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Quantum susceptance and its effects on the high
frequency response of superconducting tunnel
junctions
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Department of Physics, University-of California,
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and
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Electromagnetic Technology Division
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Abstract

We have made the first direct measurement of the quantum susceptance which arises
from the non-dissipative part of quasiparticle tunneling in a superconductor-insulator-
superconductor tunnel junction. The junction is coupled to an antenna and a superconducting
microstrip stub to form a resonator; the resonant frequency is determined from the respbnse of
the junction to broadband radiation from a Fourier transform spectrometer. A 19% shift of the
resonant frequency, from 73 GHz to 87 GHz, is observed which arises from the change of the
quantum susceptance of the junction with dc bias voltage. This shift is in excellent agreement
with calculations based on the Werthamer-Tucker theory, which includes the quantum
susceptance. We also demonstrate that it is essential to include the quantum susceptance in our
theoretical computation to explain the photon-assisted-tunneling steps which have negative
dynamic conductance. Such steps are observed when the junction is pumped at slightly below
the resonant frequency of the capacitbr and the stub. The quantum susceptance should exist in

all tunnel devices whose nonlinear I-V characteristics are due to elastic tunneling.
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I. Introduction

Tunneling is a quantum mechanical phenomenon. One of the consequences of such
processes is that the current-voltage relation is usually not instantaneous in the presence of an
ac drive, provided the driving frequency is higher than the inverse of the lifetimes of the
eigenstates involved. This non-instantaneous current-voltage relation consequently gives rise to
a reactive component!-4 of the tunneling current in addition to a dissipative, resistive one. If the
tunneling processes are elastic then the I-V curve contains direct information about the density
of states in the two sides of the junction. In this case, the resistive (dissipative) tunneling is
given by the dc I-V curve of a tunnel junction. The reactive (non-dissipative) component is
related to the resistive component through a frequency Kramers-Kronig transformation, as
required for any causal, linear response.> Therefore, the high frequency response of the
junction can be completely deduced from the dc I-V curve. Consequently, the frequency-
dependent conductance which is associated with a nonlinear elastic tunneling I-V curve should
give rise to a susceptance. The subject of this paper is the effect of this susceptance, called
quantum susceptance herein, on the response of Superconductor-Insulator-Superconductor
(SIS) junctions to high frequency radiation.

It is well known that there are two types of charge carrier that tunnel across an SIS
junction: Cooper pairs and quasiparticles. They arise from the superconducting condensate and
the excitations, respectively. Due to the non-instantaneous current-voltage relation, the
tunneling current from each carrier contains two components in the presence of an ac drive.
The in-phase component is dissipative (resistive) while the out-of-phase one is non-dissipative
(reactive). For Cooper pair tunneling current, the in-phase component is the Josephson cos¢
term,1.2.6 while the out-of-phase component is the Josephson sin¢ term.l.2.6 For
quasiparticles, the in-phase component is given by the dc quasiparticle I-V characteristic, while
the out-of-phase component is the quantum susceptance or quantum reactance.!-4 The reactive
quasiparticle tunneling current is a result of quantum sloshing. If the energy difference of the

initial and final states on two sides of the junction is different from the photon energy, no



photdn-assistcd-tunneling can take place. Instead, the quasiparticles slosh back and forth
between the two sides by absorbing and then emitting the same photons.

Werthamer derived an expression for the response function of both ‘Cooper pairs and
quasipairticles.1 The real parts of the response functions correspond to the reactive components
of the tunneling currents; and the imaginary parts correspond to the resistive components.
Using Werthamer's theory, Harris2 analyzed the response of an SIS junction to an RF
radiation in the small signal limit. He correctly predicted the effect of the quantum susceptance
at zero dc bias voltage. While Josephson tunneling and quasiparticle resistive tunneling have
been extensively studied, quantum susceptance has been largely ignored. This is because the
contribution from the quantum susceptance to the tunneling current is only significant at
frequencies high enough that the voltage associated with a quantum of the radiation, V=fiw/e, is
larger than the voltage scale on which the I-V characteristic of an SIS junction is nonlinear.3
Josephson effect devices originally showed greater promise as useful high frequency devices,
so the effects of both sin¢ and cos¢ terms on the response of Josephson junctions have been
studied extensively.”-8 The quasiparticle tunneling was originally studied as a measure of the
dénsity of states for excitations. This measurement is done essentially at zero frequency so the
quantum susceptance makes no contribution. This situation has changed since the invention of
SIS quasiparticle direct detectors and SIS quasiparticle mixers which utilize quasipérticle
tunneling for high frequehcy operation. Tucker3 first studied the reactive quasiparticle
tunneling at arbitrary dc and RF bias voltages. He predicted that an SIS mixer which has a non-
instantaneous current-voltage relation may have a mixer gain greater than unity. In contrast, a
classical resistive mixer, whose current-voltage relation is instantaneous, has a maximum mixer
gain of unity.? It Was épecﬁlated that this mixer gain is due to a pérameuic amplification from
the nonlinear quantum susceptance. However, a detailed analysis10 indicated that the effect of
the quantum suscepténce is quité subflc and is not responsible for the predic_ted mixer gain. It
was further argued that, like the Joséphson .cos¢ term,11 the quantum susceptance should be

difficult to detect experimentally.
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In this paper, we report experimental evidence for the quantum susceptance from a
measurement of a shift of the resonant frequency of a superconducting microstrip stub
resonator which contains an SIS junction. This shift of the resonant frequency is due to the
change of the quantum susceptance as a function of dc bias voltage. We also present an
é.nalysis of dc I-V curves of an SIS junction pumped With sufficient RF power that the photon-
assisted-tunneling steps are clearly seen. In an earlier work, we demonstrated that the quantum
susceptance is essential to the explanation of the negative photon-assisted-tunneling steps
observed when the junction is pumped at frequencies slightly below the resonant frequency.12
This paper is organized as follows: the theoretical background will be introduced in section II,
the experimental details will be described in section III, the comparison between the theory and

the experiments will be discussed in section IV, and finally the conclusion will be drawn in

section V.

II. Theoretical background
. Based on a perturbation theory using a tunneling Hamiltonian,6.13 Werthamer! derived

an expression for the tunneling current as a function of time in the presence of both dc and ac

bias:

I(t) = Im H dode' [W(@)W*(w') e““”‘"’"‘jqp (@' +eV /) +

+ W(@)W(w') e‘i‘“’*‘”"‘+“"jp(co'+evo/ﬁ) . (1)

Where jqp and jp are the response functions of quasiparticles and Cooper pairs respectively.
The first term in Eq. (1) is the quasiparticle tunneling current. The second term is the pair
tunneling current which depends on the phase difference ¢ between the superconducting
ground state wave functions on the t;x/o_ sides of the juncﬁon. The real parts of the response

functions correspond to the reactive components, and the imaginary parts correspond to the



resistive components. W(w) is the Fourier frequency component of the time-varying phase

factor caused by the ac bias voltage:

t oo

exp { -i% j dva) - vl } = J-d(oW(m) gl )

For BCS-like superconductors, jqp and jp can be calculated using the density of states of
quasiparticles and Cooper pairs. However, the calculation is quite complicated.! The following
shows that the quasiparticle response function jgp can be measured directly from the dc I-V

curve. When the bias voltage V(t) contains only a dc component V,, then W(w) = 8(0), and

from Eq. (1) we have,
I(t) = Im[jgp(wo)] + Re[jp(wo)] sind + Im[jp(wo)] cosd , (3)

where wo=eV/fi. Since both the sing and cos¢ terms oscillate at the Josephson frequency
o1=2eVo/f, the only dc component in Eq. (3) is the first term. Therefore, Im[jgp(eVo/h)] is

eqlial to the dc quasiparticle I-V curve I3.(Vo),
Im[jgp(®o)] = Idc(Vo) - ’ C)

Eq. (4) implies that the imaginary part of the quasiparticle response function at frequency
wo=eV/f is equal to the dc tunneling current at bias voltage Vo. Because of the absence of
Reljgp(wo)] in Eq. (3), it is clear that the reactive part of the quasipariicle response function has
no contribution to the tunneling current when the bias voltage is time independent. In contrast
to the quasiparticle re.sponse function, both the real and imaginafy parts of the pair response
function contribute to the tunneling current at dc bias. The real part of jp gives rise to the

familiar Josephson sin¢ term, while the imaginary part of jp gives the Josephson cos¢ term.



The real and imaginary parts of both quasiparticle and Cooper pair response functions
are related through a frequency Kramers-Kronig transform, as required by any causal, and

finite response. For jgp(w),3

Imljqp(@)] - /R,
0-0

Re[jqp(@)] = P[ 42

Fav V) - VR,

=L (V) =P |

-00

®)

In» Eq. (5), we have used Eq. (4) to replac}e Im[jqp(c_o')] with Idc(V'), eV’/ﬁ = and eV/t = .
We subtract an Oi’lﬁlic te:rm from the qﬁasiparticle I-V curve tb .prcvent divergence of the
integral. This is allowed because only the nonlinear portion of Iqc(V) gives rise to a reactive
component. The frequency-independent Ohmic response corresponds to an instantaneous
éurréﬁt—voltage relation and thus does not contribute to the réactivc component. It can be shown
from Eq. (1) that all measurable quantities depend only on differences between values of
Ixkk(V) and not on its absolute magnitude. In Fig. 1(a) and (b), we plot an experimentally
measured I-V curve of an SIS junction and the voltage Kramers-Kronig transform calculated
from Eq. (5). The peak of Ixk at the gap voltage Vg corresponds to the sharp nonlineérity of
the dc I-V curve I3c(V) at Vg. At T = 0, for an ideal SIS junction whose quasiparticle density of
states is given by the BCS theory, the peak in Igk diverges logarithmically at Vg.1'4

Egs. (4) and (5) suggest a very powerful way of deducing the frequency dependent
response function of quasiparticles. The dc current I3:(V) as a function of dc bias voltage giyes
the imaginary‘ part of the response function as a function of frequency; its voltage Kramérs-
Kronig transform gives the rcé.l part of the résponse function. Therefore the dc I-V curve,
which can be_easily measured, contains ail the information about the response of the
quasiparticles in an SIS junétion at high frequencies. Two conditions must bé satisfied for this

statement to be valid. First, the quasiparticle tunneling must be elastic within the tunnel barrier



so that the dc I-V curve gives direct information about the density of states of the quasiparticles
in the two sides of the junction. Second, tunneling probability must be small enough so that the
tunneling does not significantly change the density of states on either side. These two
conditions are met for SIS junctions with modest current densities < 104 A/cm? and high
quality tunnel barriers which are free from impurities and imperfections.

We will focus on the quasiparticle tunneling in this paper. The effect of the Cooper
pairs can be minimized either by applying a magnetic field, or by biasing the SIS junction at a
voltagev high enough that the Josephson current oscillates at a frequency high enough to be
effectively shunted by the ju\nction capacitance. In the presence of a time-dependent bias
voltage, V(t) = Vo + Vcosmt, the quasiparticle tunneliﬁg current as a function of time is given

by3

I(t)=a, + i [2a,,cos(mat) +-2bmsin(m0)t)] . | | . (6)

m=1
The coefficients of the current at o and its harmonics are given by

20, = 100, (0) + T (@] L (Vi + )

o , (7
2= ) IO (@) - T (0] Ty (Vi + nficofe)

n= oo
Here, idc' and IKI; ére thé samé as in Egs. (4).and (5), Jq is the nth Bessel's function, and
a=eVy/fw is the dimensionless RF vbltage. vKv‘s’.(6) and (;/) indicafc that fnany harmonics of
th¢ drive' frequency ® exist in an vSIS ju'r'xction. The amplitudes of these'.current components
havé a nonlinear dependence on the RF.drivc voltage Vm. Equatibns 6) and (7) also indicate

that there exists an out-of-phase reactive compohent sinwt as well as an in-phase cbmponent

cosmt. We will show later that the current amplitude of the two éomponents can be comparable.



It should be noted that the dc I-V curve I3c(Vo) = 3o of a voltggc-_pnimped SIS junction is
corﬁpletely independent of the real part of the quasiparticle response function Igx. Therefore,
Re(jgp) cannot be measured from the dc I-V curves of a voltage-pumped SIS junction. This is
in contrast to the pair response function, whose real part Re(jp) (Josephson sin¢ term)
contributes to a dc current at some discrete voltages which correspond to Shapiro's steps.
From the width of those Shapiro's steps as functions of RF voltage amplitude, Re(jp) can be
measured as a function of frequency.l4

~ The analysis of the response of quasiparticle tunneling current to a large amplitude RF
radiation is very complicated since multi-photon nonlinear proccsses‘are involved. In general,
numerical computation is required and it is difficult to gain an intuitive understanding of the
physics involved. However, in the small signal limit, & << 1, only the one-photon process is
significarit, so the 'prbblem is linear. If we define an admittance Y@(w) as the ratio of the
induced RF quasiparticle current and the RF voltage, YQ(O;)=Im/V o then from Eqgs. (6) and
'(7) to the leading order of «, the real and imaginary parts of Yg(w) are given by

Go(®) = Re[Yo(w)] = ﬁ Mac(Vo + fiave) - Iac(Vo - fiave)] , (8a)
Bo() = Im[Yo(®)] = 51%(0— [IKK(Vo + fioe) - 2Ikk(Vo) +

-|; Ikk (Vo - ioy/w)] . (8b) .

Gq and Bq are called quantum conductance and quantum susceptance, respectively, ir_l this
paper and in the previous letter.15 In th;a limit of low frequency, the quantum conductanée
Gq(w) reduces to the classical limit dl/dV as expected for any system whose characteristic
frequencyi is much highef than the driving frequency. In the limit of high frequency, Gg(®)
approaches the inverse of the normal state resistance 1/Rj at frequ¢ncies far above the gap
frequency. This implies that the re_sponéc of an SIS junction is like a cléssical diode. at low

frequencies and becomes Ohmic when the photon energy is much greater than the gap energy.



In a previous letter,!5 we showed that the quantum conductance G and the quantum
susceptance Bq defined in Eqgs. (8a) and (8b) are related through a frequency Kramers-Kronig

transform, as required for any causal, linear response,’

oo

. Go(@)
— do' ~Q -
B =P IT‘J.—J ' ©)

—o0

This approach is simpler than the one we used here. However, in this paper, we are interested
in the case of arbitrary signal strength, so we started with Egs. (6) and (7) which apply to the -
general case.

Expression (8b) for the quantum susceptance BQ can be interpreted geometrically.
Bq(w) is a measure of the curvature of the three points Ikk(Vo + fiw/e), Ikx(Vo), and Ixg (Vo -
fiw/e). When the curvature is upward, B is positive and capacitive; when the curvature is
.downward, Bq is negative and inductive. It can be seen from Fig. l(b) that as we change the
dc bias voltage V, from zero, the curvature of Ixk changes from positive to negative and back
to positive. This implies that the quantum susceptance changes from capacitive to inductive and
back to capacitive as shown in Fig. 1(d). Bq has the largest capacitive value at one photon |
voltage fiw/e below the gap voltage Vg and the largest inductive value at V. In Fig. 1(c), we
also plot the quantum conductance Gq as a function of bias voltage. Gq is large only within
one photon voltage fim/e below and above Vg, which corresponds to the voltage where a
quasiparticle can tunnel to the other side by absorbing or emitting one photon.

It is easy to.understand that the quantum conducténc__e GQ comes from the pﬁoton-
assis-ted-tuﬁncling. Itis léss straightforward that the quantum susceptance BQ comes from a
-sloshing back and forth of quasiparticles. We will use the ‘semicondlicfor model in Fig. 2 to
help to understand both the photon-assisted-tunneling and the quantum sloshing. The
superconducting energy gap 2A splits the density of quasiparticlé states into two separate

bands, the conduction band and the valence band. At T = 0, all the states in the valence band

10



are full and all the states in the conduction-band are empty. The dc bias voltage V shifts the
relative Fermi levels on the two sides by eV,. Consider an SIS junction in the presence of a
photon field with photon energy fiw. Conservation of energy allows transitions to take place
only between two states whose energy difference is fiw. Also at T = 0, Pauli's exclusion
principle requires that if one state is in the valence band then the other state must be in the
conduction band.

The tunneling between states A and B in Fig. 2, which satisfies the condition Ep + fi®
= Ep, is the photon-assisted-tunneling!” which gives rise to a step-like structure on the dc I-V
curve of a pumped SIS junction. This tunneling can also be assisted by absorbing more than
one photon if the photon field is strong enough. The tunneling of a quasiparticle in an initial
state A to final states other than B cannot occur because it violates conservation of energy.
However, this does not imply that the tunneling between two such states can never take place.
A quasiparticle in state A can absorb a photon fiw temporarily to tunnel to a state on the right
' side other than state B, then emit the same photon and tunnel back to state A. This movement

has been called "quantum sloshing" and its primary effect is to alter the phase of the photon
field and leave the total photon number unchanged.3 Therefore, the contribution of this
quantum sloshing to the quasiparticle tunneling current is the reactive component, which is
what we called quantum susceptance. As pointed out by Tucker,3 this susceptanée is a
consequence of the non-instantaneous current-voltage relation in the quantum mechanical
tunneling.

The sign of the susceptance contributed by the quantum sloshing bétw_een two states
with energies E1, and Er depends on whether the energy difference |ER - EL| is larger or
smaller than the energy of the photons fim of the RF drive. If |[ER-EL| > fiw, then the
susceptance is capacitive; if |[ER-EL! < iw, the susceptance is inductive. When the energy
difference between the two states is equal to the energy of the photons, the tunneling is purely
resistive. These results can be understood if we model the SIS as a superposition of two-level

systems.
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Consider two quasiparticle states, one on the left side and the other on the right side of
an SIS junction whose energy difference is fiwy.;. The transition between these two states is
analogous to the transition between two levels in an atom. Following Yariv's derivation,18 the
electrical dipole moment P(t) induced by such a transition can be characterized by the "atomic"
susceptibility x = ' - ix", such that P(t) = Re(eoxEei®t), where E is the external electrical
field. The current associated with this time-varying dipole is the time derivative of the electrical
dipole moment, I(t) e dP(t)/dt = Re(ine,xEei®). Since the RF voltage V, is proportional to
the electrical field E, thevRF admittance Y2.)(w) is proportional to (iweg)). que the subscript
"2-1" is to emphasize that this admittance is the contribution only from the tunneling between
these two specific states. Then from Eq. (8.1-19) in ref. 18, we obtain the expression for the
quantum conductance and susce;;tance which arise from these two states in the absence of

inelastic scattering during the tunneling,

G, () o= w)" o< e , - (10a)
: 1+ (- 0)2-_1) T '

B, L YR R | 10b

5.(©) o< @y o - . | (10b)

1+ (- (1)2_1)21:2

Here 1 is the lifetime of the quasiparticle concerned. From Eq. (10b), at @ > wy.;, Bo.j is
negative and the susceptance is inductive; and at @ < wp.;, B2.; is positive and the susceptance
is capacitive. Finally, at @ = wy.j, By.;-is zero and the admittance is purely resistive and the
conductance Gy.; takes a maximum value. If we assume that'th_e-qu'antum sloshing processes
are uncorrelated,!9 the total quantum conductance GQ(w) and the quantum susceptance Bq((ii)
are computed by integrating G2 1 and By over all the quasiparticle tunneling processes allowed
by Pauh s principle. These results can also be understood quahtatxvely from the behavior of a
classwal harmonic oscillator with an 1ntr1nsw frequency wy. I thn the drive varies slowly

with time, ® < wy., the displacement, which is proportional to the dipole moment, follows the

12



drive, i.e. P o< E. When the drive varies rapidly with time, ® > .}, the displacement is 1800
out of phase with the drive, so P e< -E.
Returning to the formal theory, we plot in Fig. 3 the calculated quantum conductance
Go(w) and the quantum susceptance BQ((D), using Egs. (5) and (8) and the I4¢ and Ikk in Fig.
1, as functions of frequency at a fixed dc bias voltage Vo = 2.50 mV. The peak of Gq at 62
GHz occurs when the photon energy is equal to the energy difference between the edge of the
conduction band on one side and the edge of the valence band on the other side of the junction.
This frequency is a simple function of dc bias voltage, fo = (Vg - Vo)/h. At this frequency, the
quantum susceptance B vanishes just as what we expect for a two-level system. At
frequencies below fo, BQ is positive and the quantum susceptance is capacitive; at frequencies
above fo,< Bq is negative and the quantum susceptance is inductive. The plot in Fig. 3 is
strikingly similar to Fig. 8.2 in ref. 18, where the real and imaginary parts of the atomic
susceptibility ' e« B2_j/w and " =< Ga.j/o are plotted as functions of frequency. This strong
sirhilarity suggests that an SIS junction can be approximated as a voltage-tunable two-level
- system whose energy difference is e(Vg-Vo). This approximation is valid because of the
singularities of the quasiparticle density of states at the gap energy so a large portion of the
quasiparticles occupy the states near the gap.

Using the discussion in the last two paragraphs, we can provide a detailed physical
explanation of the voltage dependénce of the quantum susceptance. At Vo < Vg - io/e, the
energy difference between all the states in the conduction band on one side and all the states in
the valence band on the other side is greater than the photon energy, i.e. wy.; > ®. Therefore,
Y>.; (@) from all possible quantum sloshing events are capacitive. As Vg increases from zero to
Vg - fiw/e, the difference (w3.;-w) becomes smaller, so the denominator in Eq. (10b)
decreases. This results in a maximum capacitive value of the quantum susceptance Bg at Vg -
fiw/e, as show in Fig. 1(d). As the bias voltage V increases from Vg - iy/e, there will be

“states in the conduction band with energy less than fiw greater than some of the states in the

valence band on the other side. For these pairs of states, w,.; < ®, so their contribution to the

13



quantum sloshing is inductive. This explains why the quantum susceptance BQ becomes more -
inductive as V increases from Vg - fio/e, and has the largest inductive value at the gap voltage
Vg, as shown in Fig. 1(d).

Although the above discussion was carried out at T=0 for simplicity, the results are still
valid at finite temperature. Two modifications should be introduced in the above discussion at
finite temperatures. First, the superconducting energy gap is reduced. Second, the states in the
valence band are not completely filled, the occupation probability is given by the Fermi
distribution f(E). Similarly, the states in the conduction band are not completely empty, and the
unoccupied probability is given by 1 - f(E). These two modifications at finite temperature affect
the dc I-V curve in the same way as they affect the high frequency response of the SIS
junction. Therefore, the RF admittance of an SIS junction is still given by Egs. (8a) and (8b) as
long as its dc I-V curve at T # O is still due to elastic tunneling.2

In the general case, o = eV /fi can be any value and we must consider a complicated
nonlinear solution of Eq. (7) to analyze the response-of an SIS junction to RF radiation. We
can still define an admittance Y(w)=I/Vq, where I, and V, are the current and voltage at
frequency . In this case, Y(w) will be a function of V, as well as a function of Vg and .
Numerical computation is required for detailed analysis. However, some of the qualitative
features discussed above in the linear limit will still apply as long as o is not so much greater
thar unity that multi-photon processes dominate the one-photon process.12 One of the
important features is that the quantum susceptance takes its maximum capacitive value at one
photon voltage below the gap Vg - fio/e, and changes to an inductive value as the bias voltage
increases to the gap voltage Vg. We will show later-in section IV that this feature is responsible
for the photon-assisted-tunneling steps with negative dynamic resistance which were observed

at drive frequencies slightly below the resonant frequency of a microstrip stub resonator.

III. Experimental details
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| As discussed in section II, the reactive part of the quasiparticle response function or,
equivalently, the quantum susceptance B has no contribution to the tunneling current when
the bias voltage is purely dc, i.e. V(t) = V,. Also, the quantum susceptance Bq has no effect
on the dc I-V curve of an SIS junction pumped by an RF voltage source whose amplitude V,
is independent of dc bias voltage. Consequently, the quantum susceptance cannot be measured
in a dc voltage biased SIS junction, or from the dc I-V curves of an RF voltage biased SIS
junction.

The most straightforward and convenient way to measure a reactive element is to
measure the resonant frequency of a resonator which contains the element to be measured. In a
less direct way, the quantum susceptance BQ can be measured from the shape of the I-V curves
of an SIS junction pumped by an RF source with a non-zero output impedance. The first

.method gives a direct and definitive measurement of the quantum susceptance. The second

-method gives an independent check and can also help in understanding the role of the quantum
susceptance in the RF impedance match, especially in the large signal limit. This impedance
match is crucial for many SIS devices, such as SIS direct detectors,16 SIS heterodyne
mixers,3# and SIS parametric amplifiers.20 We describe both ways of measuﬁng the quantum
susceptance in this paper.

We have constructed a millimeter wave resonant circuit by using a superconducting
microstrip stub and an SIS junction. This resonator is quasioptically coupled to the radiation
source by a planar antenna and several lenses.2! A photograph and a schematic drawing of the
junction and microstrip stub located at the center of a log-periodic antenna are shown in Fig.
4(a) and (b). The response of this resonator to an RF signal can be analyzed using the
equivalent circuit shown in Fig. 4(c). The signal and the antenna are represented by an RF
current source in parallel with its source admittance YA. The SIS junction is represented by the
parallel combination of the quantum conductance Go(w), quantum susceptance Bg(w), and the
geometric capacitance C. The admittapce of the superconducting microstrip stub is essentially

reactive and can be represented by a susceptance Bgyp(®). The loss of the stub at RF
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frequency can be modeled by a conductance in parallel with Bgyp(®). This loss does not affect
the value of the susceptance Bgp(®) to first order, and therefore it is unimportant in the
determination of the resonant frequency of the resonator.

In order to measure the quantum susceptance BQ, we need to know the imbedding
susceptaucc BiMB, which is the total susceptance that is independent of dc bias voltage. In the
equivalent circuit in Fig. 4(c), the imbedding susceptance ByMp is the sum of the susceptances
of the j.unction capacitance ©C, and of the microstrip stub Bgyp(®), and of the antenna
Im(Y A). ‘The resonance of the equivalent circuit of Fig. 4(c) corresponds to the condition Bygal
= Bo(w) + Bymp(®) = 0. Without the quantum susceptance BQ, the resonant frequency would
be independent of bias voltage. However, since BQ changes rapidly with dc bias voltage Voas
shown in Fig. 1(d), we expect that thé resonant frequency will change as V,, changes.

The susceptance of the ‘capacitance is simply wC, and the susceptance of the stub
Bstub(m) can be calculated using formulas in a standard microwave engineering text book.22
The expression of the susceptance of an antenna can be quite complicated in general. However,
for a special class of planar antennas called "self-complementary antennas", in which the
pattern of the metallic part is the same as that of the dielectric bart, the admittarice of the antenna

‘is real and independent of frequency.23 The antenna admittance is given by Ya =

(1+£:)1/23.74x10-3 Q-1, where &, is the relative dielectric constant of the substrate. Use of a

se]ﬁcomplementary é.ntenna greatly simplifies the characterization of the imbedding admittance.
In this experiment, we have used a circular-toothsd log-periodic antenna which was measured
to tlave a high antenna efficiency (~ 60%‘) and a nearly Gaussian antenna beam pattern.24 As
shown in Fig. 4(a), the antenna is self—complementary. We have used a fused quartz substratt:,
which has a relative dielectric constant g =3.85at millitneter wave frcquéncies.25 This gives
an antenna admittance of YA = 8.3 x10-3 Qtl

We have used a superconductmg mlctosmp stub w1th the stub made out of Pb-In-Au
alloy and the ground plane of Nb. As shown in Fig. 4(a) and (b) the stub contains two

sections, a narrow section 1 and a wide section 2. The widths and the lengths of the two
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_sections are: wi = 6 um, wp = 40-um, /1 = 135 um, and I2 = 260 pm. The phase velocity
within the microstrip line is v = 1/(LgCs)1/2, where Lg = (Lo/kW)[t + Aqcoth(t1/A1) +
Aacoth(ty/A2)] is the inductance per unit length,26 and Cg = keg€ow/t is the capacitance per unit
length.26 t and &, are the thickness and the dielectric constant of the insulating layer (SiO in our
case), t1 2 and A 2 are the thicknesses and the London penetration depth of the ground (Nb) |
and top (Pb-In-Au) plane, and k is a fringing factor close to unity. Using the designed values,
g =5.7,27 t = 3000 A, t; = 2000 A, t3 = 4250 A, ANp = 850 A,27 App-1n-Au = 1450 A,27 the
phase velocity is v = 0.30+0:01 c. The length of the wider section is 1/4 of the wavelength at
87 GHz, so the wider section transforms an RF open circuit at point A to an RF short circuit at
point B in Fig. 4(b).22 This two-section stub has a slower variation of the susceptance as a
function of frequency than an one-section open-ended stub, so the effect of the quantum
susceptance is more profound.28 The length of the narrow section is 1/8 of the wavélength at
85 GHz which transforms the RF short to an inductive admittance. The total susceptance of the -

two-section stub is given by22

B (@) Y, [Y, tan(Bl,) + Y, tan(BL)]
swb™ Y, - Y, tan(BL,) tan(BL,)

(11)

Where B = /v, Y12 = (Cs1,2/Ls1 2)1/2 are the characteristic admittances of section 1 (narrow)
and section 2 (wide) of the stub, Y1 =0.124 Q-1, and Y2 = 0.637 Q-1. We have shown that
the expression of the susceptance of the stub Bgyp(0) remains the same when there is a small
RF loss in the stub.29

. In order to measure the small signal frequency response of the junction/stub resonator,
the RF power coupled to the resonator must be less than 10 pW so for Go=0.01 Q-1 a =
eV/fim << 1 at 75 GHz and Eq. (8) applies. Consequently, we need a very sensitive detector.
Also, the frequency dependence of the detector must be known in order to separate the

frequency response of the resonator from that of the detector. We have used the internal
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detection mechanism in the SIS junction to measure the frequency response of the resonator.
SIS direct detectors are known to be among the most sensitive 4.2 K video detectors at
millimeter wave frequencies,30 and they have been proved to be very useful in measuring the
frequency response of milli_méter and submillimeter wave resonators.29 The frequency
dependent responsivity of the SIS direct detector can be easily calculated from Tucker's
theory.3 There is aisou a major advantage of this scheme: because of the proximity of the-SIS
detector to the resonator, there is no Fabry-Perot interference between them. The output of the
SIS detector as a function of RF frequency is the product of the frequency response of the
resonator, the spectrum of the. sburce, and the frequency dependent responsivity of the SIS
detector. |

The current responsivity Sy of an SIS direct detector, defined as the induced dc current

per unit RF power absorbed, as a function of frequency is given by,3

L4o(Vo + fieo/e) -21,, (Vo) + 1y (Vo - fit¥e) | a2

£
P, fiw I, (Vo +fie/e) - 1, (V,, - fic/e)

Here Py, = Re(IyV,*/2) is the RF power actually dissipated in the SIS junction. Note the
absence of the reactive quasiparticle response function Ixk in Eq. (12), which implies that the
quantum susceptance Bq does not affect the responsivity. As pointed out by Tucker,3 Sy(w)
reduces to a frequency 'independeht classical current rcspons.ivityﬁ (d2I/dV2)/2(dI/dV) at low
frequencies; and approaches a quantum limit e/fiw at frequencies so high that the voltage
associated with one photon hw/e is .largervthan the width of the current rise at the sﬁm gap
voltage. The induced dc cur'rent‘per unit available RF power PA in the SIS junctién as a

function of RF frequency is then given by, |

Al Y, -Y¥2, . _ : _ v

dc A ] : ]
De _g)[1-leA ] | . (13)
P, 1 AL | .
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Where Yy = G +i(BQ + 0C + Bgyb) is the total admittance of the SIS junction and the stub,
and Sy(w) is the current responsivity defined in Eq. (12). The second factor on the right hand
side of Eq. (13) is the RF coupling coefficient Crg defined in previous publications.2! Crp is
the fraction of the available RF power which is delivered to the dissipative element Gq. Eq.
(13) implies that the induced dc current is the product of the RF coupling coefficient CRp()
and the current responsivity Sy(w). Since Sy(®) is a smooth function of frequency except at
e(Vg - Vo)/h, the frequency dependence of the RF-induced dc current Algc is mainly determined
by the frequency dependence of Crr(®). Therefore, the frequency which corresponds to the
maximum Al is mainly determined by the resonance condition of the resonator, that is,
Im(Y)) = Bg + @C + Bgyp = 0. When this condition is met, the RF coupling coefficient Crr
has the maximum value.

We also need to know the power spectrum of the RF source. We have used both a
tunable coherent millimeter wave source which utilizes the Gunn effect3! and an incoherent
source from the output of a Fourier transform spectrometer (FTS). Calibration of the coherent
power incident upon the resonator ;Jvas difficult due to Fabry-Perot resonance within the
source. These resonances have sharper peaks than that of the stub/junction resonator so they
dominated the measured response. The short coherent length of the radiation from the FTS
eliminates most of this problem. In this paper, the resonant frequencies and the width§ of the
resonances of the stub/junction resonator were measured using the FTS. The coherent source
was used to study the shape of the photon-assisted-tunneling I-V curves.

The FTS used in this experiment is a far-infrared Michelson interferometer32 operated
in the step-and-integrate mode. The output spectrum of the FTS is the blackbody radiation from
a Hg-arc lamp at 500 C, modified by the efficiency of a 250 pum thick Mylar beamsplitter.
Since the antenna-coupled SIS direct detector is sensitive to only a single electromagnetic
mode, and the source is in the Rayleigh-Jeans limit, the power spectrum of the source is given
by a constant multiplied by the beamsplitter efficiency Npm, which is a smooth function of

frequency.2% For 250 pum thick Mylar film at 450 to the beam with a relative dielectric constant
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€ = 3, the beamsplitter efficiency Mpn is slowly increasing with frequency in the frequency
range of interest.29

The experimental apparatus used in this work is essentially the same as was used in our
quasioptical SIS mixer experiment.2! The output of the FTS is connected to the cryostat
through a 1-meter long, 11-mm diameter light pipe. The cryostat has a 25-mm diameter
window which is covered with a 25-um thick polypropylene window, which should transmit
alfnost 100 per cént at millimeter wave frequencies. Within the cryostat, the signal beam is
focused by a £f/0.85 TPX lens, and then further focused by a hyperhemispherical quartz lens to
a f/0.5 converging beam whose beam waist occurs at the flat side of the hyperhemispﬁerical
quartz lens, where the log-periodic antenna with the junction and the resonator is centered. The
quartz lens is heat sunk to the liquid helium tank through a coppe\r support. The temperature of
the SIS junction is estimated to be 4.5 K for an unpumped helium bath. Under unpumped
condition, the liquid helium in the cooling tank can last about 10 hours as compared to ~5
hours when the helium is pumped. The longer hold time allows us to improve the signal/noise
ratio by using longer integration times. Therefore, all the results reported in this paper were
obtained at 4.2 K bath temperature. This temperature is cold enough for our experiment since
our all-Nb SIS junctions have a relatively high T (~9 K) so the operating temperature is about
half of fhe transition temperature.

The SIS junction used in this experiment was fabricated at the National Institute of
Standards and Technology at Boulder. It is a Nb/Al»O3/Nb sandwich made using the tri-layer
process.33 The critical current density of the SIS juﬁction is about 500 A/cm?2. The normal
resistance of 70  is approximately matched to the antenna impedance. The I-V curve of the
junction shows a low leakage current and a sharp gap structure even at 4.5 K, as shown in Fig.
1(a). The sharp gap structure causes a dramatic peak in Igg(V) at the gap voltage Vg. This
peak, and the associated large values of curvature, are essential to observe the effects of the
quantum suséeptance as discussed above. The junction has been thermally cycled between

room temperature and liquid helium_température over 30 times, and the I-V characteristic has
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not changed. The junction area is estimated to be 2.5%2.5 pm2, which gives a geometric
capacitance of 0.28+0.03 pF if we assume a specific capacitance value of 45+5 fF/um?2.34 This
capacitance value gives a susceptance of 0.14 Q-1 at 80 GHz. Fig. 1(d) indicates that the
change of the quantum susceptance is as large as 0.05 Q-1 between 2.4 and 2.7 mV, which is
significant compared to that of the junction capacitance. Therefore, the change of the quantum
susceptance as a function of dc bias voltage should have a very noticeable effect on the

resonant frequency of the stub/junction resonator.

IV. Data Analysis

In this section we will discuss the procedures for measurement and the comparison
between the experimental data and the theoretical calculations. Two types of data will be
presented: One is the measured resonant frequency and the width of the resonance peaks as
functions of dc bias voltage. These data were obtained from spectra measured in the small
signal limit using a Fourier transform spectrometer. The other is the I-V curves pumped by a
coherent RF signal with sufficient power that photon-assisted-tunneling steps are clearly seen.
The frequencies of the RF pump is close to the resonant frequency of the imbedding admittance
so the effect of the quantum susceptance is significant in affecting the shape of the I-V éurves.

In both types of data, the quantum susceptance proved easily measurable.

IV.1 _Frequencies and widths of the resonance peaks

The interferograms in this experiment were obtained from the RF-induced dc current

Alyc as defined in Eq. (13) as a function of the difference between the two optical paths of the
FTS. These interferograms were measured in the step-and-integrate mode, with the integration
time typically ~1.5 seconds. The spectra were obtained by Fourier transformation of the
product of the interferogram and the apodization function.35 We chose to use an apodization

function with a form of [1 + cos (xt/xmax)]/2, where x is the path length difference and xpmay is
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the maximum of the path length difference used in the experiment. This apodization function
lowers side peaks of the spectrum at the expense of a moderate increase of the width of the
resonance peak. Fig. 5(a) and (b) show interferograms taken at two bias voltages, Vo = 2.350
mV, and Vg = 2.500 mV. At V, = 2.350 mV, the value of the quantum conductance Gq is low
as shown in Fig. 1(c), so the Q-value of the stub/junction resonator is high and the peak of the
resonance is narrow. Consequently, the frin ge amplitude decreases slowly as the path
difference increases as shown in the interferogram in Fig. 5(a). At Vo = 2.500 mV, the value
of the quantum conductance Gq is high due to the onset of the photon-assisted-tunneling, so
the Q-value of the stub/junction resonator is low and the peak of the resonance is broader than
that measured at Vo = 2.350 mV. Cohsequently, the fringe visibility in the interferogram
decreases rapidly as the path difference increases as shown in Fig. 5(b). The corresponding
spectrum shown in Fig. 5(d) shows a broader peak than that in Fig. 5(c). Besides the apparent
difference in the widths of the resonances in the twcft»spectra, the frequencies which correspond
to the peaks of the two spectra differ by a noticeable amount.

In order to improve the signal/noise ratio of the measured spectra, we have co-added
5-10 spectra measured at a given bias voltage. After normalizing these spectra to the
beamsplitter efficiency Npm, we obtain the resonant frequencies by least-mean-square fitting the
top 50% part of the resonance peaks with 2nd to 4th order polynomials. The degreev of the
polynomials in the fitting is determined by the asymmetry of the peak. The error bars on the
measured resonant frequencies are chosen as the frequency ranges in which the fitting
polynomials are over 90% of their peak values. The result is plotted in Fig. 6(a) as a function
of dc bias voltage V. Below 2.150 mV and above 2.650 mV, the signal/noise ratio of the
spectra is very poor due to the roll-off of the current responsivity Sy of the SIS direct detector.
Therefore, no data are plotted outside of this ran ge. The error bars are twice as lé.rge for Vo 2
2.450 mV as those for < 2.450 mV because the peaks are broader for Vo 2 2.450 mV due to
the sharp increase of the quantum conductance GQ. Fabry-Perot fringes appear on these broad

peaks if we keep the resolution of the FTS the same as for the narrow peaks. These Fabry-
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Perot fringes probably arise from the standing waves between the SIS junction and the TPX
lens. In order to average over those Fabry-Perot fringes, we have used a lower resolution of
0.3175 cm-! in our FTS which resulted in large error bars for the measured resonant
frequencies above 2.450 mV. The experimentally measured resonant frequencies clearly show
a smooth shift as the dc bias voltage changes. The most dramatic change of the resonant
frequency takes place within the voltage range from 2.400 mV to 2.650 mV, it changes from
73 GHz to 87 GHz. From Fig. 1(d), we can see that the quantum susceptance BQ changes
rapidly from cépacitiVe to inductive in exactly the same voltage range.

In order to make accurate comparisons between theory and experiment, we obtain the
theoretically calculated resonant frequencies using the same method used to obtain the
experimental resonant frequencies. First, we compute the RF-induced dc current as a function
of RF frequency using Eq. (13). Second, we convolve these computed spectra with the Fourier
transform of the apodization function which was used in the Fourier transformation of the
experimental interferograms.35 Third, we chose the same number of computed data points at
the same discrete frequencies as we did from the experimental data. Finally, for each spectrum,
we fit these discrete computed points with a polynomial with the same degree as was used in
fitting the experimental data. The theoretically calculated curve for the resonant frequency as a
function of Vg, is shown in Fig. 6(a) as the solid line, and it is in excellent agreement with the
experimental results. We would like to emphasize that the values of two key parameters, the
junction capacitance C = 0.275 pF, and the phase velocity v = 0.286 c, which were used in our
theoretical computation, are essentially the same as the ones we estimate from the geometric
dimensions, 0.28+0.03 pF and 0.30+0.01 c. As a comparison, the dashed line, which is
essentially flat and obviously differs from the experimental results, is the théoretically |
calculated resonant frequency as a function of V,, without including the quantum susceptance
BqQ. The weak voltage dependence of the dashed line is due to the change of the current
responsivity Sj(®) with V. Clearly, these results provide decisive evidence for the quantum

susceptance.
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We have also investigated the effect of Josephson oscillation on the shift of the resonant
frequency by applying a magnetic field to change the Josephson critical current. From Egs. (1)
and (2), we can see that the pair tunneling current also contains a reactive component, the sin¢
term. This reactive component from the pair tunneling may afso affect the resonant frequency
of the stub/junction resonator. If there is any significant effect from the pair tunneling, then this
effect should be changed as we modﬁlate the Josephson critical current with a magnetic field.
We did not measure any change of the resonant frequency within our experimental accuracy up
to a field corresponding to several quanta of magnetic flux in the SIS junction. This is probably
because, at bias voltages from 2.15 to 2.65 mV, the Josephson current oscillates-at frequencies
above 1 THz, which is completely shunted by the junction capacitance.

We discovered a strong signal at the output of the SIS detector at Vo = 0.158 mV,
which corresponds to a 77 GHz Josephson oscillation. The level of this strong signal is

comparable to the largest signal obtained in the voltage range from 2.100 mV to 2.650 mV

using quasiparticle direct detection. This detection is a result of a Josephson homodyne

detection in a self-pumped mode. In this mode, the Josephson current, which oscillates at

j/2n = 2eVo/h =77 GHz, which coincides with the resonant vfrequ'ency of the microstrip stub

resonator, mixes with the RF signal at the same frequency and produces a dc output. We found

that the signal level at the output of the detector is a very sensitive function .of the dc bias

voltage. At voltages below 0.150 mV and above 0.170 mV, the signal level decreases to
essentially the level of the broadband noise. Similar detection mode was réponed by Richards

and Sterling36, in which the Josephson detector exhibited a very narrow frequéncy response at

the resonant fréquency of a cavity. The interferogram obtained in this detection mode is very .

similar to those obtained using quasiparticle direct detection. The peak frequency of the

resonance is the same as the Josephson oscillation frequency, 77 GHz. We would like to point:

out that at this low bias voltage, the curvature of Ixk(V) is almost zero, as can be seen from
Fig. 1(b). So the quantum susceptance is negligible compared to that of the imbedding

structures. In addition,»the susceptance' of the Josephson sin¢ term is negligible at this low RF
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power level 8 Tilcrefore, the measured resonant frequency should be the resonant frequency of
the microstrip stub and the junction capacitance. The coincidence of this measured resonant
frequency and the calculated one without including the quantum susceptance (dashed line in
Fig. 6(a)) is an additional verification of the values of the junction capacitance C and the phase
velocity v which are used in our calculations.

In Fig. 6(b), we plot the 3-dB linewidths Af of the resonance peaks as a function of the
dc bias voltage. The experimental value of Af were obtained from the best fitted polynomials.
Thé solid line is calculated using the same apodization function used in the experinient. Again,
the agreement between experiment and theory is excellent. This comparison provides an
additional verification of the values of C and v in our calculations. The sharp increase of Af at
~ 2.450 mV corresponds to the sharp increase of the quantum conductance G at one photon
voltage fiw/e below the gap voltage V. Note from Fig. 1(d) that the quantum susceptance has
_the largest capacitive value at this voltage, Vg - fico/e, so the resonant frequency is the lowest as
shown in Fig. 6(a). There is some disagreement between the theoretical and experimental
values of Af at Vo 2 2.45 mV. This discrepancy arises because the quantum conductance Go
depen;IQ on the I-V curve around V, + fiw/e which, at Vo > 2.45 mYV, lies just above the sum
gap voltage. Our junction exhibits a négative resistance in this region due to the proximity
effect37. This is not correctly measured by our I-V curve measurement system. The effect of
the proximity effect on the high frequency response of an SIS junction is cﬁrrently under

investigation.

IV.2 1-V curves of the RE-pumped junction

Photon-assisted-tunneling steps appear on I-V curves of a pumped SIS junction. We
will focus on the 1st step below the gap voltage because this is the voltage region where an SIS
hetérodyne mixer is usually biased. Also, the quantum susceptance has a significant effect on

the dynamic conductance of this step when the RF frequency is close to the resonant frequency
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of the imbedding admittance.l2 Here we will provide an explanation of how the quantum
susceptance affects the dynamic conductance.

Following Smith and Richards,3® the dynamic conductance can be divided into two

parts,
_ 3 MVoVe)
D av,
&, AL (V, +nficye) oo |
20 S 2 do 9 N p |
] 2o I : 14
n;an(a) Vo r aan;_:“(a) (Vo + nfic/e) (14)

Where I3c(Vo, V@) is the dc I-V curve of a pumped SIS junction defined in Egs. (6) and (7),
I3c(Vo + nfim/e) is the dc I-V curve of an un-pumped SIS junction evaluated ét a bias voltage
Vo + nfiw/e, o = eV y/fim is the dimensionless RF voltage. » N
The first part of Eq. (14) is simply the dynamic conductance of the RF voltage-pﬁmped
I-v éurve. This is almost always positive except at near the gap voltage for a junctiori with a
‘pronounced proximity effect induced super-gap structure.37 We will ignore this case. The
second part is due to the change in RF pump voltage with dc bias voltage. It can be either
positive or negative depending on the bias conditions énd the imbedding admittance. In order
for steps of negative dyhamic conducténce'to occur, this second term must be negative and
with an amplitude larger' than the first one. We have measured about 40 SIS junc’tionS with
millimeter Wéve stub resoﬁators which show negative steps at frequencies slightly Below the
resonant frequencies of the imbedding admitfance; The resonant frequency ranges ffom 70
GHz to 270 ‘GH‘z.21 We have shown that for junctions with moderately sharp gap structufes,
this is pﬁmzﬁ‘ily due to the change of the quantum suscepténce as the dc bias voltage Vg is
changed.12 It is this systematic and consistent beha_yior that first drew our attention to the

possible effect of the quantum susceptance on the high frequency response of SIS junctions.
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The equivalent circuit in Fig. 4 can still be used to analyze the response of an SIS
junction to an RF signal with a large amplitude (o = 1). However, the quantum conductance
Gq and the quantum susceptance Bg cannot be éipressed in a simple fqrm such as that in Eq.
(8). They are now dependent upon the RF pump voltage Vu and must be evaluated
self-consistently at each dc bias point. Values of V@ can be obtained by using V, as a fitting
parameter in Egs. (6) and (7) to calculate the dc current of a pumped junction at a particular dc
bias voltégc Vo. The induced RF current I, at frequency @ can then be calculated from Eqgs.
(6) and (7). Gg and BQlcan be calculated from the real and imaginary parts of the ratio I/V,.

Two different imbedding admittances are used to illustrate general trends. One
imbedding admittance Yymp = 13.5-j6.0 mQ-1, is the estimated imbédding admittance which
includes the antenha, junction capacitance, and the stub at 73 GHz. This frequency is 4 GHz
below the resonant frequency fo = 77 GHz at which the imbedding susceptance is zero. The
other imbedding adnﬁttancc, YiMB = 8.0+j40 mQ-1, is the calculated imbedding admittance at
83 GHz, which is at 6 GHz above f,. Notice that in Fig. 7 (¢)-(f) the. shapes of the curves of
the quantum conductance and the quantum susceptance for both cases are similar to those in
small signal limit, as shown in Fig. 1(c) and (d). The quantum conductance is relatively
constant on a step, but changes rapidly betwéen steps. The quantum susceptance, however,
changes rapidly on the first sub-gap and super-gap steps. It is this change that is respbnsible
for the rapid change of the RF pump voltage across the 1st step as shown in Fig. 7(g) and (h).
When the imbedding admittance is inductive, Yymp = 13.5-j6.0 m€-1, the RF driving voltage
is larger at lower dc bias voltagé where the quantum susceptance is capacitive; and smaller at
higher bias voltage where the quantum susceptance is inductive. Conversely, when the
imbedding admittance is capacitive, Yymp = 8.0+j40 mQ-1, the RF drive voltage is smaller at
lower dc bias voltage than at higher bias voltage. The large negative values of da/dV, in Fig.
7(g), caused by the effect of the quantum susceptance on the RF drive voltage, is responsible

for the negative photon-assisted-tunneling steps observed in most of our experiments.
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