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Cognition and Behavior
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Abstract

Following traumatic brain injury (TBI), cognitive impairments manifest through interactions between micro-
scopic and macroscopic changes. On the microscale, a neurometabolic cascade alters neurotransmission,
while on the macroscale diffuse axonal injury impacts the integrity of long-range connections. Large-scale
brain network modeling allows us to make predictions across these spatial scales by integrating neuroimaging
data with biophysically based models to investigate how microscale changes invisible to conventional neuroi-
maging influence large-scale brain dynamics. To this end, we analyzed structural and functional neuroimaging
data from a well characterized sample of 44 adult TBI patients recruited from a regional trauma center,
scanned at 1–2weeks postinjury, and with follow-up behavioral outcome assessed 6 months later. Thirty-six
age-matched healthy adults served as comparison participants. Using The Virtual Brain, we fit simulations of
whole-brain resting-state functional MRI to the empirical static and dynamic functional connectivity of each
participant. Multivariate partial least squares (PLS) analysis showed that patients with acute traumatic intracra-
nial lesions had lower cortical regional inhibitory connection strengths than comparison participants, while pa-
tients without acute lesions did not differ from the comparison group. Further multivariate PLS analyses found
correlations between lower semiacute regional inhibitory connection strengths and more symptoms and lower
cognitive performance at a 6 month follow-up. Critically, patients without acute lesions drove this relationship,

Significance Statement

The variability of clinical outcomes following mild to moderate traumatic brain injury (TBI) is underscored by
complex pathophysiological mechanisms that take effect across spatial scales. We used the neuroinfor-
matics platform, The Virtual Brain, to model individualized brain activity and make inferences across these
spatial scales. Specifically, this approach allowed us to link macroscopic brain dynamics with mesoscopic
biophysical parameters, distinguishing semiacute mild to moderate TBI patients from comparison partici-
pants and predicting the long-term recovery of these patients. Our results demonstrate the sensitivity of our
large-scale brain model to pathophysiological changes following TBI and illustrates how computational
modeling may be used to advance understanding of chronic TBI outcome.
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suggesting clinical relevance of regional inhibitory connection strengths even when traumatic intracranial le-
sions were not present. Our results suggest that large-scale connectome-based models may be sensitive to
pathophysiological changes in semi-acute phase TBI patients and predictive of their chronic outcomes.

Key words: diffusion-weighted MRI; functional connectivity; functional MRI; netowrk modeling; structural con-
nectivity; traumatic brain injury

Introduction
Chronic clinical outcomes following traumatic brain in-

jury (TBI) are heterogeneous (Dabek and Caban, 2016; Si
et al., 2018). Classifying patients based on the presence
of pathoanatomic features on computerized tomography
(CT) and/or magnetic resonance imaging (MRI) is a useful
way to stratify the variance of TBI patients (Iverson et al.,
2012; McMahon et al., 2014; Yuh et al., 2014; Palacios et
al., 2017). However, even within these patient subgroups
significant variability in clinical outcomes and cognitive
performance can be observed (Iverson et al., 2012;
Palacios et al., 2017). The sources of this variability are di-
verse (Kenzie et al., 2018) and may include forms of pa-
thology not visible with conventional neuroimaging.
TBI has been described as a multiscale system deficit,

with cognitive impairments manifesting through interac-
tions between microscopic and macroscopic changes
(Kenzie et al., 2018). On the macroscale, TBI is associated
with decreased integrity of white matter (WM) pathways
and an imbalance and inefficiency of functional networks
(Hayes et al., 2016). Studies using diffusion-weighted
MRI (dwMRI) have consistently detected decreases in
fractional anisotropy (FA; Niogi and Mukherjee, 2010;
Shenton et al., 2012; Douglas et al., 2015; Filley and Kelly,
2018) that correlate with cognition (Wallace et al., 2018;
Palacios et al., 2020) and, if assessed in the semiacute
phase, long-term clinical outcomes (Yuh et al., 2014).
Functional connections are also sensitive to TBI, with al-
terations observed in multiple intrinsic connectivity net-
works (for review, see Sharp et al., 2014; Hayes et al.,

2016). Early-phase functional connectivity (FC) between
and within networks may be predictive of long-term
symptom severity (Palacios et al., 2017; Madhavan et al.,
2019), while changes to FC dynamics (FCD) have been
noted in the acute phase (Hou et al., 2019) and semiacute
phase (Mayer et al., 2015; Vergara et al., 2018) following
TBI.
On the microscale, TBI causes a neurometabolic cas-

cade that alters neurotransmission and can have long-last-
ing effects (Giza and Hovda, 2015). The initial injury causes
a sudden imbalance in glutamatergic and GABAergic neu-
rotransmitter levels, as well as NMDA receptor malfunction
(Giza and Hovda, 2015). Magnetic resonance spectros-
copy (MRS) is capable of detecting changes to neuromo-
dulatory concentrations in vivo. A recent meta-analysis
found evidence for elevated glutamate concentrations in
adult patients after a single mild TBI (mTBI) in the acute
and subacute phases (Eisele et al., 2020). Furthermore,
some studies have shown that these elevated glutamate
concentrations are predictive of long-term outcomes
(Shutter et al., 2004).
Connectome-based brain network modeling provides a

novel perspective to TBI by allowing access to local and
global parameters related to both micro-level neuromodu-
latory changes and macro-level connectivity changes. We
used the neuroinformatics platform The Virtual Brain
(TVB) to simulate whole-brain dynamics composed of in-
teracting neural population models (Fig. 1; Ritter et al.,
2013; Sanz Leon et al., 2013). Our model simulated brain
areas as excitatory and inhibitory neural populations con-
nected via GABA and NMDA synapses (Deco et al.,
2014b; Schirner et al., 2018). Personalized simulations
were constrained by each subject’s structural connec-
tome and fitted to their static and dynamic functional
connectomes, which were computed from dwMRI and
resting-state fMRI (rsfMRI; Schirner et al., 2015). The pa-
rameter-fitting procedure tuned the parameters global
coupling (G) and regional inhibitory connection strengths
to yield FC predictions for each subject. Global coupling
is a scaling factor related to the level of integration/segre-
gation in the system (Deco et al., 2015), while regional
inhibitory connection strength indicates the level of inhibi-
tory influence at each brain region. These model parame-
ters have been used to describe healthy neural dynamics
(Jirsa et al., 2010; Roy et al., 2014) and those of clinical
populations (Falcon et al., 2016; Jirsa et al., 2017; Aerts et
al., 2018; Zimmermann et al., 2018).
In the present exploratory study, we considered a well

characterized sample of TBI patients and healthy compar-
ison participants. Previous studies of this sample have
described group differences and predictive correlations
between semi-acute phase neuroimaging data and 6
month behavioral outcome measures using fractional
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anisotropy (Yuh et al., 2014) and functional connectivity
(Palacios et al., 2017). In the present work, we integrated
these modalities with personalized TVB simulations,
which allowed us to consider the role of local neural dy-
namics in patient outcomes. We examined group differen-
ces as well as predictive correlations between semiacute
local brain dynamics and clinical outcomes at a 6 month
follow-up. Our analyses considered the following two pa-
tient subgroups: CT/MRI positive, defined as patients
with any signs of traumatic intracranial lesions on day-of-
injury CT scan or semiacute MRI; and CT/MRI negative,
defined as patients without any such abnormality.

Materials and Methods
Participants
Forty-four patients and 36 comparison participants

were acquired from the pilot phase of the Transforming
Research and Clinical Knowledge in Traumatic Brain Injury
project (Track-TBI Pilot; Yue et al., 2013). Patients were col-
lected from convenience sampling at the acute-care, level I
trauma center in San Francisco General Hospital. The inclu-
sion criteria included a CT scan to assess for evidence of
acute TBI within 24 h of injury, Glasgow Coma Scale score of
13–15 [on emergency department (ED) arrival], loss of con-
sciousness (LOC) ,30min, post-traumatic amnesia duration
of,24 h, and age 18–55years (inclusive). Patients with a pre-
vious significant TBI (LOCfor .5min) were also excluded.
Overlapping patient and comparison participant samples
have been described in detail in two previous publications
(Yuh et al., 2014; Palacios et al., 2017). Eight patients did not
complete the clinical and cognitive assessment at the 6
month follow-up and were therefore removed from analyses
using these data (npatient = 36 for 6 month clinical/cognitive
data).
Each patient’s head CT on ED presentation and semia-

cute brain MRI (5–18d postinjury) was characterized
using the TBI common data elements criteria (Yue et al.,
2013). Each CT and MRI was anonymized and reviewed

by a board-certified neuroradiologist blinded to the data. The
TBI patients were divided into the following two subgroups:
(1) CT/MRI positive (n=14; age: mean = 39 years; SD = 13.7),
defined as patients with any acute traumatic intracranial le-
sion (epidural hematoma, subdural hematoma, subarachnoid
hemorrhage, contusion, or evidence of traumatic axonal in-
jury) and/or depressed skull fracture on either CT or MRI; and
(2) CT/MRI negative (n=30; age: mean = 31 years; SD = 9.0),
defined as patients without any such abnormality on either
CT or MRI. There were no large lesions expected to adversely
affect the dwMRI or fMRI results. Patient characteristics are
presented in Table 1. We note that all of the TBI patients
meet the definition of mTBI by some standards (Yue et al.,
2013), though the patients with positive CT findings would be
consideredmoderate by other criteria (Krainin et al., 2011).

Outcomemeasures
The outcome measures included the Extended

Glasgow Outcome Scale (GOS-E) at 6months postinjury
performed through structured interviews with each partic-
ipant by research assistants trained to uniformly assess
the GOS-E. A trained neuropsychologist also adminis-
tered the following behavioral and cognitive tests at
6months after injury: Trail Making Tests (TMTs) Parts A
and B, Wechsler Adult Intelligence Scale (WAIS), fourth
edition; Satisfaction with Life Scale (SWLS; Diener et al.,
1985); Brief Symptom Inventory (BSI) 18 (Derogatis and
Melisaratos, 1983); and California Verbal Learning Test
(CVLT), second edition (Delis et al., 2000). Higher scores
on the GOS-E, SWLS, WAIS, and CVLT were coded such
that higher scores indicate better outcome, while scores
on the BSI and TMT are coded such that higher scores in-
dicate poorer outcome.

Principal component analysis
Principal component analysis (PCA) was used to ex-

pose the latent structure within the collection of outcome
measures and to reduce the dimensionality of the dataset.

Figure 1. The Virtual Brain workflow. Structural and functional connectomes were created from each subject’s dwMRI and fMRI
data, respectively. Each subject’s unique structural connectome constrained their personal brain simulation, wherein local dynamics
were represented by the dynamic mean field (DMF) model (Eqs. 1–6; Deco et al., 2014a,b). The simulated local synaptic gating po-
tentials were then fed through the Balloon–Windkessel hemodynamic model, producing simulated fMRI time series. Each subject’s
simulated fMRI time series was fitted to their functional connectome through parameter space exploration. The resulting subject-
specific parameters were used in later analyses. E, Excitatory neural population; I, inhibitory neural population; w1, recurrent poten-
tial; JNMDA, excitatory connection strength.
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Data were transformed if significantly skewed (p,0.05)
using square root or log10 to improve the correlation struc-
ture. The point of inflection on a scree plot was used to iden-
tify the number of components to keep. After extracting this
number of factors, a promax rotation was performed using
the “principal” function in R. The correlation between factors
was r=0.33, exceeding 0.32 and therefore indicating .10%
overlap in variance between factors, warranting an oblique
rotation (Tabachnick and Fidell, 2001). As such, we used the
two-factor solution with a promax rotation for later analyses.
Factors were designated as (1) TBI Symptoms, and (2) Age
and Cognition based on the primary symptoms, cogni-
tive functions, and characteristics assessed by the
variables that strongly contributed to each (loading,
.0.3; see Table 5). Factor scores for each participant
represent the degree to which they express the factor.
Higher factor scores on the TBI Symptoms factor indi-
cate poorer outcome, while higher factor scores on the
Age and Cognition factor imply older age and lower
performance (Tables 2-Tables 4).

Imaging procedure
MRIs were acquired on a scanner (SIGNA EXCITE 3 TMRI,

GE Healthcare) equipped with an eight-channel phased array
head radio frequency coil. The following conventional 3 T
MRI sequences were performed: (1) axial three-dimensional
inversion recovery fast spoiled gradient recalled echo T1-
weighted images [echo time (TE)=1.5ms; response time
(TR) = 6.3ms; inversion time (TI)=400ms; flip angle, 15°] with
230 mm field of view (FOV) and 156 contiguous partitions
(1.0mm) at a 256 · 256matrix; (2) axial T2-weighted fluid-atte-
nuated inversion recovery images (TE=126ms; TR= 10 s;

TI=2200ms) with 220mmFOV, and 47–48 contiguous slices
(3.0 mm) at a 256 · 256 matrix; and (3) axial magnetization-
prepared gradient echo T2*-weighted images (TE=15ms;
TR = 500ms; flip angle 20°) with a 220 · 170 mm FOV and
47–48 contiguous slices (3.0 mm) at a 256 · 192 matrix. A
7min rsfMRI single-shot gradient-echo echoplanar imaging
sequence was acquired (TR=2000ms; TE=28ms; flip
angle=90° gradient; FOV=220 mm; voxel size=3.4 · 3.4 ·

Table 1: Patient characteristics

Scale Subscale CT/MRI-positive (n=14) CT/MRI negative (n=30)

Comparison participants

(n=36)

Analysis for group

difference

Age (years) 39.9 (13.8) 31.2 (9.0) 26.6 (7.7) F(2,79) = 9.7, p=0.0001

Gender 9 male; 5 female 18 male; 12 female 25 male; 11 female x (2)2 = 0.65, p=0.72

Race 9 white, 2 More than one race; 1

African American or African; 1

Asian; 1 Hawaiian or Pacific Islander

23 white; 3 Asian; 2 Hawaiian or Pacific

Islander; 1 African American or

African; 1 more than one race

Unknown

Education 14.6 (2.1) 14.6 (3.1) Unknown t(42) = �0.08, p=0.93

Glasgow Coma Scale 14.6 (0.63) 14.9 (0.43) NA t(42) = 1.4, p=0.18

Loss of consciousness 8 none; 6, 0.5 h 12 none; 18, 0.5 h NA x (1)2 = 0.55, p=0.46

Post-traumatic amnesia 5 none; 4, 0.5 h; 5 0.5–24h 14 None; 15,0.5 h; 1 0.5-24 h NA x (1)2 = 8.6, p=0.01

n=11 n=27 NA

Glasgow Outcome Scale Extended 6month 6.8 (0.98) 7.0 (0.94) NA t(36) = 0.64, p=0.52

Brief Symptom Inventory Anxiety 54.9 (7.7) 53.6 (10.6) NA t(36) = �0.37, p=0.71

Depression 54.2 (10.2) 52.6 (10.6) NA t(36) = �0.42, p=0.67

Somatic 55.8 (7.9) 53.0 (9.7) NA t(36) = �0.86, p=0.39

Global Severity Index 57.0 (7.3) 53.6 (10.8) NA t(36) = �0.97, p=0.34

n=11 n=26 NA

Satisfaction with Life Score 19.1 (7.6) 22.6 (5.9) NA t(35) = 1.5, p=0.14

n=11 n=25 NA

Trail Making Test Part A 30.7 (9.7) 28.3 (10.6) NA t(35) = �0.65, p=0.52

Part B 69.8 (25.0) 76.4 (65.2) NA t(35) = 0.32, p=0.75

Wechsler Adult Intelligence Scale Processing Speed 109.2 (16.3) 106.5 (14.6) NA t(35) = �0.49, p=0.62

California Verbal Learning Test 55.5 (9.8) 55.5 (9.2) NA t(35) = 0.06, p=0.98

The following statistics are reported: one-way ANOVA (age), x2 test of independence (gender, loss of consciousness, post-traumatic amnesia), independent-
samples t test [Education, Glasgow Coma Scale, Glasgow Outcome Scale Extended (6month), Brief Symptom Inventory, Satisfaction with Life Score, Trail
Making Test Part A and B, Wechsler Adult Intelligence Scale, and California Verbal Learning Test. NA, Not applicable. Data are mean (SD), unless otherwise
indicated.

Table 2: MRI radiologic findings of the CT/MRI-positive TBI
group

1 4 contusions, 1 shear (MRI)
2 2 shear (MRI)
3 1 shear (MRI)
5 2 shear (MRI)
5 4 contusions (MRI)

1 intracranial lesions, 1 skull fracture, 1 subdural hematoma,
1 contusion, 1 brain swelling (CT)

6 4 contusions, 3 shears (MRI)
7 2 shear (MRI)
8 1 skull fracture (CT)
9 1 contusion, 2 shear (MRI)

1 intracranial lesions, 1 sub arachnoid hemorrhage, 1
contusion

10 1 subdural hematoma, 2 contusions (MRI)
1 intracranial lesions, 1 subarachnoid hemorrhage, 1
contusion

11 1 subdural hematoma, 2 contusions, 2 shear (MRI)
1 intracranial lesions, 1 skull fracture, 1 subdural hematoma,
1 subarachnoid hematoma

12 1 intracranial lesions, 1 subarachnoid hematoma (CT)
13 2 shear (MRI)
14 1 shear, 1 deep shear (MRI)
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4.0 mm). The subjects were asked to close their eyes, relax,
not focus their attention on anything specific, and not fall
asleep. Whole-brain diffusion tensor imaging (DTI) was per-
formed with a multislice single-shot, spin-echo echoplanar
pulse sequence (TE=63ms; TR=14 s) using 55 diffusion-en-
coding directions, isotropically distributed over the surface
of a sphere with electrostatic repulsion, acquired at b=1000
s/mm2, seven acquisitions at b=0 s/mm2, 72 interleaved sli-
ces of 1.8 mm thickness each with no gap between slices, a
128 · 128 matrix, and an FOV of 230 · 230 mm. For DTI,

parallel imaging was used using the array spatial sensitivity
encoding technique with an acceleration factor of 2. The MRI
scanner and the scanning protocol used were the same for
the patient and comparison groups.

Parcellation scheme
The 96-region of interest (ROI) regional map (RM-96)

parcellation (Kötter and Wanke, 2005) was used for con-
struction of the structural connectivity (SC) and functional
connectivity matrices. The RM-96 parcellation has 82
cortical and 14 subcortical ROIs (Bezgin et al., 2017). It
has been used previously in TVB models (Ritter et al.,
2013; Shen et al., 2019a) and was developed to harmo-
nize cytoarchitectonic, topographic and functional defini-
tions of brain regions across primate species (Kötter and
Wanke, 2005), which is an advantage for network model-
ing work that integrates structural and functional neuroi-
maging data.

dwMRI preprocessing and tractography
Preprocessing of dwMRI data, and subsequent trac-

tography was completed using a Python implementa-
tion of a previously reported procedure (Shen et al.,
2019b). Eddy current-induced distortions were cor-
rected for using the FSL “eddy_correct” command, and
the diffusion gradient vectors rotated accordingly. The
MNI152_T1_1mm standard brain included with FSL
was then registered to each subject’s T1-weighted
image using a nonlinear registration conducted with
Advanced Normalization Tools (ANTs). Warps produced
in this step were used to map the 96-RM parcellation
(ANTs: Avants et al., 2011; RM-96 parcellation: Bezgin
et al., 2017) onto each subject’s T1-weighted image
using the ANTs “WarpImageMultiTransform” executable
and a nearest neighbor interpolation. The FSL FLIRT func-
tion was used to register subject T1-weighted images to
dwMRI space. Seed and target ROI masks were defined as
theWM voxels adjacent to each gray matter (GM) ROI within
each region of the RM-96 parcellation scheme. An exclusion
mask for each seed mask was also created using the GM
voxels adjacent to the seed mask. For intrahemispheric
tracking, exclusion masks of the opposite hemisphere were
also used. Diffusion tensor models were fitted at each voxel
by FSL “dtifit,” and then a probabilistic diffusion model was
fit using FSL “bedpostX.” Probabilistic tractography was
performed between all ROIs of the RM-96 parcellation
scheme using the FSL “probtrackx2” function. The parame-
ters used for tracking were as follows: 5000 seeds per voxel,
2000 steps, 0.5 mm step length, termination of paths that
loop back on themselves, and rejection of paths that pass
through an exclusion mask. The curvature threshold was set
to 0.2.
Two SC matrices were constructed from the tractography

results representing weights and lengths of connections, re-
spectively. Weights were generated by taking the number of
streamlines detected between each ROI pair and dividing it
by the total number of streamlines that were successfully
sent from the seed mask. In this way, they were corrected for
the number of voxels in each seed ROI. The length of each

Table 3: Cortical and subcortical regions from the regional
map parcellation from Kötter and Wanke (2005)

Index
RegionRight Left

1 49 Primary auditory cortex
2 50 Secondary auditory cortex
3 51 Amygdala
4 52 Anterior cingulate cortex
5 53 Posterior cingulate cortex
6 54 Retrosplenial cingulate cortex
7 55 Subgenual cingulate cortex
8 56 Frontal eye field
9 57 Gustatory cortex
10 58 Hippocampus
11 59 Anterior insula
12 60 Posterior insula
13 61 Primary motor cortex
14 62 Inferior parietal cortex
15 63 Intraparietal cortex
16 64 Medial parietal cortex
17 65 Superior parietal cortex
18 66 Centrolateral prefrontal cortex
19 67 Dorsolateral prefrontal cortex
20 68 Dorsomedial prefrontal cortex
21 69 Medial prefrontal cortex
22 70 Orbitoinferior prefrontal cortex
23 71 Orbitolateral prefrontal cortex
24 72 Orbitomedial prefrontal cortex
25 73 Prefrontal polar cortex
26 74 Ventrolateral prefrontal cortex
27 75 Parahippocampal cortex
28 76 Dorsolateral premotor cortex
29 77 Medial premotor cortex
30 78 Ventrolateral premotor cortex
31 79 Primary somatosensory cortex
32 80 Secondary somatosensory cortex
33 81 Central temporal cortex
34 82 Inferior temporal cortex
35 83 Temporal polar cortex
36 84 Superior temporal cortex
37 85 Ventral temporal cortex
38 86 Visual area 1 (primary visual cortex)
39 87 Visual area 2 (secondary visual cortex)
40 88 Anterior visual area, dorsal part
41 89 Anterior visual area, ventral part
42 90 Thalamic ROI with major frontal connections
43 91 Thalamic ROI with major temporal connections
44 92 Thalamic ROI with major occipitoparietal

connections
45 93 Caudate nucleus
46 94 Putamen
47 95 Pallidum
48 96 Accumbens nucleus
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connection, defined in millimeters, was obtained by taking
the median length of all connecting streamlines for each re-
gion pair. To obtain tract lengths using FSL probtrackx2, trac-
tography was run with and without the distance correction,
and dividing the results gave an estimate of the lengths of
each streamline. As tractography cannot provide information
on directionality of connections, matrices were symmetrized
such that the weights between areas A to B and B to A were
averaged. To account for numerous false positives that are
known to result from probabilistic tractography (Shen et al.,
2019b), any connections not present in at least 50% of the
comparison subjects were set to zero (Roberts et al., 2017).

Resting-state fMRI
Resting-state fMRI preprocessing was done using the

FMRIB FEAT toolbox. The following steps were per-
formed: (1) motion correction with MCFLIRT (Jenkinson et
al., 2002), (2) slice timing correction, (3) spatial smoothing
(5 mm), and (4) registration to anatomic volume. A nui-
sance regression removed signals from CSF, white mat-
ter, and six motion parameters. Global signal regression
was not performed. Last, a high-pass filter (100 s) was
applied.

A weighted average time series was calculated for
every ROI, such that each voxel was weighted according
to the probability it was within a given ROI (all voxels
summed to one), with voxels more central in the ROI
being favored (Shen et al., 2012). This approach aimed to
minimize partial volume bias. An FC matrix was calculated
for each subject by finding the pairwise Pearson’s correla-
tion coefficient between the weighted average time series
of each ROI pair. To characterize the dynamics of the resting
fluctuations, we calculated FCD matrices for each subject.
The 7 min resting-state scan was split into 92 windows of 30
s overlapping by 4 s. We calculated the FC matrix for each
time window centered at time t, generating a time series of
FC matrices, FC(t). The FCD matrix is a t by tmatrix with ele-
ment (t1, t2) calculated as the Pearson’s correlation of the
upper triangle of the FC matrices FC(t1) and FC(t2). This
method of characterizing resting fluctuations with FCD has
been used previously (Deco et al., 2017).
No participants were removed because of head motion

during the resting-state fMRI scan (absolute head motion at
a single time point was not more than 3.5 mm, and rela-
tive head motion did not exceed 2.5 mm for any partic-
ipants. A one-way ANOVA showed the comparison
participants (mean = 0.27, SD = 0.28), CT/MRI-positive
patients (mean = 0.25, SD = 0.20), and CT/MRI-nega-
tive patients (mean = 0.23, SD = 0.17) did not differ in
mean absolute head motion (F(2,77) = 0.22, p = 0.801).
Similarly the comparison participants (mean = 0.06,
SD = 0.03), CT/MRI-positive (mean = 0.07, SD = 0.02),
and CT/MRI-negative patients (mean = 0.10, SD = 0.09)
did not differ in mean relative head motion (F(2,77) =
2.00, p = 0.14).

The Virtual Brain
We simulated fMRI time series for each subject.

Simulations were constrained by each subject’s empirical
SC and fitted to their FC and FCD matrices. The process for
each subject may be summarized as follows: (1) SC matri-
ces (weights and tract lengths) are input to fast_tvb (https://
github.com/BrainModes/fast_tvb, https://hub.docker.com/
r/thevirtualbrain/fast_tvb); (2) local and global parameters
are chosen for the model; (3) fMRI is simulated based on
local and global parameters and is constrained by individual
SC; (4) individual fMRI simulations are optimized by rerun-
ning simulations with different local and/or global parameter
values that yielded the best fit; and (5) the best-fitting local
and global parameters are used for group comparisons and

Table 4: TVB Model parameters

Parameter Value (no. of steps) Description
G 1.4–2.8 (50) Scaling factor for inter-region (global) excitatory coupling
Noise (sÞ 0.001 Amplitude of noise kernel
Conduction velocity (m/s) 6 Speed of inter-region (global) signal transmission
w1 1.4 Excitatory recurrent potential
JGABA (nA) 1.0* Local feedback inhibitory synaptic coupling
JNMDA (nA) 0.15 Local excitatory coupling
Time steps (ms) 600,000 Simulation duration
fMRI TR (ms) 2000 Simulation TR

*JGABA values were initialized at 1.0 and adjusted iteratively by the FIC tuning algorithm during each simulation.

Table 5: Factor loadings for 6 month outcome variables

Scale Subscale
TBI
symptoms

Age and
cognition

Glasgow Outcome
Scale Extended

6month 20.73 �0.033

Brief Symptom
Inventory

Somatic 0.71 0.16

Depression 0.86 �0.075
Anxiety 0.87 �0.032
Global severity
index

0.99 �0.043

Satisfaction with
Life Scale

20.83 0.29

Education 20.33 20.51
Age �0.036 0.42
Trail Making Test Part A 0.19 0.62

Part B �0.085 0.89
Wechsler Adult
Intelligence Scale

Processing
speed

0.25 20.92

California Verbal
Learning Test

�0.10 20.31

Percentage covariance 37% 22%

Loadings .0.3 are shown in bold to assist interpretation. BSI and TMT scales
are reverse coded such that higher scores indicate more symptoms or poorer
performance.
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to account for individual variability on our neuropsychologi-
cal factors. The modeling process in TVB has been de-
scribed more thoroughly previously (Ritter et al., 2013; Sanz
Leon et al., 2013), and the mean field approximations used
have been validated independently (Deco and Hugues,
2012). Readers may also refer to an excellent, more general
review of dynamic models of large-scale brain activity
(Breakspear, 2017).

Dynamic mean field model
The dynamic mean field model represents each region

of interest as a population of excitatory and inhibitory neu-
rons coupled by excitatory NMDA synapses and inhibitory
GABA synapses. The model is defined by a set of six sto-
chastic nonlinear differential equations, modified slightly
from those presented by Deco et al. (2014a,b), such that
the global, inter-region connections incorporated time de-
lays, as follows:

I Eð Þ
i tð Þ ¼ WEI0 1w1JNMDAS Eð Þ

i ðtÞ1GJNMDAX
j CijS Eð Þ

j t� Dij

s

� �
� JiS Ið Þ

i tð Þ (1)

I Ið Þi tð Þ ¼ WII0 1 JNMDAS Eð Þ
i ðtÞ � S Ið Þ

i ðtÞ (2)

r Eð Þ
i tð Þ ¼ aEI E

ð Þ
i tð Þ � bE

1� expð�dE aEI E
ð Þ
i tð Þ � bE

� �
Þ

(3)

r Ið Þ
i tð Þ ¼ aII I

ð Þ
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1� expð�dI aII I
ð Þ
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Þ
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dS Eð Þ
i ðtÞ
dt

¼ �S Eð Þ
i tð Þ
tE

1 1� S Eð Þ
i tð Þ

� �
g r Eð Þ

i ðtÞ1svi tð Þ (5)

dS Ið Þ
i ðtÞ
dt

tð Þ ¼ �S Ið Þ
i tð Þ
t I

1 r Ið Þ
i ðtÞ1svi tð Þ: (6)

Ii
(E) represents the input current to the excitatory popu-

lation of region i, while Ii
(I) denotes the input current to the

inhibitory population at that region. Equations 3 and 4

convert input current to firing rates, ri
(E/I), for the excita-

tory, and inhibitory populations of region i respectively.
Finally, the firing rate is used to calculate synaptic gating
(Si

(E/I)) of both the excitatory (E) and inhibitory (I) popula-
tions in Equations 5 and 6.
Input current to the excitatory population is defined by the

following four sources: the overall effective external current

(WEI0Þ, recurrent excitatory currents ½w1JNMDAS
Eð Þ
i ðtÞ], re-

current inhibitory currents [JiS
Ið Þ
i ðtÞ], and excitatory currents

from the excitatory populations of the other region

[GJNMDA

X
j

CijS
Eð Þ
j t� Dij

s

� �
�. Long-range (inter-region)

connections between regions i and j are constrained by the
connectivity weightCij, whereCij is the (i, j)-th entry in the SC
weights matrix. G strength scales the long-range connectiv-
ity weights (Cij). Time delays are incorporated through the di-
vision of the distance between regions i and j (Dij), by
conduction velocity (s). The input current to the inhibitory
population is defined by the following: external currents

(WII0Þ, recurrent excitatory currents ½JNMDAS
Eð Þ
i ðtÞ�, and re-

current inhibitory currents ½S Ið Þ
i ðtÞ�. Notably, noise (s ) is

added in Equations 5 and 6, where vi is uncorrelated stand-
ard Gaussian noise, with amplitude scaled by s .
To maintain an average firing rate between 2 and 5Hz

feedback inhibition control (FIC) was applied (Deco et al.,
2014a; Schirner et al., 2018). The FIC algorithm iteratively
adjusts the inhibitory connection weights (Ji) at each re-
gion so that each local excitatory population maintains an
average firing rate of ;3Hz. By maintaining local excita-
tion–inhibition balance in this way, we produce simula-
tions that fit better with empirical fMRI and show more
realistic firing rates (Deco et al., 2014a).
The differential equations were integrated with a step

size of 0.1ms. After starting a simulation, first the Ji values
were fitted using an automatic routine, and then 8min and
20 s of fMRI were simulated to match the duration of the
empirical fMRI time series. Eighty seconds of simulated
fMRI data were removed to account for initial transients.
Simulated synaptic activity was fed through the Balloon–
Windkessel hemodynamic model producing simulated
fMRI data (Friston et al., 2000). All simulations were per-
formed using an implementation of the dynamic mean

Table 6: Model-fitting results

Fitting metric
Descriptive
statistic

CT/MRI-positive
(n=14)

CT/MRI negative
(n=30)

Comparison
(n=36) Significance

Functional connectivity,
unlefted correlation

Mean 0.66 0.66 0.68 F(2,77) = 0.32, p=0.73
SD 0.11 0.09 0.12
Minimum 0.50 0.33 0.35
Maximum 0.79 0.84 0.88

Functional connectivity dynamics,
Kolmogorov–Smirnov distance

Mean 0.13 0.12 0.12 F(2,77) = 0.03, p=0.97
SD 0.07 0.14 0.13
Minimum 0.04 0.03 0.03
Maximum 0.31 0.70 0.74

Iterations optimal solution
was chosen for

Mean 37.0% 34.5% 34.3% F(2,77) = 0.15, p=0.86
SD 13.7% 16.2% 14.9%
Minimum 15.0% 15.0% 15.0%
Maximum 75.0% 90.0% 90.0%
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field model in C (Schirner et al., 2018; code available as
follows: https://github.com/BrainModes/fast_tvb).

Parameter space exploration
Subject-specific parameter space explorations found

the best-fitting value of global coupling to maximize the fit
of their simulation to their empirical FC and FCD. To avoid
overfitting, we used two features to define goodness-of-
fit. Our first feature was a maximal uncentered Pearson
correlation of the upper triangle of each subject’s em-
pirical and simulated FC matrices. The second was the
minimal Kolmogorov–Smirnov distance between the
distributions formed by the upper triangle of the simu-
lated and empirical FCD matrices. The uncentered
Pearson correlation takes into account the difference in
the mean values of the FC matrices (Deco et al., 2014a),
and fitting FCD matrix distributions with Kolmogorov–
Smirnov distance has been used previously to effec-
tively fit brain dynamics in network models (Deco et al.,
2017). We explored 50 values of G for each subject,
and, to account for the effect of intrasubject variability
because of our stochastic model, we ran 20 iterations
of the parameter space exploration (PSE) for each sub-
ject with randomized initial conditions, resulting in 1000
simulations being run for every subject. Regional inhibi-
tory connection strengths were fitted for each of these
simulations via the FIC tuning algorithm described in
the previous section. For each iteration of the PSE, we
ranked the FC and FCD fits for each value of G and
chose the optimal G value based on the best combined
rank. Then we chose the value of G that most frequently
(mode) produced the best combined FC/FCD fit. We
also used the regional Ji values for the best fitting value
of G, found by the FIC algorithm. We refer to global cou-
pling and regional inhibitory connection weights (97
variables total) as the “TVB parameters” collectively.
Note that global coupling was used to maximize fit with
empirical fMRI, while the fitting target for regional inhib-
itory connection strength was the average firing rate of
the excitatory population at each region.

Partial least squares
Partial least squares (PLS) is a multivariate statistical

method that relates two sets of variables by identifying lin-
ear combinations of variables in both sets that maximally
covary together (McIntosh and Lobaugh, 2004; McIntosh
and Miši�c, 2013). We used PLS to find optimal relation-
ships between a set of brain variables and either a study
design (mean-centering PLS) or a set of behavioral varia-
bles (behavioral PLS). In PLS, singular value decomposi-
tion is used to find orthogonal latent variables that explain
the maximal amount of covariance between brain varia-
bles and design or behavior variables. For each latent
variable, brain saliences are calculated for each brain re-
gion that indicate the degree to which each region con-
tributes to the relationship between brain and design/
behavior expressed by the latent variable. In mean-cen-
tering PLS, design saliences indicate the group, condi-
tion, or group � condition profiles that best describe the

relationship between the set of brain and design variables.
In behavioral PLS, behavior saliences indicate the profile
of behavior variables that best characterize the relation-
ship between brain and behavior variables. Brain scores
are calculated for each subject and latent variable by mul-
tiplying the matrix of brain variables by the brain salien-
ces. The brain score indicates the degree to which each
participant contributes to each latent variable. Last, sin-
gular values are the covariance between brain and behav-
ior/grouping variables. They can also be evaluated as a
percentage of the total covariance between measures
that each latent variable accounts for.
In our study, we used mean centering PLS to determine

the relationship between several brain measures and
group status. The brain measures considered were a vec-
torized version of the upper triangle of the SC/FC matri-
ces, FA values from all voxels within our white matter
mask, and TVB parameters (global coupling and regional
inhibitory connection strength values). For each brain
measure, an omnibus PLS was performed that found the
optimal contrasts in brain measures between group mem-
bership. We also used behavioral PLS to determine the re-
lationships between the TVB parameters (global coupling
and regional inhibitory connection strength) and factor
scores from a set of patient outcome variables.
Permutation testing was used to determine the signifi-

cance of each latent variable. Rows of the data matrix
were randomly reordered, and the singular value was re-
calculated. This was done 1000 times, creating a distribu-
tion of singular values. Then a p-value for the original
singular value was calculated by taking the proportion of
singular values from the sampling distribution that were
larger than the original singular value. The p-value can be
thought of as the probability of obtaining a singular value
of this size under the null hypothesis that there is no asso-
ciation between brain measure and design/behavior.
Bootstrapping was used to estimate the reliability of

each brain salience. Participants were randomly re-
sampled 1000 times with replacement, while respecting
group membership. The resampled matrices were used to
recalculate the singular vector decomposition, producing
a sampling distribution for the weights in the singular vec-
tors. The SE was calculated from this sampling distribu-
tion, reflecting the stability of the weight regardless of
which participants are included in the analysis. Then a
bootstrap ratio (BSR) was calculated for each brain sali-
ence (voxel, brain region, connection) by dividing the
brain salience by its bootstrap-estimate SE. BSR is akin
to z score (2.0 corresponds to approximately a 95% confi-
dence interval) but is interpreted in terms of the reliability
of the parameter rather than null hypothesis testing.
Confidence intervals were calculated around design/be-
havior salience using the percentiles derived from the
sampling distribution.

Results
Outcomemeasures
Our PCA of background and outcome variables identi-

fied the following two factors: (1) TBI Symptoms and (2)
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Age and Cognition (Table 5), consistent with a previously
reported PCA of neuropsychological outcome variables in
mTBI patients (Levin et al., 2013). The CT/MRI subgroups
did not significantly differ on the TBI Symptoms factor
(t(34) = 0.73, p=0.47) or the Age and Cognition factor
(t(34) = 0.30, p=0.76). We also tested for group differences
on the individual variables contributing to both factors. We
found that the CT/MRI-positive patients were significantly
older than the CT/MRI-negative patients (t(42) = �2.5,
p, 0.01) and comparison participants (t(48) = 4.3, p � 0.01).
The CT/MRI-negative patients were also significantly older
than the comparison participants (t(64) = 2.2, p=0.03). A x2

test of independence indicated that the CT/MRI-positive pa-
tients experienced a greater loss of consciousness than the
CT/MRI-negative patients (x (1)2 = 8.6, p=0.01). There were
no other significant differences between groups (p. 0.05;
Table 1).

Empirical brain differences between patient
subgroups and comparison participants
Structural connectivity
A group comparison PLS assessed potential differences in

SC weights between the CT/MRI patient subgroups and
comparison participants. The first latent variable (p, 0.0001,
67% covariance, singular value=0.19) distinguished the CT/
MRI-positive patients from comparison participants (Fig.

2A–C), indicating that CT/MRI-positive patients had lower SC
weights relative to the comparison participants in many vox-
els, indicating a global effect. The second latent variable
(p=0.016, 33% covariance, singular value=0.13) distin-
guished CT/MRI-negative patients from comparison partici-
pants (Fig. 2D–F) showing that the CT/MRI-negative patients
also had primarily lower SC than comparison participants es-
pecially in connections involving occipital regions. These
analyses were repeated with age regressed from the SC val-
ues, and the results did not change appreciably.

Functional connectivity and functional connectivity
dynamics
A group comparison PLS comparing functional connectiv-

ity across the CT/MRI patient subgroups and comparison
participants did not find any significant differences (p=0.58,
61.7% covariance, singular value=3.1). A one-way ANOVA
did not discriminate the patient groups or comparison sub-
jects on the variance of their FCD matrices (F(2,77) = 0.1,
p=0.91). These analyses were repeated with age regressed
from the FC values, and the results did not change
appreciably.

Fractional anisotropy
A group comparison PLS compared fractional anisot-

ropy across the whole-brain white matter skeleton (Fig. 3).
The first latent variable (p=0.01, 65.1% covariance,

Figure 2. A group-comparison PLS distinguished the SC of CT/MRI-positive and CT/MRI-negative patients from comparison partici-
pants. A–F, The first latent variable (p, 0.0001, 67% covariance, singular value=0.19) shows differentiation of CT/MRI-positive patients
from the comparison participants (A–C), while the second latent variable (p=0.016, 33% covariance, singular value=0.13) differentiated
CT/MRI-negative patients from the comparison participants (D–F). A, D, Violin plots show the distribution of brain scores for each group.
Brain scores indicate the degree to which participants express the pattern of SC shown in B and E. Error bars are bootstrap-estimated
95% confidence intervals. B, E, Bootstrap ratios, which are a linear combination of SC weighted by how strongly they contribute to the
latent variable are shown. Bootstrap ratios may be interpreted similar to z scores (.2.0, akin to p, 0.05), so regions with bars exceeding
the dashed line may be considered to reliably contribute to the latent variable. C, F, Regional inhibitory connection strength bootstrap ra-
tios that reliably contribute to the latent variable (.2) from B and E projected onto a brain.
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singular value =8.2) showed that CT/MRI-positive pa-
tients had lower FA values than the comparison group,
especially in the left cingulum and anterior corona radiata.
The second latent variable indicated that CT/MRI-nega-
tive patients had primarily lower FA values than compari-
son participants, though they did not reach significance
(p=0.09, 34.9% covariance, singular value = 6.0). These
analyses were repeated with age regressed from the FA
values, and the results did not change meaningfully.

TVBmodel fitting
All patients and comparison participants showed good

fits between empirical and simulated resting-state fMRI,
as assessed by high uncentered Pearson’s correlation of
FC and low Kolmogorov–Smirnov distance between FCD

matrices. The simulated FC and FCD matrices of all par-
ticipants were inspected visually to ensure that they ap-
peared as reasonable FC/FCD matrices qualitatively. We
also screened for outliers by converting the FC and FCD
fits to the z score, finding no participants with a z-scored
FC fit lower than�3 (minimum =�2.4) and no participants
with a z-scored FCD fit .3 (maximum=2.6). There were
no significant differences among the three groups on the
fitting metrics (Table 5).
The parameter search space showed steady improve-

ments in fit (increased FC correlation and decreased FCD
Kolmogorov–Smirnov distance) as global coupling was in-
creased until a best-fitting global coupling value was
reached (Fig. 4). After this point, the model becomes mul-
tistable and eventually the FIC tuning algorithm is no lon-
ger able to maintain biologically realistic firing rates of

Figure 4. Summary of modeling fitting procedure. A, The parameter space exploration map for a representative subject given a sin-
gle iteration. The gray area denotes values of global coupling for which the model fails to converge because it becomes hyperex-
cited. The black dashed line represents the optimal value of global coupling. Note that combined fit (green) is defined by the sum of
the FC and FCD fits ranked across all other values of global coupling at which the model converged. B, The full-parameter space re-
sults for the same representative subject. Each grid shows model fits across all values of G on the x-axis, and iterations with
randomized initial conditions on the y-axis. On the left, fits are defined by the uncentered correlation of the upper triangle of the em-
pirical and simulated FC matrices. On the right, Kolmogorov–Smirnov (KS) distance between the upper triangles of the empirical
and simulated FCD matrices defines fits. The red dots represent the optimal fit for each iteration.

Figure 3. A group-comparison PLS distinguished the CT/MRI-positive and CT/MRI-negative patients from comparison participants
via their fractional anisotropy. A, B, The first latent variable (p=0.01, 65% covariance, singular value= 8.2) that distinguished CT/
MRI-positive patients from the comparison participants. A, Violin plot shows the distribution of brain scores for each group. Brain
scores indicate the degree to which participants express the pattern fractional anisotropy shown in B. Error bars are bootstrap-esti-
mated 95% confidence intervals. B, Bootstrap ratios, which are a linear combination of voxelwise fractional anisotropy weighted by
how strongly they contribute to the latent variable. Bootstrap ratios are superimposed onto a white matter skeleton. Bootstrap ratios
may be interpreted similar to z scores (.2.0, akin to p, 0.05), so only voxels with bootstrap ratios .2 are illustrated.
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;3Hz. Across multiple iterations, our model showed ac-
ceptable consistency in choosing the optimal value of
global coupling across iterations (Fig. 4, Table 6).

TVBmodel group differences
Combined TBI patients versus comparison subjects
A group comparison PLS compared the TVB parame-

ters (global coupling and regional inhibitory connection
strengths) of the comparison participants (n=36) and the
combined CT/MRI-positive and CT/MRI-negative patient
groups (n=44). A significant latent variable (p=0.026, sin-
gular value = 0.30; Fig. 5) distinguished the groups, show-
ing that the TBI patients had primarily higher inhibitory
connection strengths, especially in bilateral subcortical
regions. Regions that were reliably contributing (bootstrap
ratio, .2) to the relationship included the bilateral pallid-
um, a right thalamic ROI with major temporal connections
and right thalamic ROI with major frontal connections,
right superior temporal cortex, left inferior cortex, and left
putamen. The results were not significantly affected when
age was regressed from the variables and the analysis
repeated.

CT/MRI-positive and CT/MRI-negative patients versus
comparison participants
A group comparison PLS compared the TVB parame-

ters (global coupling and regional inhibitory connection
strengths) of the CT/MRI-positive patients (n=14), CT/MRI-
negative patients (n=30), and comparison participants

(n=36). The first significant latent variable (p=0.03, 70.9%
covariance, singular value=0.43; Fig. 6A–C) distinguished
the CT/MRI-positive patients from comparison partici-
pants, showing that they had primarily lower cortical
and higher subcortical inhibitory connection strengths
relative to the comparison subjects. Regions reliably
lower in CT/MRI-positive patients compared with com-
parison participants (bootstrap ratio, less than �2) in-
cluded the left dorsomedial prefrontal cortex, left
medial prefrontal cortex, left prefrontal polar cortex,
left anterior insula, right centrolateral prefrontal cortex,
right medial prefrontal cortex, and right orbitoinferior
prefrontal cortex. On the other hand, the left/right pal-
lidum were reliably higher in CT/MRI-positive patients
relative to comparison participants. The dot product of
the brain salience vector from the first latent variable
(Fig. 6) and the brain salience vector from the group
comparison PLS comparing the combined patients
from comparison subjects (Fig. 5) was high (r = 0.77),
indicating that the CT/MRI-positive patients were likely
largely responsible for driving the group difference.
These analyses were repeated with age regressed
from the TVB parameters, and the results did not
change meaningfully.

TVB–behavior relationships
A behavioral PLS analysis compared the correlations

between the TVB parameters and the TBI Symptoms and

Figure 5. Group comparison PLS of TVB parameters (G and regional inhibitory connection strengths) across patients (combined
CT/MRI-positive and CT/MRI-negative subgroups) and comparison participants (p=0.026, singular value = 0.30). Patients showed
mostly higher inhibitory connection strength relative to comparison participants, particularly in the subcortical regions. A, The violin
plot shows the distribution of brain scores for each group. Brain scores indicate the degree to which participants express the pat-
tern of global coupling and regional local inhibitory connection strength shown in B. Error bars are bootstrap-estimated 95% confi-
dence intervals. B, Bootstrap ratios, which are a linear combination of global coupling and regional local inhibitory connection
strength weighted by how strongly they contribute to the latent variable. Bootstrap ratios may be interpreted similar to z scores
(.2.0, akin to p, 0.05), so regions with bars exceeding the dashed line may be considered to reliably contribute to the latent vari-
able. Error bars are 1 SE. Bars representing subcortical regions are shaded. C, Regional inhibitory connection strength bootstrap ra-
tios from B projected onto a glass brain.
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Age and Cognition factors in all of the patients (N=36).
The analysis showed higher scores on the TBI Symptoms
(indicating more symptoms) and Age and Cognition (indi-
cating older age and poorer cognitive performance) fac-
tors were related to primarily lower regional inhibitory
connection strength (p=0.02, 74% covariance, singular
value =2.4; Fig. 7). Regions reliably contributing to the la-
tent variable (bootstrap ratios, less than �2) included the
left/right gustatory cortex, the left caudate nucleus, sec-
ondary auditory cortex, primary visual cortex, hippocam-
pus, orbitomedial prefrontal cortex, anterior insula, and
temporal polar cortex, as well as the right frontal eye field,
ventral temporal cortex, anterior visual area (ventral part),
ventrolateral premotor cortex, gustatory cortex, and infe-
rior temporal cortex.
Within-group PLS models were calculated to determine

the contributions of the CT/MRI-positive and CT/MRI-
negative groups to the omnibus test shown in Figure 8.
Both PLS analyses compared TBI Symptoms and Age
and Cognition factor scores to the TVB parameters (global
coupling and regional inhibitory connection strength)
using either the CT/MRI-positive or CT/MRI-negative pa-
tients. The within-CT/MRI-negative behavioral PLS pro-
duced a single significant latent variable (n=25; p=0.005,
73.1% covariance, singular value = 3.0; Fig. 8A–C), indi-
cating that higher TBI Symptoms and Age and Cognition
scores were related to lower inhibitory connection
strength. Regions reliably contributing to the latent vari-
able (bootstrap ratios, less than �2) included the right
temporal polar cortex, orbitomedial prefrontal cortex,

parahippocampal cortex, anterior visual area, ventral tem-
poral cortex, and frontal eye field, as well as the left ante-
rior insula, orbitomedial prefrontal cortex, hippocampus,
frontal eye field, dorsolateral prefrontal cortex, and cau-
date nucleus. The left subgenual cingulate gyrus showed
the inverse association with the factor scores compared
with the other regions (bootstrap ratio, .2). The same
analysis within the CT/MRI-positive group did not pro-
duce a significant latent variable (n=11, p=0.11, 67.6%
covariance, singular value =3.7; Fig. 8D–F). We calculated
the dot product of the brain salience vectors from the
combined group PLS model (Fig. 7) and the two within-
group analyses (Fig. 8) to determine which subgroup was
responsible for driving the effect observed when groups
were combined. The dot product between the combined
model and the CT/MRI-negative model was very high
(r=0.90). The same dot product was significantly lower (r
= �0.43) between the combined model and the CT/MRI-
positive group (z=4.68, p,0.0001), suggesting that the
CT/MRI-negative group was primarily responsible for the
observed associations between TBI Symptoms and Age
and Cognition factor scores and regional inhibitory con-
nection strengths.

Discussion
Overview
Concussion outcomes are variable and difficult to pre-

dict. Few studies have looked longitudinally at patients
with well characterized acute-phase and chronic-phase

Figure 6. Group-comparison PLS of TVB parameters (G and regional inhibitory connection strengths) across CT/MRI-positive pa-
tients, CT/MRI-negative patients, and comparison participants. A–C, The first latent variable (p=0.03, 70.9% covariance, singular
value= 0.43) that differentiated CT/MRI-positive patients from comparison participants. A, Violin plot shows the distribution of brain
scores for each group. Brain scores indicate the degree to which participants express the pattern of global coupling and regional
local inhibitory connection strength shown in B. Error bars are bootstrap-estimated 95% confidence intervals. B, Bootstrap ratios,
which are a linear combination of global coupling and regional local inhibitory connection strength weighted by how strongly they
contribute to the latent variable. Bootstrap ratios may be interpreted similar to z scores (.2.0, akin to p,0.05), so regions with bars
exceeding the dashed line may be considered to reliably contribute to the latent variable. Error bars are 1 SE. Bars representing
subcortical regions are shaded. C, Regional inhibitory connection strength bootstrap ratios from B projected onto a brain.
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assessments, and fewer still have combined multimodal
imaging with a computational approach. Here we com-
bined the strengths of a well characterized sample with
multimodal imaging and computational approaches to re-
veal relationships between local neural dynamics and
chronic patient outcomes. We found that the CT/MRI-
positive TBI patients showed lower cortical, but higher
subcortical, inhibitory connection strengths relative to the
comparison participants. We did not distinguish CT/MRI-
negative patients from the comparison participants based
on their TVB parameters; however, lower regional inhibi-
tory connection strengths were related to higher scores
on the TBI Symptoms and Age and Cognition factors as-
sessed 6 months postinjury in these patients. Together,
our results show proof of concept that local brain dynam-
ics modeled in TVB are sensitive to semiacute TBI pathol-
ogy and predictive of chronic outcomes.

Group comparisons
The CT/MRI-positive patients displayed higher subcort-

ical, but lower cortical, inhibitory connection strengths rel-
ative to the comparison participants. We speculate that
lower inhibitory connection strength may reflect excito-
toxicity or inhibitory dysregulation, which are known to
play a role in secondary injury after TBI (Yi and Hazell,
2006; Van Horn et al., 2017). Indeed, a study of tumor

patients (Aerts et al., 2018) that used a model similar to
our own demonstrated reduced inhibitory connection
strength in tumor regions relative to comparison partici-
pants, which they posited to reflect the role of excitotoxic-
ity in the pathogenesis of glaucoma (Casson, 2006). Aerts
et al. (2018) also observed increased inhibitory connec-
tion strengths in the nontumor regions of their patients
compared with controls, paralleling the increased inhibi-
tory connection strengths we observed in the subcortical
regions of the CT/MRI-positive patients compared with
comparison participants. Higher subcortical inhibitory
connection strengths may reflect a distal effect of small
cortical lesions or serve a protective function, as CT/MRI-
positive patients did not score more highly than CT/MRI-
negative patients on the TBI Symptoms factor. Future
studies using neuroimaging with finer spatial resolution
could quantitatively assess the sensitivity of the regional
inhibitory connection strength parameter of our model to
the cellular processes underlying changes to excitation/
inhibition caused by TBI.
The CT/MRI-negative patients were not significantly dif-

ferentiated from the comparison participants by their TVB
parameters. This was unexpected as a study of mTBI
patients experiencing active PCS symptoms (who were
screened for focal lesions) found decreased inhibitory
connection strengths relative to comparison partici-
pants (Good T, McIntosh AR, Levine B, unpublished

Figure 7. A behavioral PLS analysis assessed the associations between the TBI Symptoms and Age and Cognition factors and TVB
parameters (global coupling and regional inhibitory connection strengths) in the patients (combined CT/MRI-positive and CT/MRI-
negative subgroups). The first significant variable is illustrated (p=0.02, 74% covariance, singular value= 2.4) A, The bars represent
the correlation between each factor and the pattern of TVB parameters shown in the corresponding bar graph in B. The error bars
represent 95% confidence intervals, so the error bars of variables significantly contributing to the latent variable do not cross zero.
B, Bootstrap ratios, which are a linear combination of global coupling and regional local inhibitory connection strength weighted by
how strongly they contribute to the latent variable. Bootstrap ratios may be interpreted similar to z scores (.2.0, akin to p, 0.05),
so regions with bars exceeding the dashed line may be considered to reliably contribute to the latent variable. Error bars are 1 SE.
Bars representing subcortical regions are shaded. C, Regional inhibitory connection strength bootstrap ratios from B that reliably
contribute to the latent variable (.2) projected onto a brain.
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observations). Notably, the present work investigates
TBI patients scanned 1–2weeks postinjury, while the
other study considers patients in the chronic phase
postinjury, which may contribute to the discrepant find-
ings. It is also possible that other factors obfuscated a poten-
tial group difference between CT/MRI-negative patients and

comparison participants. For example, a history of sub-
stance abuse and other neuropsychiatric disorders,
such as depression, were not exclusion criteria in the
present study despite exerting effects via excitotoxicity
(Miller et al., 2009; Walker and Dantzer, 2014), similar to
mTBI. While this feature of our data increases the

Figure 8. A–F, Within-group behavioral PLS analyses show the relationships between the TBI Symptoms and Age and Cognition factor
scores and the TVB parameters (G and regional inhibitory connection strengths) for the CT/MRI-negative (A–C) and CT/MRI-positive pa-
tients (D–F). A–C show the first latent variable (p=0.005, 73.1% covariance, singular value=3.0) for the within CT/MRI-negative patients,
while D–F illustrate the first latent variable (p=0.11, 67.6% covariance, singular value=3.7) for the CT/MRI-positive patients. A, D, The
bars represent the correlation between each factor with the pattern of TVB parameters shown in the corresponding bar graph B. The
error bars represent 95% confidence intervals, so the error bars of variables significantly contributing to the latent variable do not cross
zero. B and E show bootstrap ratios, which are a linear combination of global coupling and regional local inhibitory connection strength
weighted by how strongly they contribute to the latent variable. Bootstrap ratios may be interpreted similar to z scores (.2.0, akin to
p, 0.05), so regions with bars exceeding the dashed line may be considered to reliably contribute to the latent variable. Error bars are 1
SE. Bars representing subcortical regions are shaded. C, F, Regional inhibitory connection strength bootstrap ratios that reliably contrib-
ute to the latent variable (.2) from B and E projected onto a brain.
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generalizability of our findings, it may also have limited
our sensitivity to pathophysiology caused by TBI.
Our empirical SC and FA findings suggested the CT/

MRI-positive and CT/MRI-negative patients were charac-
terized by more disconnected structural connectomes
than the comparison participants. These results are in line
with a previous study of the white matter integrity of an
overlapping patient sample (Yuh et al., 2014). In addition,
previous studies of humans (Imms et al., 2019; Kuceyeski
et al., 2019) and animals (Meningher et al., 2020) have
found that the SCs of TBI patients are more highly segre-
gated than those of control subjects. Modeling studies
suggest that structural disconnection in TBI patients pro-
duces reduced metastability, which is linked to excita-
tion–inhibition imbalance (Hellyer et al., 2015). Similarly,
the CT/MRI-positive patients demonstrated structural dis-
connection as well as altered local inhibitory dynamics
compared with comparison participants.
When interpreting our findings, it should be considered

that approximately one-third of our TBI sample (14 of 44
patients) showed signs of acute traumatic intracranial le-
sions on CT or MRI scans on presentation in the emer-
gency department. This classification of CT/MRI-positive
versus CT/MRI-negative may be contrasted with previous
work considering “complicated” mTBI solely on the basis
of a positive acute-phase CT scan (Iverson et al., 2012;
Voormolen et al., 2019). Many of our CT/MRI-positive pa-
tients were classified on the basis of very subtle MRI le-
sions at 3 T, such as one or two subtle isolated foci of
hemorrhagic axonal injury. These patients would likely be
classified as uncomplicated if we had used CT alone. In
fact, this nuance is supported by early work that found
dwMRI evidence of white matter damage in patients clas-
sified as uncomplicated by CT scan alone (Arfanakis et
al., 2002; Bazarian et al., 2007; Chu et al., 2010).

TVB–behavior relationships
Lower inhibitory connection strengths were associated

with higher scores on the TBI Symptoms and Age and
Cognition factors in the CT/MRI-negative group. The ef-
fect included many regions, including cortical and sub-
cortical structures, and indicated that lower inhibitory
connection strengths were related to more severe TBI
outcomes, older age, less education, and lower cognitive
performance. This effect is aligned with other large-scale
modeling work that showed structural disconnection as-
sociated with decreased metastability, indicating excita-
tion–inhibition imbalance, to be related to poorer
cognitive performance in TBI patients (Hellyer et al.,
2015). Empirical studies using MRS have also found that
elevated concentrations of the neuromodulatory factor
glutamate during the semiacute phase were predictive of
poorer chronic outcomes (Shutter et al., 2004; Eisele et
al., 2020).
In the CT/MRI-positive patients we did not observe a

correlation between inhibitory connection strengths
and the TBI Symptoms factor as expected. We suspect
that this was because of a lack of statistical power
(n = 11) in the within-group behavioral PLS (Fig. 8D–F).
Forthcoming large-scale longitudinal and multisite data

acquisitions [e.g., full Track-TBI LONG (https://tracktbi.
ucsf.edu/) sample] will be better equipped to establish
robust correlations between parameters from brain net-
work models and chronic TBI outcome.

Limitations and conclusions
We note that our study is limited by its modest sample

size and the lack of longitudinal imaging data to track re-
covery. Our exploratory findings will need to be confirmed
in larger independent samples. Specifically, future studies
should test whether a lower inhibitory connection strength
is indeed predictive of the development of persistent
postconcussion symptoms. Additionally, we acknowl-
edge the lack of racial diversity (79% white) and the gen-
der imbalance (65% male) of our patients. Our sample,
obtained by an emergency department convenience sam-
ple, will limit the generalizability of our findings to more
mild concussions that do not require hospitalization. Our
choice of a relatively coarse (96 ROIs) parcellation
scheme may have also limited sensitivity. Future work
should explore the effect of multiple parcellation schemes
on modeling results. Similarly, future work with larger
sample sizes may allow for subtyping moderate to severe
TBI patients by lesion type and location, which would
allow for greater power in detecting changes to local net-
work dynamics. Regarding our network model, we ac-
knowledge that a mechanistic interpretation may not be
possible as multiple processes at the micro level may
contribute to similar observations at the macro level. For
example, local excitatory connection strengths may pro-
duce dynamics similar as those observed through varia-
tions to recurrent inhibitory connection strengths. We did
not vary local excitatory connection strengths in our pa-
rameter space exploration to ensure that the model re-
mained identifiable.
In conclusion, we used large-scale brain modeling to

detect differences in local inhibitory connection strengths
among CT/MRI-positive TBI patients in the semiacute
phase and comparison participants. We did not distin-
guish semiacute CT/MRI-negative patients from the com-
parison participants based on their inhibitory connection
strengths; however, lower inhibitory connection strengths
were associated with more severe clinical outcomes,
older age, and poorer cognitive performance at a 6 month
follow-up in these patients. The result suggests large-
scale connectome-based models may be sensitive to
pathophysiological changes in semi-acute phase TBI pa-
tients and predictive of their chronic outcomes.
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