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Abstract

We study phase'tran51tlons in the lattice version of the
Abelian Higgs model -  a model whlch can exhlblt both spontaneous
symmetry breaking and conflnement. - When the Higgs charge is the
basic U(l) unit we find that the nggs and conflnement reglons
.are not separated by a phase transition and form a single homo-
genous phase Whieh we call the Total Screening_phase; The model
does not undergo a'eymmetry restoring phaee'transition.atdfinite_
temperature. | |

If the Higgs_cha:ge=is some multiple of the basic unit the.
model follows the conventional wisdom: there are 3. phases
(normal Higgs and conflnement) at zero temperature,'two of whlch
dlsappear above somevc:;tlcal p01nt.' We apply the lessons learned
from the lattice Higgs'model to understand the behavior of the weak
interactions at high temperature,e.. |

In a long appendix we give an intuitive phySical picture for
the Polyakov—Sussklnd quark llberatlng phase tranSLtlon and show
that it is related to the Hagedorn spectrum of a confining model. -
We end w1th a_collectlon_of effective fleld theory‘approx1matlons

to various lattice theories.



I Introduction_.

Early work on_gauéé_thedfies nt finite_temperéturel was
devoted érimarily £o the study of Weék.interactions. It was
afgued that above a nriﬁical temperatnré, weak intgraCtion
symmetry breaking wQuld disappea:_and_thé gau§e“bpsons would
become maséless.

This picture of "symmétfy restoration" when combined with
the curnent folkloré of confinementnin_non-abelian gauge theories

appears to lead one to the strange conclusion that electrons and:

‘neutrinos should be "c¢nfined".at7high temperature. Recently,

however, Polyakovz:and'Susskind3 have shdwn_that confinement

itself disappears at high temperature. A naive analysis would

" then lead us'to;believe_ that the fate of weak interactions at

high temperature depends on the relative sizes of the critical

~ temperatures for symmetry restoration and "deconfinement."

In this paper we will investigate the inte:relations bétween
the Higgs mechanism and confinement in the‘simplest model which

exhibits both phenomena; the Abelian Lattice Higgs model in four

 dimensions. We will find that all of the naive arguments cited

above are totally misleading.

A proper understanding of the,finite temperature_behnviornof
the Higgs model hingés on a reinterpretation of tne.physics of the
modei ét zero temperature. In particular we willvsnow'that the
zero temperature phase diagram of the model depends crucialiy on

the charge q of the Higgs field. If g = 1 (the fundamental
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representation of U(l))_thgfe'aré only two phases at zero
temperature. The first is.é "normal" phase with a méssless
photon. The second phase extends from the region Qf.coupiings
where we expect that the-Higgs mechanism should be operative
(small electric dharge;large,cléssical‘vacuﬁm_expectation.value
of the Higgs field)into the region'wheré we'expéct confinemernt.
Thus tw§ apparently differentvphases are“analytically connected.
We éall this Higgs +'Confinemént region the Total Screening (TS)
phase. |

The analytic connegtion between the “ﬁiggs“ and "confining"
regions of the TS phase ;ndicéteé that a;l physical'particleslin. 
the Hiégs regioﬁ are U(i)‘siﬁglets. We will later arggé.by
analogy that the electron‘ana.neutrino.ih the Weinberg—Salam
modél are actually SU(2)L singlets, [i] thus solving the "péradok""
mentioned above. _ “

If the Higgs charge g is_not equal to one then the Higgs.
model has (as one would néively expect) three phéSes at zero
temperature,_a normal phase; a confined phase and a‘Higgs phase."
The transitibn between'confined and'Higgs phases is asgociaﬁed |
"with the breakdown of a_ce_rtain.zq ?ymmétry.

‘For T # O the g = 1 model has no phase transition either.out
of the normal §r the TS phase. We conjecture however that the
trénsitioh (in coupling'constant spacé),bétweeh'these two phases
disappears above some finté T.

The behavior of the g # 1 models is totally different. Both
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the Biggs and confined phases undergo transitions to a plasma

phase above some critical temperature.

The plan of this paper is as follows. In section II weé study
the 4 dimensional Higgs model and demonstrate the phenomena dis-

cussed above. We use the method of duality transformations which

‘has been applied to_the_zéro temperature Higgs model by Einhorn

and savit.® Qur T = O results should be compared to théirs.

Section III is devoted to the Weinberg-Salam model. We use analogies

to the g = 1 Higgs model and sOmé uhpublishédvarguments of Susskind
Il], to elucidate.tﬁe high temperéture behéviOr of ﬁhis model.
In a long appendix we give a new phyéical interpretation
of the work of Polyakov2 and\SuSSkindsion deconfineﬁent at finite
temperature and relate it toﬁthe'Hagedérns,specﬁrﬁm a@d some old.
work 6f'Cabibbo and Parisi.6 We end up wi;h‘a detailed list of
field theories apprEXimating lattice'gaﬁgé.#heories at both zefo’
and noh*iero'temﬁeratureé,f o

 our aiscusSion,of the eXiSténcéfof'the TS phase in the qv= 1
'Higgé“model'isvnbt partiEularly rigordus.'wﬁdwever, Fradkin ahd_u
Shénker7 have used.ﬁhe methéds_of Osterwéidef and Seiler8 to-érove
the absence of a transition between the "Higgs" and "confined"

phases'in a rather general lattice gauge theory with Higgs fields,

" in the fundamental representation of the gauge group.

II. The Four Dimensional Abelian Lattice Higgs Model

A, Zerd Temperature.

The Euclidean action for the model that we will be Studying

is
_ ) (cOseuv(i)-l)?fz_z(cos(Aux(;Y-qéu(x)) -1) (1)
xr”l‘v X, U '

__ 2
$=-=
e
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eg is the angle valued U(1) gauée fieid, apd 8 1v its.lattice curl.
' X is the phase of the Higgs field, whose magnitude has been frozen
at £. g, a positive'integef_is the Higgs charge in units of the
fundamental U(1l) charge.: |

We would_like‘to stress the ahélogy betweén (1).andvthe_a¢tion

for a two component Heisenberg.ferromagnet (O(2) non-linear ¢ model)

Sm = - B Z cosA ¢ (x) - h cosq¢(x) o (2) -
X,u H . - '

If we define the variable_qau@:‘e_u - é Aﬁx we seévthat S-is a

sort of generalization of-‘Sm to tensors Qf one'highei rénk. For
g = 1 (2) is a ferromagnet is avconstantJexternal field and is
knowng nct to have‘é phase transition forvfinite non~zero B and
h.’kWe will see that the énélogy betweénvthe two models is not
exact, ((15 does have a transition) but is ndnetheléss inst:uctiVe.

To analyze (1) we introduce Fourier transform variables via

1 1
e S N ST |
o = e ewW (_2_) o (3)
qu | | uv e .
£f7(cos (A, x=g6, )=-1) _¢2_ 12 (A x-qg€ ) y _
e ¥ S R P, (£ - (4)
HY -

We will also replace the Bessel functions in (3) and (4) by

| | _2
Iz(z) + e’ e 22 ' - (5)

This replacement (valid as an approximation for small ezland large f)
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defines the Periodic Gaussian (PG) orvillain version of the

Higgs model. The physics of the't&o models is similar_and the

PG version is easier to analyze.

We can nbw write the zero-tempéréture partition function Qf
the PG model as | |
| v 2
7 =-J 2%, ay S = T BRIV

2% 27 g'e e T S(AR IO et

1
N
N
]
—
[ e ]
>

(6)

The § symbols'in (G)Vafe pfpdugts'of-Kronecké:S's of.ﬁheir
argument$ éver'ailvspace‘;ime points_and'unsﬁhmed indices. They
result from integrgtion over'eu ahd x.b | | ]

We examine Z first in the'limit_fz % ., This extreme Higgs
limit has been studied previouSiy by‘PeSkinllfo: a,@édel in which
eu was a nonﬁcdmpact Abelian gauge f;eld. . He arguea that in this
case (which he'célLed a Frozen Supexconductor) there is a phase
transition at a finite v_alu.e‘of'e2 béﬁwéenVHiggs and normal vacua.
Naivély then we woﬁld expect the séme transition in thev¢0mpact
case followed by a transition to a cdnfiping rhase at a larger
value of e2. | |

Our naive expectations: are wrong however. If g=1 and fv= ©

we can use the function in (6) to sum over gu and obtain
2= ([ e7 ) A
12 . . - :

The exact ground state energy dénsity of the f'=>w model is’ thus



. o . =& ¢ S :
F =-61n 7 e'2_ o | (8)
L= - . c o ,
It is analytic in a neighborhqod of the pdsitive.e2 axis, which 
indicates that this model has no phase transition. |
The expansion of this free energy around f = « is analdgous
to a large field exéansiqn for the ferromagnet (2). Such
expansions are known to have a'finite fadius of convergence.
In fact,»Fradkin and Shénker7 using technigues of Osterwalder
and Seiler? have proven the domain of analyticity shown in |
figure 1 for the_free_energy_Ofnan SU(2) 'iattice Higgs model
with Compact_éauge éroup ahd Higgs field in thé fundaméntal
‘representation. |
The absence of a transition;between-a "Higgs" and a
"confining” phase in the g = 1 Higgs mode; can be partiélly
explained by the observation'ﬁhat therevis no order parameter
‘which distinguishes these phasés;v We usually characterize the
.confining phaée by the area law forvWilson‘slloo?-intégral, For
g =1 however,'any exterhal éhérge can be screened by the |
quantized charges in the model'and_we expect perimeter failoff
even in the qonfining phase. Similarly we can test for the

éxitence of a Higgs phase by finding an area law for the 't Hooft

loop integral.lz[ZJ, This measures the force law between widely
separated static‘monopoles of magnetic charge %; . But Compact
13,14

QED contains quantiied monopoles of precisely this st:ength
so the 't Hooft loop can be screened and will fall off according

to a perimeter law even in the "Higgs" phase.



The absence of.an order paremeter means that we cen findv
no Greeh's'function;Whose large distance behavior is different
in the two ?ohases." Thus the system can'be placed in a finite
volume without dlsturblng the physics, and finite volume systemss
have no transitions. | |

We can see the relation between the exietence of order
?arameters and phase transitions byvturniog to the.q = 2 model.
Here the unit charged Wilson loop cannot be-ecreened (if charge -
is'a good guantum nuhber). Furthermore, since the‘smellest
electrlcal charge in the model 1s 2e we can lntroduce external
monopoles with charge.g w1thout v1olat1ng the Dirac quantlzatlon
condition. Such monopoles cannot be screened.v We thus expect
a transition in the g = 2 case even for f‘2 -

In faot, if”wevtakef2j+ © and g = 2 in (6) ‘we can suﬁ o&er

2, and obtain
zZ 1 e ST 888, mod 2) (9

We parémeterize the cOnStraintvby,iotroducing a_two valued

variable eu(= O,7). Then

' 2 uv _ : _'.. .
Z e g coszuv(x)euv(x)._ o (10)

6bV
e



-10-

is the curl of & and a and b are given by

In (10) 8
1 E+0 ' ‘
1 2 2 . v
b =3 1n (E° -0 R | ~ (11b)
and
E | "é ? | - o
= z e | | _ | (1llc)
0 ¢ even ' ' '

odd
Up to a multipliéative constant then Z is the partition functién
of a 22 lattice gauge ﬁhebry. The 22 gauge theory is khown%s
to have a single finite temperatuxe phase transition. _The\two
phases are sepa;ated’by thé behévior of the_Wilson loop.

This ?easoning”eXtends-to all g > 1. The f = = chargé q
Higg; model is equivalent to'alzq_gauge theory._(ﬁofe precisely,
“eqg. (9) is equivalent‘aléo_tp 'the~Villain 22 gauge theory,.for,
g > 2 eq. (9) gives the Villain Zq gauge'theory). .However, for
sufficiently large g the Zq theory ac#ually has three phases,
one of which céntains a massless photon;;G

To understand the Qualitative nature of the phase diagram .
of the Higgé model for finite f we feturn toveqﬁation (6) and -

apply the techniques of reference (13) to obtain the following

form for the partitioh function

Ly (212 - .
(e % (=) Zmu(r)D(r r,)mu(# )
~x(qe)?ze (r)D(r-r") L (x")
e : _
. ' -1, v
7 = z S(A m )S(A glv ) 2 E,ZHl;mueuvl- .n\).(n'.A) péXQK , - (12)
U, U ' . - z2
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where n  is an arbitrary unit vector and

- A D(r-r‘) = ér,r' . (13)

- Equation (12) describes a field theory of spin zero.charges
interacting with spin Zéro monopoles via a noncompact gauge

field. The electric charges have a mechanical bare mass and
short range repulsive interactions,~both‘proportional-to Jf,
. S S - .

To see this we can use the exact transformations of

blPeskinll or the more intuitive (but less correct) argumehts'of
tone and Thomasaand’Eofster,;7v_

These arguments proceed by writing (12) in terms of a non-

compact abelian gauge"'ffield18
S . "IF 92 . .
z = |.dF dB S(8.A) e BV T s(a m ) 3(A &)
A TR VR VA a2 St TR
K, W :
i . Ay 2w 'L V=1 .
% ej?fTZFuv(quAv 3R e SpuacMm (208 m) (14)

ol 2
iZA gel "2;§ U
Xe " e "

‘The sums over & and m can now be done for fixed A We do the
sum overvgu'first. A sum over a'coﬁserved integer valuéd current
can be thought of as a sum over closed random‘walks with the

following provisos which eliminate double counting:
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1) We must ellmlnate walks that backtrack.
2) L step walks are. welghted by “% since two walks

which tread over the same path generate the same current

The current of a walk is

zubd_==L§l_[xu(L)fxu(L-l)]6($+xu(L)) | ‘f ' ."'v_ :_ (15)

3) The sum over.discdnnected Qalks does not;exponentiare
the connected spm"sincevconfigurarions in which two
disconnected walks‘bver;ap give the same
current as a connectéd link.

The authors of ref. (17) ignore constraints (1) and (3).

| They also approximate theeself-actienttermaahd assume it is

proportional .to thellength,of_the,walk.A For the Higés field

this self-energy'has a f_l_ cOmponent and anether7component

2
2f
~from the short -distance electromagnetlc interaction of a single

looo, this is % qze2 D(0). For the monopole loops only the -

electro magnetic term exists and it is —(21)2 D(0). For brevity

we will denote this term by exp(-wif L) in thevfollowing'treat-
' . 2f . .

ment
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Then they define _'-

L.

2L 4 quk (x () (x, (N)-x (N-1)
2f N=1 _

K(X,X' 'L) = z : ) . .
all L step S o . (16)
walks going ' ' ' '
from x to x'

K satisfies a recursion:relation T
K(x,x',L) = 0 K(x,x',L-1) an

with 0 a certain finité difference operator.
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Also note that .

K(x,x',0) = 6x,x' | | A

‘The sum that we want to ‘evaluate is just

=1 X . : : -
. | a9
= exp % tr 0% = exp - tr 1N(1-0)
L=1 ' : ' ’

det™ ! (1-0) .

- The authors of reference (17) show that,the_continuum limit of

‘the operator (1-0) is just
—2-+ D (0)q e2
1 2 2 -8 - R
: .a ' ‘

Writing the determinant in terms of a functional integral over -
a complex scalar field we see that we have a Higgs model as

claimed.



~13h-

The loops-éf electric cﬁarges are thus described by
a complex'scalar fieia of baie'mass mZ, where ézmi equals the
tefm exp(;if +,%D(O)qzég) - 8{ In a_similar.manner one derives‘
that the loops of magnetic:monopoles'aré described by a complex
scalar field of bare mass mi; where,mi.;s giv§n by exp(;if)—B.

The repulsive self interactions necéssary'to stabilize (20) when

1

252

< ln8 are supplied by provisos 1 and 3 and the'cu:rent—

current interaction in (1l4).

We can easily imagine three possible'phases for model in
(14) at zero temperature.

I. A "normal" phase with no large flu¢tuatiqns_of either

‘electric or magnetic. charge. 'The;photon will have_zero mass in

this phase. The Wilson ldop will’fall off like the circumference

with non-leading "Coulomb" corrections.
‘ g "Cc ,,

II. An eléctficially supe:conductinq phase with large
electric Charge»fluqtuatioﬁs and a massive photon. Magﬁeiic
charges will be confined by linear'fbréé laws_(bufiﬁhe_linear
force between external monopoles will bé'écreened at_large
disﬁancesfby monopole pair cfeaﬁion)._ Thé_Wilson loop will
fall off like the circumferénce with Yuka&a corrections.

III. The magnetic analog of II. The'photon‘still acquires
a mass but this timg through its covariant defivatiQe'coupling
to the magnetic monopoles. If g > 2 the lihear force between
odd integer valued external charges will not be screened and the

apprdpriate_Wilson loopr will £fall bff like the area.
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'The existence of phase II is inférred from'the small e,‘large f
coupling of the theory aﬁd that of phase III from the'lafée e
behavior{ in both cases‘the sémiélassical-arguménts’aré appropriate._
The prqof of the existence of the normal phase needs to be |
strengthened, this has been aone for larée'q and»f.v For the

g =1 case,vone can't piobe thé.system semifélassically. For

small values of g it also turns out that it is possible for both

- masses ﬁo_be negative. When £ .+ « one'cén shéw,_usiﬁg-self—duality,
that this does not resulﬁ in a new phase? but réﬁhe:vis pért

of the Higgs.phasé. | |

‘For large f we would expect to be in either phase II or
2

phase III depending on the #alué of e”. .What we have shown above
"is that if g = 1 there is éctualiy no transition betweén these
two "phases." All physicai quantities (and their coupling |
constant derivatives) Vary continuously,as a function of e2.
For g > 2 vthere is a transition atrlarge'f and we can verify
that the_lérge (small) ez.phaSe is phaseHIII (II) by cél;uiatiné
the Wilson lobp-as has been done by Einhorn and Savit. |

We can find the critical value 6£ e? foﬁ f = » by noting‘

that in this limit the partition function [12] is symmetric

under interchange of 2u and m . This means that

2 4ﬂ2 - :
Z(e” ,f==) = Z( =5 f=w) ' - : , (2l)'

g e

For ¢ = 1 this relation is satisfied by our exact expression'
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for 2, equation (7)»(apply the Poisson sum formula!). For g = 2
we know there is a single finite e2 transition so it must be
given by the fixed point of (21)

27
q

The key to determining the nature of the phasevdiagram

) L
v.ec(:oo) =

er small f is thé’question.of the existehce of a region of
normal phase. We now show that such a region exists fof 
sufficiently small e2 and f£. !

- The leading behaviqr of ﬁhe Wilson loop »forvsmail'e2 ahdv
£ isvpbtained by ignoring all mondpqlesvand'all Higgs éurrents.
It is simply | “ | |

Ju(r)”DKr—r')‘Jp(r')v o | (22)

. o 2 o
- = X
r,r'

where J_ is the current along the loop.

This indicates the existénce of a maSsleéé photon but we must
be more Carefﬁi and show that.thé cOfrEctionS to [22] fcr.small
but finite e2>and f;do not generate a small mass. The leading
corrections are obtained by allo@ing Higgé apd monopole currents

of strength +1 which flow around_a single box on the lattice.

That is we allow currents of the form

Sx,x +.6uK6x,x0 + A = dpkdg,x0_+ K

HA 0



= Du_vAvéx,x0 o o : L s (23)

i

= (3 S

PLv uelur 7 S o (24)

vefun)
This is the current of a four'dimenéional Euclidean "magnetic“
dipole. In three dimensionalﬁlanguagé it'has four possible
interprétations. First sugpose”Ju:is an. electric current. If
X, < are both spatial indices this is a Static,magneticvdipole;
if one is a time index Ju represents the history'of an electric
pair creation and reannihilétion. If Ju is a magnetic éurrent
there is a dual interpreiation. | | .

We can now proceed in,imitation of Polyakov andiéonStruct
an effective Lagrangian for the interactibn;of'the elecﬁio-
magnétic field with a éas of dipole loops..va we ignore the
effective repulsive interéctions betweeh oppositely oriented
looés which must be inciuded to avoidAdpubIe counting it is
easy to construCt.sﬁch.a Lagrangian, - It has the form

<L = - i—-z- FWZ f.G(sz) » \ | , o (25)
where G is a local function whose précisé'struéturexdoes_th
concern us here. The importantvpoint is that.it is a.functidn

only of F and thus contains only a renormalization of e

and
derivative couplings;v It cannot produce a mass for the photon.
‘The Higgs effect and/or Debve screening can occur only in the

presence of electric or magnetic monopole sources for the
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electromagnétic fiela [3].

We are now in a position to give a gualitative description
of the zero temperature phase-diagram of the Higgs modgl. |
Fix f and define elz(f) as the coupliﬁg below which phase III
ceases to exist and'ézz(f) as the coupling abové which phase II
disappearé. | |

for f< some fé:ﬁe.kndw that ezg(f) = Q idegticgllylfor even
in the e = 0 model“there is no cdndensatidn of the Higgs field
below fc. elz(O) is_hOWevgr known to be'nonzerosand was calcu-
lated approximately ih ref. 13.

How will the couplings evolve-és‘f increases? Consider
first elz(f).; Turninqun f”implies intrbducing charged sqalar:
particles into the theory. These will'ineViﬁably polarize the
vacuum and réduce the éffeétiVe value éfhez, This effect

increases with increasing f£. This means that the effective

monopole.coupling is strengthened.and therefore the monopole

self energy is réised;"Thé tranéition-bétweeﬁ phase_I'and.iII
occurs when thé renéfmalized,maés of the mohdpole.(the mass
rele&ant for travélling.many lattiCeispaCings) goes to‘zefo.
An enhanced self é@érgy pushes up the renormalized mass. Thus,
to get back tp the transition point'we must-reduce the seif
energy by increasing the bafe ez;, We the:efbre.éxpect e, (f)
to be a monotonicaily_increasing function of f} |

To undérstand the behavior of ezz(ff it is best-to thihkgof
how f would changé as a function of e2. First consider the pure

electric-super conductor without monopoles. Increasing e2
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increases the self energy of the nggs partlcle and works against
condensatlon as before. Thus f must be increased with e2 to
.s-ay on the' phase tranSLtion line. The primary effect of rein~
_troducing monopoles will be to push up the effective value of
e2 (by screening j;), maklng the curve for f (e ) steeper. We
conclude that e 2(f) is also a monotonlcally increasing functlon
of £. | |

At this.point our disCussions of charge one and chafge two
fields diverge from each other. For qb= 1 we have argued that
above some finite value of frthe sYstem has no phase_transitions.
A phase diaoram compatible with‘this.picture‘is shown in figure 2.
For g = 2 all we know is that el?(?) =de22(@)='n . We beiieue
that the normal phase wili_in fact be abeent for a finite range
around 1. 0. The phaee diagramlwouid then look like

£
figure 3. Of‘course’the line AB on this diagram might be of

of 1

<

zero length. |

The transitions at e, (0) is-ﬁhought tovbe'second otderyl
and that at'e (f, ) is known.to.be._ The second of these is
however unstable against addition of a noncompact electrodynamlc
coupllngl9 and becomes first order when such a coupllng is |
introduced. ,Coﬁpact'electrodyhamics differe from nohcompact
electrodynamics at lo'w-e'2 only by thevinclusion of,vefy heavy
magnetic monopoies. Peskin20 has argued that the first order_

nature of the superconductor tran51tlon is due to the change in

the number of degrees of freedom of the photon when it acqulres
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a méss. This is uhaffected by the inclusion of monopoles sb
we expect the'lowervliné in figures 2'ahd‘3 to be_a line of
first order‘trénsitions. |

| On thé other hand we have already argued that for small £
the major effect of the Higgs field is a renormaliiation of éz.

Thus the transitionvat elZ(O)fis stable and the upper line in

figures 2 and 3 is a line of second order transitions.

The nature of the line AB in figure 3 is a bit mdré_probleﬁ-
atical. To see what is at issue let us take g sufficiently la:ge»
that we havé two,transitiqns iq tﬁé»f = é_mpdel;ls The phase :
di;gram will then look:likejfiguré‘4;_.

The pair of trénsitions.at.f.éiﬁ‘are both expectedth bé
second order.ll Héwever the:IOWer l;né ¢f'transitioné is first.
order for finite nOn-zerd.f_while the uéper linevremains second ordér
(it representsftranéitions from:a magne£i¢ superconductor phase
with fmagnetié = ® intp the'normal phase ).~ ‘Byvﬁhe Fime-qlgets
to two these two,lihes coincidé along~thé'ran§e AB and it is
not clear what ﬁhe brder §f the transition is. Of course, if AB
has zero length we are spared.thisfqﬁeétion;b
B. Finite Temperéture. |

The finite teméerature behavior of a_system can be studied
in the path integral formalism byvrestricting the_léﬁgth of the
time axis to an inte:vél'of length %. Eqﬁation:(7)ﬁfor_the'
partition function of the q'¥ 1 f2 = o Higgs model is an analytic

function of the volume of the lattice and thus of the temperature.

This indicates that the f2 = » model has no phase tranéitions
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as a fUnctionléf the températurebbut the argument'is not
cbmpletely-convincing since our time axis is diSc:étg._ We

'~ therefore turn to a conﬁinuous time, Hamiltonian formulation. -
| of the'theory. The.Hamiltonian'for the g = 1 Higgs model in
_,thebeo = 0 gauge is} | |

2 L 52

e? ;2 LT cos(axd 1 g
H=- =) - - cos (AX8) = —5 ) —
| 2. %982 e 0 T 2£2 © ax?
- % 1 cos(h;x=98;) | (26)

Physical states are constrained by .

2 .2
38 IX

(A - yly > =0 . (27

'Alternatively we can make the standard change of variables

(Stueckelberg transformation)

B=0-8x (28)
¢ = X ’
Then (26) and (27) become
- 22— z . i—:z- - —-l—'z- z COS(AXB) - -}'5 z (Z"?L'_‘: - %’3)2
3B 2e - 2f B
- ___2_ Z ‘cos B (29)
and | _
9 o -
35 v >=0 | (30)
Thus we can study
H= - %T ) 3*2 - “ij ) cos(AxB) - —if ) (2 33)
. OB 2e ' 2f
£2 >
B (31)

= - = ] cos
with no constraints. '
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The TS Phase_exiStSVWhénever e-2 or-"bf2 is large;,'TQ
study finitévtemperaturé behavior we break this region up into
three | |

a) e” >> l‘ £ << 1: In this region we can drop £he
two cosine terms in (31) and'obtain a model studied.by Sﬁsskind.
He showed that-the'partition function of this model was equiva-
lent to that of an Xy ferromagngt in an external,field. The
ferromagnet has no phase_traﬁsitions.v |

b) e2 >> 1 ‘f?.>> 1: The operatdr E(K~a/sa)2 “1ls not
bounded, but it is relatively bounded®l by | 32/382 thus for
largé f2 we can droyvit from the Hami ;onian. Sihilarly, the'

J cosi xB term can be dropped for large ez; Thus the

Hamiltonian ‘is approximately

82 = 32 o f Z = ) o . N
H=z-=) <= = =) cos B o (32)
: 2 ‘332 2 ) :
and
tr e SH - (tre—eh)3v._ . o .v  o (33)

where h is the one-dimensional guantum meChanical Hamiltonian:

e2 2 fZ o
h = - 5 g:z - S cosd : | : (34)
The free énergy density
e, = - 3 ~6h -
P = ‘vﬁ%ln tr[e~BH) = 7 1n tre (35)

is clearly an analytic function of 8.

c) e2 << 1 £2 5> l: This is the most diffiCult-region to -

analyze as well as the most interesting. The potential terms -in

'
4
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the Hamiltoniah:(Bl) are very large and we can perform a semi-
classical analysis. All the minima of the potential are of the
form .

B = 2nﬁ

.gnd.are related to B = 0 by the periodic éhiftSHWhich are
symmetries of the Hamilﬁonian..'This means that we can include
all hinima by égpanding'only'a:Ound B=0 but COnsidéring
periodic wave functions. | |

‘We can enforce.periodicity.by writing the partition func-
tion as: . | | |
H 3

z= 7 J a3<B + 219 |e BH| B + 2rg> (36) -

s
P.9q
B can now be considered a noncompact variable. Apart from
an infinite.constant.(3a‘is equivalent to: |
Lz = Zf'dﬁ(x) < B+2mm |e BH| B> | | (37)
where we have used the periodicity of H}

At this point-we can make our semiclassical approximation

by-expanding H around B = 0:

2 .2 L2 . 2
gz - %T Q:E._ —i5(A-3:) + —li(AxB)z + %T E? (38)
' 3B 2f B 2e

z = ) 'J' d B(x,t) e ' : (39)
m all paths from : '
B to B + 2mm
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&he:e L 1is the Euclidean Lagrangian. for H.'kL is_quadratic

. -> » 13 »
in. B and its derivatives.

-

m

Now let '§c be the classical path that goes between

C and 2wﬁ(x)r in "time" R.: Any path contributing tO (39)
can be written as
—n -.b’
B =38" + B | . (40)
c . . .
where B_ is periodic. 'Since §c is a stationary point and

L 1is quadratic

j L(B) = J 'L(BC) f'J L(B,) ‘ (41)
o o) B - Yo < L
The integral over §p' can now be done. It‘CBntributes a

factor to Z which is analytic in. 28 - and independent of m.
Thus any non-analyticity present resideS-in

N - B : .
- J L(BY) | | |
z =} e ‘o R S (42)
O om(x) .
TheVHamiltoﬁi;n (38)*can-be~writtén

H-=§l-_’(pxp'+Bv'B)' . o (43)

where p 1is the canonical momentum to B anéd K and V are

given by
| | = 2 - 1 : : | '
Vij ._ £ 6ij + _e2'(AXAx‘)ij . | , (45? 4

Summations over spatial position and vectcr indices are implied

in (43).
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The Euclidean Lagrangian for (43) is

L=22-..1'3K'flé+ BVE . (46)

N

It leads to the eguations of motion

B = KVB j . N
The solution satisfying B(§,o) é Q,v B(x,B) = Zwm(g) is:
B(x,t) = 27 sinh (£vKV) n _ _ (48)
sinh (BvKV) : '

In (49) VKV is an operator acting on m.

The classical action of this solution is

1 S v L] -— Ld ‘ A ’ ; ) B ; - 1 ..v
J = Bx713 + sve = Zrex 818 - 1 f. (BK"1B - BVB)
o . 2 2 o2 g

212 m X! VRV cothBVRV m (50)

[\8)
o
=
'-—l
fos )
®
]

Returning to a more c1v1112ed notation =
P 2 m; (x)[K /KV coths/RY ]lj(x y)m, (y)
-

which is the partition fundtion"offa gas of dipoles interactingv
via a complicated tempe:aturé'dependent potential.
A short calculation gives the explicit form of the Qperator

in (51). We obtain

'—*Z+'m (x)[D (x-y)(é 57848, /A ) + D, (x-y)A A /A ] g (y)
7T = e X/Y . o o ' (52)
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where
1 (" YRR IR T ST -ipe%
D, (x) = & j &2 / e?£% +|%%(p) | coths Yelf® +|K (p) |e 1P°¥
e I (2m) o . _
o . | | (53)
T 3 Y g N ._ - ' - ‘ﬁ_'.-*.*
D, (x) £° J o _ (/222 + B ) Lootna/e?e?+ (%2 (p) | 1P X
. (27) : ' S ' S
ip.
= i _
Kl(p) = e 1
As long as ezfz > 0 both D, and'D2 are short range and we
can probably approximate them by their values at the origin.'
Then 2z becomes |
_ -AImZ  +BI m(x) 3% A(y)-a® (1/2%)
Z = ) e e - ‘ (54)
‘m, . . : '
i
with
A = D, (o) _
1 (55)

B =D,(0) - DZKO) - "
This is thevpartition“funCtidn}for-a-gas of dipoles.
A and B vare,both large (= l/ez) 'and'positiVe.' Further—-

more coth8x 1s a monotonically decreasing function of 8

[ & 5]

(for x > 0) blowing upvlike 1/5 as ~ 0. Thus the éfféctive
density and temperatuie of our dipole gas are léw when the real
temperature is low (8 >> 1) and they get'lower'és the real

‘ témpeféture is raised. There are‘to-our knowledge no ph;se
transitions in the dipo}e.gas in this regime. It éhould'be'
possible to prove this rigorous;y by showing that the low

density expansion_is convergent buﬁ we have not attempted toi

'do so since the dipole gas is only a crude approximation to the

Higgs model.’
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Our analysis may be questioned for very small values of

2.2

e £ for there the range,of Dl and’Db' bécomes verY'long.

2

However, it 1s always true that we have a gas of objécts (with.
ccmplicated interabﬁidné}'whosevdeﬁsity is proporticnal to'
e_l/e2 at low température.énd‘eveh smaller at.high'temperature.
Furthermoré the combinétion 'Dip) 4'D2(p)' which multiplies:the
l/p2 Coulomb singularity in (52).is not singular even when
e2f2 = 0.  Thus at wo:st‘the'long_distance behavior of the
forces is like tﬂat in the'three4diméﬁsional'Coulomb gas. We
therefore expect that theré will be no.phase.tranéitibh eﬁen.

for small e2f2.

A more serious problem.is the gquestion of whether our semi-

classical approximation is sufficiently'good to see a phase
transition if one, in fact, exists. This is a very hard ques-
tion to answer. However, we have ¢pnvincedvourselves that an
analogous treatment of thé Higgs model with a honfégmpact
electromagnetic field does show evidence of a transition. The
transition appears to be associated with the condensation of
Abrikosov flux tubes as was to be éxpected.

To éummarize, We have shown (with varyihg degrees of rigo:)'

that none of the coupling constant regions which comprise the

TS phase of the 'q = 1 Higgs model has a phase tranSitioﬁ at
finite temperature. The reasons fbr this are ?robably the samé
as the reasons ‘that the phase is homogeneous At zero temperature:
the TS phase has no long,rahge.order ﬁhich could be'destroyed

by thermal fluctuations.
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The free photén phase of the q = 1 Higgs model also has
no finite temperaturé transition, At any T > 0 it is a plasma
of charges and monopoles. Both eleétrié gnd magﬁetic fields are
screened at large distances and the-photoﬁ has a finite mass.

It is probable that above some'finite temperature the line of
phase transitioné_between the TS and normal phases disappears,
bu£ we have no way of analyzingvthis or estimating theftempera-
ture., |

The behavior of the charge two Higgs_model is very'different
than that described abové. o |

We will not be as careful in-studyiné the _q = 2 ﬁoaél.
as we were for q = 1. We fifstvtakelﬁhe limit £ - = obtaih :
equation (10) and thén pass to the time éohtinuum limit. We

obtain the Hamiltonian for’the 22 -léttice gaﬁge'theory first

studied by Fradkin and Susskind(22):
H==-Jot) =a[olix) N (56)

... lj ’

A is avmonotonically'deCreasing function of ez.' The operators
ot gi, and ci on each link satisfy a Pauli algebra and

634 (x) = ci(x)d?(x+i)oi(x+j)c§(x) S | | (57)

Simple analysis of the derivation of (lO)vshows that
the study of the g = 2, £ = » Higgs model with external charge
density p(x) 1is equivalent to the study of (56) in the ‘subspace:

[m o:iL(x)Ui(x--i) - cosTo(x)] |y > =0 - (58)
i ‘ o= U | |
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The free energy of a pair of unit charges separated by a
distance R 1is given by '

tr e 2B (s (0(x) - 8x,0 + 6x,R)
' ' (59)

J—SF (R) _ |
' ' tr»e"»BH S (p(x))

We will study this in the strbng coupling limit 'k.<<vl. Then

BZO’!’-(X).' 1 1 - ' .
tr e - w8 (o7 (x)o (x+i) - cosm(E =5 .)mod 2)
tr eBZJi(X) T G(T{O:!'(X)Q]:'(X‘*‘i) mod 2)
< i1 1
S . (60)

1 _ ' o
cos?i (ei-o,n)

The cdnstraints may be parameterized by writing di

and introducing a two valued variable x(x) (= 0,1).

BZcosei(x). i;X(X)(A’G(X)fﬂdx’o+ﬂ6X;R)
z z e. e v :
-BF (R) 6i=0,w x=0,1 | |
© 3LcosB, . a
> | | T ‘ e - | 1l elZ)(A’J
6i=0,7T X=0,l : >—":
. | (61)

We can now do the sum over 8 If we define s = cosmy it is

'a'Z; S (x)s(x+1)

Ioe %7 s (o) s (R)
=+]1 . .
-BF(R)_ ° * : v
© 7 af s(x)s(x+i) (62)
I e %x,1i o o
s=+1
with
ln coth 8. (63)

)
i
Nj
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This is the spin correlation function ofla three-dimensioeal
Ising model. This is also the spin correlation function of the
z(2) gauge theory in three dimensions. One can show in general
that the tempefature derendent partition function of the‘feur
cimensional, strongly ;eupled, Zq lattice cauge theory is
ecuivalent to the temperature zero generation fﬁnction of the

euclidean three dimensional Villain zG gauge ﬁheory which is

]

ecuivalent in turn to the Villain three dimensional Zq'Ising—.

likxe model. Thus, for large g, our results go smoothly into the

Pelyakov—Susskind2'3 result, which is the equivalence between‘
partition function‘of strongiy'coupled esmpact QED and the X-y
model. For our purposes_it‘suffices to deal with the Z(2) model,'
we thus return to equation (63). For‘small a (large B, low

temperature) it falls off exponentially and F(R) is linear in R.
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For large a (high temperature)

e*'F(R?‘+ ¢+, e - (64)
Thus confinement disappears and is replaced by:Debye.scfeened
- photon exchange.3‘ These £ = = resdlts;complément.thoée_of
Susskind which are valid in thé region e? 5> 1 £ << and it
is reasonable to assum¢ simiiar behaviOr‘for the whole range -
of £ as long as e2 is sufficientlyblafge.

VWevnow'wish tovstudy the weak coupling limit e2 << 1 £ = =,
For this purpose we will employ the duality transformétion of -
Ffadkin and SuéSkind._ Thi;vdual'tranSformatidn-iS ééplied in
a spacelike axial gauge rather than the A°_='O’ gauge that we-

have been using so far. However, after the dual transfcrmation

we can brihg the axial gauge Hamiltonian of Fradkin and
Susskind back to the a° ?iO géuge. The result is
ey ol o Lo 32y ey
H= A {+Z uy(x) -3 +Z B FENCOR AN | - (65)
Xli Xll’j '

The relation between the ui's and the Gi's of equation (56)

is described in ref. (22). The Hamiltonian (65) has a local
-Z2 gauge invariance and bnly states satisfying

1 1. | X ; :
Touy(x) pix-i) |y > = |y > . ~ (65a)
i , R g ,
are considered. This condition arises when we trénsform‘the

axial gauge Hamiltonian ihto'the_ a° = o gauge. In the axial
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- gauge
i =1 " ~(66)

aéé equation (63)is an operatof identity. When we go to the

A% =0 ‘gaugé we en;arge.thevspace“éfistatesto include states

which do not satisfy (66). This does not affect physics since

any state violating equation (66) can be gauge transformed into

- one satisfying it. Eguation (éSa)however, is_a gauge invariant

. :

equation. Thus the axial gauge and a° = 0~ Hamiltonians are

ecuivalent only on the subspace of states satisfying (€5a).
In view of our picture of the Z, gauge model as a limit
of a Higgs model coupled. to monopoles we. expect an interpreta-

tion of equation (64) dual to that of equation (58). That is,

we have the correspondence

+ =

i

U;(X)'ui(X+i).= cos-ZW(Q(X))' o (67)"
i : : , _

1 m

where 'cm is the monopole chargé density measuréd in units
of 27/e. . |

For e2-<< 1 & is lérge and we can-dropvﬁhe second term
of (65). The partition fuﬁétién-in this approximatidn reduces
again to that of an Iéing model whosé temperature is ‘inversely
related to that of the gauge model. Thus the .q % 2 £f = o Higgs
mgdel has a finite temperature phase transitionvfor small as
well as large ez.v

The nature of the two transitions is quitefdifferent_
however. For large e2 £hevtransition is betwéenba confining

. . : - 2 .
phase and a plasma phase. For small e“ the spin correlation
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function of the Ising model is related to theifree energy
difference between states satisfying (65a)and those which
satisfy
1 1 -1 if x =0 - or R
mouy(x) uy(x-i) = o ' (68)
i o -1 otherwise - o
According to (67) we cén obtain-such a staté by adding an

external monopole density

-
X,0 Xx,R

v 1 SR o
Pex (¥) = 5[5, T *]:\  . ' (69)
in units of 2w7/e. Such charge 1/2 monopoles are allowed by
the Dirac quéntization ccndition bedauSe the smallest electric
‘charge in the theory is 2e.
Using the Ising model correspondence we‘findathat the free

energy difference between states with pex -and»states’withouf

it is

e ~BLF (R)

e

R . :
Cl + sze B . | .3 - 0 .
' (70)
-uR ..

This means that 1/2 integral magneticfmoﬁoPOlés are confined
~for low temperature and small ez ‘and unconfined for large
temperatures. .In addition, at high temperature static maghetic'
fields are screened. Clearly we are describing the transition

from an electric superconductor to a plasma of magnetic and

electric monopoles.
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Let us summarize what we have learned about the Abelian
Higgs model: (fhe reader should remember that the only state-
ments that we_ha&e actually proven in this paper are those for
the £ = = models;)

If the Higgs charge is 1  then the model has two phases
at zero temperature; a normal phase wiﬁh a massless phpton and
a total screening (TS) phase. The nofmal phase is separated.
from ﬁhe TS  phése by a line of phase transitionsvand:disf..

C s 2 2
appears if either e or £

'is_sufficiently large. The
- model has no phase transitions as a function of the temperature.
We conjecture however ‘that the line of ::ansitionsvin coupling
constant space‘disappea:s above somé.finite_temperature; |

If g=2 thefé are_three phases at zero température and
our conjectufédvphése'diagram is given in figure 4.. As the
temperatufe is raised'tﬁe two'supercondﬁcting phases (iI and III)
uncercgo phase trénsitidns,to a‘piasma stcate.

In the next section of the paper we will‘usewthe'insightsv
~that we have gained to illuminate the problem of'phase tfanéi-

tions in the Weinberg-Salam model.

IV. The Weinberg-Salam Model

The Weinberg-Salam h&del is an SU, x Uy’ gagge'theory‘with
Higgs particles in the fundamental representation of SUZ.

By analogy with the g = 1 Higgs model of the previous
'section-we would expect that the "spontaneouSly broken" and
confining phases of this theory are-actually one‘and.the same.

In particular, we claim that the physical particles of the
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"spontaneously broken" phase shquld bé‘ SUZL‘ singlets. That
this was in fact so was pointed out by L. Susskind several

vears ago. We repeat his argumentsbhere (théy have never been
published) for two reasons. Fi:stly we feel that they are

given new.strength-by'our analysis of the Higgs model andv
secondly they set the stage for our‘discussion of the fihite
temperature behavior‘of the Weinberg-Salam model. The reader
should also réfer tojthe work of Fradkin and Shenker’for further
discussion; Let us begin by ignoring the Ul _gauge fields

for a moment. Then the Euclidean Lagrangian may be written

P=+ L errl o+ pomel? +vete (1)
4g UV u ‘

where A is the usual antihermitian matrix valued gauge

field and

Foo = 9., - 3,Aa + 1[Au,‘Av] - (72)
D (&) = 3,1-a4a
Define ‘ v
sx) = o (%) | BNCEY
where p 1is real and § 1is an SUz_vmatrixt {This decomposi-

tion is not unique. Choose one of the possibilities.)

'Then

g tr Fu\) + (aup) + p (DU(A)Q QQ D(A) Q)ll o
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where we have used

e =1

(75)
e*p o = - b atn
- W R |
and (Mil means 11 matrix element cf M. If we now define
B =a'p (a)n D |  (76)
T ’ - » ,

and notice that (since (76) has the form of a gauge transforma-
tion)
2 - -
tr FiV(A) = tr F (3) » o (77)

we can rewrite (Z; as:

7 2 s o2 . 2.t
F= e 2 (®) RS NN

F V(02 | - (78)
Note that Bu and o are invariant under (global or local) gauge
transformations. The unitary géuge is defined by

Qx) =1 5 (79)

and we recognize.that'the-gauge'invariant_SUz' singlet. operators

B, and o are equal to the gauge field ‘A and the residual

Higgs field Reo, in this gauge.

Nothing herevaepended very crucially on the fact thatv ¢
was in the‘fUndamental’repreSenﬁatibﬁ. For any other represéﬁta—
tion the number of residual Higgévfieids would bé different as
well as the mass épectrum of the B fiélds. It would still
be true that physical scalar and vector partiCles (i.e., the

quanta of independent fields in the unitary gauge) wouldkbe 

SU2 singlets since their interpolating fields are.



-35-

The difference betweeh'a fundamental Higgs and any other
representation 1s that we can construct local singlet inter-
polating fields for any SU2 representation. Consider, for

example, the left handed electron-neutrino field
voo= (9 D (80)
t appears in the Lagrangian in terms of the form .

iaL B oy + QER $+wL + h.c. R (81)

with ER the right handed :SUZ_.singlet electron field.
Defining a new field by | |

R - (2

Xp, (% = 0 (x) Y (x) _ | )

this becomes
- v - 1 : .
Xy, 1 B xy, * 9evpXxy . o (83)

—d

The components of the singlet field fxf' can also be'writteﬁ

el T
2 _ 1 o+ | : »
s oyttt 9

In the unitary gauge Xl’2 become_the_physicélveléctron and
neutrino fields, so these particles too are singlets.

| We have-'shown then that all fhe physical;particles in
the Weinberg-Salam model are SU2 Singlets and are_thgreforé
justified ih saying that.this model confines non-singlet.

representations of SU, - Of course, to deduce the particle
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spectrum we have had to do perturbation;theory.inrthe unitary
gauge and this is justified only if the:coupling is weak»an&.
V(pz) has ‘a non-trivial minimum. But this ié just thebregion
where convéntional'wisdbm woula'hayérds believé.that 'SUL(Z)- is
spcntaneously broken3and confinement7disappears.

Can we now proceed by analogy with the ‘q = 1 Higgs.mddel
and argue that the Weinbérg—Salam model has no phase transitiohs
as a function of its coupling constants? We believe that sﬁch
~a statement would be valid if there were no Fe:miops in the

theory. In the presénce_of fefmioné,,however, it is false.

The model now has ah~exa¢t global symmetry which guarantees
that the neutrino is massless. The persistencé of this sym=
metry for all coupling Valges is ih conilict with,our picture
of the states as sinélets.

We hévefdescribed the neutrino state as a "bound state"
of an SU (2) isospinor and the isoséinor Higgs field. 1In the

.perturbative-regime'thié bound state consists apérbximately of
a singlé wL .quantum and a‘coherent'statg'éf'the o figld.and
it is perfeétly consistent ‘to assﬁme thaﬁ it'is mas§lessf

Now, however, let uquonside;'what happens as the parametefs
in the Higgs potential are changed so that the non-trivial
minimum disappears'and-the coefficient of ¢+¢ becoﬁes large
and positive. A simple picture of the neutrino.staté:in'this
regime wouid be a two_body bound state of a WL ‘quantum
(+ a sea of fermion pairs) and a heavy ¢ quantum."The ﬁass
of this state would go to infinity with the coefficient of

+. . . C L. . .
¢ ¢ 1n the Lagrangian. But this is incompatible with neutrino
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chirality'conservation!

..We can only éﬁéss ét £he resolution éf this paradox Since
the regime iniqueétibn lies far'beyOnd the reach bf_our computa-
tionél skills. We conjecture however that the_paradox is
.resoived by spontaneous breakdown of neutrino chiralitf.' This
could occur as follows: combine ﬁhe left handed neutrino and
the right handed‘antineutrinovinto a Majorana field, and
similéfly the left handed electron and‘rightvhanded_positron.
These ﬁhen form an SU(2)L doublef Majorana field Xy (this
is possible.because the conjugate of the fundamenﬁal'fepresenta—
tion of .SUZ isAequivélent to the. fundamental). We can theh

imagine a nontrivial expectation value for

N

XiEinj . : (86)

If this séenario is correct then our picture of the
neutrinb state'fOr’lérge ¢ mass is consistent. The low'lYing
spectrum in this region will'éoﬁsist.of singlet bound states
of the massive Majorana'Féfmion. The price that we have to
pay for this p#etty scenario is the-existence of a phase transit
tion to a,regime with-spontaneously broken neutrino chirality.

‘Tb end our discussion.of the Weinberg-Salam model at zero
.vtemperature let ﬁs'recall that up to this point We~haVe been.
dealing with a mytﬁical version of the theory with no U(l)
gauge bosons. ‘'The U(l) gauge theory is non—cdmpact and we
should expect a first order phase transit;on to a regime in
which the U(l) symmetry is restored when the U (1) coupling

is large enough. However, if the SU2 x‘Ul mcdel is embedded
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.inha compact gauge group'with Higgs_boSons'in the fundamental
then the analogy wrth the.'q“= 1 Higgs model should remain
~valid. .

We come flnally to the questlon which prec1p1tated thlS
investlgatlon: the hlgh temperature behav1or of the weak inter-
actionsQ . As before be begln by_settlng the U(1) coupllng to
zero. We have conjectured that the'zero temperature' SUZ# gauge
theory_with fermions'has a phase transition.: Should oné also
_expect a transition out of the Weak coupling .TS'vphase,at a
finite temperature? The answer is no. -The phase transition
at zero temperature has llttle to do w1th the gauge theory
itselsf and arsappears if we suppress the fermlons. -Moreover
when the couplrng is weak and the H;ggs_potentlal has a non-
trivial minimum, we are in the phase with unbroken neutrinoi

'chirality. We believe then that the weakly coupled_Weinberg-

Salam mccdel will not have a phase transition at finite

rtemoerature.
This conclu51on should be taken w1th a grain of salt. It

is'(we believe) a mathematically valid statement. However,

ltS practical consecuences are v1t1ated bv the smallness of the
flne structure constant. 1In partlcular, remember that the
absence of a phase transition was connected with the absence of
a good order parameter to characterlze the Higgs phase._ This,
in turn, was connected w1th the - etlstence of monopoles (which

here will be assocrated with the -22 subgroup of SU216)
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which cculd screen any_exterhal‘monopole'compaﬁible_witﬁ
the Dirac quantizaﬁion conditién; | |

N::-a.mbu'26 hés discovered sémiclassiéal’configurations in
the Weinberg Salam modél which corréspond to a ﬁqnopole anti-
monopole pair, chnected by é magnetic.flux\tube. External
$tati¢ monopoles with the sémeymagnetic,charge: will also
experience linear force lawS-in a.Semiclassical approximation.
However for very\large distances between:the external monopoles,
it becomes energetically favorable to form a configuration of
two Nambu strings, one attached to each of the external sources.
From this point on, the enercy of the static monopole.pair will -

fall exponentially with the distance between them. This process
. =] cm
A

¢  where e is the mass

will take place with the probability e
of the monopole anii monopoie pair, (approximately the. piece in
the energy of a Nambu string which is independent of its_length).

At very'high temperature, (greater than twice the monopole
mass) the monbpoles will be freed from the_Nambu string (both the 
energy and entropy cf the string are‘proportionaivto its length)
and will Ee easily produced. Thus the free energy of the static
monopole pair Will not behave linearly for any range of distances. .
However since the truly’asympﬁotic behavior of the free energy
will be the same (exponentially falling) at both low .and high
temperature we do not have a phase transition.

ﬁow, howeter, consider what happens at the Kirshnitz-Linde-
Weinberg "critical point." Below Tc an ex£ernal.ﬁonopole-anti—

monopole pair will feel a linear potential until it can be screened
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by monopole‘pair creation.»nsince the probability of creating
cm_
such a palr in empty space w1ll be proportlonal to e-akT

,whlch is very smalli the external palr will feel the llnear
potentlal out to very large (cosmologlcal) dlstances. -On the
- other hand, above the transition point the linear potentlal
dlsappears.
| Thus to a good.app:oximation we can neglect monopole pair
creation and the situation is vefy close to phase transition.
Qﬁantities which would be singular at a reai transition will be
ahalytic but very rapidly varying near Tcs.‘ Eor all practical
purposes we'have a trahsitien{ The situation is somewhat
analogous to that of aspot of water boiling'in a closed room..
' General theorems tell us that a finite volume system cannot have
a phase transition but.the Qater.boils nonetheless. -
For all practical purposes, the Kirshnitz-Linde-Weinberg
syﬁmetry;restoring phase_transition will occur at high enough
.teﬁperature. Physical electrons and'neutrinos, being singlets,
will not be confined.
Finally'we note again that in the_Weinberngalam_model with
non~zero U(1l) eoupling there will be a‘"real“‘phase transition
~connected with U(lf symmetfy restoration:at high.temperature..
Our remarks abeut embeddiné the‘model>in a compact gauge group

also carry over to finite temperature
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Conclusion

- We have shown,that the "Higgs" and."confining" regions
of the g =1 Abelian lattice Higgs model are part of the same‘
fphase of the theory, whlch we call the total screening phase.
| Furthermore, this phase does not disappear for any finite |
temperature. Its properties vary analytically with the tempera-
'ture as well as with the couplings. For g > 1 we have found that
the theoryvoontains three phases. }In the course\of'this analYSis
relations‘to Zq lattice gauge theory and to QED with.electrie
~and magnetic_charges.were exposed. . |
We have used these facts_to resolvefthe puzzling (to us)
‘.problem of "electron confinement" in.high temperature weak inter-
actions and to argue that weak interaction models with oompact
gauge groups and'fundamental‘Higgs bosons do not‘undergo‘a
finite'temperature symmetry restoring phase transition. vThe
practical consequences of this statement are diminished due to

the smallness of the fine structure constant.
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APPENDIX A

Intuitive Argument for Charge Liberation
'The simplest model exhibiting‘confinement.is the strong
coupling limit of the Abelian lattiée'gauge theory. The
Hamiltonian is
=9 ] Bix) - (a-1)
' Each. component of E iS'an-integér valued_field. The gauge
invariant subspace is defined by
AE(x) |w>=0 o | (A-2)

Polvakov and Susskind?’’

have shéwn that the gauge invariént
partition function of this model is équal to the partition
' function of an xy ferromagnet{ Using known properties of the
xy -model they show that'cbnfinement disappears aboVe a finite
\tempefature. We would like‘to give'a‘more iﬁtUitive aiséussicn
of this phenomenon which will enable us to see why high tempera-
ture'deconfiheﬁent should be expeéted in any confining thedry.

‘The‘Hamiltonianf(A—l)‘may be explicity diagonalized and the
.eigenstates satisfying (a-2) déScribed'as élosed strings on thev
lattice. We can:aséociate sﬁch strings with random walks as we
:'did in our diScussion»ofithe Stone ThOmas'forster picture of the
‘Higgs model. | | |

As before we neglect the restriction_ﬁhat diSconhécted loops
are QOt‘alldwed'to téﬁCh.’vThese exciudedjvolumn effects are only
important above thercritiCAI température. The partition function

is then approximately
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. L=4 NBW (L) : .
Z e . , o ‘ ' - (A-3)
where ) means the sum over all L stép.conneeted closed

| NBW (L) ‘ . . _
- non-bactracking walks (CCNBW's) which pass through the origin,

V is the_vclume of space and-
L L - - 1 o
E(x) = ) (x(i) = x(i=-1) & (x-x(i)) | - (a=4)
‘for the walk ;(i). A standard convexity.argdment says that the

average of the exponential of‘auquentity' Q is greater than the

exponential of the average of Q. Thus

2 P
. = "812'.2 E'2 (x) - _B..g_.. <z Ez(x)> :
L e . - > N(L) e » L - A{A=5)
NBW (L) ST o - |
where N(L) is the number of L step CCNBW's and <y E%>  is
the average over L step CCNBW's. '<Z E2>L is clearly proper-
~tional to L . for large L. Furthermore N(L) is bounded from
- below by the number of L step self avoiding walks which (if

the dimension of space is greater than 1) is known24 to grow

like e for some positive K. The free energy density
{;l/VB 1n 2z 'is given by a series whose Lth term grows like
 aq? o | |
(KL - L5 RL) _ o | |
e ' (A-6)
for lafge L. - Thus at some critical temperature it diverges.

For 8 smaller than the critical value, the singularity is cured

by the_excluded.volumevterms'which we. have neglected.
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This is the physiéal mechénismlfor the deconfining phase
transition. At large temperature "empty space" is filled with
a fluctuating soup of long elegtric fiux lines. Adding an
external charged pair just addé one more flux line and does not
significantly change the free‘enerng

Our picture implies that finite temperature "quark" libera-
tion shéula not occur in one diménéion sinée there.are no
conserved flux lines (With zero background field). In fact, the
one-dimensional version of the Xy model sﬁudied by_Polyakov’
‘and Susskind has no.finite'temperature“phase transition. 1In

25 have shown that the

addition, Kogut, Fischlér,'and Susskind
maSsiverSchwingér model confines for all finite températures.
In the second part of this appendix we will prove a similar
result in the lattice verSibn of the 1 + 1 diménéiénal Higgs
model. |

The vacuuh ofva‘four—dimensional cohtinuum_non—Abelian
gauge theory (QCD) is undoubtédly more compliéated_than that
of theiéimpie-modeis étudied here.v However,.if color is_Confined.
the QCD vacuum probébly expels colorvelectric flux lines.
Excited states {hadroﬁs) are reéions of space cohtaining non-=
zero color flux (bags). The energy of a hadron will be‘more
‘or.lesé prpportional to its voiume; (We ‘are speaking here of
1arge.highly excited hadrons whe:é short range effects-such as
spin dependent'forcés are presumably unimportant.) If Qe ,
assume that fluctuations of the bag shape.on'a length scale

- smaller than some characteristic size A 'are-suppressed
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(below this.scale flucfuations'aré deséribed_in terms of a
symptotically free quarks and gluonsbrathef‘than bags), then

»we'can count the number of bag staﬁes:by ¢ounting configurations

of fixed volume on a lattice with spacing \. Assuming the ngmber of

-
veKJ

bags of fixed volume V'Agoes like so the density of states

at energy E 1is
o(E) v B c (a-7)

This‘is, of coufse; the famous Hagedorn séectrum.5 Qur eXpéfi;
ence with the Abelian lattice gauge theory leads us tobbelieve
that the divergence of the partition function aséOciated with
the'blow up of p(E) dces noﬁ iﬁply a ﬁlimitihg'temperaturé“
but rather a phase transition to an uncenfined phase. |

This connection betweeh the‘Hagedorn spectrum and a phase
tfansitibn to a non—coﬁfining phase wés éctﬁally pointed oﬁt
some time ago by Cabibbo and Pafisi.Gv,fhey arcue that the phase

transition is second order and that the subleading behavior of

the Hagedorn spectrum determines the critical index.
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'B. The 1 + 1 Dimensional Lattice Higgs Model

The PG version of the partltlon functlon for thls model

*
»

on a Euclldean lattlce is glven by

2 : _ ’
o - & 522 - _1_ 52 _
o - WY 5g2 W L
2= 1. T e BT sy e
uv:tu :

We study the charge two model since we want external unit charges

to be confined at zero temperature.

" For the 8 = 0 case, _ o
we write, Lo T EyuR o &S euvgvm and obtain
» 2.2 .~ ;lf'Z(Aum)z . '
- T '
z =] -eTiOE o 25T (8-2)
m- ' ' o

For small £ the model reduces to one studied by susskind?
(1f we make the time continuous) and is confining at all tempera-
~ tures. For large 2 we apply the Poisson sum formd;a and

(B-2) becomes

T ey 2.2 . | o
Z-=,f as J e 2f£° e e“l¢” 2wilpd | (B-3)

; . 2 ) o .
" For large f non-zero values of p are suppressed. Summing

only over p = +.1,0 we obtain

1 o 2 -
e ‘ 7 L(8,9) 2..2 ' ’ :

7 = f‘d¢ ¢ 2f _ o~ €°I0°  _Icos2my (B-4)
By "Fermionization" this model_becomes the massive Schwinger
model withva lerge repulsive four Fermion coupling.

The generalization of (B-4) in the presence:of'an ekternale

. current Jﬁ is
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1 .2
- EZ(Auf) 

2,202 o, |
. : L - ! : +Q)
2(3 ) = f de¢ e o eT & TIel JIcos(2miferQ))
M _ S ‘ (B~5)
where
Ju “*uvAvQ _ N S (B-6)
For static sources Q is time'independent ancd we can easily
take the time continuum limit. - The resulting Hamiltonian is
- 1,32 1,...2 2.2.2
H. =] - = + ) {5(86)° + e“f%¢° - cos 2m(£4+Q)}
Q 2 5¢2 : 2 v s -
To teSt'for confinement at finite temperatﬁre we must
‘compute
8H o  (B-8)

e BF(R) = r o7BHg rr o7 8H,
for the Q that corresponds to a static unit charged particle-
antiparticle pair:

0 = l[e(R-x) - e(xy]  ' B

-2 o (B~9)
We will content ourselves with showing that these charges are
confined even at extremely high temperature.

For small 8 we can use the formula

o B(x+) _ o8k g-g T 20 OPlaeos?y (8-10)

To write e—aF(R)‘ as
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) =BT 2(0(x) =6 (x+1)) %+ 4e£%0%-cos2m (£4+Q)
._51:*(1:()'~ J d¢ e L o B v .
€ T 1 2., 2:2.2 o .

=B Z(d(x)-d(x+1)) +4e £%¢"~cos2m (£94)

B~0 2
I s e (B-11)
'In this formula  ¢;¥iSva time independent field.
We can writei(Beil) in'transfe: matrik form
-8F(R) ~ _ .. .L-R R L, 2L
e = tr T T T /Tr T (B~12)
1im el 1/2 of o _
L~e '
where
-8/2(2-0")% _~8( e®£%4? - cos2m(£¢'+a) (B-13)

H ., !
< T ) o > e
The limit 'L -~ = projects out the eigenstate |y | of T_ with
' largest eigenvalue:

oTBF(R)

- . : R . - AW
= L@y )" I (B-14)

o ‘Qo> = towo? - - R (3-15)
For large R (B-14) will be domihated by the'largest eigenvalue
ot Tl/2

‘e_BF(R) =

R+

L 2 ' R
|<w01?l/2>[ (tl/2/t0) N | (B~16)

When e2f2v is large we can neglect the coupling of ¢'s on

4

different sites of the_lattiCe and the transfer matrix becomeé

: le_g( e252¢2 - cos27 (fé+a)) o (B=17)
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and is diagonal in the % representation.

The maximum value ﬁhat:a functioneof the form
‘--8(¢2'— cosG(¢)) | B o
e "% T - | S (B-18)
can take on is eB . If a =0 .this value is:in faet_achieved
when ¢ = 0 but for a = 1/2 it is.neve? étteined. Thus in
this limit t, , < t, and (B-16) vanishes like e "0% as”g >,
'In the opposite iimit when"ezf2 = 0 the two transfer
matr;ces T, and Tl/2 .are.transformable into eacheother‘by

P 6+ l)2f. The largest eigenvalﬁes are thus egqual. However,
the "roof state" eigenfunction‘of» Tb is concentrated near-
$ = 0 + n while that of Ti/z is cencentrated nea; h o= l/f +en;
The first order correction to.the eigenvalue is givenvby the

"roof state" expectation value of

~4e2£2342 . (B-19)

o~

<325 will be larger for T,,, and so t, %eto' for small

[}

e also.
Thus the two-dimensional lattice Higgs model confines at

all temperatures as was required by our intuitive argument.
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APPENDIX C

Field Theoretical approximation to lattice theories.

| The‘analysis of a field theory involves the discovery of
its topoloéical singularities and a description,of their'quantum
’behavior,.tA first step in this direction was_the»studytof ¢om—
pact Iattice,Versions of various field theories utilizing the |
| methods developed‘in references (4}13,14). ‘These methods have
been:extensively used by:us in this paper. Once thé topological
structure has been uncouered one may approximate the.lattice:
_'benav1or of these sxngularltles by a quantum fleld theory. 1In
partlcular such a treatment was presented in- the section follow-
rng eq.'(lS). All our reservatlons about‘thls method have
already been made in the text.  The disoussion‘here'is limited
to-liSting:some,suchVCOrreSponaences and commenting on their
) usefulness. | | _b

'l., The partition function of strongly coupled QED treated by

Polyakov2 and Sussklnd3 is given by:
: Z(B)’e tr _ e_sH B . ' SR (C1)

" where the trace is over gauge invariant states and H is

N

H. =

Nl\ﬂ
[+

"5 E(r,i)? o 3 - (c2)
links" . - , :
- a being the lattice Spacing.

ThlS can be mapped into a field theory of a self lnteractlng com-

plex scalar fleld whose Lagranglan 1s glven by.



- -51-

2 2
o _ a_ 2 _ 1. Bg~™ _ *
£ - 5p | Vel aZ(eXPjif 2D) 67 ¢

where D is the number of.space dimehéion and V is an unkndwn
repulsive potential; | |
Above somevvalue'of T the system underQOesIQ-Goldstone t:ans;
action and the éonfinément force turns into a Coulomb force.
By contrast the same limit of a 2(2) gauge thebry is maéped
into a real self interacting scalar field and thus-dbes nofi
undergo a Goldstone transition -instead the deconfining phase
ié a2 plasma with a‘massive”phétdn,

vThe exact corréspéndence with the U(l)'modelvhas been wdrked
out in ref. (2,3). | |

2. The Abelian-Higgs model in its Villain version (eg.6)

(at T = 0)
-2 )
27 : el v o1 2
r ds - =& 2 - =17 g
dx u -5 v : 2 Tuv - - .
Zz = e = _ 2f H -
_J -% 3= € . ) . . e | S8R )8(A R -qL )
U | nv, o u

was mapped into a field theory of magnetic monopoles and electric
charges given by

f , ' * % _ - p
7z = J DFuvDAu D¢mD¢mD¢eD§e exp(-s) : _ (C3)

-1

where the Lagrangian is:



= - F° + A, - 3,a) + [D ¥ B,
F w T P Oy )+ D o : 1D ¢
- mo¢ b mc¢c§e-+ V(¢é¢e)‘+ V(¢m¢m) L , (C4)

~ where V(¢;¢é) and V(¢;¢h)'are unknown repulsive"potentials and
¢m the magnetic scalarifield,oOuples to'the.photOhuVia
Bo = (3 -2 . n(memTrE ) e ()
“u'moo- T e Tuvakty Ak’ "m :
the bare masses of ¢, and ¢ are given by the approximate (see

" . text) formulae:

a‘ m :_exp(';¥§f+;%D(0)q2e2).— é ‘ ' o (CG)
o 2f ‘ o

D(0) is the short distancehvalue'of the,CouLomb propagator

appearing in eq-‘(l2) 'bAs was studied in the text this leads

to the existence of three phases for the. system. v J

3. Taklng the £ % o limit of eg. (6) leads to a Zq gauge thecory,

it is thus found that a Zq lattice gauge theory can be approximated
by the f'* ® limit of equatlons C-4 and C-6. 1In partlcular,
demanding both masses in>C?6 to he positiueuue can‘obtainlan estimate
for the value of g above which a third phase appears After addlng

the demand that the self dual pornt (which also the. approx1mate

model_has) be. below the mi = 0 point one obtains q > 4.
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Footndtes

Footnote l: Two year§ ago L. Susskindlﬁointgd,outvto’one of'fhé
authors (TB) that physical particles in the_Weinberg-Saiam
model are‘singlets. His argumént is reéfodudea in
Section III.

Footnote 2: The readef ﬁay ask why we do not use-thé expécfation
value of the'Higgs field as anjofder péramete;."The aﬁswer
is that éll ndn4gauge inVariant operétdrs, have zero
expectaticn value in a latticeftheory. EQeﬁ opérators,
wnich are locally but not globally invariaﬁt appearvto vanish

2

(excépt_when f® = » when they are identically equal to 1

for.all ez),

‘Footnote 3: It 1is at this poiﬁt that the ana;ogy between Higgs
mbdels and Heisenberg fefromagﬁets‘appéars fo:breakdown. |
The q'ﬁ 1l ferromagﬁet of equation (2) has néither phase
transitions nor massless particleS’for.any nonze:élvalue
of 8 and h. The g = 2 _quel_has‘a'phase'transition
but no massleés particles except at the critical point.

' The ofigiﬁ of this difference is easily explaihed.

The methods of ref. (li) allow us to wfite a low temperaturé
expression anaiogous to (12) for the spin correlation func-

tion of the ferromagnét egquation (2). The m topological

v H
excitations are replaced by tensors in four_dimehsions
(vectors in 3) and do not give the Goldstone bosons a mass.
The lu however are replaced by scalar charges and for

~small 'h  and large 3 the system is approximately a

Coulomb gas. The Goldstone boson therefore gets a mass .

€
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via "DebYejscfeehing" for arbitrarily small h. Only in
twd'dimensions, when the Couiomb‘gés hasa dielect:ic phase
fo: small h, does é massless épin wave:exist in nonzero
magnetic field,  Thus as usual, it is a twofdimensibnal‘
sein model which is most analogous to the“four-dimensiOnal~

gauge theory.
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'Figure Captions

Figure 1 - The'shéded-regioﬁbié'the'régionof’analytiéity
provenvrigorousiy by_Ffadkin ahd:Shehker‘fof Higgs»modelé
‘with a general compac; gauge group and Higgs fields in the §
fundamental :eprésentation. : _ - .", . .
Figure 2 - Proposed phase-diagram for the g =1 Higgs model-. |
The solid line is a line of _secohd‘ofder transitions, the
Gotted line a line of first order transitions.
Figure 3 - Proposed phase diagram for the..q = 2 model. The
order of the tranéitions on the iine “AB (which’may bevof
zero length) has not been deterﬁined. -The:pgint. B 1is
at e = V7 . | |
Figure 4:- Phase diagraﬁ for the Higgs model for large g.

The points A and B are related by the dual transformation

27r/eA =g eg.
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