
UC Irvine
ICS Technical Reports

Title
N-Dimensional Perfect Pipelining

Permalink
https://escholarship.org/uc/item/6t64s27p

Authors
Kim, Ki-Chang
Nicolau, Alexandru

Publication Date
1992
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6t64s27p
https://escholarship.org
http://www.cdlib.org/


Notice: This Material 
may be protected 
by Copyright Law 
(Title 17 U.S.C.) 

N-Dimensional Perfect Pipelining ,---

Ki-Chang Kim 
=- :::=-

Alexandru Nicolau 

Technical Report No. 92-18 

Department of Information and Computer Science 
University of California, Irvine 

Irvine, California 92717 

frfU.,f/1 11€ ~ 

z. 
bf 7 
C3 
'10• 1-,,,,1g 
c.~ 
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Abstract 

In this paper, we introduce a technique to parallelize nested loops at the fine grain 
level. It is a generalization of Perfect Pipelining which was developed to parallelize 
a single-nested loop at the fine grain level. Previous techniques that can parallelize 
nested loops, e.g. DOACROSS or Wavefront method, mostly belong to the coarse grain 
approach. We explain our method, contrast it with the coarse grain techniques, and show 
the benefits of parallelizing nested loops at the fine grain level. 

1 Introduction 

Loops are some of the richest program constructs where parallelism is available. Especially 
as the nest depth of the loop increases, the time that the CPU spends in it sharply climbs 
up. Many vectorization techniques have been developed to exploit the parallelism hidden 
in this construct (Kenn80](KKPL81](Wolf82](A1Ke87]. For loops which are not vectorizable, 
however, the general technique is the Wavefront method (Mura71](Lamp74](Kuhn80]. 

An elegant way of implementing the Wavefront method through the combination of loop 
skewing and loop interchange is shown in (Wolf82]. [IrTr88] [Bane90] [LaWo90] show recent 
developments in this direction (see Section 3 for more detail). But since in the Wavefront 
method the unit of scheduling is an iteration, the parallelism inside iterations is not utilized. 
Each iteration is regarded as an atomic computational unit and executed by a single processor 
sequentially. This approach is useful to reduce the parallelizing complexity for nested loops, 
but it also reduces the amount of parallelism exploitable. Of course, the fine grain loop 
body parallelism may trivially be exposed after Wavefront method is applied, but this may 
miss some of the parallelism as we will see in section 4.1. Integrating fine and coarse grain 
parallelism is particularly important in light of the growing popularity of superscalar and 
VLIW machines such as the i860, i960, or the IBM R6000. In this context, machines such as 
the Touch Stone project make the exploitation of parallelism at all levels critical. 

Parallelizing loops at the fine grain level has been pursued by other numerous researchers 
[Fish79] [Nico85] [GrLa86] [CCK87] [Lam87] (AiNi88]. For one dimensional loops, given 
enough resources, there exists an optimal solution [AiNi88]. Figure l(a)-(b) shows an ex­
ample loop and its parallelized form at the statement level. The parallelized form can be 
obtained by the following process. We unwind the loop repeatedly while scheduling each 
statement instance at the earliest cycle it can be executed (ASAP schedule) until a pattern 
is detected in the schedule. 1 Figure 1( c) shows this scheduling process, where the pattern 

1Throughout this paper, "schedule" means a static reordering of the statements by the compiler. This 
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is enclosed with a box. Then, we replace the original loop body with this pattern. The 
schedule obtained this way is known to be optimal [AiNi88]. However, previous attempts to 
expose fine grain parallelism in nested loops have not been totally satisfactory. For example, 
Loop Quantization [Nico87] computes the amount of unwinding for nested loops, but does 
not maximize parallelism. 

In this paper, we extend the approach in [AiNi88] to then dimensional case to parallelize 
nested loops at the fine grain level. Finding an optimal schedule for the n dimensional case 
is an open problem. For some cases, we can easily find optimal schedules. Figure 2(a) shows 
such an example. In the figure, the dependence edges are annotated with the dependence 
distance vectors2. Thus, (0, 0) means an in-loop (non loop carried) dependence, (0, 1) means 
the dependence carried by the i 2 loop, etc. The ASAP schedule of this loop after some 
number of 2-dimensional unwindings is given in Figure 2(b ). We observe that the delay of 
statements A and B along the ii dimension is always 2, while along the i2 dimension it is 
always 1. For example, A( ii, i2) can be executed only 1 cycle after A( ii, i2 - 1) and 2 cycles 
after A(ii - 1, i 2). A similar argument applies for statement B. Because of this regularity, 
we can parallelize the original loop as in Figure 2(c).3 The parallelized loop is exposing all 
statement level parallelism in this loop. The reader can verify this by following its execution 
several steps. At each step, the loop correctly executes all statments that can be done as 
soon as possible. 

However, in general, when we schedule all the statement instances ASAP, we do not 
necessarily see a fixed delay pattern emerge as in the previous example. One example is 
given in Figure 3. The delay pattern is given in Figure 3(c). In the figure, di(ii,i2) is 
the delay along the first dimension at iteration (ii, i2), and d2( ii, i2) the delay along the 
second dimension at iteration (ii, i2)· For example, the delay between Ai1 ,i2 and Ai1 +1,i2 is 
represented by di (ii, i2)· Similarly, the delay between Ai11i2 and Ai1 ,i2 +i is represented by 
d2( ii, i2). For both dimensions, the delays are not constant; they could be 1 or 2 depending on 
the values of ii and i2. It is an open problem whether we can optimally parallelize loops whose 
delays are not constants but functions of index variables, as in this example. Furthermore, 
as will be shown in Section 4, an optimal solution would require knowing the exact bound 
of all the loops at compile time; since this information is not usually available, an optimal 
solution is, in general, only of theoretical interest. 

Instead of trying to parallelize loops optimally for all cases of delay patterns, we simply 
force the delays to be constant, and compute the parallel form based on these delays. 

2 Definitions 

Before going into the details of our method, we need to define a few terms. We will use 
a tree, called loop tree, to capture the structure of a nested loop. In this tree, each node 
corresponds to a loop in the nested loop, except the leaf nodes which correspond to the 
statements. Since a statement is regarded as a loop with a single iteration, loop and node 
will be used interchangeably. 

schedule is then executed a1 i1 , i.e. with the order of the statements in the schedule being preserved. This 
corresponds to the VLIW /supersca.la.r model, a.nd ca.n be explicitly enforced in other pa.ra.llel ma.chines. 

2 We follow the sta.nda.rd definition of dependence diltance vector a.sin [Kuhn80). 
3The details of this tra.nsforma.tion a.re in Section 4.3. 
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For i = 0 to N - 1 
A: A[i] = f(B[i-1]) 
B: B[i] = g(A[i]) 
C: C[i] = h(A[i], C[i-1]) 

Endfor 

(a) The source code and its dependence graph. 

For i = 0 to N - 1 

A: A[i] = f(B[i-1]) 
B: B[i] = g(A[i]) C: C[i] = h(A[i],C[i-1]) 

Endfor 

(b) Optimally parallelized form 

cycle schedule 

0 AO 

1 BO CO 

2 Al 

3 Bl Cl 

4 A2 

5 B2 C2 

6 

( c) ASAP schedule 

.... 

Figure 1: Optimal loop scheduling - one dimensional case. 
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For i1 = 0 to N1 - 1 
For i2 = 0 to N2 - 1 

A:Af!1, !i.l=fCALi,1, i,2 - 1],B[i1 - 1, i2]) 
B:B[i1 , i2J=g(Ali1, i2]) 

endfor 

Endfor d
~l) 

(1, 0,0) 

B 

(a) The source and its dependence graph. In the graph, each 

edge is associated with a dependence distance vector. 

cycle schedule 

0 AOO 

1 BOO AOl 

2 BOl A02 AlO 

3 B02 A03 BlO All 

4 B03 A04 Bll A12 A20 

5 B04 A05 B12 A13 B20 A21 

6 B05 B13 A14 B21 A22 

7 

8 

9 

(b) ASAP schedule 

fort= 0 to (Ni -1)2+(N2 -1)+1 
forall ii = L1 to U1 

forall i2 = L2 to U2 
case M ax(O , t - 2i1 - i2) is 

O:A[ii, i2 - 1] = J(A[ii, i2 - 1], B[ii - 1, i2]) 
l:B[i1, i2] = g(A[ii, i2]) 

end case 
endfor 

endfor 
endfor 

where L1 = M ax(O, r(t - N2)/2l), 
U1 = Min(Ni - 1, Lt/2J), 
L2 = Max(O ,t- 2ii -1), 
U2 = Min(N2 - 1, t - ii) . 

( c) The parallel form. 

B14 A15 

B15 

Figure 2: Optimal loop scheduling - 2 dimensional case. 
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cycle 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

AOO 

BOO AOl 

coo BOl 

COl 

@') (1,0),(0,1) 

~ (0,0) 

(1,1) ® 
~ (0,0) 

A02 

B02 

C02 

© 

(a) The dependence graph 

schedule 

AlO 

BlO 

A03 ClO All 

B03 Bll A12 

C03 Cll B12 A13 

C12 B13 

C13. 

(b) ASAP schedule 

d1(i1, i2) = { i 
d2(ii, i2) = { i 

if i1 < i2 
ifi1 ;:::: i2 

if i1 > i2 
if i1 ~ i2 

( c) Delay pattern. 

A20 

B20 

C20 A21 

B21 

C21 A22 

B22 A23 

C22 B23 

C23 

Figure 3: A 2-dimensional loop in which the delays are not constant. 
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The name of each node is represented by LOO Ppath· So, LOO P1 is the root node, LOO P1i 

is the ith child loop of LOO P1, and so on. We also define the index of each node similarly. Ii 
is the index of the root node (or the outermosts loop - we assume there is only one outermost 
loop). The ith child loop of this outermost loop will have index Iii, the ith child loop of the Ii 
loop will have index /iij, and so on. For example, the nested loop in Figure 4(a) will have the 
loop tree in Figure 4(b ), with the index of each loop being shown next to the corresponding 
node. 

Also, we assume all loops are normalized such that the lower bounds are always 1 's. The 
upper bounds are represented by Npath, where path shows the position of the corresponding 
loop in the loop tree, as in loop indices. 

For each node in the loop tree, we define three values: Hpath, dpath, and Spath· Hpath is 
the number of child loops of LOO Ppath . dpath is the amount of delay between the adjacent 
iterations of LOOPpath· We will call this value the delay of LOOPpath· This value exactly 
corresponds to the delay in DOACROSS. Finally, Spath is the size of loop Ipath, which is 
defined as, 

S _ { (Npath - l)dpath + S1,pi, ... ,p..,,l + ... + S1,p1 ,. •• ,p..,,Hpath if LOOPpath is a true loop 
path - 1 if LOOPpath is a statement, 

when path= (1,pi, .. . ,p:z:)· 
Note that 

is the sum of the sizes of all the child loops of LOO Ppath· We will use a short-hand represen­
tation S1,pi, ... ,p..,,• for this. For example, the size of LOOP1ij is 

These values are needed to transform the loop correctly. 
A node in the loop tree is executed a number of times dictated by the upper bounds 

of its predecessors. For example, LOOP121 is repeated by N1 x N12 . The partial iteration 
vector shows which copy is active; that is, it shows the index values of the currently active 
surrounding loops. Therefore, the instance of LOO P121 at partial iteration vector ( iv1 , iv12) 

is its copy when Ii = ivi, and I12 = iv12· 

3 Comparison with coarse grain techniques 

Our method has some relationships with the Wavefront method suggested in [IrTr88][La Wo90) 
and DOACROSS [Cytr86). [LaWo90) present a technique, called Loop Transformation, to 
transform n nested loops into one sequential outermost loop plus ( n - 1) parallel inner loops. 
For example, the loop in Figure 5(a) will be transformed into that in Figure 5(b). 

The general technique is to skew the innermost loop (loop Kin this example) against all 
the outer loops, and perform loop permutation such that the innermost loop is moved to the 
outermost position. However, one condition should be met to use this method: the nested 
loops should be fully permutable. The definition of fully permutable loop nest and techniques 
to transform ordinary loops into fully permutable ones in part or in whole are in [LaWo90). 
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For 11 = 1 to N1 
A 
For Ii2 = 1 to N12 

For 1121 = 1 to N121 
c 
D 

Endfor 
E 
For 1123 = 1 to N123 

F 
Endfor 

endfor 
For 113 = 1 to N13 

G 
Endfor 

Endfor 

(a) An example nested loop 

(b) Its loop tree 

Figure 4: An example nested loop and its loop tree. 
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FORI= 1,N 
FORJ = 1,N 

FORK= 1,N 
loop-body 

(a) Source 

FORA= Ll,Ul 
FORALL B = L2, U2 

FORALL C = L3, U3 
loop-body 

(b) Parallel form by Loop Transformation. 

Figure 5: Parallel template of Loop Transformation. 

FORI = 1, 3 
FORJ = 1, 3 

A 
B 
c 

END FOR 
END FOR 

(a) The source code 

step 

1 

2 

3 B13 B22 B31 
C13 C22 C31 

4 B23 B32 

5 

C23 C32 

B33 
C33 

(b) The parallel execution schedule of the loops in (a) by Loop Transformation, assuming the loops are 
already fully permutab/e. The two digits at each statement show the iteration numbers. For example, 
A23 means statement A for I = 2 and J = 3. 

Figure 6: The parallelization by Loop Transformation. 
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IT I an 832 

811 
812 

813 831 
823 

Figure 7: Another parallel execution schedule where more fine-grain parallelism is exposed. 

Our method tries to expose more fine-grain parallelism than the above. Let's see what 
additional parallelism can be exposed, using an example. 

Figure 6(a) is the example loop we will use. Assuming it is already fully permutable, Loop 
Transformation techniques will expose the parallelism as in Figure 6(b ). The J loop is skewed 
by 1 against the I loop and interchanged with the I loop. The parallelism that may exist 
between the statements, and the parallelism that may exist between different iterations of 
the J loop is not exposed. Figure 7 shows another schedule where this additional parallelism 
is exposed, assuming statements A and B can be done at the same time, and A and B at 
iteration k of J loop can be done at the same time with statement C at iteration k - 1 of the 
J loop. 

We concentrate on exposing this additional parallelism. In addition, we want our tech­
nique of exposing parallelism to be flexible enough to handle non-perfectly-nested loops. 
Figure 8 shows an example of non-perfectly-nested loop, and the desired parallel schedule we 
want to obtain. 

To do this, we have developed a new method which is different from Loop Transformation 
in that it does not perform loop interchange or loop permutation. Instead of performing 
loop permutation to compute the parallel form, it directly computes the parallel form by 
examining the desired parallel schedule. This feature allows us to expose more fine-grain 
parallelism even when the loop is non-perfectly-nested. 

Another technique that needs to be mentioned is DOACROSS. Looking at Figure 6(b) and 
Figure 7, we realize similar schedules can be derived from DOACROSS. To get the schedule 
in Figure 6(b), DOACROSS can be applied to the I loop in the source code (Figure 6(a)), 
while serializing the J loop. To get the schedule in Figure 7, the loop body would have to be 
reordered before DOACROSS can be applied. However, DOACROSS does not compute the 
explicit parallel form to express the parallelism shown in the schedule. Therefore, it does not 
produce the parallel loop structure as produced by Loop Transformation or our technique 
(see the parallel form in Figure 13(b) for example). 

Furthermore, our technique also differs from DOACROSS in that the parallelism is maxi­
mized through shaping (explained in Section 4.1). Shaping reorders the statements in the loop 
body while allowing overlapping between them such that the parallelism across all dimensions 
is maximized. Thus there are situations where the parallelism exposed by our technique can 
not be captured by DOACROSS (even when the loop body is reordered beforehand), and 
examples do in fact occur in practice, as seen in Section 5. 

4 Method 

Our method consists of three steps: shaping, delay computing, and transformation. In the 
shaping process, we reorder the statements to maximize the overall parallelism. In the delay 
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FORI = 1, 3 
A 
FORJ = 1,3 

B 
c 

END FOR 
FORK= 1,3 

D 
E 

END FOR 
F 

END FOR 

(a) The source code 

execution sc e u e 

(b) The desired parallel schedule for the loop in (a) . 

I 

Figure 8: An example of a non-perfectly-nested loop and its parallel schedule. 
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(0,1) 

dn = 3 

(a) Original-order 

di= 3 

dn = 1 

(b) Compacted-order 

© 
t (0,1) 

@ 

di= 3 

dn = 0 

(c) Scheduled-order 

Figure 9: Three different ordering methods. 

computing step, we compute the delays of all participating loops. In the transformation step, 
we actually compute the parallel form. 

4.1 Shaping 

Shaping is applied to a set of statements within the same loop nest. In perfectly-nested loops, 
the statements in the innermost loop will become the target. In non-perfectly-nested loops, 
several set of statements that are surrounded by the same set of loop nests will become the 
target. 

One trivial shaping method is to take the statements in their original order. Let's call 
this the original-order method. A variation of this method is to take the set of statments 
and schedule it ASAP, ignoring all loop-carried-dependences. This will be referred to as 
the compacted-order method. Neither of them is satisfactory. We take an approach derived 
from fine-grain scheduling. We unwind the loop a finite number of times for each dimension, 
schedule all statement instances in it ASAP, and take the order of the statements when a 
repeating pattern is found. Such a pattern will often occur naturally, and in those cases it 
in fact expresses the optimal parallelism in the loop; when the pattern does not occur on its 
own, we simply force it heuristically after a finite number of iterations. 4 This method will 
be referred to as scheduled-order method. 

Figure 9(a)-(c) shows a sample loop and the three different orderings. The sample loop 
is two-dimensional and has three statements (A,B, and C). The dependences between the 
statments are shown in the figure by the dependence distance vectors. In the figure, we 
calculated the delay of each loop for each case (see Section 4.2 for the delay computation). 
di is the delay of the outer loop, and du is that of the inner loop. 

The merit of the scheduled-order method is that it rearranges the statements to expose 
hidden parallelism. For example, in Figure 9(a)-(c), we don't get arbitrarily parallelizable5 

4Note that we perform the unwinding only to compute the new ordering; we do not replace the loop body 
with the unwound loop body. 

5 The parallelism is limited only by the size of the loops. 
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loops original compacted scheduled 
dl d2 d3 dl d2 d3 dl d2 d3 

1 16 26 33 2 10 4 3 5 4 
2 8 22 29 4 10 11 4 10 11 
3 38 32 18 8 8 10 0 8 8 
4 22 33 16 15 3 19 14 0 13 
5 17 9 25 3 1 9 3 0 4 
6 16 20 18 1 6 8 4 4 9 
7 21 21 12 15 14 14 15 2 10 
8 20 9 18 6 3 5 6 2 2 
9 19 0 32 7 0 8 3 0 5 
10 27 30 9 10 15 9 1 8 6 
11 7 25 17 1 7 13 3 6 8 
12 29 19 34 15 13 16 0 12 16 
13 23 9 17 9 14 12 7 1 12 
14 11 13 10 4 9 4 2 9 3 
15 20 29 22 4 11 3 3 11 3 
16 9 18 9 4 4 5 4 2 5 
17 27 25 30 4 10 7 1 10 5 
18 15 15 23 1 1 5 0 1 4 
19 33 27 34 21 17 23 10 17 22 
20 31 20 25 3 7 8 5 1 7 

Figure 10: Comparison of the three different methods. 

dimensions using the first two methods, while using the third method we can make the first 
dimension arbitrarily parallelizable (that is d11 = 0). Since the methods are heuristics, we 
wanted to test the robustness of their performance under unbiased condition. Thus we have 
generated 20 random loops, and calculated three different delay sets for each loop. The three 
delay sets correspond to the above three cases. The loops we have generated contain 50 nodes 
and 100 edges with nest depth 3. One half of the edges are in-loop dependences, with the 
remaining dependences being loop carried. The edges are generated randomly. In the case 
of the third method (scheduled-order meth~~~~erns were found within 10 iterations 
for all 20 loops. ~ ~~ 

The results are presented in Table 10. For loops 3, ,12, and 18, the third method detects 
arbitrary parallelism in some dimensions, while the other two do not. Computing the total 
sum of delays for each method for each loop, we find the third method produces smaller sums 
than the other two for all loops except loop 6. For loop 6, the sum of delays obtained by the 
third method is much smaller than the sum of delays of the first method but slightly larger 
than that of the second method. 

4.2 Delay computing 

This step is equivalent (but not identical) to the delay computing process in DOACROSS. In 
general, computing the optimal delay set is an integer programming problem [Lamp74]. The 
problem can be formulated as follows . 

12 
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Compute delay set (di, d2, ••. , dy) such that it minimizes the total execution time 
and satisfies the following inequalities. 

(v11d1 + V12d2 + ... + V1ydy) ~ C1 

( V21d1 + V22d2 + · · · + V2~dy) ~ C2 

(1) 

where y is the cardinality of the delay set, and x is the number of dependence 
distance vectors. 

In the above, Vi1, Vi2, ... , Viy is the ith dependence distance vector, and Ci is some constant. 
Note that to simplify the notations we gave each delay a serial number; so, the subscripts of 
d here do not represent the path as we did in Section 2. 

One interesting observation is that if one of the v column contains only positive elements 
(greater than 0), say in the ith column, then we can solve the system simply by putting dk = 0 
for all k f. j, and putting d; = some integer that satisfies the remaining system. Based on 
this observation, plus the fact that the first non-zero element of a legal dependence distance 
vector should be positive, we can suggest a delay computing algorithm which is much simpler 
but still more effective compared to previous approaches such as [Cytr86]. 

Basically, the algorithm works in divide-and-conquer manner. The inequalities are divided 
into two groups: those whose leading coefficients are positive - call this the first group; and 
those whose leading coefficients are zero's - call this the second group. The second group 
is solved first. Note that this problem has one less variables than the original one. The 
delay corresponding to the leading coefficient is missing here. Assume the second group is 
solved, which means we know all the values of the delays except the one corresponding to the 
leading coefficient. We substitute these delay values to the first group of inequalities (whose 
leading coefficients are positive), and compute the missing delay. The solving process of the 
second group is a recursive application of the same divide-and-conquer strategy. Please refer 
to [KiNi91] for the details of this algorithm. 

4.3 Transformation 

The third step transforms the loop tree into a parallel loop tree according to the delays 
computed in the previous section. All nodes (except the root and leaf nodes) in the loop tree 
are transformed into parallel form as follows. Suppose we want to transform LOO Piij into 
parallel form. Assume it has three child loops. Then, LOOPiij below, 

For Ii;; = 1 to Ni;; - 1 
For li;;1 = 1 to Ni;;1 - 1 

Endfor 
For li;;2 = 1 to Ni;;2 - 1 

Endfor 

13 



For lli;a = 1 to Nlij3 - 1 

Endfor 
End for 

will be transformed into 

Forall lli; = Lli; to Uli; 
Case Cli; is 
1 to Sli;1 : For lli;1 = 1 to Nli;1 

Endfor 
S1;;1+1 to Sli;1 + S1;;2 : For lli;2 = 1 to Nli;2 

Endfor 
S1;;1 + Sli;2 + 1 to Sli;1 + Sli;2 + Sli;a : For l1;;a = 1 to Nli;3 

End case 
Endforall 

Endfor 

Note that the inner loops of LOOP1i; are not parallelized yet. They can be parallelized 
by applying the same process recursively. Several new notations are used. Lii; and Uii; are 
the new loop bounds; their computation will be explained later. Spath is the size of LOOPpath 
as explained in Section 2. C1ij is the range variable for the case statement, which is defined 
as 

C1i; = t1i; - (Iii; - l)d1ij· 

Here t1i; is the local time step of LOO Pii;, whose value is computed by 

t1i;(I1 = a,I1i = b) = t - SC1i;(I1 = a,I1i = b) + 1, 

where tis the global time step, and SC1i;(I1 = a,lii = b) is the starting time step (or 
starting cycle) of the instance of LOOP1ij at partial iteration vector (11 = a,I1i = b) (see 
Section 2 for the definition of partial iteration vector). So, t1i;(I1 =a, Iii= b) represents the 
time elapsed since the instance of LOOP1i; at partial iteration vector (Ii = a,I1i = b) began 
- the local time step. On the other hand t represents the time elapsed since the entire loop 
began execution; so it is called global time step. 

The computation of SC1ij proceeds as follows. Assume we want to compute SCiij at 
partial iteration vector (11 = ivi, Iii= iv1i)· If we draw the surrounding loops of LOOP1i; , 
we get 

For 11 = 1 to N1 
For 111 = 1 to Nu 

Endfor 
For 112 = 1 to N12 

·Endfor 
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For /i; = 1 to Ni; 
For /i;i = 1 to N1;i 

Endfor 
For /i;2 = 1 to Ni;2 

Endfor 

For Ii;; = 1 to Ni;; 

Endfor 

Endfor 

Endfor. 

We want to calculate the starting time step of the instance of LOO P1;i when 11 = ivi, 
and 11; = iv1;. Since each iteration of LOOP1 is delayed by di, the iv1-th iteration of LOOP1 
will start at ( iv1 - l)d1 time step. At ivi-th iteration of LOOPi, we have to wait until all 
sub-loops preceding LOOP1; are executed. Therefore, Sn+ ... + S1,i-1 time steps should be 
passed. At this point, we again have to wait for the iv1;-th iteration of LOOP1;. This adds 
(iv1; - l)d1; times steps to the delay time accumulated so far. Finally, we have to wait until 
all the sub-loops before LOOP1;j at the iv1;-th iteration are executed. So, the starting time 
step of the desired instance of LOO P1;j is 

Now, we will explain how to compute L1;j and U1;j, the new loop bounds. L1;j is the 
iteration that spans t1;j, the local time step of the current instance of LOOP1;j, for the first 
time. U1;j is the last iteration that spans t1;j. Therefore, if L1;j > 1, the ending time step6 

of the iteration L1;j - 1 should be strictly less than t1;j, and the ending time step of the 
iteration L1;j should be greater than or equal to t1ij· Also if U1;j < N1;j, the starting time 
step of U1;j should be greater than or equal to t1;j, while that of U1;j + 1 should be strictly 
greater than tiij· Therefore, when L1;j > 1 and U1;j < N1;j, we get the following inequalities 
to be satisfied. 

Solving these with the constraints that L1;j is an integer greater than or equal to 1, and 
U1;j is an integer less than or equal to N1;j, we get 

L1ii = M AX(l, fti;j ~;~Iii• + ll ), 

6 Actually local endinES time step. We are looking at only the current instance of LOOP1;;. Every time step 
here, while we are explaining the computation of L1;; and Uli;, refers to the local time step of the current 
instance of LOOPli;. 
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and 
t1ij - 1 

U1ij=MIN(N1iiil dtii +lJ). 

Now, the same parallelization process can be repeated for all the intermediate nodes. The 
parallelization of the leaf nodes is simple: just leave them untouched. For the root node (the 
outermost loop), we parallelize it following the above process, but this time add another loop 
on top of it. The new outermost loop is a sequential loop, and its index is the global time 
step (t). At each global time step, the sequential outermost loop specifies which statements 
of which loops can be executed in parallel. 

Using these notations, the parallel template of the loop in Figure ll(a), for example, will 
become that in Figure ll(b ). 

The general formulas for transformation are summarized in Figure 12. We assumed 
path = lijk to simplify the notations. It should be easily extendible to other paths. Note 
that SCiijk = 1 when ijk is nil, because SC1 = 1 by definition (it is the starting time step 
of the outermost loop). For completeness, we have included the formula for MAX-GLOBAL­
TIME-STEP in the figure. MAX-GLOBAL-TIME-STEP is the number of total time steps 
needed to execute the given loop. 

4.4 An example 

An example loop is given in Figure 13. In the figure, we show the source code, the parallel 
template, and the loop tree. 

Let's assume that d1 = d11 = d111 = 1, and that after shaping we got the statement 
arrangement as seen in Figure 13(b) (note that statement C is moved up next to A). 

Let's first compute the sizes of all loops. From the formulas in Figure 12, 

S111 = (3 - l)d111 + S1111 + S1112 = 4. 

Sn = (3 - l)dn + S111 = 6, 

and 
S1 = (3 - l)d1 +Sn = 8. 

Now, 
SC1=1, 

SCn =(Ii - l)d1+1 =Ii, 

and 
SC111 = (I1 - l)d1 +(In - l)dn + 1 =Ii +In - 1. 

Then, 
t1 = t - SC1 + 1 = t, 

tu = t - SCn + 1 = t - Ii + 1, 

and 
t111 = t - SC111 + 1 = t - Ii - In + 2. 

Therefore, 
C111 = tn1 - (I111 - l)d111 = t - I1 - In - I111 + 3. 

16 

.. 



For 11 = 1 to N1 
A 
For 112 = 1 to N12 

For 1121 = 1 to N121 
c 
D 

Endfor 
E 
For Ji23 = 1 to N123 

F 
Endfor 

endfor 
For /13 = 1 to N13 

G 
Endfor 

Endfor 

(a) The source code. 

Fort= 1 to MAX-GLOBAL-TIME-STEP 
Forall Ii = L1 to U1 

Case C1 is 
1: A 
2 to 1 + S12 : 

Forall 112 = L12 to U12 
Case C12 is 
1 to S121 : 

Forall li21 = L121 to U121 
Case C121 is 
1: c 
2: D 
End case 

Endforall 
S121+1: E 
S121 + 2 to S121 + 1 + S123: 

End case 

Forall /123 = L123 to U123 
F 

Endforall 

Endforall 
S12 + 2 to S12 + 1 + S13: 

End case 

Forall /13 = L13 to U13 
G 

Endforall 

Endforall 
Endfor 

(b) Its parallel template. 

Figure 11: An example of parallel template. 
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SCli;1:(I1 =a, Jli = b, 11;; = c) = 

if the path ijk is nil 
(a - l)d1 +Su+ S12 + ... + S1,i-1 

{ 

1 

+(b - 1)dli + slil + sli2 + . .. + s1 ,i,;-1 
+(c - l)dli; + Sli;1 + Sli;2 + . .. + S1,;,;,1:-1+1 if the path ijk is not nil 

{ 
MAX(l r'u;~-Si;;h + ll) 

, dtijk 

1 

{ 
M IN(Nli;J:, l '1

,;::;:
1 + lJ) 

Nli;J: 

if d1ijJ: > 0 
if dli;J: = 0 

if dlijJ: > 0 
if d1ijJ: = 0 

tli;1: = t - SC1;;1: + 1 

Su;·J: = { (Nu;J: - l)d1;;1: + Su;h if LOOPu;J: is a loop 
i if LOOPu;J: is a statement. 

MAX-GLOBAL-TIME-STEP= S1 

Figure 12: Transformation formula. 
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FOR Ii= 1,3 
FOR In= 1,3 

FOR Int = 1, 3 
A 
B 
c 

(a) The source code 

FOR t = 1,MAX_GLOBAL_TIME..STEP 
FORALL Il =Li, U1 

FORALL I11 =Lu, Un 
FORALL Iln = Lui. U111 
CASE C111 is 

1: A; C 
2: B 

END CASE 

(b) The template of the parallel loop 

0 
I 

@ 
I 

A 
A;C 

( c) The loop tree 

B 

Figure 13: An example loop. 
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and 

Finally, 
Li = M AX(l, ti - Sn+ 1) = M AX(l, t - 5), 

L11 = M AX(l, t11 - Sui+ 1) = M AX(l, t - I1 - 2, 

Lin = M AX(l, tni - 2 + 1) = M AX(l, t - Ii - In+ 1), 

Ui = MIN(3,t), 

Un= MIN(3,t-Ii + 1), 

Uni= },f IN(3, t- Ii - In+ 2. 

Therefore, the fully instantiated parallel form is 

FOR t = 1,8 
FORALL Ii = M AX(l, t - 5), MI N(3, t) 

FORALL I11 = M AX(l, t - Ii - 2), MI N(3, t - Ii+ 1) 
FORALL Ini = M AX(l, t - Ii - In+ 1), MI N(3, t - Ii - I11 + 2) 
CASE t - Ii - In - lni + 3 is 

1: A; C 
2: B 

END CASE 

5 Experiments 

, ' 

To see the benefits of parallelizing nested loops as opposed to parallelizing the innermost 
loop only, we have collected 10 loops from various numerical algorithms and parallelized 
them using our method and Perfect Pipelining. The results are in Figure 14 and Figure 15. 

A brief explanation of each algorithm follows. 2d-bnd-val computes the transverse de­
flections of a simply-supported rectangular plate (program 8.4 in (McSa64]); comp-sim-eq 
solves a system of linear simultaneous equations whose coefficients and constant vector may 
be complex (program 9.5 in (McSa64]); eig-val computes the largest eigenvalue of a matrix 
by iteration (program 5.5 in (McSa64]); Laplace computes the solution of Laplace's equa­
tion by iteration (program 8.1 in (McSa64]); simpson evaluates the integral of a function 
using Simpson's 1/3 rule (program 9.9-A in (McS~64]); sub-comeqs computes a check vector 
by substituting the solution vector into the original equations (program 9.6 in (McSa64]); 
vpenta inverts three pentadiagonals simultaneously (VPENTA in (Bail88]); ludcmp replaces a 
given N x N matrix by the LU decomposition of a rowwise permutation of itself (LUDCMP 
in (PFTV86]); solvde solves two point boundary value problems by relaxation (SOLVDE 
in (PFTV86]); and pinvs diagonalizes the square subsection of a given matrix (PINVS in 
[PFTV86]). 

Figure 14 compares 4 values: the execution time of sequential, Perfect Pipelining, DOACROSS, 
and N-Dimensional Perfect Pipelining. The execution time is measured assuming that each 
statement takes 1 unit time and that sufficient resources are available to the advantage of the 
exposed parallelism. The problem size of each case is also shown in the table. l represents 
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loop seq en ti al pp DOACROSS NDPP problem size 
2d-bnd-val 149020 37020 2622 114 l = 10,n = 100,m = 1456 
comp-sim-eq 2430000 81000 2700 2700 n = 30 
eig-val 2001000 3000 1002 1002 n = 1000 
la place 4000000 3000000 1489 1191 l = n = 100 
simpson 2252400 183900 5416 3621 n = 300 
sub-comeqs 8002000 1004000 1009 1009 n = 1000 
vpenta 27000000 8000 23004 6002 n = 1000 
ludcmp 2006000 1004000 4004 3002 l = n = 1000 
solvde 5007000 2001000 3009 3009 l = n = 1000 
pin vs 2004000 2004000 3003 3003 l = n = 1000 

Figure 14: Comparison of execution time between sequential, Perfect Pipelining (PP), 
DOACROSS, and N-Dimensional Perfect Pipelining (NDPP). 

the size of the outmost loop, n that of the next level loop, and m that of the innermost loop. 
When the size of all loops are the same, we use n to represent one of them. We picked the 
problem sizes such that the sequential execution times are order of 106 • 

The speed-ups (over sequential) obtained by PP, DOACROSS, NDPP are summarized 
in Figure 15. Since PP works only on the innermost loop, it shows much smaller speed­
ups than the other two technique in general. We observe NDPP shows better speed-ups 
than DOACROSS half the loops, and equal speed-ups for the rest of them. However, this 
tells only part of the story. By untilizing further fine grain parallelism, all the results for 
NDPP could be improved more. Of practical interest is 2d-bnd-val where clearly NDPP is 
finding surprisingly more parallelism than could be obtained by combining DOACROSS with 
Perfect Pipelining. Another difference is that the way of exposing parallelism in NDPP and 
DOACROSS are different: NDPP is explicit, DOACROSS implicit. This difference leads to 
two different architectures that each technique is better suited; NDPP prefers synchronous 
multiprocessors (equipped with global barriers) with each processing element being a VLIW, 
while DOACROSS is more natural for asynchronous multiprocessors. This point is the topic 
of the next section. 

6 Mapping 

The ideal architecture to exploit the parallelism exposed by our method would be a mul­
tiprocessor in which each processing element is a VLIW machine. It is desirable that the 
multiprocessor has a global barrier synchronization mechanism. 

Let's take the parallel form in Figure 13(b) to see how it can be mapped to such an 
architecture. The parallel form has one sequential outermost loop and three inner parallel 
loops. For each t (the index of the outermost loop), the three inner loops define a different 
iteration space, and all points in this iteration space can be done in parallel if resources 
permitting. A point in this space corresponds to an instance of the case statement shown in 
the loop body of Figure 13(b ). 

Then, the iteration space defined by the three inner loops will be mapped to the set 
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loop pp DOACROSS NDPP 
2d-bnd-val 4.0 57 1307 
comp-sim-eq 30 900 900 
eig-val 667 1997 1997 
la.place 1.3 2686 3358 
simpson 12 415 622 
sub-comeqs 8 7930 7930 
vpenta. 3375 1173 4498 
ludcmp 2 501 668 
solvde 2.5 1664 1664 
pin vs 1 667 667 

Figure 15: The speed-up table of PP, DOACROSS, and NDPP. 

of processing elements, and ea.ch processing element will execute the corresponding case 
sta.tment. The set of processing elements will execute the iteration space defined at ea.ch t. 
The execution of the current iteration space is separated from the next iteration space by the 
global barrier. 

The case statement consists of a test and a set of statements. Depending on the result 
of the test, a subset of statements a.re selected to be executed. The statements inside this 
subset can also be done in parallel; this parallelism is exploited by the multiple functional 
units each VLIW element has. 

The parallelism that each case statement contains is due to the shaping process (see 
Section 4.1). The shaping process overlaps statements in order to maximize the parallelism 
across all loops; the parallelism across iterations is exploited by the multiple processing 
elements, and the parallelism between statements is exploited by the multiple functional units 
inside each processing element. The parallelism across iterations exposed by our technique 
is often much greater than that by DOACROSS because we shape the statements inside the 
loop body in order to minimize the delay in each dimension (and maximize the parallelism 
across dimensions). 

The parallelism in the case statement can be increased if enough parallelism exists in 
the loops. It will be useful when there is not enough parallelism for the single processing 
element, as in this particular example. This is achieved by combining Perfect Pipelining 
and loop unwinding in our transformation. In fact, an advantage of our technique is that 
it allows trade-offs between the coarse and fine grain parallelism "levels" to be easily made. 
We first apply Perfect Pipelining to the innermost loop, then apply N-Dimensional Perfect 
Pipelining to the modified loop, and then unwind the innermost loop of the parallel loop k 
times. By increasing the value of k, we can increase the amount of parallelism under the case 
statements. 

An example is given in Figure 16. In the figure, we assume that di = d2 = d3 = 1, and 
that there a.re strict dependences between A and B, between B and C, and between C and 
D; this will prevent us from getting any parallelism through shaping. Since shaping does not 
produce any parallelism, we have a degenerated case. We will show how we can increase the 
parallelism under the case statement in this case. 

The first two loops in Figure 16 show the original sequential code and its perfect-pipelined 
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version. The third loop shows the parallel form when N-Dimensional Perfect Pipelining is 
applied to the second loop. We show only the parallel template to explain the idea more 
clearly. 

As we can see in this parallel form, the number of statements that can be done in parallel 
at each case statement is 1 to 4. However, in most cases we are executing 4 statements 
in parallel, because C2 will be in ·the range of ( 4, N3) most of time. This is already an 
improvement over the parallel form that may be produced by the regular N-Dimensional 
Perfect Pipelining. In the regular parallel form that N-Dimensional Perfect Pipelining may 
produce for this example, only one statement would be executed under each case statement 
because of the strict dependences between statements. 

Further improvement of the parallelism under the case statements is possible through 
loop unwinding. The fourth loop in Figure 16 shows the parallel form after unwinding the 
parallel 12 loop in Figure 16(c) twice (we omitted the parenthesis showing the 13 value for 
each statement). The case statement here (in Figure 16( d)) examines the value of C2(J2) 
and C2(J2 + 1) at the same time, as 12 iterates from L2 to U2 with stride 2. We know from 
Figure 16( c) that C2(J2) can have 7 different values when 12 iterates from L2 to U2. So, 
the combination of C2( 12) and C2( 12 + 1) could lead to 7 x 7 = 49 different cases. However, 
because the values of C2(J2) and C2(12 + 1) are not independent of each other, we see only 
9 different cases as seen in Figure 16( d). In this improved parallel form, we see 1 to 8 parallel 
statements under each case statement with 8 statements being the most frequent one. 

7 Conclusion 

In this paper, we have introduced a new technique to parallelize nested loops at the fine grain 
level. Previously, parallelizing loops at the fine grain level was largely limited to single-nested 
loops. 

The technique consists of three parts: shaping, delay computing, and transformation. In 
shaping, we reorder the statements to maximize the parallelism. A heuristic to find a good 
reordering is suggested. In delay computing, we determine the delay of each loop nest based 
on the above reordering; The technique of DOACROSS might be used in this phase to 
determine the delays. However, we suggest a simpler and more efficient method to compute 
the delays. In transformation, we compute the parallel form based on the delay of each loop 
nest. Our transformation technique is powerful and :flexible; it exposes more parallelism than 
previous techniques and applies to general nested loops. 
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(0,1,0) (1,0,0) 

FOR I1=1,Nl 
FOR I2 = 1,N2 

FOR 13 = 1,N3 
A 
B c 
D 

(a) Source code and its dependence graph. 

FOR I1=1,Nl 
FOR 12=1,N2 

B 13 = 1 A 13 = 2 
A1l3 = 1) 

C 13 =;= d B~i3 = 2~ A(l3 = 3) 
F R i3 = 1, ')V-3 - 3 

D(l3 = i3) C(l3 = i3 + 1) B(l3 = i3 + 2) A(l3 = i3 + 3) 
D!l3 = N3 - 2) C(I3 = N3 - 1) B(l3 = N3) 
D 13 = N3 - 1) C(I3 = N3) 
D 13 = N3) 

(b) Perfect Pipelining is applied to the innermost loop. The expression inside the parenthesis shows 
the copy of the statment at some value of 13. For example, A(l3 = 3) implies the copy of A when 
13 = 3. 

FOR t = 1,MAX_GLOBAL.:J'lME...STEP 
FORALL I1 =LI, Ul 

FORALL 12 = £2, U2 
CASE C2(12) is 

1: A!l3 = ll 2: B 13 = 1 A(I3 = 2) 
3: C 13 = 1 B(I3 = 2) A(l3 = 3) 
4 to N3: D(I3 = i3) C(I3 = i3 + 1) B(/3 = i3 + 2) A(l3 = i3 + 3) 
N3 + 1: D!/3 = N3 - 2) C(l3 = N3 -1) B(13 = N3) 
N3+2: D 13 = N3-1) C(l3 = N3) 
N3+3: D 13 = N3) 

ENDCASE 

(c) N-Dimensional Perfect Pipelining is applied to the loop in (b). 

FOR t = 1, KAX_GLOBAL_TIKE_STEP 
FORALL !1 = L1, U1 

FORALL !2 = L2, U2 by 2 
CASE C2(I2) and C2(I2+1) is 
1,* A 
2, 1 B A A 
3,2 C B A B A 
4,3 D C B A C B A 
5 o 13, 4 to 13-1 D C B A D C B A 
13+1,13 D C B D C B A 
13+2,13+1 D C D C B 
13+3,13+2 D D C 
* ,13+3 D 

(d) Unwinding the loop in (c) by 2. *means don't care. 

Figure 16: Increasing the parallelism under the case statement. 
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