Title
Cone Inputs to Ganglion Cells in Hereditary Retinal Degeneration

Permalink
https://escholarship.org/uc/item/6t50z3jd

Journal
Science, 203(4385)

ISSN
0036-8075

Authors
Cicerone, Carol M
Green, Daniel G
Fisher, Leslie J

Publication Date
1979-03-16

DOI
10.1126/science.424738

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Cone Inputs to Ganglion Cells in Hereditary Retinal Degeneration

Abstract. The photoreceptor layer degenerated, but cone nuclei apparently devoid of outer segments were retained in retinas of aged rats of the Royal College of Surgeons strain from which optic tract activity was recorded. Measures of sensitivity showed these single axons of retinal ganglion cells to have photopic spectral responses. Cone remnants containing a cone pigment may be the photoreceptive elements in these retinas.

Retinal cellular degeneration as a consequence of inherited disease occurs in many species (1). The process of degeneration may reveal aspects of cellular structure, function, or interactions that could characterize the disease or yield information about healthy cell life.

The progressive degeneration of the retina in the Royal College of Surgeons (RCS) strain of rats results in a steady decline in the electroretinogram (ERG) and morphological changes beginning with an accumulation of extracellular lamellae between the photoreceptors and pigment epithelium (2, 3). According to early reports, the retina is ultimately denuded of photoreceptor cells, but the rest of the retina remains, by comparison, fairly intact (2, 3). The progress of the disease is slowed by rearing the animal in the dark (2), yet after 150 days, even dark-reared animals show no measurable ERG (4). Noell and his colleagues were the first to show that axonal activity of single ganglion cells could be recorded from the optic tract of RCS rats even after the ERG had dissipated (5). Histology using glutaraldehyde fixation and thin plastic sections makes it clear that small numbers of nuclei of photoreceptor cells survive even in RCS animals as old as 2 years (6). These cells lack outer segments but appear to make synaptic contact with presumed bipolar and horizontal cell processes (6). Since visual pigment is housed mainly in the outer segments (7), these cells seem to be stripped of their fundamental ability to catch light quanta.

Behavioral measures reveal, however, that functional vision remains in 2-year-old RCS animals (6, 8). Can the remaining photoreceptor remnants, most of which are likely to be cone cells stripped of their outer segments (6), survive vision in the aged RCS rat? We investigated the possibility that the spectral sensitivities of single ganglion cell axons recorded in the optic tract might indicate the surviving mechanisms mediating vision in the aged RCS rat.

We have found that the sensitivities of the ganglion cell axons recorded in the optic tract of RCS rats decline with age. Dark-adapted spectral sensitivities of single units recorded from RCS animals older than 5 months suggest a photopic mechanism in contrast to all dark-adapted ganglion cells in the normal animal, which show a scotopic spectral sensitivity. Histological studies corroborate this picture. The numbers of photoreceptor cells decline steadily with age, and the photoreceptor population changes in composition from predominantly rod (1.2 percent cones in the normal rat) to predominantly cone (73 percent cones at 197 days in the RCS rat).

Rats were anesthetized and paralyzed, and their respiration was controlled artificially. Blood pressure was monitored. A full eye ring provided further eye stabilization. The pupil was dilated, and a clear contact lens protected the eye (9). Single units in the optic tract were recorded with tungsten-wire-in-glass electrodes (Levick). The test light (150-W xenon arc lamp, Osram XBO 150 W/1) fully illuminated the surface of a diffusing Ping-Pong ball placed over the eye. This proved to be an effective way of maximally stimulating units with reduced sensitivities in RCS rats. Neutral-density and narrow-band interference filters, calibrated in the apparatus, were used in the test beam. The backgrounds were provided through a second channel illuminated by a 100-W solid tungsten lamp (General Electric). An on-line computer generated poststimulus time histograms. Luminances of test lights were adjusted to give criterion responses. Typically the impulse trains to ten presentations of the stimulus were combined to yield each histogram. A firing rate of five spikes per second above the

![Graph](https://example.com/graph.png)
baseline rate was designated a threshold response. Straightforward and quick comparisons of the histograms gave reliable estimates of threshold. Seventeen pink-eyed, tan-hooded RCS rats ranging in age from 69 to 197 days and seven control albino Sprague-Dawley rats (herein called "normal") ranging in age from 84 to 300 days were studied (10). We now report on two age groups of RCS rats, those near 90 days of age and those near 150 days of age and older.

The relative sensitivity differences of units found in normal and RCS animals are shown in Fig. 1. For sensitivity to 500-nm light, near 90 days of age most units had thresholds elevated 1.56 log units above normal (S.E.M., 0.17). A small number of units recorded from animals at this age had thresholds elevated more than 2 log units above the majority of the RCS units (3.98 ± 0.49 S.E.M. with respect to the normal animals). Animals near 150 days of age or older had thresholds which were elevated 4.48 ± 0.09 log units above the normal.

In the normal rat, all units showed dark-adapted spectral sensitivities matching the rhodopsin nomogram curve peaking at 500 nm (Fig. 1) (11). At 3 months of age, 3/4 of the units recorded from RCS rats had spectral sensitivities that conformed to the rhodopsin nomogram curve. The few units at 3 months of age with dark-adapted thresholds 2 to 3 log units above the rhodopsin units had clearly photopic spectral sensitivities; by 5 months of age, all units encountered and classified showed photopic spectral sensitivities (12). The largest number of units at this age conformed to a single pigment nomogram curve with peak wavelength of 520 nm (Fig. 1).

Anatomical examination of the retinas from each of the three groups of animals supports the physiological findings (Fig. 2). Glutaraldehyde fixation, methylene blue staining, plastic embedding, and thin sectioning enhanced the visualization of the photoreceptor nuclei (13). The disappearance of photoreceptor outer segments appears to be complete by 197 days. There was also a progressive thinning of the outer nuclear layer. The number of photoreceptor nuclei per 1000-µm² area of the retina declined from 5.34 ± 0.24 rod nuclei and 1.92 ± 0.15 cone nuclei in the 86-day-old RCS rat to 0.64 ± 0.41 rod nuclei and 1.76 ± 0.29 cone nuclei in the 197-day-old RCS rat. These numbers contrast with the 225 ± 3.54 rod nuclei and 2.67 ± 0.27 cone nuclei in the normal albino at 99 days of age. Thus, there is a decline in the photoreceptor population and a concomitant change in its composition from predominantly rod (1.2 percent cones in the normal) to predominantly cone (73 percent cones at 197 days of age in the RCS rat).

Optic tract recordings of retinal ganglion cell activity thus show that a physiologically functioning postretinal visual pathway still exists in older RCS rats. Despite extensive degeneration of the photoreceptor layer, light-driven signals originating in the retina are passed on to higher centers by way of the optic tract. These signals could be the basis for behaviorally measured visual capacity in older RCS rats (6, 8). We have shown that the spectral sensitivities of single ganglion cell axons recorded in the optic tract do not match that of rhodopsin, the visual pigment contained in rods, but rather implicate a cone phototransduction as the basis for visual function. We have also shown a progressive change from a predominantly rod to a predominantly cone retina until, at 197 days in the dark-reared RCS rat, the only elements of the photoreceptor layer retained in near normal numbers are the cone cells, apparently devoid of outer segments (14). It is therefore possible that surviving cone remnants with a store of visual pigment (15) may be able to respond to light and effectively drive higher-order neurons.

CAROL M. CICERONE*
Department of Psychology,
University of Michigan,
Ann Arbor 48109

DANIEL G. GREEN
Department of Ophthalmology,
University of Michigan

LESLIE J. FISHER
Department of Anatomy,
University of Michigan

References and Notes
1. Inherited retinal degenerations occur in the rat (M. C. Bourne, D. A. Campbell, K. Tansey, Br. J. Ophthalmol. 22, 613 (1980)), in the mouse (K. Tansey, ibid. 35, 573 (1951)), the dog (H. B. Parry, ibid. 37, 587 (1953)), and in humans (F. L. Wolbarsch, Arch. Ophthalmol. 5, 392 (1931)).
7. Although visual pigments occur in highest concentra-
DNA Repair and Longevity Assurance in Paramecium tetraurelia

Abstract. At given doses and clonal ages, ultraviolet irradiation-induced DNA damage reduced clonal life-span, but when followed by photoreactivation, extension of clonal life-span was observed. If photoreactivation preceded the ultraviolet treatment, no significant beneficial effect was detected. Because studies of others have shown that photoreactivation repair monomerizes the ultraviolet-induced cyclobutane dimers in DNA, but does not affect the other photoproducts, these results indicate that DNA damage can influence the duration of clonal life-span unless that damage is repaired. Repeated treatment with ultraviolet and photoreactivation resulted in significant mean and maximal clonal life-span extension when compared with untreated controls, and it is assumed that the rejuvenation effect was due to the correction or prevention of some age damage.

Paramecia were used to study the biological effect of ultraviolet-induced DNA damage versus photoreactivation (PR)-repaired damage on clonal senescence. These cells exhibit cellular aging (1), show age-correlated sensitivity to ultraviolet reversible by PR (2), have been shown to monomerize induced dimers by PR in their nuclear DNA (3), express age-induced mutations (4, 5) suggesting loss of repair with increased age, and have many parallels with human cells in culture (4, 6). Clonal senescence can be characterized by a decreased probability that a given cell will give rise to a viable cell at the next cell division (4, 7). As in multicellular organisms, fertilization marks the origin of new generations, and predictable changes occur in the phenotypes of cells (1, 2). Death of the clone occurs when all 150 to 200 cell divisions, or fissions, later in about 40 days, when the procedures described below are used. Aging cells were maintained in daily isolation lines (6). Replicate samples of the fertilized cells were carried as sublines. Each day, one cell of a subline was passed seriatim to a new depression; its products were counted on the following day, and the daily fission rate was determined. A subline is considered dead when an isolated cell disappears. The fission age of the cell is the number of fissions since fertilization. The mean clonal life-span is the average fission age at death of all sublines. Maximal life-span is the largest fission age observed for any subline of a clone at death. Isolation lines provide the source of cells for the controls, treatment with ultraviolet only, ultraviolet plus PR, PR plus ultraviolet, and PR only (9, 10).

As the fission age of the clone increased, the ultraviolet dose required to reduce the mean clonal life-span decreased; 5400 ergs of cells 40 fissions old versus 2700 ergs at cells 140 fissions old (Table 1). At critical doses and ages, a negative shift in the survival curve was

* DNA Repair and Longevity Assurance in Paramecium tetraurelia

Abstract. At given doses and clonal ages, ultraviolet irradiation-induced DNA damage reduced clonal life-span, but when followed by photoreactivation, extension of clonal life-span was observed. If photoreactivation preceded the ultraviolet treatment, no significant beneficial effect was detected. Because studies of others have shown that photoreactivation repair monomerizes the ultraviolet-induced cyclobutane dimers in DNA, but does not affect the other photoproducts, these results indicate that DNA damage can influence the duration of clonal life-span unless that damage is repaired. Repeated treatment with ultraviolet and photoreactivation resulted in significant mean and maximal clonal life-span extension when compared with untreated controls, and it is assumed that the rejuvenation effect was due to the correction or prevention of some age damage.

Paramecia were used to study the biological effect of ultraviolet-induced DNA damage versus photoreactivation (PR)-repaired damage on clonal senescence. These cells exhibit cellular aging (1), show age-correlated sensitivity to ultraviolet reversible by PR (2), have been shown to monomerize induced dimers by PR in their nuclear DNA (3), express age-induced mutations (4, 5) suggesting loss of repair with increased age, and have many parallels with human cells in culture (4, 6). Clonal senescence can be characterized by a decreased probability that a given cell will give rise to a viable cell at the next cell division (4, 7). As in multicellular organisms, fertilization marks the origin of new generations, and predictable changes occur in the phenotypes of cells (1, 2). Death of the clone occurs when all 150 to 200 cell divisions, or fissions, later in about 40 days, when the procedures described below are used. Aging cells were maintained in daily isolation lines (6). Replicate samples of the fertilized cells were carried as sublines. Each day, one cell of a subline was passed seriatim to a new depression; its products were counted on the following day, and the daily fission rate was determined. A subline is considered dead when an isolated cell disappears. The fission age of the cell is the number of fissions since fertilization. The mean clonal life-span is the average fission age at death of all sublines. Maximal life-span is the largest fission age observed for any subline of a clone at death. Isolation lines provide the source of cells for the controls, treatment with ultraviolet only, ultraviolet plus PR, PR plus ultraviolet, and PR only (9, 10).

As the fission age of the clone increased, the ultraviolet dose required to reduce the mean clonal life-span decreased; 5400 ergs of cells 40 fissions old versus 2700 ergs at cells 140 fissions old (Table 1). At critical doses and ages, a negative shift in the survival curve was