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Graphical Condition for Identification in Recursive SEM

Carlos Brito and Judea Pearl

Abstract

The paper concerns the problem of
predicting the effect of actions or in-
terventions on a system from a com-
bination of (i) statistical data on a set
of observed variables, and (ii) quali-
tative causal knowledge encoded in
the form of a directed acyclic graph
(DAG). The DAG represents a set
of linear equations called Structural
Equations Model (SEM), whose co-
efficients are parameters representing
direct causal effects. Reliable quan-
titative conclusions can only be ob-
tained from the model if the causal
effects are uniquely determined by
the data. That is, if there exists
a unique parameterization for the
model that makes it compatible with
the data. If this is the case, the
model is called identified. The main
result of the paper is a general suf-
ficient condition for identification of
recursive SEM models.

1 Introduction

Structural Equation Models (SEM) is one of
the most important tools for causal analysis in
the social and behavioral sciences [2, 5, 8, 1, 6,
7]. Although most developments in SEM have
been done by scientists in these areas, the the-
oretical aspects of the model provide interest-
ing problems that can benefit from techniques
developed in computer science.

In a structural equation model, the relation-
ships among a set of observed variables are
expressed by linear equations. Each equation
describes the dependence of one variable in

terms of the others, and contains a stochas-
tic error term accounting for the influence of
unobserved factors.

An attractive characteristic of SEM models
is their simple causal interpretation. Specifi-
cally, the linear equation Y = βX + e encodes
two distinct assumptions: (1) the possible ex-
istence of (direct) causal influence of X on Y ;
and, (2) the absence of (direct) causal influ-
ence on Y of any variable that does not ap-
pear on the right-hand side of the equation.
The parameter β quantifies the (direct) causal
effect of X on Y . That is, the equation claims
that a unit increase in X would result in β
units increase of Y , assuming that everything
else remains the same.

Let us consider an example taken from [10].
This model investigates the relations between
smoking (X) and lung cancer (Y ), taking into
account the amount of tar (Z) deposited in a
person’s lungs, allowing for unobserved factors
to affect both smoking (X) and cancer (Y ):

X = e1
Z = aX + e2
Y = bZ + e3

cov(e1, e2) = cov(e2, e3) = 0
cov(e1, e3) = γ

The first three equations claim, respectively,
that the level of smoking of a person depends
only on factors not included in the model, the
amount of tar deposited in the lungs depends
on the level of smoking as well as external fac-
tors, and the level of cancer depends on the
amount of tar in the lungs and external fac-
tors. The remaining equations say that the
external factors that cause tar to be accumu-
lated in the lungs are independent of the ex-
ternal factors that affect the other variables,
but the external factors that have influence on
smoking and cancer may be correlated.
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Figure 1: Smoking and lung cancer example

All the information contained in the equations
can be expressed by a graphical representa-
tion, called causal diagram, as illustrated in
Figure 1.

The process of data analysis using Structural
Equation Models consists of four steps [7]: (1)
specification of the model, (2) analysis of iden-
tification, (3) estimation of parameters, and
(4) evaluation of fit. In this work, we will con-
centrate on the problem of Identification. The
identification of a model is important because,
in general, no reliable quantitative conclusion
can be derived from a non-identified model.

1.1 Related Work

The question of identification has been the ob-
ject of extensive research [6, 5, 10, 8, 11]. De-
spite all this effort, the problem still remains
open. That is, we do not have a necessary and
sufficient condition for identification in SEM.

Traditional approaches to the Identification
problem are based on algebraic manipulation
of the equations defining the model. Pow-
erful algebraic methods have been developed
for testing whether a specific parameter, or a
specific equation in the model is identifiable
[6, 9]. However, those methods are limited in
scope. The rank and order criteria [6], for ex-
ample, do not exploit restrictions on the error
covariances (if such are available). Identifica-
tion methods based on block recursive mod-
els [6, 11], for another example, insist on un-
correlated errors between any pair of ordered
blocks.

Recently, some advances have been achieved
on graphical conditions for identification [10,
4]. Examples of such conditions are the “back-
door” and “single-door” criteria [10]. A prob-
lem with such conditions is that they are ap-
plicable only in sparse models, that is, models
rich in conditional independence. The same

holds for criteria based on instrumental vari-
ables (IV) [12], since these require search for
variables (called instruments) that are uncor-
related with the error terms in specific equa-
tions.

1.2 Overview of Results

In our approach to the problem, we state Iden-
tification as an intrinsic property of the model,
depending only on its structural assumptions.
Since all such assumptions are captured in the
graphical representation of the model, we can
apply graph theoretic techniques to study the
problem of Identification in SEM. Thus, our
main result consist of a graphical condition for
identification, to be applied on the causal dia-
gram of the model.

The basic tool used in the analysis is Wright’s
decomposition of correlations, which allows us
to express correlation coefficients as polynomi-
als on the parameters of the model.

Based on the observation that these polynomi-
als are linear on specific subsets of parameters,
we reduce the problem of Identification to the
analysis of systems of linear equations. As one
should expect, conditions for linear indepen-
dence of those systems (which imply a unique
solution and thus identification of the param-
eters), translate into graphical conditions on
the paths of the causal diagram.

2 Background

2.1 Structural Equation Models and
Identification

A structural equation model M for a vector of
observed variables Y = [Y1, . . . , Yn]′ is defined
by a set of linear equations of the form

Yj =
∑

i

cjiYi + ej , for j = 1, . . . , n.

Or, in matrix form, Y = C · Y + ε, where
C = [cji] and ε = [e1, . . . , en]

′.

The term ej in each equation corresponds to a
stochastic error, assumed to have normal dis-
tribution with zero mean. The model also
specifies independence assumptions for those
error terms, by the indication of which entries
in the matrix Ψ = [ψij] = Cov(ei, ej) have
value zero.

In this work, we consider only recursive mod-
els, which are characterized by the fact that



the matrix C is lower triangular. This assump-
tion is reasonable in many domains, since it
basically forbids feedback causation.

The set of parameters of model M , denoted
by Θ, is composed by the (possibly) non-zero
entries of matrices C and Ψ.

A parameterization π for model M is a func-
tion π : Θ → < that assigns a real value to
each parameter of the model. The pair 〈M,π〉
determines a unique covariance matrix over
the observed variables, given by [2]:

ΣM(π) =
(

I −C(π)
)−1

Ψ(π)
[(

I −C(π)
)−1]T

where C(π) and Ψ(π) are obtained by replac-
ing each non-zero entry of C and Ψ by the
respective value assigned by π.

Now, we are ready to define formally the prob-
lem of Identification in SEM.

Definition 1 (Model Identification) A
structural equation model M is identified if,
for almost every parameterization π for M ,
the following condition holds:

ΣM(π) = ΣM (π′) =⇒ π = π′ (1)

More precisely, if we view parameterization π
as a point in <|Θ|, then the set of points in
which condition (1) does not hold has Lebesgue
measure zero.

In general, if a model M is non-identified, for
each parameterization π there exists an infi-
nite number of distinct parameterizations π′

such that ΣM(π) = ΣM (π′). However, there
are models in which, for almost every pa-
rameterization, there exist a finite number of
distinct parameterizations that generate the
same covariance matrix. According to the def-
inition above, those models are classified as
non-identified. However, it is important to dis-
tinguish this situation from the general case of
non-identification. This motivates the follow-
ing definition:

Definition 2 (K-Identification) A struc-
tural equation model M is k-identified if, for
almost every parameterization π for M , the
number of distinct parameterizations that
generate the covariance matrix ΣM(π) is at
most k.
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Figure 2: A causal diagram

2.2 Graphical Representation

The causal diagram of a model M consists of a
directed graph whose nodes correspond to the
observed variables Y1, . . . , Yn in the model. A
directed edge from Yi to Yj indicates that Yi

appears on the right-hand side of the equation
for Yj with a non-zero coefficient. A bidirected
arc between Yi and Yj indicates that the corre-
sponding error terms, ei and ej, have non-zero
correlation. The graphical representation can
be completed by labeling the edges with the
parameters of the model. Figure 2 shows a
simple causal diagram.

A path between variables X and Y in a
causal diagram consists of a sequence of edges
〈e1, e2, . . . , en〉 such that e1 is incident to X, en

is incident to Y , and every pair of consecutive
edges in the sequence has a common variable.
We say that the path points to X if the edge
e1 has an arrow head pointing to X.

A path p = 〈e1, . . . , en〉 between X and Y is
valid if variable X only appears in e1, variable
Y only appears in en, and every intermediate
variable appears only once in the path.

The special case of a path composed only by
directed edges, all of which oriented in the
same direction, is called a chain.

We make use of a few family terms to refer
to variables in particular topological relation-
ships. Specifically, if the edge X → Y is
present in the causal diagram, then we say that
X is a parent of Y . Similarly, if there exists a
chain from X to Y , then X is an ancestor of
Y , and Y is a descendant of X.

Given a path p between X and Y , and an inter-
mediate variable Z in p, we denote by p[X..Z]
the path consisting of the edges of p that ap-
pear between X and Z.

Variable Z is a collider in path a p between X
and Y , if both p[X..Z] and p[Z..Y ] point to Z.
A path that does not have any collider is said
to be unblocked.
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Figure 3: Wright’s equations.

The depth of a node Y in a causal diagram is
defined as the length (i.e., number of edges) of
the longest chain from any ancestor of Y to Y .
Nodes with no ancestors have depth 0.

The next lemma gives a restriction on the
depth of intermediate variables in unblocked
paths:

Lemma 1 Let p be an unblocked path be-
tween X and Y , and let Z be an inter-
mediate variable in p. Then, depth(Z) <
max{depth(X), depth(Y )}.

2.3 Wright’s method of Path Analysis

The method of path analysis [13] for identifi-
cation is based on a decomposition of the cor-
relations between observed variables into poly-
nomials on the parameters of the model. More
precisely, for variables X and Y in a recursive
model, the correlation coefficient of X and Y ,
denoted by ρXY , can be expressed as:

ρX,Y =
∑

paths pl

T (pl) (2)

where the term T (pl) represents the product
of the parameters of the edges along path pl,
and the summation ranges over all unblocked
paths between X and Y . Figure 3 shows a
simple model and the decompositions of the
correlations of each pair of variables.

The set of equations obtained from Wright’s
decompositions summarizes all the statistical
information encoded in the model. Therefore,
any question about identification can be de-
cided by studying the solutions for this system
of equations.

3 Analysis of Identification

The starting point for our analysis is the set of
equations provided by Wright’s decomposition

of correlations. Each term in this decomposi-
tion corresponds to an unblocked path in the
causal diagram. Now, observe that if we have
two edges pointing to the same variable, say
Y , then they cannot both appear in an un-
blocked path (because otherwise Y would be
a collider blocking the path). Hence, the ex-
pressions for the decomposition of correlations
are linear on the parameters of any subset of
edges incoming a variable Y (i.e., edges with
an arrow head pointing to Y ). This observa-
tion leads to the following method to decide
the identification of the model.

First, partition all the edges in the causal di-
agram into subsets of incoming edges. Then,
study the identification of the parameters as-
sociated with each subset by analyzing the so-
lution of a system of linear equations.

Two conditions must be satisfied to obtain the
identification of the parameters. First, there
must exist a sufficient number of linearly inde-
pendent equations. Second, the coefficients of
these equations, which are functions of other
parameters in the model, must be identified.

To address the first issue, we obtained a graph-
ical characterization for linear independence,
called the G Criterion. The second point is
addressed by establishing an appropriate or-
der to solve the systems of equations.

The following sections will formally develop
this graphical analysis of identification.

3.1 Basic Systems of Linear Equations

We begin by partitioning the set of edges in
the causal diagram into subsets of incoming
edges.

Fix an ordering ∆ for the variables in the
model, with the only restriction that if
depth(X) < depth(Y ), then X must appear
before Y in ∆. For each variable Y , we define
Inc(Y ) as the set of edges in the causal dia-
gram that connect Y to any variable appearing
before Y in the ordering ∆.

The next lemma formalizes some observations
made above.

Lemma 2 Any unblocked path between Y and
some variable Z can include at most one
edge from Inc(Y ). Moreover, if depth(Z) ≤
depth(Y ), then any such path must include ex-
actly one edge from Inc(Y ).

Now, fix an arbitrary variable Y , and let
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Figure 4: Models M1, M2 and M3

λ1, . . . , λm denote the parameters of the edges
in Inc(Y ). Then, Lemma 2 allows us to ex-
press the correlation between Z and Y as a
linear equation on the λj’s:

ρZ,Y = a0 +
m

∑

j=1

aj · λj

Observe that the independent term a0 is 0 if
depth(Z) ≤ depth(Y ).

Now, given a set of variables Z =
{Z1, . . . , Zk}, we let ΦZ,Y

1 denote the system
of equations corresponding to the decomposi-
tions of correlations ρZ1Y , . . . , ρZkY :

ΦZ,Y =



























ρZ1Y = a10 +
m

∑

j=1

a1j · λj

. . .

ρZkY = ak0 +

m
∑

j=1

akj · λj

(3)

3.2 Auxiliary Sets and Linear
Independence

Following the ideas presented in the beginning
of the section, we want to find a set of variables
that provides a system of linearly independent
equations. This motivates the following defi-
nition:

Definition 3 (Auxiliary Set) A set of vari-
ables Z = {Z1, . . . , Zk} is an Auxiliary Set for
Y if |Z| = |Inc(Y )| and the system of equa-
tions ΦZ,Y is linearly independent.

Next, we obtain a graphical characterization
for Auxiliary Sets. We first analyze a few ex-
amples, and then introduce our G criterion.

1Whenever clear from the context, we drop the reference
to Y and simply write ΦZ.

Consider the models in Figure 4. In each of
those cases, the only possible choice for an
auxiliary set for Y is {X1, X2, Z1, Z2}. How-
ever, this set only satisfies the definition for
models M1 and M3. The problem with model
M2 involves variables Z1 and Z2, because the
decomposition of their correlation with Y are
not linearly independent:

{

ρZ1Y = aλ2 + bλ3

ρZ2Y = caλ2 + cbλ3 = c · [aλ2 + bλ3]

This situation is reflected in the causal dia-
gram by the fact that every unblocked path
between Z1 and Y can be extended by the edge
Z2 → Z1 to give an unblocked path between
Z2 and Y , and those are all unblocked paths
between Z2 and Y .

The problem is avoided in the other models
because, in M1 there exist disjoint paths con-
necting Z1 and Z2 to Y , and in M3 if we ex-
tend the path Z1 ↔ X2 → Y with the edge
Z2 → Z1 we obtain a blocked path.

In general, the situation can become much
more complicated, with one equation being a
linear combination of several others. However,
these examples illustrate the essential graphi-
cal properties that characterize linear indepen-
dence.

G Criterion: A set of variables Z =
{Z1, . . . , Zk} satisfies the G criterion with re-
spect to Y if there exist p1, . . . , pk such that:

(i) pi is an unblocked path between Zi and Y
including some edge from Inc(Y );

(ii) If paths pi and pj have a common variable
U , then either

a) both pi[Zi..U ] and pj[U..Y ] point to U ;
or

b) both pj[Zj..U ] and pi[U..Y ] point to U .

Note that the second condition above basically
states that two paths pi and pj cannot be bro-
ken at a common variable U and their pieces
be rearranged to form two unblocked paths.

As it turns out, the graphical conditions in the
G criterion precisely characterize the linear in-
dependence of the system (3). This is formally
stated in the next theorem (see appendix A for
a proof):



Theorem 1 A set of variables Z =
{Z1, . . . , Zk}, with |Z| = |Inc(Y )|, is an
auxiliary set for Y if and only if it satisfies
the G criterion.

3.3 Model Identification Using
Auxiliary Sets

Suppose now that we can find an auxiliary set
AY for each variable Y in the model. This
implies that for each Y there exists a system
of linear equations ΦAY

that can be solved
uniquely for the parameters λ1, . . . , λm of the
edges in Inc(Y ). This fact, however, does not
guarantee the identification of the λi’s, be-
cause the solution for each λi is a function of
the coefficients in the linear equations, which
may depend on non-identified parameters.

To prove identification we need to find an ap-
propriate order to solve the systems of equa-
tions. Let us consider a simple situation. Sup-
pose that for each variable Y the following con-
dition holds:

depth(Zi) < depth(Y ), for all Zi ∈ AY (4)

Now, consider the linear equation provided by
the decomposition of ρZiY . The coefficients
in this equation are sums of terms associated
with unblocked paths between Zi and Y . From
condition (4) and lemma 1, it follows that
all such paths include only variables at depth
smaller than depth(Y ). Thus, if we solve the
systems associated with all those variables be-
fore solving ΦAY

, then the coefficients of ΦAY

will be identified.

Theorem 2 If every variable Y has an aux-
iliary set satisfying condition (4), then the
model is identified.

In the general case, however, the auxiliary set
for some variable Y may contain variables at
greater depths than Y , or even descendants
of Y . This forces us to solve the systems of
equations in a different order than the one es-
tablished by the depth of the variables.

A close inspection on the coefficients of ΦAY

shows that it is sufficient to solve the systems
associated with some Zi’s in AY before solving
ΦAY

. There are basically two cases:

1) Zi is a descendant of Y ; or

2) Zi is a non-descendant of Y , but there is
an unblocked path between Zi and Y of the
form Zi ← . . .← · ↔ Y .
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Figure 5: Example Auxiliary Sets method.

We can represent those restrictions by a di-
rected graph, called dependence graph.

The next theorem states our general suffi-
cient condition for model identification (see
appendix A for a proof):

Theorem 3 If there exist auxiliary sets for
the variables in the model such that the as-
sociated dependence graph is acyclic, then the
model is identified.

Figure 5 shows an example that illustrates the
method just described. Apparently, this is a
very simple model. However, it actually re-
quires the full generality of our method.

4 Discussion

The graphical condition presented in this pa-
per is the most general sufficient condition
for identification of recursive SEM available
in the literature. Hence, a natural question
is whether it is also necessary for the identifi-
cation of the model.

We first observe that it is not hard to de-
rive a proof for the non-identification of the
model if there exists a variable with no aux-
iliary set. Thus, we only need to investigate
if models with a cyclic dependence graph are
non-identified.

An interesting situation occurs if the depen-
dence graph has a single cycle. For example,
suppose there is a cycle with the variables X,
Y and Z (i.e., X → Y → Z → X). If this is
the only cycle in the graph, then we may solve
all systems that need to be solved before ΦAX

,
except for ΦAZ

.

At this point, we fix some parameter in ΦAX
,

say λ, as a constant, and remove the equation
associated with ρZX from ΦAX

. Using the re-
maining equations in ΦAX

, we obtain expres-



sions for the other parameters in terms of λ.
Once ΦAX

is solved, we can proceed to solve
ΦAY

and then ΦAZ
, obtaining expressions in

terms of λ for all parameters in those sys-
tems. Finally, substituting those expressions
back into the equation associated with ρZX ,
we obtain a polynomial on the parameter λ.
If the polynomial does not vanish, this implies
that λ can assume only a finite number of dis-
tinct values (namely, the roots of the polyno-
mial). For each such value we have a distinct
parameterization for the model that generates
the same covariance matrix. Hence, the model
is k-identified, for some k. In [3] we present a
2-identified model.

We believe that the polynomial mentioned
above never vanishes, and conjecture that if
the dependence graph has only isolated cycles
(i.e., cycles with no common variable) then the
model is k-identified.

When the dependence graph has multiple cy-
cles with common variables, the application
of the method above leads to systems of non-
linear equations on two or more parameters.
Perhaps a closer examination of the structure
of these systems may allow to decide the iden-
tification status of the model.

In [4], we provided a procedure to find an aux-
iliary set for a given variable Y . The proce-
dure reduces the problem to a max-flow com-
putation and executes in time O(n3). To-
gether with Theorem 2, this gives an algo-
rithm for testing the identification status of
the model. An algorithm implementing the
more general result of Theorem 3 would re-
quire finding sets of auxiliary variables that
give rise to an acyclic dependence graph.
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Appendix A

Due to space constraints, we only sketch the
proofs of theorems 1 and 3, and refer the
reader to [3] for full proofs.

Proof of Theorem 1:

The system of equations ΦZ can be written in
matrix form as:

ρ = A · Λ

where ρ = [(ρZ1Y − a10) . . . (ρZkY − ak0)]
′, A =

[aij] is a k by k matrix, and Λ = [λ1 . . . λk]
′.

We prove the theorem by analyzing the deter-
minant of A, which is given by

Det(A) =
∑

σ

(−1)|σ|
k

∏

j=1

ajσ(j) (5)

where the summation ranges over all permuta-
tions of 〈1, . . . , k〉, and |σ| denotes the parity
of permutation σ.



First, suppose that Z = {Z1, ..., Zk} satisfies
the G criterion with respect to Y , and let
p1, ..., pk witness this fact. Without loss of gen-
erality, assume that path pi connects variable
Zi to Y and includes the edge from Inc(Y )
with parameter λi. Observe that entry aij

of A is given by a sum of terms associated
with paths between Zi and Y that include the
edge with parameter λj. Thus, we can write

aii =
(

T (pi)
λi

+ a′ii

)

, and this shows that the

term τ =
[

∏

i

T (pi)
λi

]

appears in the summa-

tion on the right-hand side of 5.

In fact, every term in the summation of 5 is
given by the product of terms associated with
unblocked paths between each of the Zi’s and
Y . However, it follows from condition (ii) of
the G criterion that the edges that compose
p1, ..., pk cannot be rearranged to form a dis-
tinct set of paths p′i, ..., p

′
k connecting the Zi’s

to Y (The proof of this fact is somewhat tech-
nical, but not too difficult). In particular, this
implies that τ is not cancelled out by any other
term in (5). Hence, the determinant of A is
a polynomial that is not identically zero, and
vanishes on a set of Lebesgue measure zero.

The converse is proved by observing that,
if condition (ii) of the G criterion does not
hold, then for any set of unblocked paths
{p1, . . . , pk} connecting the Zi’s to Y , there
exists a pair, say pi and pj, with a common
variable U such that the paths formed by the
concatenations

p′i = pi[Zi..U ] · pj[U..Y ]
p′j = pj[Zi..U ] · pi[U..Y ]

are unblocked. Now, the term associated with
{p1, . . . , pk} in (5) is the same as the one as-
sociated with {p1, . . . , p

′
i, p

′
j, . . . , pk}, but they

appear in permutations with opposite parities,
and hence are cancelled out. This argument is
extended to the general case, with multiple in-
tersections, by an inductive argument. 2

Proof of Theorem 3:

The systems of equations are solved according
to the partial order defined by the dependence
graph. We prove the theorem by showing that
at the time of solving ΦAY

every coefficient in
this system is identified.

Fix a variable Y in the model, and let Z ∈
AY . Next, we examine the coefficients in the
decomposition of ρZY . There are three cases:

Case 1: Z is non-descendant of Y , and there
is no unblocked path between Z and Y of the
form Z ← . . .↔ Y .

The decomposition of ρZY can be written as

ρZY =
∑

i

ciδi +
∑

j

bjλj

where the δi’s are the parameters of the di-
rected edges in Inc(Y ) (e.g., Xi → Y ), and
the λj’s are the parameters of bidirected edges
in Inc(Y ) (e.g., Vj ↔ Y ). Then the coeffi-
cients in 4 are given by

• ci = ρZXi
and bj =

{

1, if Z = Vj

0, otherwise

This follows because

1) The set of unblocked paths between Z and
Y that include (Xi → Y ) is precisely the
set of all unblocked paths between Z and Xi

extended by (Xi → Y ). Thus, ci = ρZXi
.

2) If Z = Vj, for some j, then there is only
one unblocked path between Zi and Y in-
cluding (Vj ↔ Y ), which is composed by
this single edge. Thus, bj = 1 in this case.

3) Otherwise, observe that any unblocked path
between Z and Y including (Vj ↔ Y ) has
the form Z ← . . . Vj ↔ Y . Since we as-
sume no such paths exists, we have bj = 0.

Cases 2 and 3 correspond to the situation
where there is some unblocked path between Z
and Y that ends with a bidirected edge, or Z
is a descendant of Y . We ommit the proof of
those cases due to space constraints.
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