higher. Figure C.1 presents the spatial distribution of the average building height categories.

The majority of places fall in the group of “Low” and “Low-Medium” groups.

In the regression analysis, we combine the groups of Medium and Medium-High into the

category of “Medium”, which represents places with primary buildings of 3-6 stories. We

also combine the groups of “High” and “Very High” into a single category denoted as “High”,

which typically represents places with primary buildings above 5 stories.

C.2 Additional Results
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Figure C.1: Average Building Height by Census Block

Source: U.S. national categorical mapping of building heights from Shuttle Radar Topography
Mission
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Table C.1.
Effect of Windmill Visibility on Property Value by Turbine Characteristics

Dependent Variable: Log(Property Value)

Instal.Year Cum.Capacity Capacity Height Rotor Diam.
(1) (2) (3) (4) (5)

Treated × Post-Treatment -0.0105** -0.0112** -0.0112** -0.0111** -0.0112**
(0.00433) (0.00431) (0.00431) (0.00431) (0.00431)

× IHS(Turbine Char.) -0.00798* -0.0017 0.00031 0.000686 0.000106
(0.00406) (0.00164) (0.000955) (0.00141) (0.00134)

Post-Treatment 0.0073 0.00827 0.00905 0.00915 0.00899
(0.00595) (0.00587) (0.00583) (0.0058) (0.00581)

Treated -0.0101** -0.0098** -0.0103** -0.0104** -0.0101**
(0.00439) (0.00444) (0.00463) (0.0046) (0.0046)

N 5705597 5705597 5705597 5705597 5705597
Adj. R2 0.516 0.516 0.516 0.516 0.516
FE: Census Tract × Year X X X X X
FE: County × Sales Month X X X X X
Std. Errors Clustered at Census Tract and Year Level

Note Estimation results for the property value on the effect of wind turbine visibility, by wind turbine
characteristics. Dependent variable is the log of sales price. Each regression utilizes the baseline specifica-
tion of DiD with an inclusion of wind turbine characteristic interacted with the primary interaction term
of interest. Columns (1)-(5) utilize different turbine characteristics, with (1) using the installation year,
(2) the cumulative capacity, (3) the individual capacity, (4) the turbine height from the hub, and (5) the
rotor diameter. The turbine characteristic in each specification is transformed using an inverse hyperbolic
sine function. Each specification controls for a full set of property characteristics and fixed effects of the
census tract by sales year level and the county by sales month level. Standard errors are clustered twoway
at the census tract and sales year level. * p<0.1, ** p<0.05, *** p<0.01.
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Table C.2.
Robustness Test: Repeated Sales Only

All Urban Rural
(1) (2) (3)

Treated × Post-Treatment -0.028*** -0.028*** -0.00659
(0.00813) (0.00817) (0.0206)

Post-Treatment 0.071** 0.0736** 0.00951
(0.0307) (0.0321) (0.0277)

Treated 0.0711 0.0811 -0.0329
(0.0751) (0.0806) (0.0883)

N 1803579 1718191 85388
Adj. R2 0.489 0.490 0.433
FE: County × Sales Month X X X
FE: County × Sales Year X X X
FE: Parcel ID X X X
Std. Errors Clustered at Census Tract and Year Level

Note Robustness tests for the property value on the effect of wind turbine
visibility, using repeated sales only. Repeated sales are defined as transactions
on parcels that have been transacted for at least once both before and after the
installation of turbine within the visibility range. Each specification controls
for the fixed effects of the parcel level, the county by sales year level and the
county by sales month level. Standard errors are clustered twoway at the
census tract and year level. * p<0.1, ** p<0.05, *** p<0.01.
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Table C.3.
Robustness Test: Average Building Height

Panel A: Low Building Low (≤ 1 Stories) Low-Medium (1-2 Stories)

All Urban Rural All Urban Rural
(1) (2) (3) (4) (5) (6)

Treated × Post-Treatment -0.0141** -0.0118* -0.0229 -0.015** -0.0159** 0.0753
(0.00583) (0.00656) (0.0162) (0.00732) (0.00691) (0.0606)

Post-Treatment 0.00676 0.00305 0.00673 0.0252*** 0.0254*** 0.0131
(0.00861) (0.00856) (0.0179) (0.00951) (0.00937) (0.0548)

Treated -0.0151** -0.0125* -0.0189 0.00864 0.0101 -0.0628
(0.00634) (0.00698) (0.0166) (0.00803) (0.00794) (0.0513)

N 2417916 2021891 396025 1515155 1496666 18489
Adj. R2 0.467 0.476 0.404 0.536 0.537 0.513

Panel B: High Building Medium (3-6 Stories) High (≥ 5 Stories)

All Urban Rural All Urban Rural
(1) (2) (3) (4) (5) (6)

Treated × Post-Treatment 0.00306 0.00314 0.0295 0.0296
(0.00783) (0.00782) (0.032) (0.032)

Post-Treatment -0.00565 -0.00564 -0.0473 -0.0475
(0.0112) (0.0112) (0.0565) (0.0567)

Treated -0.00595 -0.00598 -0.0519 -0.052
(0.00576) (0.00576) (0.0509) (0.0509)

N 1606426 1606129 297 166100 166004 96
Adj. R2 0.544 0.544 0.394 0.394

Note Robustness tests for the property value on the effect of wind turbine visibility, by average building
height within the census block. Block groups are categorized into four groups using the statistical
distribution of the sum-elevations per hectare and comparing it with the average height of buildings
by the number of stories. Each specification controls for a full set of property characteristics and fixed
effects of the census tract by sales year level and the county by sales month level. Standard errors are
clustered twoway at the census tract and year level. * p<0.1, ** p<0.05, *** p<0.01.
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