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Abstract

Search for supersymmetry in the final state containing two hadronically decaying taus

and missing transverse momentum with 77.2 fb−1 of data collected by the CMS

Detector from 13 TeV proton-proton collisions

by

Owen Robert Colegrove

The dissertation herein presents the latest public search for direct tau slepton (τ̃)

production at the Large Hadron Collider (LHC). The search is performed using data

collected from the Compact Muon Solenoid (CMS) experiment. A total of 77.2 fb−1 of

data from proton-proton collisions at 13 TeV are recorded and analyzed. The analysis

probes the final state with τ̃ decay branching ratio, that of two hadronic taus.

No significant deviation from Standard Model expectations are observed in the data

a 95% confidence level upper limit on the direct stau pair production cross section is set

accordingly. Mass degenerate stau pair production is excluded for minimally supersym-

metric models with m(τ̃) ∈ 90-150 GeV. Similarly, exclusion is expected for left-handed

only pair production with m(τ̃L)=125 GeV. However, no such exclusion is observed in

the data.

These results motivate an additional study carried out in a simulation of the High-

Luminosity LHC environment with the CMS Phase-2 detector. This scenario corresponds

to 3000 fb−1 of data taken at a center-of-mass energy of 14 TeV. The study shows suf-

ficient sensitivity to formally expect the discovery of mass degenerate direct stau pair

production for m(τ̃) ∈ [100, 650 GeV].
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The Standard Model of Particle Physics Chapter 1

1.1 Introduction and History

Today, science is a multi-discipline area of study that spans an almost unfathomably

deep knowledge base – many attribute the success of modern science to a style of critical

thought dubbed the scientific method. Since introducing the scientific method in the 17th

century, scientists have iteratively used rigorous thinking to develop and, subsequently,

to validate or falsify new scientific theories. A more careful historian may even trace the

birth of modern science back further, e.g., to the work of ancient Greek philosophers, such

as Democritus who was one of many great philosophers of the antiquities. Democritus

theorized that the universe is made up of indivisible and indestructible building blocks

called atoms.

In the years since Democritus, our understanding of the universe has grown and been

refined in many domains. Modern physics first demonstrated all solid matter in the

cosmos to be composed of vast swaths of molecules which are in turn composed of atoms,

named for their similarity to Democritus’s theory. However, later results showed that

atoms are not fundamental, but instead they are in turn composed of more basic building

blocks called neutrons and protons, which are themselves composite objects of primary

particles called quarks and gluons. Perhaps Democritus had the correct model, and these

are just additional layers of abstraction being peeled away.

The Standard Model (SM) of particle physics is a comprehensive modern theory which

attempts to build an accurate model of all particles and interactions. The Standard

Model accomplishes this by introducing three fundamental forces (Weak, Strong, and

Electromagnetic), and a slew of particles – leptons, quarks, neutrinos, and last but not

least, the Higgs boson [Fig. 1.1]. The force carriers mediate interactions between all

particles with characteristics that can be determined by an associated gauge symmetry.

The Standard Model was built and confirmed through numerous experiments of ever-

2



The Standard Model of Particle Physics Chapter 1

Figure 1.1: The Standard Model of particle physics
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The Standard Model of Particle Physics Chapter 1

increasing sophistication. One of the first modern experiments along this path was con-

ducted by Ernest Rutherford who invalidated J.J. Thomson’s plum-pudding model of the

atom and replaced it with a model that included a dense core called the nucleus [1, 2].

The experiment devised by Rutherford et al. found new physics, physics that was beyond

that which was previously known, by measuring an anomalous rate of wide-angle alpha

particle scatter in nuclear collisions. The results roughly coincided with the first emer-

gence of modern quantum theory and marked the beginning of a century of significant

discoveries which created the Standard Model as it is known today [3]. Ultimately, it is

the goal of every particle physics experiment to either find such deviations, called Beyond

the Standard Model (BSM) physics, or to provide a more precise measurement of known

Standard Model processes.

1.1.1 Fermions

The Standard Model is composed of two types of elementary particles referred to as

bosons, spin 1 or 0 particles, and fermions, spin 1/2 particles [4]. The fermions can be

separated into three distinct sub-classes called quarks, leptons and neutrinos. Quarks

are the only fermions to have color charge and to therefore participate in strong inter-

actions [5], non-neutrino leptons participate in electromagnetic and weak interactions,

and neutrinos interact only weakly. The leptons come in three generations which follow

a mass hierarchical structure [Tab. 1.1]. The understanding of the properties of quarks

and leptons greatly exceeds that of the neutrino sector. Known characteristics of neutri-

nos has grown slowly because of the relatively small cross section for weak interactions

which makes neutrino detection exceedingly difficult.

4



The Standard Model of Particle Physics Chapter 1

Table 1.1: List of all fermions.
Particles Names Masses Mediated By
Neutrinos νe, νµ, ντ < 1 eV Weak
Leptons e, µ, τ 511 KeV, 105 MeV, 1776 MeV E&M, Weak
Quarks u,d,c,s,t,b ≈ 1 MeV - 200 GeV Strong, E&M, Weak

1.1.2 Bosons

The vector bosons of the Standard Model are responsible for mediating interactions

between all particles with a strength proportional to the interactions coupling constant.

Bosons are separated into vector (spin 1) and scalar (spin 0) categories and are often

referred to as ”fields” in recognition of their unique ability to cause action at a dis-

tance. Among the vector bosons, the photon is a single massless particle responsible for

mediating electromagnetic forces, the gluons are eight massless particles responsible for

mediating the strong forces, and the W and Z bosons are three massive particles respon-

sible for weak interactions. Lastly, the Higgs boson a massive scalar particle which is

responsible for generating the mass of the other particles in the Standard Model. The

Higgs boson is known to ”give mass” to other particles through electroweak symmetry

breaking [Sec. 1.4]. The Higgs boson is produced with the smallest frequency of all Stan-

dard Model particles and was, therefore, the last building block of the Standard Model

to be experimentally verified.

1.2 Introduction to Quantum Field Theory

The interactions within the Standard Model can all be explained through a self-

consistent formalism known as Quantum Field Theory (QFT). Within QFT, field equa-

tions and particle kinematics are derived by varying the action, S, which can be written as

a time integral over the Lagrangian, L, and a space-time integral over the corresponding

5
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Lagrangian density, L:

S =

∫
L dt =

∫
L(φ, ∂φ) d4x (1.1)

The action is composed of Lorentz invariant terms that couple together mathematical

representations of the particles and fields of the Standard Model. All interactions of the

Standard Model can be derived directly from the Lagrangian, but exact calculations are

as of yet too complicated to perform, and so such calculations are made by approximate

techniques. The most standard approach for such calculations is a graphical perturbation

schema referred to as Feynman Diagrams [6]. Each Feynman diagram is built from basic

pieces associated with allowable interactions of the Standard Model that are contained

in L [Fig. 1.2, Fig. 1.6] and are used to approximate the full path integral as described

below. Every additional interaction added to a diagram constitutes a higher order term

of the perturbation expansion, written in terms of the associated coupling constants,

except for low energy strong interactions where the coupling is non-perturbative. In this

regime other methods such as lattice QCD must be employed [Sec. 1.3.3].

1.2.1 Classical field theory – symmetry and conservation laws

The principle of least action dictates that any variation of the action, δS, of any

classically described system must vanish as deviations are made from the extremal path

– the path selected by nature. Mathematically, this statement indicates that the system

is tracing out a stationary path, and an example of the physical consequence of this law

in classical mechanics is the apple falling deterministically from a tree to the ground

underneath it. Application of this mathematical principle yields the Euler-Lagrange

equations of motion [7] :

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0 (1.2)

6
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A symmetry is any variation of the fields, φ→ φ′ = φ+α∆φ for which the equations

of motion remain unchanged. This can only be achieved if the Lagrangian is invariant

up to a 4-divergence, that is L → L′ = L+ α∂µJ µ.

From Noether’s theorem this then leads to a conserved current jµ :

jµ =
∂L

∂(∂µφ)
∆φ− J µ (1.3)

Applying Noether’s theorem to the QFT of the Standard Model allows for natural

physical interpretations, such as the conservation of charge and energy.

1.2.2 Quantum field theory – path integral formulation

Phenomena in the quantum mechanical world can only be described probablisticially.

This in turn creates a more complicated description of nature than that which is observed

in the classical world. The double-slit experiment provided an early demonstration of

this challenge by showing that light incident on a boundary wall with two open slits

created an interference pattern on an opposite screen consistent with a wave-like source

[8]. Moreover, the probability amplitude in this experiment, as could be inferred by

the observed intensity on the screen, was shown to be a sum over the amplitude of the

two paths allowed by the two slits. Free space can be thought of as the limiting case

of an infinite number of boundary walls, each with infinite slits, which, in light of the

previously described double-slit slit experiment, illustrates the point that all paths must

be considered in a quantum system [9]. Therefore, the probability amplitude in free

space, Aif (T ), for a single particle to traverse from point qi to point qf over a time

7
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interval T is given by the sum over all allowable paths, the path integral,

Aif (T ) = 〈qi|e−iHT |qf〉 =

∫
Dq(t) exp

[
−i
∫ T

0

L(q, q̇)dt

]
, (1.4)

where H is the Hamiltonian of the system, so that e−iHT is the time evolution operator,

and where ∫
Dq(t) = lim

N→∞

(
im

2πδt

)N/2 N−1∏
i=0

∫
dqi. (1.5)

Assuming a polynomial representation of the potential, V (φ) = Σiaiφ
i, in the La-

grangian above, it becomes clear that the path integral may be expanded in powers

of ai. The constant ai is the previously described coupling constant because it speci-

fies the strength of interactions with the potential. Each term in this expansion of the

path integral can then be represented by a single Feynman Diagram which simplifies the

computation and implies a physical interpretation of the expansion term.

1.3 Fundamental Forces Explained

The Standard Model is an experimentally driven theory wherein the majority of

introduced particles did not have any theoretical motivation, save for the fact that at

various points in time new particles were predicted for the internal coherence of the model.

However, all observed particles and forces now fit neatly into a formalized QFT, with an

associated Lagrangian which accurately describes almost all observed phenomena.

The Standard Model vector bosons have underlying gauge symmetries built into the

Lagrangian. The gauge symmetry of the Standard Model corresponds to the product of

these symmetries, U(1)Y × SU(2)L × SU(3)C [10].

8
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Figure 1.2: The gauge boson mediated interactions of the Standard Model. Above, f
is any fermion, u/d are interchangeable with c/s and t/b, and χ± is any particle with
electromagnetic charge. The notation X/Y indicates that either particle X or Y can
be used freely as long as the diagram conserves charge.
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1.3.1 Quantum electrodynamics and the electromagnetic force

Quantum electrodynamics (QED) is the simplest sector of the Standard Model, and

any particle charged under it participates in the interactions it describes [11].

The Lagrangian density describing QED is given by

LQED = ψ̄(iγµDµ −m)ψ − 1

4
F µνFµν . (1.6)

Coupling between the Dirac spinor, ψ, its adjoint, ψ̄ = ψ†γ0, and the photon field Aµ are

determined by the covariant derivative Dµ =∂µ − iQeAµ(x).

The QED Lagrangian is invariant under the simulatenous transformation of the pho-

ton field, A(x)µ → A′(x)µ = A(x)µ − ∂µα, and the spinor ψ → eiα(x)ψ. This is classified

as a U(1) Abelian (commutative) local symmetry. One way that this symmetry can be

thought of is as a redundancy in physical systems that yield a given equation of motion.

I.e., it is the potential difference across space, and not the potential values, that dic-

tate the motion of a charged particle. Moreover, this gauge invariance can be physically

interpreted as conservation of electromagnetic charge through Noether’s theorem.

One can obtain the Dirac Equation by varying this Lagrangian with respect to the

spinor ψ. This equation governs the motion for any charged particle subject to any given

electromagnetic field configuration Aµ:

∂µ

(
∂L

∂(∂µψ)

)
− ∂L
∂ψ

= 0 −→ iγµ∂µψ −mψ = eQγµA
µ. (1.7)

Alternatively, one may vary the Lagrangian with respect to the field Aµ in order to

find an equation for the field in terms of the spinor ψ

∂ν

(
∂L

∂(∂νAµ)

)
− ∂L
∂Aµ

= 0 −→ ∂νF
νµ = eQψ̄γµψ. (1.8)

10
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The gauge invariance of Aµ can be used to select ∂µA
µ = 0. This selection is known

as the Lorenz gauge and reduces to the equation governing Aµ to:

∂ν∂νA
µ = eQψ̄γµψ. (1.9)

1.3.2 Weak isospin/hypercharge and the electroweak force

Glashow, Salam, and Weinberg showed that unification of the weak and electro-

magnetic forces provides a more accurate description of nature [12]. The Lagrangian

of the weak isospin sector obeys a SU(2) gauge symmetry and admits three bosons

(W1,W2,W3). The W±, Z and γ bosons observed in nature are composed as a super-

position over the three weak eigenstates and a U(1) invariant boson B, from the QED

sector, according to:

 A
Z0

 =

 cos θW sin θW

− sin θW cos θW


 B
W3

 , (1.10)

and,

W± =
1√
2

(W1 ∓ iW2). (1.11)

Latest measurements show the electroweak mixing angle satisfies sin2 θW = 0.23146±

0.00012, consistent with theoretical predictions [13]. The W boson couples to particles

according to weak isospin, TW , which is determined in part for fermions by the given

particles chirality. Chirality is a somewhat nebulous quantum property of fundamental

particles that can be described as an intrinsic handedness, with values ±1, which maps

onto helicity in the massless particle limit. The field of the W boson, W±, has weak

isospin values IW = ± 1 and acts according to a SU(2) symmetry to mediate transitions

between isospin doublet states, e.g.
(
e
νe

)
L/R

, of TW . The subscript ”L/R” corresponds

11
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Table 1.2: Electroweak coupling constants
Fermion Q IW YL (left-handed) YR (right-handed)
`± ±1 ± 1/2 ± 1 ± 2
ν` 0 1/2 -1 0
u,c,t 2/3 1/2 1/3 4/3
d,s,b -1/3 -1/2 1/3 -2/3

to left/right-handed chiral states.

Because the weak hypercharge is a linear combination of two operators, it is com-

putationally efficient to decompose the interactions it mediates into axial and vector

components with coefficients cV = TW − 2Q sin2 θ, and cA = TW , respectively. Lastly, all

particles participate in interactions with the γ boson with strength determined by their

coupling e = gW sin θW .

The portion of the electroweak Lagrangian responsible for governing the interaction

between fermions and the fields, LintEWK , can be written as the sum over three terms

describing the interactions mediated by these four bosons, LintA , LintW , LintZ , where [14]:

LintA = −eQAµ
(
ψ̄γµψ

)
, (1.12)

LintW =
gW

2
√

2

[
W−
µ

(
ūγµ(1− γ5)d

)
+W+

µ

(
d̄γµ(1− γ5)u

)]
, (1.13)

LintZ =
gW

2 cos θW
Z0
µ

[
ψ̄γµ

(
cV − cAγ5

)]
ψ. (1.14)

In an analogous manner to section 1.3.1 one may obtain the equations that govern

the fields and particles therein varying the Lagrangian.

12
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1.3.3 Quantum chromodynamic and the strong force

Chromodynamics (QCD) is a non-Abelian theory that follows a relatively complicated

SU(3) gauge symmetry [15]. The discovery of the gluon, the strong force mediator, came

in 1979 after evidence for QCD was provided in three-jet events at the PETRA experiment

[16]. The governing Lagrangian of QCD, LQCD, is given as

LQCD = ψ̄i (i(γ
µDµ)ij −mδij)ψj −

1

4
Ga
µνG

µν
a , (1.15)

where index a on the field tensor runs over the three conserved color charges of QCD. The

Lagrangian, LQCD, admits a gauge symmetry similar to that of QED with the slightly

more complicated transformation, U(x) = exp iΣaαa(x)Xam which is called non-Abelian

as U(x)U(y) 6= U(y)U(x).

The coupling constant of the strong force is different from that of the electroweak sec-

tor, in that it decreases at higher energy scales. This phenomenon, dubbed asymptotic

freedom, was first proposed by David Gross, Frank Wilczek, and independently David

Politzer, who all shared the 2004 Nobel prize in physics for this work [17]. Asymptotic

freedom implies a point-like nature of quarks in bound states and also a strong force

which grows with separation. Moreover, asymptotic freedom implies color confinement,

i.e., quarks cannot exist individually in nature. Instead, quarks form composite mesons,

diquark states, baryons, triquark states, and perhaps more exotic states such as pen-

taquarks. The coupling constant, αs(Q
2), scales logarithmically with the resolution, Q2,

in respect to a known reference scale αs(µ
2),

αs(Q
2) =

αs(µ
2)

1 +Bαs(µ2) ln(Q
2

µ2
)
, (1.16)

where B = (11NC − 2Nf )/12π, given NC number of colors and Nf number of quark

13
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flavors. In the Standard Model experiments have verified NC = 3 and Nf = 3 and so

indeed the coupling constant αs does decrease with increasing energy.

The non-perturbative nature of QCD at low energies makes it difficult to perform ac-

curate calculations. Challenging to compute quantities include interaction cross sections

as well as more fundamental quantities such as meson/baryon masses. Such estimates

are an ongoing area of active research called Lattice QCD [18]. However, at higher ener-

gies, such as those seen at typical accelerator experiments today, it is possible to obtain

very accurate predictions of QCD related quantities. These predictions, such as the dif-

ferential dijet production cross section [Fig. 1.3], have been confirmed by many distinct

measurements. However, despite accurate cross section predictions, QCD events can re-

main hard to model at collider experiments due to high production rates and hard to

simulate rare detector effects.

1.4 Particle Mass and the Higgs Boson

In order for all previously described gauge symmetries to hold the Standard Model

requires all elementary particles to be massless. Beyond the problem of particle mass,

there are also some processes such as e+e− → W+W− which violate unitarity with the

existence of only electroweak and strong forces [20]. Introducing the Higgs boson through

a mechanism called electroweak symmetry breaking solves these problems [21, 22]. Within

the standard model, the Higgs boson is a superposition over two complex scalar fields

that make up a weak isospin doublet

φ =
1√
2

 φ1 + iφ2

φ0 + iφ3

 . (1.17)
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Figure 1.3: The differential production cross section for dijet QCD [19].
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The Higgs boson field interacts with the Standard Model through the Lagrangian

LH = |Dµφ|2 + µ2φ†φ− λ(φ†φ)2. (1.18)

The potential in the Lagrangian, V (φ) = µ2φ†φ − λ(φ†φ)2, breaks the U(1) global

symmetry of the Lagrangian when µ2 < 0. This results in a non-zero vacuum expectation

value 〈φ〉 = |µ|√
2λ

= v. For a Higgs with an observable mass of roughly 125 GeV the

constant v is approximately 246 GeV[Fig. 1.4]. Subsequently, the Higgs boson can gives

mass to other particles via coupling mechanisms. For vector bosons, this coupling to the

Higgs boson achieved through the gauge covariant derivative, Dµ:

Dµ =

(
∂µ − igW a

µ τ
a − i1

2
g′Bµ

)
, (1.19)

where gW and g′ are the coupling constants of the previously introduced eigenstate W a
µ

and Bµ gauge bosons, and τa are the Pauli spin matrices. The mass of the massive gauge

bosons can then calculated theoretically

mW = 1
2
v |gW | , mZ = 1

2
v
√
g2
W + g′2, mH =

√
2µ2 ≡

√
2λv2, (1.20)

whereas for fermions the mass is generated through a direct Yukawa coupling to the Higgs

boson field,

LYukawa = −λf ψ̄φψ. (1.21)

The neutrino is suspected of only existing in a right-handed state and of being a

Majorna particle, which in turn implies that the neutrino cannot obtain a mass through

this interaction. Experimental evidence shows that the neutrinos are not massless and

so uncovering the source of neutrino mass is an ongoing effort [Sec. 1.5].
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Figure 1.4: The potential term in the Lagrangian of the Higgs field has a minimum
value that is centered v, a phenomenon which is often referred to as symmetry break-
ing because it breaks the U(1) global symmetry inherent in the Higgs Lagrangian.
The physical significance of this point is that it corresponds to a non-zero vacuum
expectation value.

There are five basic Feynman diagrams for interactions associated with the Higgs

[Fig. 1.6]. Two of these diagrams correspond to the Higgs self-interactions, one diagram

corresponds to the previously mentioned Yukawa couplings, and two diagrams describe

the Higgs coupling to W/Z bosons that are responsible for restoring unitarity to WW

scattering.

Because of the Higgs bosons mass-proportional coupling, the leading production

mechanism of the Higgs boson at the LHC is gluon-gluon fusion through a top quark

loop. Careful examination of the di-photon and 4-lepton mass spectrums led to the ob-

servation of the Higgs boson in 2012. A bump can be seen clearly around the measured

mass of the Higgs boson at approximately 125 GeV [Fig. 1.5].
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Figure 1.5: Invariant mass distributions from the Higgs boson discovery [23]
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Figure 1.6: The Higgs boson mediated interactions of the Standard Model.
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1.5 The Neutrino Sector

The ”electron neutrino”, νe, is called such because it is produced in charged-current

weak interactions involving an electron. The muon and tau neutrinos, νµ and ντ , respec-

tively, are named similarly for their interactions involving muons and taus, respectively.

Early neutrino experiments sought to gain understanding of the sector by probing high

energy neutrinos produced from rare solar fusion events, such as 8
5B→8

4B e* + e+ +

νe. These initial experiments reported less interactions than theoretical calculations

predicted and the best explanation was provided through Bruno Pontecorvo’s theory of

neutrino oscillation [24]. This theory postulated that the electron, muon, and tau neutri-

nos are composites of mass eigenstates ν1, ν2, ν3 and therefore oscillate between different

neutrino flavors as they propagate through space. The electron, muon, and tau neutri-

nos can be composed as a product of the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)

matrix with the true mass eigenstates [25]:


νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 . (1.22)

Evidence from experiments and cosmological data constrain the sum of the neutrino

masses to be less than 1 eV, however, such oscillations imply that no neutrino is entirely

massless. In practice the mixing of neutrinos 1 and 3 is small, and so the oscillations

between neutrinos 1 and 2 can be approximated by a simpler pair-wise mixing [26]:

να
νβ

 =

 cos θ sin θ

− sin θ cos θ


νi
νj

 , (1.23)

which gives the probability Pα→β of a neutrino να with energy E to oscillate into a
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neutrino νβ (β 6= α) after traversing a distance of L

Pα→β,β 6=α = sin2(2θ) sin2

(
∆m2

i,jL

4E

)
. (1.24)

Because oscillation only depends on the absolute value of the squared mass splittings,

it is difficult to realize the entire picture of neutrino oscillations. Still, recent experimental

results have reliably determined the following relations [27, 28]

m2
2 −m2

1 ≈ 7.6× 10−5 eV2 |m2
3 −m2

2| ≈ 2.3× 10−3 eV2. (1.25)

Lastly, oscillation experiments have measured the mixing angles of the PMNS matrix

to be [29, 30]

θ1,2 ≈ 35◦, θ2,3 ≈ 45◦, θ1,3 ≈ 10◦. (1.26)

1.6 Shortcomings of the Standard Model

The Standard Model is an undeniably successful theory that has been able to ac-

curately describe almost all the critical particle interactions observed in every recorded

collider experiment. With the discovery of the Higgs boson in 2012 a steady march to-

wards understanding our known universe was completed, in some sense, as this was the

last missing piece of the Standard Model. Moreover, along the way the Standard Model

has shown that it is capable of making predictions that are accurate to over ten decimal

places and has been verified countless times [31, 32]. A model that successfully unifies the

observed effects of the strong, weak, and electromagnetic forces is one of the crowning

achievements of human intellect. However, there are some fundamental limitations in

terms of what the Standard Model can describe.
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1.6.1 Missing/unexplained phenomena

As of yet, the Standard Model is incomplete. Empirically, missing parts include the

total omission of the gravitational force and other known phenomena, and theoretically,

there are many parts of the model with no explanation. The quantum numbers associated

with the fundamental particles, such as the electromagnetic and weak hypercharges, the

weak isospin, and the strong color charge do not come from first principles.

Depending on how the accounting is done, up to 25 parameters of the Standard

Model are not fixed by any theoretical means [33]. Beyond straightforward questions

about quantum numbers, one can also begin to ask more profound questions for which

there is no answer – e.g., why are there three generations of leptons? A complete theory

of nature would successfully resolve all such tensions.

Moreover, there are additional puzzles for which there is no explanation. The most

important among these is the apparent cosmological abundance of dark matter and dark

energy [34]. Strong observational evidence exists for the as of yet undiscovered dark

matter/energy that comes from galactic rotation curves, cosmological structure forma-

tion, the cosmic microwave background, and gravitational lensing [35]. These are not

trivial omissions given that it has been estimated that only 23% of the known universe

is composed of the ”ordinary” matter in the Standard Model [36].

1.6.2 The hierarchy problem

In addition to the incomplete nature of the Standard Model there is a very puzzling

self-inconsistency called the hierarchy problem [37]. As was discussed previously, each

fermion couples directly to the Higgs boson and obtains a mass through the Yukawa

term. According to the formalism of QFT, interactions of this type will yield corrections
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∆m2
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t

t
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t̃

+ . . .

Figure 1.7: The Feynman diagrams Standard Model (left) and SUSY (right) respon-
sible for the largest corrections to the Higgs mass.

to the Higgs mass of the form

∆m2
H = −|λf |

2

8π2
[Λ2

UV + ...]. (1.27)

The larger the particle mass, the larger the coupling λf and therefore the larger the

term in this correction above. Calculations show that the terms in the summation above

require fine-tuning at an order of 38 decimal places to cancel each other out [38]. Thus,

unless such a cancellation exists the Higgs mass is expected to diverge, with the greatest

contribution coming from the coupling to the top quark. However, observation of the

Higgs boson at a mass of roughly 125 GeVcontradicts this. One possible explanation

for stabilizing of the Higgs boson mass comes from a theory called Supersymmetry [Sec.

2.1], which, among other things, introduces a complex scalar for every chiral state of the

fermionic particles. Supposing that these additional scalars have a coupling to the Higgs

given by λS, additional corrections to the Higgs boson are given by [39]

∆m2
H = 2× λS

16π2
[Λ2

UV + ...] (1.28)

Therefore, ∆m2
H → 0 as λS → |λf |2. Broken symmetries in many models of su-

persymmetry can result in only a partial cancellation of these masses. Among these

scenarios, those limiting the amount of fine-tuning required to stabilize the Higgs are

referred to as natural [40].
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2.1 Supersymmetry

SUSY introduces an exchange operator which maps bosons and the chiral states of

fermions in the Standard Model onto fermionic and bosonic superpartners, respectively.

In addition to helping alleviate the hierarchy problem, as previously shown, in many

SUSY scenarios the lightest SUSY particle (LSP) cannot decay and is, therefore, a natural

candidate for dark matter. Formally, the symmetry of SUSY introduces the operation

shown below [41]

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (2.1)

The generators of the SUSY algebra, Q, and its conjugate Q̄ are nominally given an

explicit representation through Weyl spinors [42]. The corresponding algebra is given by

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (2.2)

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ, (2.3)

[Qα, Pβ] = 0, (2.4)

where P µ = i∂µ is the usual momentum generator.

Accordingly, an explicit representation of the generators can be selected, much like

the Gell-Mann matrix representation of the QCD transformation generators:

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄β̇∂µ, (2.5)
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Q̄α =
∂

∂θ̄α̇
− iθβσµβα̇∂µ, (2.6)

where θ and θ̄ are anti-commuting ”Grassman” variables that satisfy {θ, θ} = 0, {θ̄, θ̄} =

0.

A finite SUSY transformation operator, U(x), follows the form

U(x) = exp
[
i
(
θQ+ Q̄θ − xµP µ

)]
. (2.7)

2.2 SUSY Phenomenology

The minimal supersymmetric model (MSSM) is a SUSY theory that introduces the

smallest number of parameters required to be consistent with all experimental observa-

tions of the Standard Model [43, 44, 45]. In the MSSM SUSY particles take on a value

of +1, and Standard Model particles take on a value of -1 under the R-parity operator:

PR = (−1)3B+L+2s, (2.8)

where s is spin, B is baryon number, and L is lepton number. The MSSM is an R-

parity conserving theory which stabilizes the LSP against decay and thereby provides a

candidate for dark matter. In addition, the MSSM can potentially solve the hierarchy

problem, as described previously, and also provides a schema that unifies the strong,

weak, and electromagnetic forces at high energy, a Grand Unified Theory (GUT) [46].

The Standard Model by itself is not a GUT as there is no known energy scale where the

coupling constants merge to a single value [Fig. 2.1].

SUSY particles such as the stop and gluino can be pair produced in pp collisions,

pp → g̃g̃/t̃t̃, through strong interactions and are expected to have large production
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Figure 2.1: Within the SM there is no scale for which all coupling constants converge,
however in MSSM such a point can exist [47].

Table 2.1: Particles and superpartners in the MSSM
SM Particle Type Corresponding SUSY Particle Symbol Spin
Quark Squark q̃ 0

Lepton Slepton ˜̀ 0
Neutrino Sneutrino ν̃ 1/2
Gluon Gluino g̃ 1/2

γ,Z,H Neutralino χ̃
[0−4]
1 1/2

Higgs/W Chargino χ̃±[1−2] 1/2
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cross sections, relative to their weakly produced counterparts. Still, the production cross

section for most SUSY processes remains quite small in comparison to typical processes

of the Standard Model [Fig. 2.3, Fig. 3.10]. In most allowable phase space within the

MSSM or other R-parity conserving SUSY, gluinos typically decay to a stop and a top,

g̃ → tt̃ and stops in turn often decay to a top and LSP, t̃→ tχ̃0
1 [48, 49].

The LSPs from the stop decay chain do not interact with ordinary matter and there-

fore escape detection, which results in a final state of two or four top quarks and signifi-

cant missing energy. To this date, no experiment has found evidence for deviations from

Standard Model expectations in the multi-top plus missing energy final states. Other

more exotic R-parity conserving variants of stop and gluino pair production have also

been probed by considering additional gluino (g̃ → qqχ̃0
1, ...) or stop (t̃ → qWχ̃0

1, ...)

decay chains [50].

Null results for strongly produced SUSY have motivated more difficult searches for

SUSY particles such as charginos, neutralinos, and sleptons. Chargino and neutralinos

are weakly pair produced at the LHC via pp→ χ̃±1 χ̃
0
2/ χ̃±1 χ̃

±
1 . The chargino then decays

through χ̃±1 → ˜̀±ν/`ν̃ or χ̃±1 → W±χ̃0
1, whereas neutralinos decay through χ̃0

2 → ˜̀± ˜̀∓

or χ̃0
2 → H/Z + χ̃0

1 [51, 52]. The neutralino/chargino decay branching ratios vary as a

function of the mother mass and the daughter slepton mass.

All chargino and neutralino decay topologies can result in multi-lepton final states

with additional missing energy. Note, in some SUSY phase space the intermediate boson

can be off-shell which results in soft-lepton(s) in the final state. As of yet there has also

been no experimental excess for significant deviation from Standard Model expectations

in these final states [53].

Direct slepton pair production is another SUSY topology that has garnered attention

from accelerator experiments. Searches for pair production of sleptons carried out by

the LHC found no excess and yielded the most sensitive limits for pair production of the
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Figure 2.2: Left Panel: Final 95 % confidence level exclusion limits for slepton pro-
duction by the LEP experiment [56]. Right Panel: Latest results from the CMS
experiment for smuon and selectron production which supersede those produced by
LEP [54]. The LEP experiment yielded very sensitive results for stau for production
which excluded the difficult right-handed scenario up to m(τ̃R)= 90 GeV.

superpartners of the electron and muon, the selectron and smuon, respectively, to date

[54, 55][Fig. 2.2]. Searches for the superpartner of the tau lepton, the stau, have a more

complicated history.

2.3 Searching for Staus

The stau is expected to be the lightest slepton in many MSSM models [57]. Moreover,

there exist supersymmetric models with early universe neutralino coannihilation capable

of explaining the observed DM relic density with a next-to-lightest supersymmetric stau

[58, 59]. In these scenarios, the stau is relatively light and therefore has a greater like-

lihood to be accessible at the LHC. Moreover, the stau can have a small mass splitting

with the LSP which would result in the stau having a finite lifetime.

To date the most sensitive search for direct stau pair production comes from the Large

28



Supersymmetry Chapter 2

Figure 2.3: On the left: For pp collisions at
√
s = 13 TeV the NLO-NLL cross sections

for every commonly searched for SUSY particle is displayed. Note the diminished
size of direct slepton production with respect to all other processes. On the right:
The stau production cross section is shown for three pair production scenarios in√
s = 13TeV pp collisions, exclusive left-handed, exclusive right-handed, and maxi-

mally mixed left/right-hand production.

Electron-Positron (LEP) Collider which was able to exclude the difficult right handed

stau production scenario up to a mass of m(τ̃R)=90 GeV. Both ATLAS and CMS have

been unable to exclude a single point in phase space for this scenario [60, 61].

LEP was the most powerful lepton accelerator ever built and reached center-of-mass

collision energies of up to approximately 209 GeV. Because of the cleaner electron-

positron collision environment, LEP achieved higher signal efficiencies than the LHC

while maintaining an acceptable background yield. At these low masses the analyses at

the LHC struggle to separate signal because of insufficient genuine missing transverse

momentum. However, the LHC can probe higher stau masses than were accessible at

LEP, but the steeply falling cross section limits the sensitivity of such searches [Fig. 2.3].

This thesis presents an analysis (”The analysis”, ”The Run-II analysis”) which builds

upon the first CMS search for stau pair production by including the data collected in

2017 by the CMS detector and by improving upon the previous analysis design. The first
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Figure 2.4: The first experimental results searching for SUSY in the ditau plus missing
transverse energy final state state with the CMS detector. The analysis considered
approximately 36 fb−1 of collected data [61]. This analysis can be compared to the
8 TeV result produced by ATLAS [60]. On the left: expected and observed 95 %
upper exclusion limit on the direct stau production cross section. Note that the
shown limits are for the more favorable left-handed production scenario. On the
right: Similar results from the same analysis for direct chargino production. From
side-by-side comparison one may draw the conclusion that direct stau production is
significantly harder to detect than chargino production at the LHC.

analysis carried out at the LHC had limited sensitivity to direct stau production and

motivated this the timely completion of this work [Fig. 2.4].

The analysis sensitivity depends on how the observed stau states (τ̃ 1,τ̃ 2) are composed

from the underlying chiral eigenstates (τ̃L,τ̃R). The cross section for pair production and

the decay kinematics are both a function of the mixing between these chiral states.

The analysis makes a simplifying assumption by only considering independent and mass

degenerate pure left and right-handed production.

The handedness of the scenarios results in polarization being transferred to the tau.

When the tau decays the polarization produces differences in acceptance, as right-handed

taus transfer more momentum to the visible leg of the decay. In either case, the full stau

decay chain often results in noticeable energy transfer to invisible particles.

Due to these missing particles the reconstructed events will have a substantial trans-
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verse momentum imbalance. Direct computation of the total missing energy in the

underlying event is impossible because the momentum distributed to the interacting par-

tons is unknown in the lab frame [Sec. 3.1.2]. Note, however, that the total transverse

momentum is always equal to zero at the collision point in all frames of reference. Thus,

this explains why the most critical variable in this search for new physics at the LHC is

the missing transverse momentum (pmissT ) [Sec. 4.4].
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The LHC and the CMS Experiment
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3.1 The Large Hadron Collider

The Large Hadron Collider is the largest machine built in human history [62]. The

particle accelerator consists of a 27 km ring containing 1232 sequentially placed 15-

meter-long superconducting magnets capable of operating at up to 8.36 Tesla [Fig. 3.1].

More than 10,000 scientists collaborated in the construction of the apparatus and in

running the primary experiments located thereupon – ALICE, ATLAS, CMS and LHCb

[63, 64, 65, 66]. The headquarters of the entire operation is the main campus of the Euro-

pean Organization for Nuclear Research (CERN). Since the beginning of LHC operation

in 2008, the accelerator has steadily increased its performance and capabilities. Now,

the LHC successfully produces proton-proton collisions at a previously unprecedented

center-of-mass energy of 13 TeV while maintaining instantaneous luminosities of 1034

cm−2 s−1 which corresponds to about one billion collisions per second.

Both ATLAS and CMS are general purpose experiments that have made outstanding

contributions to science through the discovery of the Higgs boson [Sec. 1.4]. In addition

to finding the Higgs boson and searching for SUSY, these experiments also test the valid-

ity of exotic new theories, such as extra-dimensions. Also, there is an ongoing campaign

to make extremely precise measurements of Standard Model quantities. Moreover, the

accelerator also collides heavy-ions, which ALICE specializes in investigating, allowing

these experiments to study quark-gluon plasma and other exotic matter states. Exper-

iments at the LHC have also made the first observation of jet quenching [67]. Lastly,

LHCb is a specialized experiment which makes precision measurements of b and c-hadron

properties. Together, the four major collaborations have produced thousands of publica-

tions investigating the nature of physics across the TeV energy scale.
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Figure 3.1: A graphical schematic of the CERN accelerator complex. Multiple small
accelerator rings such as the booster and Proton Synchrotron (PS) and Super Proton
Synchroton (SPS) progressively increase the proton bunch energy until the bunches
are fed into the primary LHC tunnel.
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3.1.1 Proton-proton physics

The instantaneous luminosity, L, is the expected number of detected events per unit

time and cross section [68, 69]. Integrating the luminosity over time gives the number of

expected inelastic collisions, or events

N inel
evt = σinel

∫
L dt, (3.1)

where σinel is the inelastic pp cross section.

When colliding protons at the LHC the instantaneous luminosity is given by [70, 71]:

L =
γfkBN

2
p

4πεnβ∗
F, (3.2)

where γ is the Lorentz factor, f is the revolution frequency (11.245 kHz at the LHC),

kB is the number of bunches, Np is the number of protons/bunch, εn is the normalized

transverse emittance (with a design value of 3.75 µm), β∗ is the betatron function on

impact, and F is the reduction factor due to the crossing angle.

The number of expected interactions per bunch-crossing, NPU , is an important quan-

tity that is a function of the luminosity, pp cross section, revolution frequency and number

of bunches [72] :

NPU =
σinelL
fkB

(3.3)

The equation for NPU illustrates that increasing the rate of data collection is chal-

lenging, because most parameters related to luminosity are fixed by experimental design.

Therefore, the LHC may only increase luminosity by increasing the number of protons

in a given bunch, decreasing the width of the bunch crossing, or increasing the number

of bunches in the LHC at any given time. The first two create more unwanted pile-up
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(PU) interactions associated with hard scattering events, whereas the second increases

detector noise called out-of-time pile-up [73].

As the LHC experiments have matured over time, both the rate of bunch crossing

and the size of bunches delivered by the LHC have steadily increased [Fig. 3.2].

The majority of collisions at the LHC are uninteresting, a typical event of interest,

or a selected event, at the LHC consists of one relatively rare hard pp interaction and

an average of NPU additional soft pile-up interactions. Understanding and mitigating

pile-up effects within the CMS detector has received a great deal of attention throughout

the lifetime of the experiment. With the beam-line parameters selected for the LHC’s

current 13 TeV operation, the LHC averaged roughly 50 pile-up interactions per event

in data collected from 2016-18.

3.1.2 Parton distribution functions

There is another challenge beyond the major difficulties introduced by pile-up effects

and QCD interactions at pp accelerators. The bound state of a proton consists three

valance quarks (uud) and complicated QCD binding effects that distributes energy to

sea quarks and gluons [74].

Modeling the proton as an effective sea of strongly interacting parts, partons, with

their momenta distributed according to parton distribution functions produces a descrip-

tion consistent with observation. The PDFs have been measured empirically by electron-

proton colliding experiments such as HERA and ZEUS [75], [76] as well as by CMS and

ATLAS [77]. The measurements are made by experiments after decomposing the differ-

ential cross section into structure functions that allow for accurate parameterization of

the parton distribution functions from data [Fig. 3.3].
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Figure 3.2: Upper Panel: Luminosity collected as a function of time by CMS, up until
May 2018. Lower Panel: Transverse slice of single collision events sampled by the
CMS detector between 2010-2012. One can see that the increased luminosity results
in a significantly more active environment.
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Figure 3.3: The parton distribution functions as measured for a resolution scale
Q2 = 10, 10000 GeV respectively. The parton distributions are plotted as a lon-
gitudinal momentum fraction x versus the parton distribution function value f times
the fractional value x. Note, at higher momenta the total fraction of the proton energy
distributed to gluon and strange quark states increases. [78]

3.1.3 LHC experimental goals : before operation

Before operation the principal experimental goal of the LHC was to discover or exclude

the Higgs boson across as wide a mass range as possible, with searches for physics beyond

the Standard Model (BSM) being the next highest priority. Before LHC operation the

LEP accelerator excluded the existence of the Higgs boson up to a mass of approximately

115 GeV, which subsequently had a substantial impact on the allowable phase space for

Higgs boson decay and the optimal detector design. The general purpose detectors at

the LHC, ATLAS and CMS, were optimized with this viewpoint. All optimizations were

made with careful consideration of the strong dependence of the hypothetical Higgs boson

decay topology versus mass [Fig. 3.4].

For a Higgs boson with mass MH ∈ [115-130] GeV the leading discovery sensitivity

was expected to come from the γγ channel. The most substantial Higgs boson decay

branching fraction in this mass window belongs H → bb̄, but observation bb̄ is more
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H

Figure 3.4: The Higgs boson decay branching ratios plotted versus the mass of the
Higgs boson, MH [79].
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difficult because of large QCD to b-quark jet backgrounds. The QCD background consists

of b-quarks and light quarks misidentified as jets coming from the genuine decay of a b-

quark. Moreover, the QCD background consists of two such jets that have been identified

as b-quarks with an invariant mass near that of the hypothetical Higgs boson under

consideration.

By similar arguments, the gg and ττ decay channels are also quite difficult to observe,

and so the relatively clean decay H → γγ yields the largest sensitivity. This channel is

not without backgrounds and so sensitivity is driven largely by how accurately the mass

of the decaying Higgs boson can be reconstructed from the two photons. The next most

sensitive decay mode is H → ZZ → 4` which has a slightly smaller effective branching

ratio in this mass range but offers an exceedingly clean event topology.

These considerations in the design phase emphasized the importance of di-photon

mass resolution, which in turn elevated the importance energy resolution of the electro-

magnetic calorimeter for the ATLAS and CMS experiments.

The branching ratio for H → ZZ → 4` grows relative to H → γγ as a function of

the mass and begins to drive sensitivity for MH ∈ [130-150] GeV. Few Standard Model

processes can produce four genuine leptons and so Z∗γ/ZZ constitute the dominant

backgrounds. The decay ZZ → 4` yields a distinct mass-peak in the four lepton mass

distribution which provides natural discrimination from backgrounds.

Highly efficient muon detection and reconstruction became an important property

for both experiments. These general considerations all proved correct as the di-photon

and 4-lepton final states played the most substantial roles in the discovery of the Higgs

[Fig 1.5].

Lastly, it should be mentioned that in the higher mass regime mH > 150 GeV the

decay mode H → WW becomes dominant. In this case, the leptonic decay modes of

the W are used to probe for the Higgs boson. This final state is be more complicated
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because it contains hard neutrino(s) which pass through the detector without detection

[Sec. 3.1.1]. In this case the relevant quantity under consideration is the missing trans-

verse momentum, pmissT , defined as :

~pmissT = −Σparticles,i ~pT,i, (3.4)

where the sum is over the transverse momentum, pT i =
√
p2
x + p2

y, associated with the

ith detected particle. In this Higgs boson mass scenario, it is the pmissT resolution that

becomes the dominant detector consideration. Moreover, pmissT resolution is a significant

quantity in many searches for new physics. Optimizing pmissT resolution is non-trivial as

it depends on every reconstruction effect of the detector. For these reasons pmissT has

been the focus of many studies by the CMS experiment dating back to the experiments

inception [80].

3.1.4 LHC future goals

Moving into the future, with the discovery of the Higgs in hand, the objective of the

primary detectors at the LHC are:

1) Further study of the Higgs boson (self and second generation couplings).

2) Continue searches for SUSY, extra dimensions, and other exotic new physics.

3) Contribute to understanding heavy-ion collisions.

4) Better the general understanding of TeV-scale hadron physics.
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3.2 The Compact Muon Solenoid Experiment

The CMS experiment is a cylindrical apparatus with length 21.6 m and radius 15 m2

and a total weight of over 14,000 tonnes. The CMS coordinate system is constructed with

the x-axis pointing inwards towards the centroid, a y-axis points vertically upwards, and

the z-axis pointing along the beam-line [81]. It can be valuable to work in azimuthal and

polar angular variables, φ, θ, respectively. Often the polar coordinate is replaced with an

approximately Lorentz invariant function of θ called pseudo-rapidity:

η = − ln

[
tan

θ

2

]
. (3.5)

One last important quantity relating to angular distributions is the angular separa-

tion, ∆R =
√

(∆φ)2 + (∆η)2.

Selecting z=0 to be at the center of the CMS detector, the central detection re-

gion (|η| ¡ 1.44) is cylindrical along the beam-axis, whereas the forward regions (|η| ¿

1.44) are composed of disc-shaped ”end-caps” oriented perpendicular to the beam-line

[Fig. 3.5]. The main components of the central detector region a pair of silicon trackers,

a lead tungstate electromagnetic calorimeter, a brass-scintillator hadronic calorimeter, a

steel-scintillator hadronic calorimeter, muon chambers, and a 3.8 Tesla superconducting

magnet that encloses the tracker and calorimeters [65]. In the forward detector regions,

the detector also includes a silicon pre-shower layer.

3.2.1 The tracking system

The CMS tracker lies in the innermost region of the detector is responsible for recon-

structing the trajectories of charged particles resulting from the underlying pp collisions.

When operating at a pile-up rate of approximately 50 interactions per bunch crossing
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Figure 3.5: Cutaway view of the CMS detector. Labels point to the primary systems
of the detector.
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an average of approximately 2000 charged particles created from inelastic collisions are

expected to traverse through the CMS detector at any given time, as well as a significant

number of neutral particles [82]. As a result, after a collision the detector is subject

to intense radiation that increases as one moves towards the beam-line center, and so

the innermost tracker must be made radiation hard. These considerations led the CMS

experiment to adopt a pioneering silicon inner tracking device [83].

This innermost sub-detector of the experiment is the pixel detector, which is respon-

sible for seeding reconstructed tracks and giving accurate track vertexing. The pixel

detector is a modular device, composed of many sub-modules read out sections of 100

by 150 µm2 Si pixels. The original pixel detector used in the 2016 data collection and

consisted of three layers at radii of r=4.4, 7.3 and 10.2 cm from the beamline center

[Fig. 3.6] [84]. The pixel detector has since been upgraded to a four layer device that

begins at a radius of 2.9 cm, to further enhance the vertex resolution and implement

improved readout chips. New readout chips were necessary to maintain performance in

an environment with larger pile-up. The relatively small pixels sizes of the detector were

selected for their enhanced radiation hardness and to keep the silicon occupancy rate

below one in 500.

In total, the pixel detector is constructed from roughly 1200 modules in the central

region and 700 in the forward region. Each module has 16 readout chips that are each

responsible for registering hit information recorded in 4,160 pixels that are arranged into

a 80 x 26 x 2 structure. Summing these components one may see that the pixel detector

consists of over roughly 120 million channels.

Moving further outwards radially the next sub-detector is the silicon strip tracker.

Since particle flux falls off as radius squared, from the interaction point, the radiation

hardness considerations are relaxed in this detector. At a distance of 20 < r < 55 cm

from the beam-line the tracker consists of modules with a strip length of 10 cm. At
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greater radial distances a strip length of 25 cm is selected. Increasing strip length also

increases strip capacitance, so that thicker silicon is required to maintain a high signal

to noise ratio. Integrating over the ten layers of the silicon strip tracker results in a total

of over 15,000 modules.

The effect of silicon radiation damage is also minimized by increasing the potential

across the silicon to maintain full depletion or by cooling the modules to a low temper-

ature. To maintain necessary performance all silicon modules inside of the tracker are

cooled to as low as -20 C. The mechanical structure necessary to meet these demands

results in the distribution of a significant amount of material across the tracker. The

standard unit of measurement for the total material in a given space is the radiation

length, X0, which corresponds to the expected distance through a given material that an

electron must traverse to radiate all but 1/e of its initial energy. An empirically derived

formula for the inverse this quantity is given below for any solid material with an atomic

number of Z and a nuclear mass of A [13]

X0 = 716.4 g cm−2 A

Z(Z + 1) ln 287√
Z

= 1433 g cm−2 A

Z(Z + 1)(11.319− lnZ)
. (3.6)

The tracker material budget is maximized around |η| ≈ 1.8, where a charged particle

may pass through up to 1.8 X0 of material when traversing the entirety of a tracker [Fig.

3.7]. Overall, the tracker averages energy resolution below 1− 2% for centrally produced

muons between 10-200 GeV. In the higher momentum range, pT (µ) & 200 GeV, the muon

chamber resolution is the dominant uncertainty, whereas at lower momentum multiple

scattering dominates. In some regions of phase-space, such as the very forward region,

the expected energy resolution is degraded and reaches values as high as 10%.
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Figure 3.6: Schematic of the CMS pixel detector [84].

3.2.2 The electromagnetic calorimeter

The calorimetric system of the CMS detector consists of a hadronic calorimeter

(HCAL) and a electromagnetic calorimeter (ECAL). The ECAL follows the design struc-

ture of the tracker, wherein the central component is cylindrical with disc-shaped endcaps

[Fig. 3.8]. The ECAL construction aims for radiation hardness, readout speed and her-

miticity and therefore the chosen construction material is a lead tungstate (PbWO4).

This dense scintillating material has a short radiation length, X0 = .89 cm, and a small

Moliere radius, r0 = 2.2 cm. The low gain of the lead tungstate requires readout by

avalanche photodiodes attached to the ends of the crystals. In the forward region, a thin

layer of preshower silicon strips precedes the calorimetry.

The primary downside of the ECAL construction lies in the difficulty of crystal pro-

curement and a lack of granularity along the crystals longitudinal axis, as each crystal in

the central (forward) ECAL has dimensions of 22 x 22 (28 x 28) x 230 mm3. However,
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Figure 3.7: The barrel region tracker is divided into two parts: a TIB (Tracker Inner
Barrel) and a TOB (Tracker Outer Barrel). The endcaps are then divided into the
TEC (Tracker End Cap) and TID (Tracker Inner Disks). Upper Panel: The material
budget and tracker schematic. Lower Panel: The tracker resolution, transverse, and
longitudinal impact parameter are shown left to right for simulated muons of 1, 10
and 100 GeV. [85].
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this design is hermetic and in total corresponds to an integrated radiation length of ap-

proximately 25.8X0 for the ECAL. Additionally, the granularity along the beam axis is

quite high, as the angular coverage per crystal in the barrel is approximately 0.0178 by

0.0178 in ∆φ by ∆η. Finally, the detector offers excellent energy resolution, due to the

entire volume of the calorimeter being active material.

The stochastic effect in the relative resolution of an electromagnetic shower is pro-

portional to 1/
√
E, whereas readout noise is typically proportional to the total amount

of energy deposited. This motivates a functional fit to the resolution in E

(
σ(E)

E

)2

=

(
S√
E

)2

+

(
N

E

)2

+ C, (3.7)

where test beams showed the best fit values for these constants to be S = 3.63±0.1, N =

124 MeV, C = 0.26. At high energies, the constant term dominates, whereas at low

energies the stochastic and noise effects are of increasing import. With resolution at this

level of precision, one can naively anticipate that error on the mass measurement for a

125 GeV Higgs decaying to di-photons must at an order of a GeV. The actual measured

value in the discovery corresponded to an experimental width of approximately 3 GeV.

3.2.3 The hadronic calorimeter

The HCAL follows after the ECAL and surrounds the ECAL in its entirety. The

central physics goal of the HCAL is to resolve energy carried by charged and neutral

hadrons as accurately as possible. This resolution is crucial for accurately measuring

the energy of each hadronic jet. Designing the HCAL was complicated by the physical

constraint that it must fit inside of the solenoid magnet and operate inside the resulting

3.8 T magnetic field.

To have a high likelihood of nuclear interactions the total material budget of the
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Figure 3.8: Schematic of the electromagnetic calorimeter [85]
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HCAL is much higher than that of the ECAL, while the transverse granularity of the

barrel is reduced to sectors of ∆φ × ∆η = 0.087 × 0.087. The HCAL is a sampling

calorimeter, rather than being fully active as is the ECAL, with scintillators layered

between thick brass absorbers. The forward absorbers, 3 < |η| < 5, are made of steel

rather than brass.

The Hadron Barrel (HB) is situated between 0 < |η| < 1.3 and is comprised of 15 5

cm brass absorbers with interleaved scintillating material, resulting in an active length

of over eight nuclear interaction lengths. The nuclear interaction length is the mean

distance travelled by a hadronic particle before undergoing an inelastic nuclear collision,

which is typically approximated as

λI = 35cm
A1/3

ρ
, (3.8)

where A is the atomic number of the material and rho is the density. Wavelength shifting

fibers read the scintillators out. The Hadron Outer (HO) is a hadronic shower tail-catcher

consisting of scintillators interleaved in the muon system comes after the brass absorber

section, and solenoid magnet comes. The HO adds over one nuclear interaction length

to the design and results in a total of 11 interaction lengths when combined with the HB

and ECAL.

The Hadron Endcap (HE) region is situated between 1.3 < |η| < 3 and follows a

design very similar to that of the HB. The major difference between the HE and the HB

is that no HO system follows the HE system.

The Hadron Forward (HF) system lies between 3 < |η| < 5 where there is much

greater radiation anticipated. This sampling calorimeter is constructed from steel ab-

sorbers and quartz readout fibers to handle the tougher environment. The primary goal

of this system is to ensure an accurate global description of the event by measuring
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energetic forward jets.

Because of the highly varied response across various nuclear reactions the best met-

ric of performance for the HCAL is jet and pmissT resolution. Still, there does exist a

parameterized resolutions, which take the form below in the central region

(
σ(E)

E

)2

=

(
.9√
E

)2

+ 0.0482, (3.9)

and in the forward region, where the resolution is worsened,

(
σ(E)

E

)2

=

(
1.98√
E

)2

+ 0.092. (3.10)

3.2.4 The muon system

The muon system is the final major component of the CMS detector. The system

encloses the 12,000-ton superconducting solenoid which in turn wraps around the tracker,

ECAL, and most of the HCAL. Interleaved inside of the iron return yoke of the supercon-

ducting magnet are four muon stations. The system spans a radial distance of roughly 4

meters and remains at a constant 2 Tesla magnetic field [86].

In the barrel region, |η| < 1.4, the muon system is comprised of drift tubes (DTs),

whereas in the endcap region it is made up of cathode strip chambers (CSCs). There ex-

ists a dead space the two systems that are filled in with resistive plate chambers (RPCs)

[Fig. 3.9]. The muon system reaches coverage out to |η| < 2.4 and can efficiently recon-

struct muons in roughly 98 % of this region.

DTs are gas chambers with an ionizing wire running alone the centroid and therefore

readout at slower readout times than CSCs. A slower readout time is acceptable in the

central region where fewer muons are anticipated. The RPCs are included for a fast

response time that allows muons incident on the system to be unambiguously associated
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Figure 3.9: Graphical r-z slice of the muon system. Note that the CSCs fill the
deadspace between the endcap and barrel regions.

with a single bunch-crossing.

3.2.5 Trigger and data acquisition

The LHC crosses bunches of protons at a rate of 40 MHz. The majority of bunch

crossings do not contain relevant physics, and so they may be disregarded. The single

event size is of order 1 Mb, and thus it is beyond current compute and electronic capabil-

ities to readout, store, and process all the information produced by the LHC. Therefore,

it is the responsibility of the trigger and data acquisition to select the events containing

relevant physical processes [87].

Events are readout in stages; the first stage of readout is hardware driven and is called

the level one trigger (L1T). The L1T uses Field Programming Gate Arrays and Appli-
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cation Specific Circuits to selects events that are deemed relevant based on primitives

received from the calorimeter and muon systems. The rate of the L1T is of order 10-100

kHz. At this stage, in roughly 3.2 µs of real-time a crude event reconstruction is per-

formed. This reconstruction uses localized subdetector measurements from the E/HCAL

and the muon system to approximate jets, missing energy, photons, electrons, etc.

When an event passes the L1T a more refined selection is made by the high level

trigger (HLT). The HLT choose events with software-based algorithms computed across

a farm of servers. The extra computing power of the HLT combines tracking information

with calorimeter and muon system information to perform a crude particle-flow (PF)

reconstruction [Sec. 4.1.3]. This much more selective trigger system brings the frequency

of selected events down to roughly 100 Hz, for a total of 5-6 orders of magnitude reduction

in event rate when combind with the L1T. Together, the L1T and HLT reduce the data

and computing budget down to a scale where it is possible to do physics analyses. Note,

the different orders of magnitude over which processes occur at the LHC implies that such

reduction rates can be obtained without losing the important physics processes [Fig 3.10].
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Figure 3.10: Shown above are the cross sections of relevant processes at the LHC. Note
that even fairly common electroweak production such as W or Z occurs at roughly
10−5 the rate of the soft inelastic scattering that dominates σtot [88].
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Event Reconstruction
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4.1 Object Reconstruction

The most important step in object reconstruction for the CMS experiment is a tech-

nique known as particle-flow (PF) [89]. PF leverages underlying physics knowledge to

infer the most likely particle type associated with a given sequence of energy deposits.

The PF technique is made possible by CMS’s strong magnetic field, hermetic and gran-

ular calorimetry, and accurate tracking system. PF begins by using information from

the silicon tracker to identify the distinct tracks associated with charged particles. Next,

information contained in the measured energy deposits readout from the calorimeter sys-

tems and muon spectrometers allows for classification into neutral and charged hadrons,

electrons, muons, and photons.

At this point, localized views of particle trajectories, energy, and type have been

developed. Next, the high-level detector objects used to calculate relevant kinematic

quantities are built from PF candidates (PFCands) through an iterative process called

jet clustering. A properly calibrated particle flow can significantly help in reducing the

uncertainties in jet energy measurements when compared to jets constructed from raw

energy deposits.

The high-level view of reconstruction is simple in practice, but the complications rest

in the details of PF implementation.

4.1.1 Track reconstruction

The entire PF algorithm hinges on proper track reconstruction. Moreover, proper

track reconstruction is necessary for identification of hard electrons and muons that

play a central role in many analyses at the LHC, and on average 60 % of the energy

from hadronization flows through charged hadrons which can be better measured when

matched to a reconstructed track. The tracking process begins locally with the cluster-
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izing of seed strip/pixel hits to nearby neighbors above a specified signal to noise ratio

[90]. Application of an iterative track fit to the centroid of local clusters then proceeds.

The next step in the process of track reconstruction is seed generation where triplets of

hits in the pixel tracker and some special pairs of hits in the pixel/tracker seed full track

reconstruction.

At each subsequent tracking layer, the previous seed trajectory is combined with

valid candidate hits or a ”fake hit” if no such hit exists. A Kalman filter probabilis-

tically updates the predicted trajectory. If no attempts are made to clean the track

collection, this approach will grow the number of tracks exponentially, and so prun-

ing is applied in each step as a function of each track candidates normalized χ2, miss-

ing hits, and valid hits. In the event that two tracks are sufficiently overlapping, i.e.,

fshared = Nhits
shared/min(Nhits

1 , Nhits
2 ) > 0.5, disambiguation is performed by selecting the

tracks with the lesser χ2 value. Final track candidates are fitted, smoothed and reduced

in quantity via quality checks.

Simulation verifies that the seeding process is nearly 100% efficient for valid tracks

and that final track reconstruction efficiencies for valid muons exceeds 95% efficiency at

all energies and coverage.

4.1.2 Primary vertex reconstruction

The primary collision combined with the additional pile-up collisions will typically re-

sult in a multitude of charged and neutral particles propagating throughout the detector.

Properly reconstructing the charged particle tracks allows for the fitting of the vertices

associated with these different interaction points, which can in turn help to reduce the

impact of pile-up interactions. Tracks are initially clustered along the beam-line such

that each vertex candidate is separated by at least 1 cm from the nearest neighbor. After
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finding a first iteration of vertex candidates, the adaptive vertex fitter is applied to locate

the final vertex position [91]. The algorithm by calculating a weight for each associate

track, wi, based on the tracks compatibility with the given common vertex. The best fit

vertex is then found sequentially by stepping towards the vertex fit which minimizes a

χ2 error estimate over the the weighted tracks.

After reconstructing all vertices, the primary vertex of the event is selected to be the

vertex with the largest sum of squared transverse momenta over all associated tracks

[92].

4.1.3 Particle-flow reconstruction

Attempts are made to match all significant energy deposits in the CMS detector to

an associated particle construct. The particles of the detector are divided into five types

depending on energy deposit characterization [Fig. 4.1]:

• Photons: Shower in the ECAL with no associated tracks.

• Electrons: Shower in the ECAL with an associated track.

• Neutral Hadrons: Shower in the HCAL with no associated tracks.

• Charged Hadrons: Shower in the HCAL with associated track and no shower in

ECAL.

• Muons: Hits in the muon spectrometer with associated track and no significant

E/HCAL showers.

It is shown later that these simplified particle types lead to simplified identification

b-quarks and hadronic tau decays. Also, PF results in improved jet energy resolution,

pile-up rejection, and lepton isolation calculations.
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Figure 4.1: The longitudinal slice of the CMS detector shown above highlights how
the CMS detector design allows for Particle-Flow identificaiton
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PF Reconstruction proceeds first by performing local reconstruction in each subde-

tector. Track reconstruction is carried out in the tracker, clusters are formed by grouping

energy deposits in the calorimeter, and calculation of track segments is performed in the

muon chambers.

The individual subdetector energy deposits are connected by a linking algorithm that

attempts to form coherent particle trajectories. The nearest neighbors in the (η, φ)-plane

are linked to keep computation linear. Because of this algorithmic design, the perfor-

mance of particle disambiguation is driven in most part by transverse granularity. Please

refer to the specific sections for a detailed description of muon and electron reconstruction

[Sec. 4.1.4, 4.1.5].

The first reconstructed particles are muons and electrons, and next charged hadrons

are located by linking reconstructed tracks with HCAL deposits.

Neutral particle reconstruction follows after charged particle reconstruction. Signifi-

cant ECAL clusters that do not link to an upstream track or downstream HCAL deposit

are reconstructed into photons. The measured energy of these candidates is calculated

according to calibrations measured in the simulation. Lastly, significant unmatched de-

posits in the HCAL are reconstructed as neutral hadrons.

4.1.4 Muon reconstruction

Muon reconstruction by the CMS experiment is pivotal, but in many ways, the muon

is the easiest particle to identify unambiguously. Muons behave as minimum ionizing

particle (MIP) as they traverse through the detector and so muons are the only charged

particle which consistently reach the muon chambers. Muons are selected with over 99%

efficiency based on a simple selection of cuts related to the global track χ2, CSC and DT

track segment compatibility and kink finding [93].
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In addition to the cuts above, it is required that the relative isolation, Iδβ, be less than

0.3 for selected muons veto objects within this thesis. Iδβ is calculated as a scalar sum

over the momenta of all particle flow candidates in a cone of radius ∆R = 0.4 centered

around the muon [89, 94]:

Iδβ = [ΣpT,charged + Max (0,ΣpT,neutral − δβΣpT,pile-up)] /pT (4.1)

The multiplier δβ is typically set near 0.5 on the CMS experiment and is used to

scale a sum over the anticipated pile-up contribution inside of the muon cone. The

δβ subtraction removes the expected energy deposition from neutral pile-up particles

inside of the muons cone. Charged pile-up needs no such correction since vertex fitting

naturally rejects the majority of this contribution. After applying all the muon selections

the misidentification rate of non-muons is less than one in a million [86].

4.1.5 Electron reconstruction

Electron identification connects a reconstructed track with a shower in the electro-

magnetic calorimeter. This unique signature of the electron differs from that of charged

hadrons and muons which typically behave as MIPs in the electromagnetic calorimeter.

Electron reconstruction is made complicated by the significant material budget in the

tracker which results in substantial downstream bremsstrahlung. The bremsstrahlung

acts to spread the electron’s energy in a cone over the calorimeter. A significant portion

of the tracker is in excess .75 X0 [Sec. 3.2.1]. As a result, more than half of produced

electrons will radiate away more than half of their production energy.

Radiated photons can become even more problematic if they undergo subsequent pair-

conversion. The pair-produced electrons act to further spread and reduce the electron

energy.
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Electron reconstruction accounts for bremsstrahlung effects by selecting a seed cluster

corresponding to the electron trajectory and then by clustering nearby energy deposits

to form a supercluster. One measurement of the electron energy comes from summing

over these cluster energies and using the known linear response of the electromagnetic

calorimeter to calibrate. A second measurement comes directly from the reconstructed

track pT . Combination of the two measurements occurs with different weights according

to the shower profile of the electron.

Electron selection in this thesis follows from a simple cut-based approach. These cuts

include |η| dependent quality cuts on the inverse difference of reconstructed energy in the

tracker and ECAL, relative isolation, impact parameters, seed cluster and track angular

separation, and some other relevant parameters. Using an optimized cut-flow on these

variables one can obtain a misidentification rate of under 1% for fake electron candidates

[95].

4.1.6 Jet reconstruction

Particle flow candidates are clustered into collaminated objects referred to as jets,

objects which result from the hadronization process [Sec. 5.1.2]. Clustering is performed

by the anti-kT algorithm. It begins by calculating the anti-kT pair-wise distance, dij,

across all particles in the current collection :

dij = min
(
k−2
T,i, k

−2
T,j

) ∆Rij

D2
, (4.2)

and the distance to the beamline of each particle, diB = k−2
T,i. In the equation above the

nominal distance scale used in the equation by the CMS experiment is D=.4, and kT,i is

the transverse momenta of the ith particle.

Clustering is done in an iterative manner with FastJet [96]. At each step, if the
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smallest value lies amongst dij the two corresponding collections are merged into one

single collection and the calculation repeats over all elements. Otherwise, if the smallest

value is amongst diB then that particle collection is removed and the entirety constitutes

a final clustered jet.

Looking at the equations used we see that the highest momentum particles are clus-

tered first according to the specified distance scale. Moreover, all final jets must be

separated by ∆R > D2, hence why D is referred to as a distance.

A highly efficient loose jet selection from derived by the JetMET Physics Object

Group is then applied to reject pathological objects [97]:

• Neutral Hadron Fraction ¡0.99

• Neutral EM Fraction ¡0.99

• Number of Constituents ¿1

• For jets with η < 2.4 :

– Charged Hadron Fraction ¿0

– Charged Multiplicity ¿0

– Charged EM Fraction ¡0.99

Reconstructed jets have known calibration issues stemming from many effects, such as

imperfect particle-flow calibration, pile-up, and simulation vs. data discrepancies. These

corrections are applied in successive levels 1,2-3, and then as residual level-3 corrections.

The first two corrections are measured in simulation, whereas the third correction corrects

differences between simulation and data [98].

• Level 1 (L1) : Corrections are performed to subtract the estimated impact of pile-

up. For this thesis the corrections are measured as function of pT and η. This gives
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a binned correction

Coffset(η, p
raw
T ) = 1−

(
(Npv − 1)F (η)

praw
T

)
, (4.3)

where Npv is the number of reconstructed primary vertices and praw
T is the uncor-

rected jet pT [99, 100].

• Level 2-3 (L2) : After subtracting the contribution from pile-up the next step is to

correct the calibration. The correction is parameterized as

Ccalibration(η, pL1
T ) = pL1

T /pT,gen, (4.4)

where pT,gen is the pT of a generator-level jet matched to the corresponding recon-

structed jet with L1 corrected response pL1
T .

• Level-3 (L3) : This correction is implemented to remove residual differences between

data and simulation. Residual discrepancies are measured using a well-calibrated

process, such as Z → µµ, with exactly one additional jet. The excellent muon

resolution of CMS allows for accurate reconstruction of the Z kinematics. The

single jet must then be balanced against the Z and a fractional mismeasurement

can be approximated by Rbal =
pL2
T (j)

pT (Z)
, where pL2

T (j) is the L2 corrected jet pT and

pT (Z) is the reconstructed Z pT . Then, by measuring this quantity in both data

and simulation the L3 jet correction can be applied in simulation as

Cres(p
L2
T , η) =

Rbal(DATA)

Rbal(MC)
(4.5)

.
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A fully corrected reconstructed jet pT is given by :

pcorr
T = Cres(p

L2
T , η)Ccalibration(η, pL1

T )Coffset(η, p
raw
T )praw

T . (4.6)

Selected jets in the event are required to pass pT >= 30 GeV and |η| < 2.4. Note

that in the pmissT calculation this requirement is reduced to 10 GeV.

4.2 Identifying Jets Associated with b-quark Decay

Production of bottom quarks occurs in many Standard Model processes of note, e.g.,

boson, H/Z → bb, and top, t → bW , decays. Correctly identifying events from such

decay topologies is important to many analyses at the LHC and so significant effort

has been invested into identifying reconstructed jets associated with a decaying b-quark

(b-jets).

In most analyses carried out by the CMS experiment, a multivariate (MVA) approach

called the Combined Secondary Vertex (CSV) b-tagging algorithm has been the default

[101]. The main thrust of this technique is to identify displaced secondary vertices inside

of clustered jets. These vertices arise naturally in b-quark decay because of the finite

lifetime of the b. The natural correlation between b-lifetime and the secondary vertex

displacement provide some of the motivation for a multivariate approach, but there are

also additional variables that contribute to discrimination. These include, but are not

limited to, the existence of a secondary vertex, impact parameter, and significance of

secondary vertex, number of tracks in jet and number associated to secondary vertex, and

kinematic variables relating the secondary vertex to the primary jet. However, despite the

strength of this approach and its intuitive nature, further advances in machine learning

resulted in a new approach to identifying b-jets.
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This analysis adopts a Deep-Learning based approach to identifying b-jets dubbed

DeepCSV [102]. The approach further extends the previous multivariate approaches

to include more relevant track information for a slight improvement in performance

[Fig. 4.2].

4.3 Tau Identification

Hadronic tau (τh) reconstruction performance is pivotal for the analysis that will

be described later in this thesis. In this section, a multivariate approach employed by

the CMS experiment is described, but in the following chapters a dedicated deep neural

network approach will be presented.

Following jet clustering, the Hits Plus Strips (HPS) algorithm looks to identify jets

which are consistent with hadronic tau decay [103]. The three primary hadronic decay

modes the tau are a single charged hadron, a single charged hadron plus one or two
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neutral pion(s), and three charged hadrons. Together these three decay modes account

for 95% of the hadronic tau decays, which in turn account for roughly 61% of all tau

decays. Neutral pions are reconstructed by finding pairs of reconstructed photons that

are consistent with pion decay.

The single and three charged hadron final states of tau decay are straightforward to

reconstruct, but neutral pion decay can be much harder to reconstruct. Neutral pions

will decay promptly to two photons with relatively high probabilities of undergoing pair-

conversion before reaching the ECAL. Because of this, HPS reconstruction proceeds by

looking to cluster potential neutral pion candidates in strips of ∆η ×∆φ. The relevant

strips are then combined with the charge hadron candidates to test the various decay

mode hypotheses.

The HPS algorithm alone is not powerful enough to reject a sufficiently reject misiden-

tified hadronic taus coming from muon, electron, quark and gluon jets. To reach desired

performance, tau candidates passing the HPS algorithm are further differentiated ac-

cording to the output of a boosted decision tree discriminator. Shower shape variables,

electron and photon multiplicity, tau flight length, and relative isolation are among the

roughly 20 variables that are fed into the boosted decision tree. Across all pT (τh) the

relative isolation of the tau is the most sensitive discriminator [Fig. 4.2].

Lastly, there is a high residual rate of electrons and muons passing the isolation MVA

and are reconstructed as a fake hadronic τh. This additional source of fake taus is reduced

using a dedicated multivariate (MVA) discriminator. Inputs to this MVA come from all

subdetectors and are similar to the information that is used for the genuine tau MVA

[105, 106].

67



Event Reconstruction Chapter 4

Figure 4.2: Receiver operator curves (misidentification rate vs. genuine τh efficiency)
for hadronic tau decays coming from Standard Model H → ττ (left) and BSM
Z ′(2 TeV) → ττ (right). On each plot ”working points” (WP) calibrated by the
CMS experiment are shown for a simple cut-based approach using only isolation and
for a multivariate (MVA) approach [104].

4.4 Missing Transverse Momentum and Scalar Trans-

verse Momenta Sum Reconstruction

The missing transverse momentum, pmissT , and the scalar transverse momenta sum,

HT , are two global event reconstruction variables which aim to capture the missing

energy and total observed energy of an event, respectively. Significant measurements

of pmissT at the CMS experiment result from the presence of weakly interacting particles,

such as neutrinos, or large mismeasurements of objects in the underlying event. Precisely

determining pmissT is important for many Standard Model analyses such as those involving

the leptonic, decays of W and Z bosons, W → `ν, Z → νν, respectively. Moreover, pmissT

is one of the strongest discriminating variables in many searches for new physics.

A formal definition of this quantity is given at CMS as a sum over all reconstructed
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PFCands.

~pmissT = −Σi∈PFCands ~pT,i, (4.7)

However, this fails to incorporate known issues with jet-by-jet calibration which can

be corrected [Sec. 4.1.6]. Propagation of corrections is done by splitting pmissT into a

source from jets and a source from unclustered particles :

~pmissT = −Σi∈jets~p
corr
T,i − Σi∈unclustered~pT,i, (4.8)

where ~pcorr
T,i is the corrected jet pT . In general, leptons and photons are not likely to have

a significant contribution to pmissT due to the superior resolution. Instead, the leading

contribution to mismeasurements comes from hadronic activity which in turn results in

a 5-20 % jet momentum resolution. The bulk of the pmissT distribution is well modeled in

simulation, however tail effects often need special considerations [Fig. 4.3].

An additional global variable of important is defined as

HT = Σi∈jetspT,i, (4.9)

where pT,i is the transverse momentum of the ith reconstructed jet in the event.
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Figure 4.3: Upper panel : Distributions of pmissT in dimuon (left) and dielectron final
states (right). Distribution for γ+jets shown in the bottom panel. The leading source
of uncertainty comes from systematic effects on the jet energy corrections that relate
to jet energy scale and resolution [107].
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Event Simulation
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5.1 Overview of Event Simulation at CMS

Most successful analyses carried out at the LHC require accurate and precise mod-

eling of the background and signal processes. Without such modeling, it is impossible

to detect the signature of new physics or make a precision measurement of a known

Standard Model process. Towards this end, Monte Carlo methods use pseudo-random

numbers to approximate nature by probabilistically sampling from possible outcomes.

Generation begins by sampling hard parton-parton scattering from a chosen final state

X according to matrix-level calculations. Different matrix-element calculators are im-

plemented depending on whether Leader Order (LO) or Next to Leading Order (NLO)

precision is desired. Next, the strongly interacting particles in the final state X undergo

a process called hadronization, as explained further below, wherein the partons of final

state X produce a parton shower (PS), i.e., collimated jets of stable particles [Fig. 5.1].

Lastly, physics simulation software propagates final stable particles through the detector

and emulates the subsequent detector readout.

Over the years the physics packages associated with these simulations have been it-

eratively tuned to match distributions seen in the data collected at the LHC. However,

there is still many systematic uncertainties related to the use of simulation, and so anal-

yses attempt to predict their backgrounds directly from data whenever possible. When

this is not possible, techniques are employed to factorize and correct independent sources

of mismodeling in simulation.
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Figure 5.1: The image above shows a schematic of typical event at the LHC [108].
First, hard scattering (red circle) and remnant interactions (purple circle) are simu-
lated. Next, parton showering (red lines) and hadronization and decay (green circles)
occur. Lastly, not pictured are overlaid pile-up events from soft pp interactions.
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5.1.1 Hard scattering processes

The cross section to produce a final state X in a hard proton-proton scattering process

may be written as a sum over the available parton states and a corresponding integral

over the parton momenta fractions x1, x2, total proton-proton center of mass energy,
√
s,

and the partonic scatter cross section σ̂ as follows [44, 109]

σ(pp→ X) = Σi,j

∫
dx1dx2fi,p(x1, µ

2
F )fj,p(x2, µ

2
F )σ̂ij→X(x1x2s, µ

2
R, µ

2
F ), (5.1)

where µR and µF are the renormalization and factorization scales, respectively. Thus,

given a parton density function, it is possible to calculate the total cross section when pro-

vided with the individual partonic scatter cross sections σ̂. This equation illustrates that

computing the final states at LO or NLO matrix-elements is equivalent to approximating

the partonic cross sections in the equation above to the same order.

Hard outgoing radiation is calculated explicitly down to a selected cut-off scale Qcut

during the matrix-element calculation of the final state. A cut off is implemented be-

cause of the significant complexity of soft radiation and because of associated theoretical

problems such as infrared divergence.

5.1.2 Parton showering

Further gluon splitting and radiative effects are simulated downstream to a smaller

cut-off scale, Q0, from empirical descriptions known as Sudakov Form Factors [110]. This

simulation process can easily lead to erroneous behavior since initial partons with energy

well above Qcut can radiate hard and separated partons in the showering process. To

prevent this a MLM matching criterion are applied for events generated at CMS which
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requires each initial parton to match with a downstream jet of similar pT . Events with

additional jets are kept provided that the additional jets are softer than those matched

to partons. In general, the value of the Qcut must be selected carefully to ensure that the

generator level jet pT spectrum remain smooth.

The potential energy arising from the strong force between two quarks can be mod-

eled empirically as a force which increases linearly with separation distance. Therefore,

as two quarks propagate in space, their potential energy grows until it becomes ener-

getically favorable to create a new quark anti-quark pair from the vacuum in order to

reduce the total energy of the system. This process repeats ad infinitum until there is

no longer sufficient energy to support additional splittings, i.e., until the partons are

below the energy scale Q0. This described mechanism for hadronization is referred to as

string fragmentation [111]. The time and length scales of hadronization are very short.

After completing the hadronizatoin step, an additional package can readily describe the

propagation of all stable particles through the detector.

5.1.3 Pile-up

Recall that previously we discussed pile-up an effect where additional pp collisions

occur in each bunch crossing. The impact of this effect can be probabilistically sampled,

first note that the probability distribution for the number of pile-up collisions P (NPU)

follows a Poisson likelihood

P (NPU) =
(Lσ)NPU

NPU !
exp−Lσ . (5.2)

After sampling the number of interactions, pile-up interactions from inclusive pp col-

lisions are randomly selected. An event is created by overlaying these pile-up interactions

with the hard-scattering.
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5.2 Event Generation Packages Used by CMS

After completing the underlying event generation, event reconstruction proceeds in

the same manner as was described for data in chapter four. The specific packages used

by the CMS experiment for the various steps in the simulation process are listed below:

• PYTHIA 8.212 (8.230) for 2016 (2017) [112]

– Parton Showering software to be interfaced with MadGraph5 aMC@NLO

and POWHEGv2.

• MadGraph5 aMC@NLO 2.3.3 (2.4.2) for 2016 (2017) [113]

– A LO/NLO+PS cross section calculator and event generator. Calculations

are LO for any user defined Lagrangian and offers NLO QCD corrections.

Moreover, tree and loop corrections can be included.

• POWHEGv2 Generator [114]

– Positive Weight Hardest Emission (POWHEG) is an NLO+PS matrix event

generator that is typically interfaced with PYTHIA. Since POWHEG is a

full NLO generator it incorporates initial state and final state radiation of up

to one additional parton.

• NNPDF3.0(3.1)LO/NLO for 2016 (2017) [115]

– Experimentally measured PDFs.

• SYSCALC [116]

– Renormalization and factorization scale and PDF uncertainties
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• Geant4 [117]

– An extensively validated package which pseudo-randomly samples interactions

from available physical processes as each simulated particle incrementally steps

through detector material. This simulation typically includes, down to some

cutoff scale, all processes ranging from those responsible for bulk energy loss,

such as ionization, rare hard processes such as electro/photo-nuclear reactions,

and radiative processes that introduce additional particles. To obtain an ac-

curate simulation, it is essential that the material budget of the detector be

accurately modeled, with sensing volumes in appropriate locations.

• Delphes [118]

– A fast simulation that applies a parameterization of a detector according to

the physics described by a more fundamental geometric simulator such as

Geant4.
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6.1 Introduction to Artificial Neural Networks

Machine learning (ML) is a technique which builds a predictive model from a specified

training set of data. ML is a highly empirical approach where a specified algorithm learns

from a set of examples to generalize to unseen cases. A supervised learning process is

one where the input dataset has clearly labeled categories.

In this case, the training set consists of many examples, each with a feature vector ~X

and a corresponding truth value, y, which the model learns to predict. Depending on the

nature of the problem, y could be a discrete or continuous variable. In this manner, the

trained machine learning algorithm generates a function f( ~X) that produces a prediction

ŷ of the truth value.

In addition to supervised learning problems there are unsupervised algorithms, such

as a k-means clustering, which attempt to categorize events without the use of event

labels. Lastly, reinforcement learning is an ML technique where an algorithm learns to

navigate a specified environment through positive and negative stimuli called rewards.

Artificial Neural Networks, or Neural Networks (NNs) for short, are a biologically

motivated and once pioneering concept developed in the 1940s [119]. Early models of the

brain described the brain as a composition of cells which receive and pass along electrical

signals. The neuron is composed of dendrites and axons and is the basic building block

of the brain [120, 121]. The neuron receives an input pulse in the dendrites that are

passed along through the axon when the signal is of sufficient strength. Indeed, NNs are

mathematical models developed to approximate this behavior by learning from an input

data set.

The principal unit of computation in a NN is the neuron or node. A layer of input-

nodes that each receives the initial feature set ~X of an event are the first layer of the

NN. Next, hidden-nodes that perform sequential operations until the final output layer
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Figure 6.1: Above: A schematic of a multi-layer NN. The internal units are referred
to as hidden becaues the user of the NN does not interact directly with them.

generates the final prediction [Fig. 6.1].

Each neuron computes a functional operation, f , after receiving a vector of input

~X and produces a single output value. Along this design the entire output of a layer

containing M neurons and receiving an input ~X of length N may be written:

f( ~X) = σ(w · ~X +~b), (6.1)

where w is a M by N matrix of floats that is randomly initialized. The activation function,

σ, is applied element-wise and introduces non-linearity into the layer. Typical activation

functions include the sigmoid (σ(x) = 1/(1 + e−x)), tanh, and the rectified linear unit

(ReLU, R(x) = max(0, x)). The number of neurons in a given layer is a hyperparameter,

i.e. a parameter of the model that may be tuned by the user.

Note that the weight matrix, w, is fit during the learning process so as to best

discriminate signal from background. Learning is not well defined without an objective

function that offers a reward or penalty for decisions made by the algorithm. For the
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problems covered in this thesis the scope is restricted to that of binary classification

where the data is labeled as background (0) or signal (1). The log-loss or cross-entropy

is the selected objective function, L, used to train the NN [122]:

L = y log(ŷ) + (1− y) log(1− ŷ), (6.2)

where ŷ is the prediction generated by the learner. For problems of this type the final

output layer of the neural network is typically just a single sigmoid and the intermediate

activations are usually ReLUs, and so for example the final output from a two-layer

neural network can be written:

ŷ = σ(wO ·R(w2 ·R(w1 · ~X +~b1) +~b2) + bO) (6.3)

Here, ~X is an input of N predictive features used for prediction, w1 (w2) is an M by

N (O by M) matrix, and wO is a weight vector of length O. Note, dimensions M and O

are user-specified and that the final sigmoid is not counted as layer in our terminology

above.

6.2 Training Neural Networks

The process of fitting the weights of a NN on a training set is called training the

NN. One of the greatest early challenges in NN research was developing a method to

accurately and quickly fit the weights. Eventually, a successful approach was shown

to be a variant of the old Gauss-Newton approach for functional minimization called

Stochastic Gradient Descent (SGD). SGD incrementally adjusts the value of the weights

of the NNs over a set of randomly sampled training samples, at step t, according to the

gradient of the loss function, ∇WL. A constant of proportionality λ called the learning
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rate is introduced :

w(t+1) ← w(t) − λ∇wL (6.4)

Below is a variant of SGD named ADaptive Moment Estimation (ADAM) which has

been shown empirically to far surpass the performance of simple SGD in most applications

[123]. ADAM applies momentum to the gradient by replacing it by an exponential

moving average with a diminishing return of β1. Also, the momentum is normalized by

an exponentially moving root-mean-square with the rate of β2. The intent is to create

an algorithm that takes equal size steps along a smooth gradient trajectory. Lastly, a

constant ε is introduced to avoid potential infinities.

m(t+1)
w ← β1m

(t)
w + (1− β1)∇wL(t) (6.5)

v(t+1)
w ← β2v

(t)
w + (1− β2)(∇wL(t))2 (6.6)

m̂w =
m

(t+1)
w

1− (β1)t+1
, v̂w =

v
(t+1)
w

1− (β2)t+1
(6.7)

w(t+1) ← w(t) − λ m̂w√
v̂w + ε

(6.8)

Note that the use of ADAM introduces three new hyperparameters. Given that a NN

is composed of many layers, each with a given set of individual weights, the application

of this approach is non-trivial. The preferred method for such optimization is called

backpropagation, and it relies on the chain rule of calculus [124].

Let the output before and after applying activation at the lth layer of a neural network
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be given by Z [l] and A[l], respectively. Given the derivative dZ [l] = ∂L
∂Z[l] it is then possible

to use the chain rule to as follows compute dw[l] = ∂L
∂w[l] , db

[l] = ∂L
∂b[l]

, dA[l−1] = ∂L
∂A[l−1] :

dw[l] =
∂L
∂w[l]

=
1

m
dZ [l]A[l−1]T (8)

db[l] =
∂L
∂b[l]

=
1

m

m∑
i=1

dZ [l](i) (9)

dA[l−1] =
∂L

∂A[l−1]
= w[l]TdZ [l] (6.9)

Then, from the equations above it is shown that backpropagation can recursively

derive the weight updates once given the exact form the loss function L and the specifi-

cations of the NN.

6.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are another biologically inspired learning

algorithm [125]. In this instance, the motivation for the design came from a deep under-

standing of the human vision system. CNN’s replace the previously described hidden-

neuron architecture with nC channels of nH by nW weight matrices called filters at

each layer. Each filter makes a unique convolutional calculation along a sliding window

[Fig. 6.4].

Zero padding can be performed around the edges of the input at each layer in order

preserve image dimensionality. Moreover, a stride may be introduced whereby the window

spacing between steps is increased. After introducing these two concepts the formulas

relating the output shape of the convolution to the input shape is given by the set of

83



Deep Neural Networks for Hadronic Tau Identification Chapter 6

Figure 6.2: Schematic of a single layer CNN. In a typical application many layers
of such convolution and pool operations are stacked upon each-other to form a DNN
before flattening and feeding into a typical feed forward network. [126]

equations below :

nH = b
nHprev − f + 2 × pad

stride
c+ 1 (6.10)

nW = b
nWprev − f + 2 × pad

stride
c+ 1 (6.11)

nC = number of filters used in the convolution (6.12)

Forward pooling is an applied method to reduce the spatial dimensions of the resulting

filters. Pooling takes the maximum or average over a sliding window of size f by f , which

reduces the dimensions accordingly:

nH = b
nHprev − f
stride

c+ 1 (6.13)

nW = b
nWprev − f
stride

c+ 1 (6.14)
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nC = nCprev (6.15)

Backpropagation proceeds through the pulling layer in a manner similar to that de-

scribed in the previous section.

6.4 DeepPF Isolation

6.4.1 Input features

To further improve the suppression of the fake jet background while retaining high

signal efficiency, we have pursued a new approach for improved τh isolation, based on

the use of the CNNs previously described. Discriminating variables are calculated from

PFcands within a cone of ∆R ¡ 0.5 centered on the τh candidate. This approach is called

Deep Particle Flow (DeepPF) isolation.

The selected PFCands are formatted into a two-dimensional table with particles run-

ning down one axis and discriminating features such as pT (p), ∆R(p, τ), 3-D impact

parameter, particle type. A full list of input features is provided along with the pre-

processing applied to help in NN training [Tab. 6.1]. On average, approximately 10

PFCands associated to a genuine tau are reconstructed, with the number resting be-

tween 2 and 30 for almost all cases. Charged candidates that are not associated with a

primary vertex or candidates with pT ¡ .5 GeV inside of the cone are not considered.

Tracking related variables do not exist for neutral particles and so a value must

be imputed without biasing the learning process. Morever, the absolute value of some

features is taken to preserve physical interpretation while satisfying the preference of

NNs to have input in the range of 0-1. One-hot-encoding aids the NN evaluation by

transforming a single N category feature into a vector of N booleans with the location of
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Figure 6.3: Schematic of the DeepPF implementation.

truth value corresponding to the selected category of a given example.

Some variables such as dz and d0 are prone to mis-modelling in the tails and so in

these cases, a more aggressive pre-processing has been applied.

The selected PFCands are sorted according to particle pT in ascending order. Up to

32 particles are fed in per a given tau candidate. The dimensionality of the table is 32 by

47, after accounting for the one-hot-encoding of the variable categorical variables listed

below. Null vectors are appended to the end of the table when the τh candidate has less

than 32 associated PFCands.

Training is then performed with KERAS and TENSORFLOW [127, 128]. Several

architecture choices were tested, ranging from locally connected NNs to recurrent NNs.

In the end, 1-D convolutions were selected for their acceptable performance and the

low number of model parameters [Tab. 6.2]. The model was fitted on roughly 100M

simulated tau candidates from all types of Standard Model processes. ADAM was the

chosen optimization algorithm with β1 = .9, β2 = .99, ε = 1e−8, λ = .0001. The final

results demonstrate a significant improvement in the ability to identify tau leptons at

the CMS experiment. Validation of the results is shown in data follows in the analysis

sections of the thesis that follows.
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PFCand Variable Pre-Processing (charged pf) Imputed Value (neutral) Figure
pT (cand) min(1, var/500) - A.4
pz(cand) min(1, var/1000) - A.6

pT (cand)/pT (τ) min(1, var) - A.5
pz(cand)/pz(τ) min(1, var/100) - A.7

η(cand) var/.5 - A.8
∆R(cand,τ) var/.5 - A.11
∆φ(cand,τ) var/.5 - A.10
∆η(cand,τ) var/.5 - A.9
dz(cand) min(1,|var|/5)*sign(var) (-1 or 1, by pseudo-random number) A.16

σ(dz)(cand) min(1,var) 1 A.14
d0(cand) min(1,|var|/5)*sign(var) (-1 or 1, by pseudo-random number) A.17

σ(d0)(cand) min(1,var) 1 A.15
dz/σ(dz)(cand) min(1,|var|/3)*sign(var) (-1 or 1, by pseudo-random number) A.12
d0/σ(d0)(cand) min(1,|var|/3)*sign(var) (-1 or 1, by pseudo-random number) A.12
d0d0(cand) Pre-processed d0 1 -
d0dz(cand) Pre-processed d0, dz (-1 or 1, by pseud-random number) A.18

d0(cand)∆φ(cand,τ) Pre-processed d0∆φ (-1 or 1, by pseud-random number) A.19
Charge One-Hot-Encoded - -
PdgId One-Hot-Encoded - -

(pT (cand)/pT (τ))2 - - -
NPixHits var/30. 0 A.22

NHits var/7. 0 A.23
Lost Inner Hits One-Hot-Encoded - A.21

pfCandPuppiWeight - - A.20
Vertex Quality One-Hot-Encoded - A.27

From PV One-Hot-Encoded - A.24
In Barrel? (|η| < 1.4) - - A.26

High Purity track? - - A.25
HPS Signal Candidate? - - A

Table 6.1: Input variables for DeepPF algorithm. Data to simulation comparisons for
every inclusive input distributions after applying a loose MVA isolation selection are
checked and linked in the table below.
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Internal Name Keras Operation Kernal Size Output Shape NParameters

input 1 (InputLayer) - (None, 47, 32) 0
conv1d 2 (Conv1D) 4 (None, 47, 1024) 132096

leaky re lu 2 (LeakyReLU) - (None, 32, 1024) 0
conv1d 3 (Conv1D) 4 (None, 47, 512) 2097664

leaky re lu 3 (LeakyReLU) - (None, 47, 512) 0
conv1d 4 (Conv1D) 4 (None, 47, 512) 1049088

max pooling1d 1 (MaxPooling1) - (None, 23, 512) 0
leaky re lu 4 (LeakyReLU) - (None, 23, 512) 0

conv1d 5 (Conv1D) 4 (None, 23, 256) 393472
leaky re lu 5 (LeakyReLU) - (None, 23, 256) 0

conv1d 6 (Conv1D) 3 (None, 23, 256) 196864
max pooling1d 2 (MaxPooling1) - (None, 23, 256) 0

leaky re lu 6 (LeakyReLU) - (None, 11, 256) 0
conv1d 7 (Conv1D) 3 (None, 11, 64) 49216

leaky re lu 7 (LeakyReLU) - (None, 11, 64) 0
conv1d 8 (Conv1D) 3 (None, 11, 64) 12352

max pooling1d 3 (MaxPooling1) - (None, 5, 64) 0
leaky re lu 8 (LeakyReLU) - (None, 5, 64) 0

conv1d 9 (Conv1D) 3 (None, 5, 16) 2064
leaky re lu 9 (LeakyReLU) - (None, 5, 16) 0
conv1d 10 (Conv1D) 3 (None, 5, 16) 528

max pooling1d 4 (MaxPooling1) - (None, 2, 16) 0
leaky re lu 10 (LeakyReLU) - (None, 2, 16) 0

flatten 1 (Flatten) - (None, 32) 0
dense 1 (Dense) - (None, 2048) 67584

leaky re lu 11 (LeakyReLU) - (None, 2048) 0
dense 2 (Dense) - (None, 256) 524544

leaky re lu 12 (LeakyReLU) - (None, 256) 0
dense 3 (Dense) - (None, 64) 16448

leaky re lu 13 (LeakyReLU) - (None, 64) 0
dense 4 (Dense) - (None, 1) 65

Table 6.2: Structure of the convolutional neural network used for DeepPF. From the
output shape and operation type one can trivially determine the number of filters, nC ,
used in the convolution operation. For the Leaky ReLU a leaking parameter α = .01
was selected.

88



Deep Neural Networks for Hadronic Tau Identification Chapter 6

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io

0.5

1

1.5

2

2.5

3

3.5

Prompt Rate
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ak

e 
R

at
e

0

0.2

0.4

0.6

0.8

1 DPF Iso

MVA Iso

<75 GeV)
T

DY vs. W+Jets fakes (p

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io

0.5

1

1.5

2

2.5

3

3.5

Prompt Rate
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ak

e 
R

at
e

0

0.2

0.4

0.6

0.8

1 DPF Iso

MVA Iso

>125 GeV)
T

DY/MSSMH/Z' vs. W+Jets fakes (p

Figure 6.4: Above: Plots demonstrating the performance increase in moving from the
previous multivariate approach used by the CMS experiment to the newly proposed
DeepPF isolation. The genuine τh reconstruction efficiency is shown on the x-axis on
the plots above whereas the fake rate is along the y-axis. Low pT (τh) candidates are
shown on the left whereas high pT (τh) are shown on the right.
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7.1 Simplified Models at the LHC

Even the MSSM contains far too many parameters for a full scan over parameter

space to be performed by analyses at the LHC.

To reduce the complexity of SUSY searches at the LHC a Simplified Model Parameter-

ization (SMP) is introduced which dramatically reduces the number of model parameters

which must be considered [129, 130]. This simplification is achieved by assuming a 100%

branching ratio and by limiting the spectrum of particles involved for the specific SUSY

decay under consideration.

SMPs maintain all the relevant kinematic dependencies of the decay while reducing

the parameters of the model to only those directly involved in the decay. The cost

comes in terms of direct physical interpretability, as the model reduction may imply

a nonphysical theory of SUSY. However, this is typically a non-issue as results from

simplified models are intended to be reinterpreted by theorists into a physically realizable

SUSY model.

This technique is particularly effective because it allows individual experimental re-

sults to later be combined. However, there is a pitfall in the implicit assumption that there

is no impact on any given analysis from the additional SUSY decay modes removed by

the simplification. For example, control region (CR) contamination from neglected SUSY

process could have non-trivial impacts on background estimation technique employed by

a given analysis. Therefore, inclusion of these neglected SUSY contributions could alter

the search region (SR) predictions. Still, simplified models have seen widespread use at

the LHC despite the potential drawbacks.
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H

Figure 7.1: Simplified Feynman diagram for direct stau pair production.

7.2 CMS Stau Search Using 2016+2017 Data : In-

troduction

For the analysis a Simplified Model Parameterization (see Sec .7.1) is considered

whereby produced staus decay promptly into a χ̃0
1 and a τ . The analysis considers the

case where both taus decays hadronically, so that each stau decays decays follows the

decay chain τ̃ → τχ0
1 → τhντχ

0
1. The resulting LSPs and neutrinos are not detected which

yields an final state with two hadronic taus and missing energy. A simplified Feynman

diagram for part of the decay chain in the scenario outlined above is pictured [Fig. 7.1].

Improvements to the analysis with respect to the previously mentioned stau search

produced by CMS include a Deep Neural Network approach to identifying hadronically

decaying tau leptons [Sec. 6.1] as well as additional validation regions (VRs) and en-

hanced search region binning. The case of left-handed and right-handed tau superpart-

ner production are considered separately, and the case of mass degenerate production is

also analyzed. The handedness distinction is important because, as described in further
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detail in chapter two, the production cross section and experimental acceptance differs

between left/right-handed production [Fig. 2.3].

Monte Carlo simulation generation of the signal processes is done at LO. As per CMS,

”The production cross sections are computed at NLO plus next-to-leading-log (NLL)

precision for any single generation of left- or right-handed sleptons, and with all the other

sparticles assumed to be heavy and decoupled [131, 132]”. Thus, the produced signal

simulation is scaled to NLO/NLL precision according to latest theoretical calculations.

7.3 Triggers and Datasets

The recorded data for the SRs of this analysis comes from the di-τh and pmissT triggers.

A single muon trigger is implemented to collect events for a dedicated τh CR [133, 134].

For a detailed description of the functionality of the di-τh and pmissT triggers and datasets

used please refer to the appendix [App. B.1, B.2, B.3]. In total 77.2 fb−1 of data collected

by the CMS detector from pp collisions at an energy scale of
√
s = 13 TeV are analyzed

by the analysis.

7.4 Object Selection

7.4.1 Vertex selection

Application of the following standard CMS selection criteria gives the interaction

vertices reconstructed in an event:

• The vertices must come from fits to trajectories of reconstructed particle tracks

with positive χ2 values.

• There are at least 5 degrees of freedom in the vertex fit.
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• The distance, absolute z, along the beam line from the nominal center of the

detector is less than 24 cm.

• The transverse displacement, ρ, from the beam line is less than 2 cm.

At least one such vertex must exist in every selected event.

7.4.2 Tau candidate selection

The main Standard Model backgrounds after the baseline selection consist mainly of

QCD multijet, W+jets, Z+jets, and top quark events. Separating the background into

events where both reconstructed taus match to a generator τh, and misidentified events,

where one or more non-generator matched jets passes the τh reconstruction, it is the

misidentified background dominates the SRs. Stringent isolation requirements on the τh

candidates are applied in order to reduce this background.

The selected τh candidates first pass HPS reconstruction, a very loose MVA isolation

criterion, and electron and muon rejection discriminators [Sec. 4.3]. This loose working

point corresponds to around 70% efficiency for genuine τh, with a pT dependent misiden-

tification rate of approximately 1-2% for light-quark or gluon jets.

In order to further improve the suppression of the fake jet background while retain-

ing high signal efficiency an additional selection on the previously introduced DeepPF

discriminator is included. The criteria used to select a loose τh candidate in the analysis

are as follows [135]:

• pT (τh) > 40(45) GeV for 2016 (2017)

• |η(τh)| < 2.1

• trigger-matched to a distinct trigger object (for di-τhtriggered events)
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• HPS decay mode finding: 1-prong, 1-prong+π0, or 3-prong decay

• very loose anti-electron discriminator (againstElectronVLooseMVA6)

• loose anti-muon discriminator (againstMuonLoose3)

• very loose MVA isolation

An additional selection on the DeepPF isolation is applied to select tight τh can-

didates. Including the DeepPF isolation reduces fakes by 75-80% which results in a

0.15-0.4% fake rate overall. The efficiency to pass the DeepPF is designed to be constant

at 70-80% after applying the loose selection. An approximately linear trend in discrimi-

nator threshold vs. pT is corrected to maintain these constant efficiencies [Fig. 7.2]. The

results from the linear fit gives the working points for the DeepPF isolation [Tab. 7.1].
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Figure 7.2: From left to right: DeepPF threshold required to maintain a constant
70, 80, and 80% efficiency for 1-prong, 1-prong+π0, 3-prong, respectively, vs. pT (τh)
for a generator matched reconstructed τh passing the loose tau selections. A clear
linear trend can be seen in these plots and the resulting fit, which is used to obtain
the working points for this analysis.

7.4.3 Muon-hadronic tau Control Region

Measurement of the di-τh trigger efficiencies and the DeepPF isolation efficiency in

data are made via the tag-and-probe method in the µτh channel. This method uses the a
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Decay Mode Working Point
1-Prong DeepPF(τh) > 0.898328 - 0.000160992 * pT (τh) [GeV]

1-Prong+π0 DeepPF(τh) > 0.910138 - 0.000229923 * pT (τh) [GeV]
3-Prong DeepPF(τh) > 0.873958 - 0.0002328 * pT (τh) [GeV]

Table 7.1: DeepPF Working Points used in the analysis. They correspond roughly
to 70%,80%, and 80% efficiency for 1-prong, 1-prong plus pion, and 3-prong decay,
respectively.

”tag” object to select events enriched with a target ”probe” object. Selected events for

the DeepPF scale factor (εDATA/εMC) measurement require an isolated muon passing a

medium cut-based isolation selection [136, 137] with pT ≥ 24(29) GeV in 2016 (2017). In

addition the event requires a reconstructed τh passing the analyses loose tau requirement

and with pT > 30 GeV. Finally, the muon and tau must be of opposite charge.

Corrections are applied to the simulation to fix differences with respect to data in the

pile-up distributions, Drell-Yan mass and pT [Sec. 8.1.3], b-tagging efficiency, and muon

isolation and trigger efficiencies. For a full description of the corrections please refer to

the appendix [App. B.4].

An estimate of the contribution from QCD events is made in data by inverting the

same-sign region after subtracting the expected non-QCD contamination and scaling the

yields by 8% to account for the differences in same-sign and opposite-sign production.

A baseline selection is made on the µτh visible mass distribution of Mvis(µ, τh) ≥

40 GeV. The resulting visible mass distribution is mainly populated by events coming

from W/Z+jets with at least one genuine tau. Background predictions are in agreement

with data after scaling the τh reconstruction efficiency [Fig. 7.3]. A data-to-simulation

efficiency scale factor of 0.93(0.96) ± 0.05 in 2016 (2017) is evaluated from this sample

and is propagated throughout the analysis. Additional studies found no statistically

significant evidence to necessitate residual corrections on reconstructed tau transverse

momentum or decay mode.
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Before the application of the measured isolation SFs to events passing the baseline

µτh selection, plots are created to show the distribution of the two machine learning

scores that are averaged to form the DeepPF isolation discriminator [Figs. A.2, A.3].

The DNN discriminator agrees with data in a manner comparable to the simple MVA

discriminator. Moreover, all input variables are well modeled [Sec. A]. In conclusion, the

studies conclusively demonstrate the performance improvement of DeepPF isolation.
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Figure 7.3: Visible mass spectrum for µτh events passing the VR selection [Sec. 7.4.3].
The probe τh in each plotted event passes the analyses tight isolation working point.
On the left a scale factor of 0.93 has been applied whereas a scale factor of 0.96 has
been applied on the right.

7.4.4 Lepton veto

To keep the analysis disjoint from the complementary analysis in the semi-leptonic

decay channel and to reduce rare standard model backgrounds (dibosons, tt̄+V), a veto

is applied events containing muons (electrons) passing the selections :

• pT ¿ 20 and —η— ¡ 2.4 (2.5)

• Iδβ < .3
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• transverse impact parameter (d0) ¡ .045 cm

• longitudinal impact parameter (dz) ¡ .2 cm

In addition, several cuts are made on the particle-flow reconstruction quality of the

lepton. It should be noted now that the complementary semi-leptonic analysis will be

combined with the analysis in the final interpretation of results.

In addition, events containing a third τh candidate passing the loose selection with

pT > 30 GeV are vetoed.

7.4.5 Missing transverse momentum

The negative vector sum of all PFCands reconstructed in the event is computed to

give the pmissT . This calculation is refined by including the jet energy corrections [Sec.

4.4]. Mass variables such as mT and mT2-like variables leverages the pmissT variable for

maximum discrimination in this particular signal topology [Sec. 7.5.2].

A series of pmissT filters are designed to remove anomalous events occurring in data

[Fig. 7.4] [138].

• Primary Vertex Filter – Filters events with no primary vertex.

• CSC Beam Halo Filter – Filters events consistent with particles produced upstream

that traverse through the detector along the beam axis.

• HBHE Noise Filter – Filters events containing noise determined to be from HCAL

instrumentation.

• HBHEiso Noise Filter – Filters events containing isolated noise in the HCAL.

• ee badSC Noise filter (2016 only) – Filters events containing noise from bad crystals

in the ECAL endcap.
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• ECAL TP Filter – Filters events containing significant energy deposited into 5 by

5 crystal cells with a dead readout in the ECAL.

• Bad PF Muon Filter – Filters events containing muons with anomalously large

reconstructed pT .

• Bad Charged Hadron Filter – Filters events containing muons reconstructed as

hadrons with large pT .

• ECAL Bad Calibration Filter (2017 only) – Filters events containing noise in the

forward HCAL.

Figure 7.4: The pmissT (left) and jet φ (right) distributions for events passing dijet
(left) and monojet (right) selections. The data to simulation agreement is shown with
and without the application of the filters described above [107].

In 2017 an issue in the forward ECAL readout resulted in additional noise entering into

events. This additional ECAL noise resulted in degraded performance and a significant

discrepancy between data and simulation. A new pmissT calculation (pmissT -V2 ) introduced

in 2017 replaces the previous definition for that year to mitigate the noise effects. When
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calculating pmissT -V2 soft forward jets with uncorrected puncorr
T < 50 GeV and 2.65 <

|η| < 3.139 are neglected in both data and MC. This recipe improves agreement between

simulation and data at the cost of degraded pmissT performance.

By definition the pmissT -V2 calculation excludes underlying soft activity that can take

on substantial values in the tail distributions of background processes with large pro-

duction cross sections, e.g., Z boson production and misidentified τh. A new variable

selection, HT (Soft, Forward) ¡ 50 GeV, is introduced to mitigate the increased back-

ground coming from this redefinition of pmissT in the 2017 detector. This selection is also

introduced to further protect the analysis from forward ECAL noise effects. Performing a

sum over the scalar pT of the jets neglected from the pmissT -V2 calculation gives HT (Soft,

Forward). Corrections for discrepancies introduced by selecting on the soft HT between

yields in data and simulation are derived from dedicated scale factors measured in the

µτh control region [Sec. 7.4.3].

Lastly, one more selection is made to supress events with fake pmissT coming from

highly mismeasured jets. The selection requires each ith jet, ji, to pass a minimum

angular separation with respect to the pmissT of |∆φ(ji, p
miss
T )| > 0.25. Included in this

calculation are central jets with pT (ji) > 30 GeV and |η(ji)| < 2.4 and forward jets with

uncorrected puncorr
T (ji) > 50 GeV in the region 2.4 < |η(ji)| < 3.139.

7.5 Event Selection

7.5.1 Baseline selection

Events passing the trigger selection with two opposite-sign tightly reconstructed τh

candidates form the analysis baseline. An additional veto on events with electrons or

muons and loosely b-tagged jets is applied to suppress Standard Model backgrounds.
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7.5.2 Discriminating variables

The τ̃ → τχ0
1 → τhντχ

0
1 decay chain results in different correlation structure between

pmissT and the reconstructed τh leptons than in typical Standard Model events. This

difference still holds for background events containing true pmissT . As an example, take

highly off-shell Z → ττ → τhτhντντ events, in this case the taus from the decaying

Z boson will be produced back-to-back with large momentum. Because the taus are

aligned the pmissT vector will lie along the softer τh. However, in signal events the pmissT is

not typically aligned with either τh. Variables are introduced to leverage these different

correlation structures and to thereby garner heightened signal sensitivity.

Many kinematic discriminating variables were considered for this analysis and in the

end only two were chosen, the first of which is the sum of the transverse mass between

each τh and pmissT , ΣmT = mT (τ1, p
miss
T ) + mT (τ2, p

miss
T ). The transverse mass, mT , is

calculated under the assumption that the pmissT corresponds to a massless particle from

the corresponding decaying τh, q

mT (q, pmissT ) ≡
√

2pT,qpmissT (1− cos ∆φ(~pT,q, pmissT ). (7.1)

Note that the variable ΣmT fails to make use of the distinct decay topology resulting

from stau production. Signal events of the analysis have a final state with four missing

particles, two LSPs and two neutrinos. Another variable to help discriminate signal from

background called the stransverse mass (mT2) better utilizes this neglected information

[139, 140]. That is to say, mT2 is an adaptation of mT to the scenario with two invis-

ible particles and two observed particles. Because of the similar decay chain, mT2 is

correlated with the m(τ̃) and is expected to take on larger values in the case of heavier

stau production. Now, the calculation proceeds as a minimization procedure with both

leptons and pmissT as input:
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mT2 = min
~p
X(1)
T +~p

X(2)
T =pmissT

[
max

(
m

(1)
T ,m

(2)
T

)]
, (7.2)

where the vectors ~p
X(i=1,2)
T are the unknown transverse momenta of the two undetected

particles that correspond, respectively, which combine with the respective detected hadronic

taus (q=1,2) to yield transverse mass values m
(i=1,2)
T . The minimization is performed over

all possible momenta of the invisible particles with the constraint that the vectorial sum

must equal the pmissT in the event. The mT2 distribution is bounded by the mass of the

parent particle in the decay, up to detector resolution effects, and so natural kinematic

endpoints occur for many Standard Model processes. It should be noted that investiga-

tions carried out showed that mT2 discrimination performance is significantly degraded

by the presence of the two additional neutrinos in stau production – in future analyses

it may be possible for a more effective discriminating variable to be constructed.

7.5.3 Cut-and-count selection

The SR selections for this analysis are based on a cut-and-count approach after ap-

plying the baseline selection, pmissT ≥ 50 GeV, and |∆φ(τh,1, τh,2)| > 1.5 [Tab. 7.2]. These

requirements suppress many backgrounds, such as boosted Z+jets and misidentified tau

events, while retaining high signal efficiency. Selections define the regions on the following

quantities: mT2, ΣmT, and the number of reconstructed jets in an event (Njets).

All SRs are required to pass an initial selection of mT2 > 25 GeV. After applying

this minimum mT2 requirement, binning is performed along the remaining two kinematic

distributions to gain sensitivity towards a large range of m(τ̃). There are three bins in

ΣmT, ΣmT ∈ [[200,250), [250,300), [300,∞)] GeV. The events are then further subdivided

into two mT2 regions: low mT2 (25–50 GeV) and high mT2 (> 50 GeV). Lastly, events
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are split according to Njets = 0, and Njets ≥ 1.

Binning on the number of jets is a surprisingly useful new addition to the analysis.

This approach is powerful because often background events which pass the SR kinematic

and isolation selections have a high jet multiplicity, while the majority of signal events

do not have additional jets. In order to retain signal efficiency, all SRs are replicated

with Njets ≥ 1. The mT2 and ΣmT distributions are plotted for Njets = 0 [Fig. 7.5].

Ranges of mT2, ΣmT, and Njets used to define the SRs used in the τhτh analysis are
tabulated.

mT2 [GeV] ΣmT [GeV] Njets

>50 >300 = 0
≥ 1

250–300 = 0
≥ 1

200–250 = 0
≥ 1

25–50 >300 = 0
≥ 1

250–300 = 0
≥ 1

200–250 = 0
≥ 1

Table 7.2: Definition of the six search regions used in the analysis.

In the final result a statisical combination is performed over all SR bins.
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Figure 7.5: Predicted and observed distributions of ΣmT (left) and mT2 (right) for
events in the combined 2016 and 2017 datasets passing the baseline selection. The
expected distribution for three masses of left-handed stau production are also plotted.
Shaded in purple is the combined systematic and statistical uncertainty. The methods
used for predicting the background events follow in Chapter 8.
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8.1 Background Estimation Techniques

The most substantial Standard Model background for this analysis originates from

QCD multijet and W+jets processes. In these events, one or more of the τh candi-

dates come from a hadronic jet and are misidentified as a genuine τh. Simulating the

rare misidentification of jets is very difficult and error-prone. Thus, this background is

estimated in a data-driven manner.

The remaining events consist of two genuine τh and the most substantial background

among these comes from Drell-Yan+jets (DY+jets) events. Generation of DY+jets sim-

ulation proceeds at LO to reduce computation time and so the Z boson mass and pT

spectrum requires corrections using separately measured values from a Z → µµ control

region.

Finally, we have some other smaller contributions from SM backgrounds, e.g., Higgs

boson, di-boson production, and top quark related processes that become more relevant

in our exclusive search regions.

8.1.1 Non-prompt and misidentified tau leptons

A side-band of loose tau candidates coming from a mixture of genuine τh and hadronic

jets (jet → τh) is used to extrapolate the expected number of tau candidates passing

the full analysis selection. A fake enriched region must be constructed to accurately

measure in data the parameterized fake rate that is necessary to calculate the prediction

[Sec. 8.1.2]. The analysis readily yields such a region by inverting the opposite-sign

baseline selection to require two same-charge τh leptons.

The jet to τh fake rate strongly depends on the mother parton flavor, generator pT ,

and the reconstructed decay mode of the jet. Accordingly, the fake rates are measured in

bins of pT , decay mode, and the number of primary vertices (NPV ) to capture the effects
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of the pileup on the fake rate. Since the underlying parton flavor cannot be determined

in data a systematic uncertainty is applied to cover variations in the misidentification

rate.

Processes with genuine hadronic taus may easily leak into the loosely isolated side-

band because the DeepPF selection efficiency for such objects approximately 70-80%.

A technique based in linear algebra called the fake rate method is utilized to correctly

estimate the fake contribution in the corresponding search region [141].

Three categories are defined as follows: events with both τh candidates passing the

tight isolation requirement (Ntt), events with one passing and one failing the tight iso-

lation requirement (Ntl), and finally events with both τh candidates failing the tight

isolation requirement (Nll).

When provided with a prompt rate, p = ε(genuine τh), measured in simulation and

a measured fake rate, f , measured in data, the three observables listed above can be

related to three separate categories which cannot be directly observed. These categories

are the number of events with two genuine taus (Npp), one genuine and one fake tau

(Npf ), and the number events with two fake taus (Nff ).

Given below is the system of equations relating these quantities:

N = Npp +Npf +Nff = Ntt +Ntl +Nll,

Nll = (1− p)2Npp + (1− p)(1− f)Npf + (1− f)2Nff ,

Ntl = 2p(1− p)Npp + [f(1− p) + p(1− f)]Npf + 2f(1− f), Nff

Ntt = p2Npp + pfNpf + f 2Nff . (8.1)

The background contribution to the term p2Npp corresponds to events with two gen-

uine taus and is taken from simulation with corrections applied. What remains to predict

is Npf and Nff . These two background contributions are found by inverting the set of
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equations above:

Npf =
1

(p− f)2
[−2fpNll + [f(1− p) + p(1− f), ]Ntl − 2(1− p)(1− f)Ntt]

Nff =
1

(p− f)2

[
p2Nll − p(1− p)Ntl + (1− p)2Ntt.

]
(8.2)

The corresponding backgrounds surviving the tight selection cuts are read off from

the equation for Ntt to be pfNpf for single-fake events and f 2Nff for double-fake events.

In the analysis, the single-fake events are mostly W+jets events, while the double fakes

come from QCD multijet processes.

8.1.2 Fake rate measurement in data

A control region to measure the jet→ τh fake rate is established by inverting the

opposite sign requirement of the analysis baseline selection. A further requirement of

mT2 < 40 GeV is introduced to reduce the contamination of genuine hadronic taus from

W+jets in this control region. The remaining genuine hadronic tau contamination is

then estimated in simulation and subtracted.

The numerator of the fake rate calculation is the analyses tight τh selection whereas

the denominator is the loose τh selection. The fake rate measurement is binned in τh

decay mode, pT , and NPV [Fig. 8.1]. Dedicated studies found a strong variance in fake

rate as a function of NPV and the absence of variation in fake rate as a function of mT2.

The closure of the fake rate method is checked across mT2 in same-charge di-τh events

after requiring pT (τh, τh) > 50 GeV to obtain kinematics closer to those of the search

region phase space. Excellent agreement is expected since this is the same region that

the fake rates were measured. Note, howeover, that improper parameterization of the
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Figure 8.1: Fake rates measured in (2016, 2017) data for the different τhdecay modes
(left: one-prong, middle: one-prong+π0, right: three-prong) as a function of τhpT ,
for NPV < (20, 25) (upper row) and NPV ≥ (20, 25) (lower row). The error bands
represent statistical uncertainties.
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fake rate and/or genuine hadronic tau efficiency can cause discrepancies across the mT2

distribution. This follows because an incorrectly measured fake rate will change event

yields according to the relative fraction of QCD and W+jets events, which is a changing

quantity as a function of mT2. No significant deviations from prediction are observed

and so closure is verified [Fig. 8.2].

8.1.3 Drell-Yan background

Data-corrected simulation is used to produce an estimation of the Drell-Yan back-

ground. Disagreement in the tail-end of the distributions of the simulated shape or

normalization of the Z boson mass or pT can have a large impact on the resulting pmissT

and mT2 distributions. As previously mentioned, the simulation is only to LO which

results in noticeable discrepancies, and so corrections are measured in Z → µµ. After

applying these corrections agreement is observed in the di-τh validation region after the

baseline analysis selection [Fig. 8.3].

8.1.4 Top quark background

Predictions on top related backgrounds such as tt̄, single-top, and tt̄ + V with two

genuine hadronic taus are estimated in simulation. The most relevant correction to

the modelling of this process comes from the modeling of b-tagging. Thus, agreement

between efficiency measured in data and simulation is checked by inverting the baseline

b-jet veto and applying the measured scale factors. Studies of the tau and pmissT related

kinematics in this region showed no significant evidence for the necessity of any top

specific corrections to the simulation [Fig. 8.4].
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Figure 8.2: Closure test for the fake rate method in same-sign events (left) and
validation of the background prediction in opposite-sign (right) events for 2016 (Up-
per Panel) and 2017 (Lower Panel). An additional requirement of ΣmT <250 GeV
or mT2 < 50 GeV is required for same-sign events to prevent signal contamination.
Agreement is observed for the entire mT2 spectrum in all cases. Statistical uncer-
tainties along with a 10 % isolation and 30 % fake rate systematic are shaded in
grey.
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Figure 8.3: The visible mass and the visible pT (Z) spectrum for di-τh events in data
and the corresponding prediction for the SM background for 2016 (left) and 2017
(right). The predicted event yields agrees within the experimental uncertainties. The
events shown above pass the di-τhvalidation region selection described in 8.1.3. Sta-
tistical uncertainties along with a 10 % isolation and 30 % fake rate systematic are
shaded in grey.
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Figure 8.4: Validation of the top background is carried out in the mT2 spectrum
after applying the baseline selection along with the requirement pmissT > 50 GeV and
Mvis(τh, τh) > 100 GeV. Note that both regions yield a fairly pure selection of tt̄ to
di-τh– a topology which, to the authors knowledge, has not been studied extensively
in many analyses at the LHC.

8.1.5 Other Standard Model backgrounds

The remaining Standard Model backgrounds largely consist of Higgs boson produc-

tion, di/tri-boson production and have relatively small cross sections. Because of their

rare production these backgrounds are very difficult to isolate in data; therefore we esti-

mate them purely from the simulation and apply a normalization systematic to account

for uncertainties in the rate of production.

8.2 Validation regions of the analysis

We also define several validation regions (VRs) with ortohogonal selections to cor-

responding search regions in order to validate the background estimation methods in

signal-depleted regions. These validation regions are chosen by variously inverting the

delta-phi selection (|∆φ(τh,1, τh,2)| > 1.5), τh pair opposite sign requirement, or b-jet veto,

in order to provide regions enriched in the different background processes [Tab 8.1].
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Figure 8.5: Observed and predicted event yields in the SR-specific validation regions
for 2016 (left) and 2017 (right). Binning proceeds from low to high ΣmT along the
x-axis in the above plots. Bin-by-bin kinematic definitions and printed yields are in
the appendix [App. B.6]

Good agreement is seen between validation predictions and data in all search regions

[Tab 8.5, App. B.6]

VR Selection Menu Note : Each region is binned in ΣmT and Njets where applicable
Very Low mT2 VR Inverted Selection mT2 < 25 GeV

High mT2 Same-Sign VR Inverted sign selection
Low mT2 Same-Sign VR Inverted sign and mT2 selection
High mT2 b-Enriched VR Inverted b-jet selections
Low mT2 b-Enriched VR Inverted b-jet and mT2 selections
High mT2, Small ∆φ VR Inverted separation selection, .5 < |∆φ(τh,τh)— ¡ 1.5

Table 8.1: Definition of the validation regions used in this analysis.

8.3 Systematic Uncertainties

Statistical errors from limited simulation and parton flavor systematic uncertainties

related to misidentified taus are the dominant pre-fit uncertainties for the analysis. How-

ever, many additional smaller systematic effects must also be taken into account. The

numerical value range of these additional systematics are tabulated below [Tab. 8.2].

Raw systematic uncertainties, i.e. pre-fit uncertainties, are pulled and constrained to
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Figure 8.6: The pTdependence of the fake rate on the parton flavor. A systematic
uncertainty of 30% is assigned to cover the dependence of the fake rate on jet parton
flavor. This effect is summed in quadrature with the per-bin statistical uncertainty
on the fake rate to get the full systematic.

form post-fit uncertainties when fitting to the observed data. The fit to data is per-

formed as a likelihood maximization with the systematic and statistical errors treated as

nuisance parameters, please refer to the appendix for a full description of the statistical

approach [App. B.5].

The fit can cause considerable changes in the magnitude of each nuisance parameter

and the overly conservative fake rate estimate is found to be significantly constrained

[Fig. 8.6].

Tau isolation uncertainties in simulation are propagated as a constant 5 % uncertainty

per τh-leg plus an additional factor of (+.05/−.35) × pT (τh)[GeV]/1 [TeV] for highly

energetic taus satisfying pT (τh) > 150 GeV. Isolation uncertainty impacts the analysis

most greatly after fitting to the data. Uncertainty in the hadronic tau energy scale is

also taken into account by shifting the measured pT (τh) up and down by 1.2 % and

propagating the resulting yield variation.

In this same manner the binned jet energy scale and resolution correction uncertain-

ties are propagated through to the final result. Additionally, the impact of unclustered

particles on the pmissT is calculated by varying the unclustered energy across allowable

uncertainties and propagating the result.

Also, uncertainties in total luminosity and simulation corrections to b–tagging, pileup,

115



CMS Stau Search Using 2016+2017 Data : Analysis Chapter 8

Drell-Yan mass and pT propagated through to the final yields. Lastly, additional uncer-

tainties on predicted background rate from the PDFs, differential cross sections, and

integrated luminosity are considered. These errors in the measured PDF are propagated

along with a 15% normalization uncertainty and a 2.3-2.5 % luminosity systematic.

The signal simulation has two additional uncertainties stemming from factorization

and renormalization scale and initial state radiation (ISR). Because the signal is produced

at LO it is necessary to apply ISR corrections. After calculating the generator level pT

of the stau pair, pISRT , the measured corrections from the Z → µµ channel are applied

as a shape correction, assuming an on-shell Z decay. Therefore, a systematic uncertainty

corresponding to these ISR corrections introduced.

When performing the final fit to the background all statistical effects are treated as

uncorrelated whereas all systematic effects per background are correlated across all SRs.

Uncertainty (%) Signal Misidentified τh DY+jets Top quark Other SM
τh efficiency 5–13 - 5–15 1–14 10–51
τh energy scale 0.5–12 - 2.6–27 1.2–11 4.1–13
Jet energy scale 0.5–38 - 1.1–19 0.6–13 2.4–14
Jet energy resolution 0.3–22 - 1.9–10 0.7–22 0.2–11
Unclustered energy 0.3–21 - 2.6–30 0.2–6.4 1.7–14
B–tagging 0.2–0.9 - 0.2–23 1.7–25 0.2–1.2
Pileup 0.9–9.1 - 2–22 0.1–24 0.3–25
Integrated luminosity 2.3–2.5 - 2.3 2.3 2.3–2.5
Background normalization - - 5–15 2.5–15 15–25
Drell–Yan mass and pT - - 0.2–11 - -
τh misidentification rate - 4.6–51 - - -
Signal ISR 0.2–8.2 - - - -
Renormalization/factorization scale 1.6–7 - 0.7–14 0.7–30 6.7–16
PDF - - 0.1–1.2 0.1–0.4 0.1–0.6

Table 8.2: A range is given above for each systematic uncertainty considered in this
analysis. A representative signal model of left-handed direct stau production with
m(τ̃) = 100 GeV, m(χ̃0

1) = 1 GeV was chosen for the table above. The uncertainty
values are listed as a percentage of the predicted event yield.
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Figure 8.7: The impact (I(θi) = δµ(θi|θ̂i 6=j ∈ Θ)) of a nuissance parameter θi is
the variation it causes in the signal strength multiplier after first fitting all other
nuisances with θi fixed and then subsequently performing a fit on only θi. The pull is
how far the central value of the nuisance is skewed by the fit ((θ̂− θ0)/σθ) [142]. The
impact and pull of the top thirty nuisance parameters, rated by post-fit impact, are
shown after performing a background-only fit. The largest pre-fit systematic effect
is ”fakesyst” which corresponds to the fake tau background, whereas after fitting the
largest systematic is related to pT dependent uncertainty of genuine tau isolation,
”isohighpt”. Additional systematics among the top thirty include Monte Carlo scale,
energy scale, process cross-section.
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Figure 8.8: Observed and predicted event yields in each SR for 2016 (left) and 2017
(right) before and after fitting to background (top, bottom, respectively). Signal yields
are shown for three benchmark left-handed stau production scenarios. The shaded
background accounts for the total statistical and systematic uncertainty.

8.4 Results

The observed and predicted event yields are plotted for each SR before and after

fitting to the observed data [Fig. 8.8]. These yields are best compared with the combined

2016 and 2017 expected bin-by-bin signal yields [ 8.7, 8.8]. To help clarify the final signal

yields cutflows for left/right-handed τ̃ pair production across multiple τ̃ masses for a

nearly massless χ̃0
1 were produced [Tab. 8.5, 8.6].
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Table 8.3: Predicted background yields and observed event counts in all SRs for the
35.9 fb−1 of data collected in 2016. The uncertainties listed in quadrature are statisti-
cal and pre-fit systematics, respectively. For process with zero predicted background
a 68% statistical upper limit is listed. Signal yields for a left-handed m(τ̃L)= 100 GeV
and a m(χ̃0

1) = 1 GeV are listed at the end of the table for comparison.
mT2 [GeV] > 50
ΣmT [GeV] > 300 250− 300 200− 250
Njets 0 ≥ 1 0 ≥ 1 0 ≥ 1
Misidentified τh 1.1 ± 0.6 ± 0.6 2.9 ± 0.8 ± 1.6 3.7 ± 1.0 ± 2.2 2.7 ± 1.1 ± 0.5 18.2 ± 2.8 ± 9.5 18.1 ± 2.9 ± 6.0
DY+jets < 0.7 1.3 ± 0.8 ± 0.5 0.5 ± 0.5 ± 0.1 1.0 ± 0.7 ± 0.1 1.1 ± 0.8 ± 0.2 3.3 ± 1.3 ± 0.7
Top quark 0.7 ± 0.2 ± 0.1 0.8 ± 0.2 ± 0.1 1.1 ± 0.2 ± 0.2 1.0 ± 0.2 ± 0.1 1.1 ± 0.3 ± 0.1 1.3 ± 0.2 ± 0.3
Other SM 0.3 ± 0.1 ± 0.1 0.5 ± 0.2 ± 0.2 0.9 ± 0.4 ± 0.1 0.2 ± 0.1 ± 0.1 2.0 ± 0.6 ± 0.3 1.2 ± 0.4 ± 0.2
Total prediction 2.1± 0.6 ± 0.6 5.5 ± 1.2 ± 1.7 6.2 ± 1.2 ± 2.2 4.9 ± 1.3 ± 0.5 22.5 ± 3.0 ± 9.5 23.9 ± 3.3 ± 6.0
Observed 5 1 5 7 19 26
m(τ̃L)=100 GeV 1.7 ± 0.2 ± 0.4 0.7 ± 0.2 ± 0.2 1.4 ± 0.2 ± 0.2 0.4 ± 0.1 ± 0.1 1.6 ± 0.2 ± 0.3 0.4 ± 0.1 ± 0.1
mT2 [GeV] 25− 50
ΣmT [GeV] > 300 250− 300 200− 250
Njets 0 ≥ 1 0 ≥ 1 0 ≥ 1
Misidentified τh 2.8 ± 0.8 ± 1.8 0.5 ± 0.5 ± 0.2 3.1 ± 1.0 ± 1.7 3.6 ± 1.1 ± 2.0 23.5 ± 2.9 ± 9.8 12.7 ± 2.4 ± 4.2
DY+jets < 0.7 1.5 ± 0.9 ± 0.5 0.4 ± 0.4 ± 0.1 1.6 ± 0.9 ± 0.3 4.3 ± 2.1 ± 0.7 4.5 ± 1.5 ± 0.9
Top quark 0.2 ± 0.1 ± 0.1 0.6 ± 0.2 ± 0.2 0.8 ± 0.2 ± 0.1 1.3 ± 0.2 ± 0.2 1.7 ± 0.3 ± 0.3 2.9 ± 0.4 ± 0.3
Other SM 0.3 ± 0.2 ± 0.1 0.9 ± 0.4 ± 0.2 0.7 ± 0.4 ± 0.1 1.2 ± 0.5 ± 0.3 2.4 ± 0.7 ± 0.4 0.5 ± 0.2 ± 0.1
Total prediction 3.2 ± 0.9 ± 1.8 3.5 ± 1.1 ± 0.6 5.1 ± 1.2 ± 1.7 7.7 ± 1.5 ± 2.1 31.9 ± 3.7 ± 9.8 20.6 ± 2.9 ± 4.3
Observed 3 3 5 4 28 25
m(τ̃L)=100 GeV 1.3 ± 0.2 ± 0.4 0.7 ± 0.2 ± 0.2 1.6 ± 0.2 ± 0.2 0.8 ± 0.2 ± 0.1 2.4 ± 0.3 ± 0.4 0.6 ± 0.2 ± 0.1

Table 8.4: Predicted background yields and observed event counts in all SRs for the
41.3 fb−1 of data collected in 2017. The uncertainties listed in quadrature are statisti-
cal and pre-fit systematics, respectively. For process with zero predicted background
a 68% statistical upper limit is listed. Signal yields for a left-handed m(τ̃L)= 100 GeV
and a m(χ̃0

1) = 1 GeV are listed at the end of the table for comparison.
mT2 [GeV] > 50
ΣmT [GeV] > 300 250− 300 200− 250
Njets 0 ≥ 1 0 ≥ 1 0 ≥ 1
Misidentified τh 0.2 ± 0.7 ± 0.5 1.6 ± 0.8 ± 0.2 2.8 ± 1.3 ± 0.3 4.5 ± 1.4 ± 1.8 11.2 ± 2.3 ± 4.7 9.0 ± 2.6 ± 1.1
DY+jets < 0.7 0.5 ± 0.5 ± 0.1 1.0 ± 0.6 ± 0.1 1.0 ± 0.6 ± 0.1 1.3 ± 0.8 ± 0.2 2.6 ± 1.0 ± 0.4
Top quark 0.4 ± 0.3 ± 0.1 0.6 ± 0.5 ± 0.2 0.3 ± 0.3 ± 0.1 0.1 ± 0.1 ± 0.1 0.8 ± 0.4 ± 0.1 < 0.2
Other SM 1.4 ± 0.7 ± 0.3 0.6 ± 0.4 ± 0.2 0.9 ± 0.5 ± 0.1 0.7 ± 0.5 ± 0.1 1.0 ± 0.4 ± 0.2 1.2 ± 0.6 ± 0.2
Total prediction 2.0 ± 1.0 ± 0.6 3.2 ± 1.1 ± 0.4 5.1 ± 1.5 ± 0.3 6.3 ± 1.6 ± 1.8 14.3 ± 2.5 ± 4.7 12.8 ± 2.8 ± 1.2
Observed 3 3 7 9 11 24
m(τ̃L)=100 GeV 1.0 ± 0.2 ± 0.2 0.4 ± 0.1 ± 0.1 1.0 ± 0.2 ± 0.2 0.3 ± 0.1 ± 0.1 0.9 ± 0.2 ± 0.1 0.2 ± 0.1 ± 0.1
mT2 [GeV] 25− 50
ΣmT [GeV] > 300 250− 300 200− 250
Njets 0 ≥ 1 0 ≥ 1 0 ≥ 1
Misidentified τh 0.5 ± 0.5 ± 0.1 1.9 ± 0.8 ± 1.3 2.7 ± 0.9 ± 1.0 1.1 ± 0.8 ± 0.3 18.6 ± 3.1 ± 3.6 9.4 ± 2.1 ± 1.7
DY+jets 1.1 ± 0.8 ± 0.3 1.0 ± 0.8 ± 0.1 1.9 ± 1.4 ± 0.5 0.6 ± 0.4 ± 0.2 5.0 ± 2.0 ± 0.7 1.5 ± 0.7 ± 0.2
Top quark 0.3 ± 0.3 ± 0.1 0.5 ± 0.2 ± 0.1 0.2 ± 0.1 ± 0.1 1.0 ± 0.6 ± 0.1 1.2 ± 0.6 ± 0.2 1.1 ± 0.5 ± 0.2
Other SM 0.5 ± 0.3 ± 0.1 0.6 ± 0.4 ± 0.3 0.7 ± 0.5 ± 0.1 0.5 ± 0.5 ± 0.1 1.9 ± 0.7 ± 0.4 1.4 ± 0.6 ± 0.4
Total prediction 2.4 ± 1.0 ± 0.4 4.0 ± 1.2 ± 1.4 5.5 ± 1.8 ± 1.1 3.2 ± 1.2 ± 0.4 26.7 ± 3.8 ± 3.7 13.3 ± 2.3 ± 1.8
Observed 1 2 6 5 40 12
m(τ̃L)=100 GeV 1.4 ± 0.2 ± 0.4 0.6 ± 0.1 ± 0.2 1.3 ± 0.2 ± 0.2 0.3 ± 0.1 ± 0.1 1.7 ± 0.2 ± 0.2 0.4 ± 0.1 ± 0.1
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Table 8.5: Expected number of signal events passing sequential selections after collect-
ing 77.2 fb−1 of data. Di-τh trigger, reconstruction, isolation, and pT (τh) requirements
create the largest source of signal inefficiency. Note that the scenario under consider-
ation is left-handed production with m(χ̃0

1) = 1 GeV.

Selection m(τ̃L)=100 m(τ̃L)=125 m(τ̃L)=200
Loose Isolation Baseline 131.1 105.9 39.5

+ Tight Isolation 67.0 55.6 20.8
+ pmissT ≥ 50 GeV and —∆φ(τh, τh)| > 1.5 55.3 46.8 17.6

+ mT2 >= 25 GeV 29.1 28.7 12.8
+ ΣmT >= 200 GeV 23.8 25.8 12.4

+ Nj=0 17.9 17.6 8.3

Table 8.6: Expected number of signal events passing sequential selections after collect-
ing 77.2 fb−1 of data. Di-τh trigger, reconstruction, isolation, and pT (τh) requirements
create the largest source of signal inefficiency. Note that the scenario under consider-
ation is right-handed production with m(χ̃0

1) = 1 GeV.

Selection m(τ̃R)=100 m(τ̃R)=125 m(τ̃R)=200
Loose Isolation Baseline 58.2 41.1 17.1

+Tight Isolation 30.1 21.5 8.8
+pmissT ≥ 50 GeV and —∆φ(τh, τh)| > 1.5 25.0 17.9 7.4

+mT2 >= 25 GeV 13.7 11.8 5.5
+ΣmT >= 200 GeV 11.3 10.9 5.3

+Nj=0 8.3 7.9 3.5
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Table 8.7: Predicted signal yields followed by quadrature listed statistical and sys-
tematic uncertainties, respectively, for all SRs. The expected yields are for 77.2fb−1

in 2017 simulation and the selected signal points are m(τ̃L) in [100,125,200] GeV and
m(χ̃0

1)=1 GeV.

m(τ̃)=100 m(τ̃)=125 m(τ̃)=200
Search Region mT2 ¿ 50 GeV

300 < ΣMT , NJ = 0 2.7 ± 0.3 ± 0.4 5.1 ± 0.7 ± 1.0 4.7 ± 0.1 ± 0.8
300 < ΣMT , NJ >= 1 1.2 ± 0.2 ± 0.3 3.4 ± 0.6 ± 0.7 2.3 ± 0.1 ± 0.4

250 < ΣMT < 300, NJ = 0 2.4 ± 0.3 ± 0.3 2.6 ± 0.5 ± 0.3 0.9 ± 0.1 ± 0.1
250 < ΣMT < 300, NJ >= 1 0.6 ± 0.1 ± 0.1 1.3 ± 0.4 ± 0.2 0.3 ± 0.0 ± 0.0
200 < ΣMT < 250, NJ = 0 2.5 ± 0.3 ± 0.3 2.0 ± 0.4 ± 0.3 0.4 ± 0.0 ± 0.0

200 < ΣMT < 250, NJ >= 1 0.6 ± 0.1 ± 0.1 0.5 ± 0.2 ± 0.1 0.2 ± 0.0 ± 0.0
25 ≥ mT2 ≤ 50 GeV

300 < ΣMT , NJ = 0 2.7 ± 0.3 ± 0.6 3.0 ± 0.5 ± 0.7 1.0 ± 0.1 ± 0.2
300 < ΣMT , NJ >= 1 1.2 ± 0.2 ± 0.3 1.1 ± 0.3 ± 0.2 0.5 ± 0.0 ± 0.1

250 < ΣMT < 300, NJ = 0 2.8 ± 0.3 ± 0.3 1.5 ± 0.4 ± 0.2 0.5 ± 0.0 ± 0.1
250 < ΣMT < 300, NJ >= 1 1.1 ± 0.2 ± 0.1 1.0 ± 0.3 ± 0.1 0.3 ± 0.0 ± 0.0
200 < ΣMT < 250, NJ = 0 4.1 ± 0.4 ± 0.5 3.3 ± 0.5 ± 0.4 0.5 ± 0.0 ± 0.1

200 < ΣMT < 250, NJ >= 1 1.0 ± 0.2 ± 0.1 0.7 ± 0.3 ± 0.1 0.3 ± 0.0 ± 0.0

Table 8.8: Predicted signal yields followed by quadrature listed statistical and sys-
tematic uncertainties, respectively, for all SRs. The expected yields are for 77.2fb−1

in 2017 simulation and the selected signal points are m(τ̃R) in [100,125,200] GeV and
m(χ̃0

1)=1 GeV.

m(τ̃R)=100 m(τ̃R)=125 m(τ̃R)=200
Search Region mT2 ¿ 50 GeV

300 < ΣMT , NJ = 0 1.7 ± 0.1 ± 0.3 2.7 ± 0.3 ± 0.5 2.1 ± 0.0 ± 0.4
300 < ΣMT , NJ >= 1 0.7 ± 0.1 ± 0.1 1.5 ± 0.2 ± 0.3 1.1 ± 0.0 ± 0.2

250 < ΣMT < 300, NJ = 0 1.2 ± 0.1 ± 0.1 1.2 ± 0.2 ± 0.1 0.4 ± 0.0 ± 0.0
250 < ΣMT < 300, NJ >= 1 0.4 ± 0.1 ± 0.0 0.4 ± 0.1 ± 0.1 0.1 ± 0.0 ± 0.0
200 < ΣMT < 250, NJ = 0 1.2 ± 0.1 ± 0.1 0.8 ± 0.2 ± 0.1 0.2 ± 0.0 ± 0.0

200 < ΣMT < 250, NJ >= 1 0.3 ± 0.1 ± 0.0 0.3 ± 0.1 ± 0.0 0.1 ± 0.0 ± 0.0
25 ≥ mT2 ≤ 50 GeV

300 < ΣMT , NJ = 0 1.1 ± 0.1 ± 0.2 1.2 ± 0.2 ± 0.3 0.4 ± 0.0 ± 0.1
300 < ΣMT , NJ >= 1 0.5 ± 0.1 ± 0.1 0.4 ± 0.1 ± 0.1 0.2 ± 0.0 ± 0.0

250 < ΣMT < 300, NJ = 0 1.1 ± 0.1 ± 0.1 0.7 ± 0.1 ± 0.1 0.2 ± 0.0 ± 0.0
250 < ΣMT < 300, NJ >= 1 0.5 ± 0.1 ± 0.1 0.3 ± 0.1 ± 0.0 0.1 ± 0.0 ± 0.0
200 < ΣMT < 250, NJ = 0 1.7 ± 0.1 ± 0.2 1.0 ± 0.2 ± 0.1 0.2 ± 0.0 ± 0.0

200 < ΣMT < 250, NJ >= 1 0.5 ± 0.1 ± 0.1 0.4 ± 0.1 ± 0.1 0.1 ± 0.0 ± 0.0
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CMS Stau Search Using 2016+2017

Data : Interpretation

9.1 Limits on Direct Stau Production

The statistical methods described in the appendix are used to interpret the combined

2016 and 2017 observed results [App. B.5].

No significant deviation from the background only hypothesis is observed. The anal-

ysis proceeds to set 95% confidence level upper limits on the cross section for direct stau

production. In the limit setting procedure, the analysis of this note is combined with an

orthogonal analysis targeting the semileptonic channel [143]. The combination tends to

improve expected limits by 10-20 % from the all-hadronic only result.

The mass degenerate production scenario with a nearly massless LSP and m(τ̃) ∈

90-150 GeV is excluded by the combined result. No points are observed to be excluded

in the more difficult left-handed scenario, despite the expected upper limit on the cross

section residing below the production cross section for m(τ̃)=125 GeV [Fig. 9.1, 9.2].

No mass points for right-handed only production are near to the exclusion curve
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and so the results have been omitted for brevity. The ratio of expected cross section

upper limit to signal cross section peaks around m(τ̃)=125-150 GeV, where the trade-off

between increased acceptance and decreased cross section is optimal.
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Figure 9.1: Observed and expected 95% upper limits on cross section for degenerate
stau pair production. The cross section is plotted as a function of m(τ̃). The top left,
bottom, and top right plots correspond to m(χ̃0

1)=1,10, and 20 GeV, respectively.
Expected limits are calculated after fitting to the data with the background only
hypothesis. The results are made after performing a statistical combination of 2016
and 2017. The calculated signal cross section and the associated uncertainty is plotted
in red. The regions containing 68 % and 95 % of the expected upper limits are plotted
in green and yellow, respectively. Lastly, the observed exclusion is plotted as a single
black line.
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Figure 9.2: Observed and expected 95% upper limits on cross section for left-handed
stau pair production. The cross section is plotted as a function of m(τ̃). The top left,
bottom, and top right plots correspond to m(χ̃0

1)=1,10, and 20 GeV, respectively.
Expected limits are calculated after fitting to the data with the background only
hypothesis. The results are made after performing a statistical combination of 2016
and 2017. The calculated signal cross section and the associated uncertainty is plotted
in red. The regions containing 68 % and 95 % of the expected upper limits are plotted
in green and yellow, respectively. Lastly, the observed exclusion is plotted as a single
black line.
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10.1 The High-Luminosity LHC

The ultimate goal of any particle accelerator is to further extend the boundaries of

mankinds understanding of the universe. With this in mind, the LHC initially planned to

collect a total integrated luminosity of
∫
L dt = 300 fb−1. As was previously discussed,

the a priori goal of the LHC was to discover or rule out the existence of the Higgs

boson across as wide a mass range as possible [Sec. 3.1.3]. Now, the Higgs boson has

been discovered at a mass of approximately 125 GeV and with a verified spin-parity 0+.

Combining all the recent results from CSM and ATLAS gives successful observation of

the following Higgs boson decay modes : H → ττ , H → bb̄, H → γγ, H → WW/ZZ

[144].

Moreover, Higgs boson production with an associated vector boson, V +H, and with

a pair of top quarks, tt̄H, have both been observed – a feat that was not expected to be

reached with the amount of data that has been collected [145, 146]. Still, there remains

a great deal about the Higgs boson and the Standard Model that is not yet grasped.

Coupling of the Higgs to second generation leptons and quarks, i.e., H → cc̄ and H → µµ,

has not been observed, nor has the exceedingly rare di-Higgs boson production [147, 148].

Moreover, as mentioned in the introduction, the Standard Model is an incomplete and

contradictory theory. Beyond the Standard Model physics appears necessary to rectify

outstanding issues, but similar null results to the analysis considered in this thesis have

been uncovered by every search for new physics produced by CMS and ATLAS. These

outstanding questions motivate further accelerator experiments to be carried out, but

this is made quite challenging by real-world constraints.

The High-Luminosity LHC (HL-LHC) is a proposal to extend the original design

specifications of the LHC to collect a total integrated luminosity of
∫
L dt = 3000 fb−1

at the originally anticipated LHC design energy of
√
s = 14 TeV [149]. Increased data
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collection will be achieved by increasing the total run-time and the instantaneous lumi-

nosity such that an average of 200 pile-up collisions take place per bunch-crossing

The current CMS detector will not withstand these new conditions and so a large

part of the detector requires retrofitting in the CMS Phase-II Upgrade [150]. Studies

of the anticipated radiation dose illustrate that the tracking system and end-cap will

require complete replacement during the Phase-II upgrade. The Phase-II systems will

need to be radiation hard and capable of mitigating effects from the increased pile-up.

Silicon detector systems are well motivated because the intrinsic radiation hardness and

well understood properties of silicon. In light of this, the High-Granularity Calorimeter

will replace the current end-cap system with a novel and highly performant silicon and

tungsten, copper, and brass sampling calorimeter. Lastly, an entirely new system called

the MIP Timing Detector (MTD) is introduced to allow 4-D reconstruction [151]. To-

gether with the new upgrades CMS detector is expected to operate successfully in this

harsher environment.

10.2 Searching for Staus at the HL-LHC

The limited sensitivity of the analysis previously introduced in this thesis motivated

an upgrade study in the context of the HL-LHC. The analysis is largely limited by the

small production cross section and so this study which considers a search for staus at

the HL-LHC (”the upgrade study”) benefits greatly from the more than one order of

magnitude increase in integrated luminosity.

10.2.1 Event simulation and reconstruction

The simulated events for the upgrade study are generated with a computationally

efficient simulation called Delphes [Sec.5.2]. Rather than performing a complete simula-
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tion of physics, Delphes forms a collection of reconstructed PFCands by assigning user

provided resolutions to generator level particles.

Then, after clustering the reconstructed particles into jets, user provided reconstruc-

tion and identification rates probabilistically identify muons, electrons, taus and b-jets.

The values provided to Delphes for the upgrade study are derived using a Phase-II

Full Simulation (Phase-II FS) based on the Run-II CMS Full Simulation (Run-II FS)

workflow with the upgraded detector in a 〈NPU〉 = 200 environment.

A detailed list of the Monte Carlo simulation samples, the total number of simulated

events, and the cross section used in the upgrade study are given [Tab. 10.1].

Table 10.1: Monte Carlo simulation samples for Phase II (“YR samples”) together
with the corresponding cross sections.

Type Sample name NEvents Cross section [pb]
DY+jets DYJetsToLL M-50 TuneCUETP8M1 14TeV-madgraphMLM-pythia8 400M 5765.4
W+Jets W0JetsToLNu TuneCUETP8M1 14TeV-madgraphMLM-pythia8 200PU/ 80M 47380
W+Jets W1JetsToLNu TuneCUETP8M1 14TeV-madgraphMLM-pythia8 200PU/ 80M 10370
W+Jets W2JetsToLNu TuneCUETP8M1 14TeV-madgraphMLM-pythia8 200PU/ NA 2965
W+Jets W3JetsToLNu TuneCUETP8M1 14TeV-madgraphMLM-pythia8 200PU/ 40M 43

QCD QCD Pt-170to300 TuneCUETP8M1 14TeV pythia8 200PU 30M 137100
QCD QCD Pt-300to470 TuneCUETP8M1 14TeV pythia8 200PU/ 40M 9325
QCD QCD Pt-470to600 TuneCUETP8M1 14TeV pythia8 200PU/ 40M 809.7
QCD QCD Pt-800to1000 TuneCUETP8M1 14TeV pythia8 200PU/ 80M 42.51
QCD QCD Pt-1000toInf TuneCUETP8M1 14TeV pythia8 200PU/ 10M 14.08
Top TT TuneCUETP8M2T4 14TeV-powheg-pythia8 200PU 220M 864
Top ST tW antitop 5f NoFullyHadronicDecays 14TeV-powheg-pythia8 TuneCUETP8M1 200PU 12M 45
Top ST tW top 5f NoFUllyHadronicDecays 14TeV-powheg-pythia8 TuneCUETP8M1 200PU 12M 45

Other SM Triboson, VVto2l2nu

Stau mStau-100 mLSP-[1,25,50,75] TuneCUETP8M1 14TeV-madgraphMLM-pythia8 2M 0.11358
Stau mStau-200 mLSP-[1,100,150] TuneCUETP8M1 14TeV 200k 0.01017
Stau mStau-300 mLSP-[1,100,200,250] TuneCUETP8M1 14TeV 100k 0.00216
Stau mStau-400 mLSP-[1,100,200,300] TuneCUETP8M1 14TeV 100k 0.00066
Stau mStau-500 mLSP-[1,100,200,300] TuneCUETP8M1 14TeV 100k 0.00022
Stau mStau-600 mL8P-[1,100,200,300] TuneCUETP8M1 14TeV 100k 0.0001
Stau mStau-700 mLSP-[1,100,200,300] TuneCUETP8M1 14TeV 100k 0.00005
Stau mStau-800 mLSP-[1,100,200,300] TuneCUETP8M1 14TeV 100k 0.000023

10.2.2 Object selection

Object selection thresholds are chosen to closely mirror the efficiencies of those intro-

duced in Chapters 7-9.
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One major difference in jet and therefore lepton reconstruction is extended η coverage

provided by the upgraded detector. For the upgrade study the reconstruction range of

jets and leptons are extended to |η| < 2.7.

Selected jets

Pileup Per Particle Identification (PUPPI) jets replace the standard jet collection

from Run-II FS. PUPPI jets are also clustered via anti-kT with a distance parameter of

D = .4, but the 4-vector contribution of each PFCand is scaled according to a weight

assigned by the PUPPI algorithm [152]. Utilizing the PUPPI algorithm enhances the jet

energy resolution and greatly reduces the likelihood of reconstructing clusters of pile-up

as jets.

Veto leptons

Leptons are chosen according to reconstruction efficiency maps which are applied to

selected jets. Selected veto leptons must pass an isolation cut of Iδβ < .3.

It should be noted Delphes does not introduce fake lepton objects and only makes

attempts to identify generator matched jets as leptons.

Identifying b-jets

b-jets are identified from the selected jets according to a loose working point that is

approximately 65% efficient for genuine b-jet candidates.

Identifying hadronic taus decays

Hadronic taus are identified from the two leading selected jets, oredered by pT , with

a restriction to |η| < 2.3 to avoid jets originating from pile-up.
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The reconstructed pT threshold is increased to pT (τh) ¿ 50 GeV because of anticipated

changes in trigger thresholds. A tighter working is necessary in the upgrade study because

tau isolation performance is significantly degraded by increased pile-up. This working

point corresponds to a hadronic tau reconstruction efficiency of roughly 30% efficiency

for genuine τh candidates and approximately .1% for fake candidates.

In order to reduce the statistical error stemming from the limited size of the simu-

lated samples, a technique was developed to dynamically weight each event. Rather than

probabilistically selecting hadronic taus from the reconstructed jets, as is the default in

Delphes, the product of the leading two jets efficiencies to be reconstructed as hadronic

taus creates an additional event weight. Application of such events increases the statis-

tical significance of the sample without changing the method for object selection. For

events with two genuine hadronic taus the event weight is decreased by roughly ten,

whereas event weights for events with two fake tau candidates are decreased by roughly

1e6.

10.2.3 Transverse momentum calculation

The pmissT is defined as the negative vectorial sum of all PF candidates transverse

momenta weighted through the PUPPI method.

10.2.4 Upgrade study design

The baseline selection requires two opposite-sign reconstructed tau candidates satis-

fying |∆Φ(τh,τh)| > 1.5 and pT (τh,τh)> 50 GeV.

The search regions are defined as a function of ΣmT, mT2, and number of recon-

structed jets, the same three quantities used in the first analysis shown in this thesis.

However, the binning structure of the upgrade study has been expanded to 24 bins and

130



CMS Future New Physics Search : Staus at the HL-LHC Chapter 10

altered to adjust for the new detector environment and increased luminosity [Tab. 10.2].

Moreover, background considerations are grouped as previously defined, with the only

exception being that W+Jets and QCD are introduced as dedicated backgrounds. Pre-

viously, QCD and W+Jets were estimated with the fake-rate method, but without a

dataset to draw from these backgrounds must now be estimated in simulation. A plot

showing the distribution of search region variables is produced after applying the baseline

selection [Fig. 10.1].

Table 10.2: Definition of the SRs used in the upgrade study. Signal depleted bins
(low ΣmT, high mT2) are omitted from the combination. The full list of bins and
background yields is presented in Table 10.4.

Variable Bin 0 Bin 1 Bin 2 Bin 3
mT2 50 < mT2 < 100 GeV 100 <mT2 < 150 GeV 150 < mT2 < 200 GeV mT2 > 200 GeV
ΣmT 400 < ΣmT < 500 GeV 500 < ΣmT < 600 GeV ΣmT > 600GeV -
Njets = 0 > 0 - -
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Figure 10.1: Plotted on the Left: ΣmT, and on the Right: mT2, each is shown
after applying the baseline selection. Scaled signal yields for mass degenerate stau
production with three different m(τ̃) and m(χ̃0

1) scenarios are shown. Background
definitions are aligned with those introduced in the Run-II analysis.
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10.3 Adjusting Delphes Simulation

10.3.1 Jet corrections and validation

The resulting jet resolution in Delphes does not agree with that measured in Phase-II

FS. Thus, corrections are applied in order to bring Delphes into agreement with Phase II

FS. If a reconstructed jet (RecoJet) in Delphes has a corresponding generator-level jet

(GenJet) within ∆R < .2, then a jet-by-jet correction is implemented after following the

steps below:

• Jet resolution distribution σjet = [(RecoJet)−pT (GenJet)]/pT (GenJet) is calculated

in bins over GenJet pT ∈ [25, 50, ....500] GeV and η ∈ [0, 1.44, 2.7] for Phase II FS

and Phase II Delphes.

• Two functions are precomputed, QD(σD), which maps a given resolution onto its

corresponding quantile in Delphes, and Q−1
FS, which takes an input quantile and

returns the corresponding Phase-II FS resolution.

• The reconstructed jet pT in Delphes, pT (RecoD), is recomputed by mapping the

reconstructed jets resolution quantile in Delphes onto the corresponding quantile

in Phase-II FS, as shown below

pT (RecoD) = (σD + 1) ∗ pT (Gen), (10.1)

pT (RecoD) → (σFS|QFS(σFS)=QD(σD) + 1) ∗ pT (Gen), (10.2)

= (Q−1
FS(QD(σD)) + 1) ∗ pT (Gen). (10.3)

Comparisons between the uncorrected and corrected jet pT are made using a QCD

sample with a flat p̂T distribution, after selecting 100 GeV ¡ pT (j1) ¡ 500 GeV and
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pT (j2) > 50 GeV to mirrior the upgrade studies phase space [Fig. 10.2]. The agreement

between Delphes and Phase-II FS is noticeably improved for high pT jets – objects which

are typical in the final states of the upgrade study. Furthermore, inclusive jet pT , HT

and Hmiss
T distributions are compared in a similar manner.
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Figure 10.2: Comparison of jet resolution between corrected (uncorrected) Delphes in
red (green) and Phase-II FS in blue for three bins of generator jet pT . The corrections
grow more substantial at higher energies.

The greatest improvement in agreement comes in the tails of Hmiss
T [Fig. 10.3]. Note

that all modifications of jet pT are propagated to the pmissT according to the prescription

described in earlier chapters.
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Figure 10.3: Comparison of inclusive jet pT , HT and Hmiss
T between corrected (uncor-

rected) Delphes in red (green) and Phase-II FS in blue on the upper left, upper right
and bottom, respectively.

10.3.2 Muon and electron reconstruction validation

Validation of muons and electrons is carried by comparing simulated Drell-Yan,

Z → ``, in Delphes and Phase-II/Run-II FS. After selecting events consistent with Z

production the pT distribution for the leading and subleading electrons or muons are

compared [Fig. 10.4]. Good agreement between Delphes and Phase-II FS is observed in

the muon final state and so no corrections are applied. While small differences in yields

exist for electron identification, the impact was shown to have a relatively negligible

impact on the veto applied in this upgrade study.

134



CMS Future New Physics Search : Staus at the HL-LHC Chapter 10

)
1

µ(
T

p
0

2

4

6

8

10

12

14

16

18

20

610×

E
ve

nt
s

Drell Yan

Run-2 scaled to 14 TeV and 3000/fb

Phase-2 FullSim (200PU)

Phase-2 Delphes (200PU, nJet binned)

Drell Yan

20 25 30 35 40 45 50 55 60 65 70
)

1
µ (

T
p

0.5
1

1.5
2

2.5

F
ul

lS
im

   
   

   
 

R
at

io
 w

.r
.t.

)
2

µ(
T

p
0

2

4

6

8

10

12

14

16

18

610×

E
ve

nt
s

Drell Yan

Run-2 scaled to 14 TeV and 3000/fb

Phase-2 FullSim (200PU)

Phase-2 Delphes (200PU, nJet binned)

Drell Yan

20 25 30 35 40 45 50 55 60 65 70
)

2
µ (

T
p

0.5
1

1.5
2

2.5
F

ul
lS

im
   

   
   

 
R

at
io

 w
.r

.t.

)
1

(e
T

p
0

2

4

6

8

10

12

610×

E
ve

nt
s

Drell Yan

Run-2 scaled to 14 TeV and 3000/fb

Phase-2 FullSim (200PU)

Phase-2 Delphes (200PU)

Drell Yan

20 40 60 80 100 120 140 160 180 200
)

1
 (e

T
p

0.5
1

1.5
2

2.5

F
ul

lS
im

   
   

   
 

R
at

io
 w

.r
.t.

)
1

(eη
0
2

4

6
8

10
12

14

16

18
20
22

24

610×

E
ve

nt
s

Drell Yan

Run-2 scaled to 14 TeV and 3000/fb

Phase-2 FullSim (200PU)

Phase-2 Delphes (200PU)

Drell Yan

4− 3− 2− 1− 0 1 2 3 4

)
1

 (eη

0.5
1

1.5
2

2.5

F
ul

lS
im

   
   

   
 

R
at

io
 w

.r
.t.

Figure 10.4: Selecting two hard leptons in DY events. Top Pannel: Leading muon
pT and the sub-leading muon pT are shown, on the left and right, respectively. Top
Pannel: The leading electron pT and η are shown, on the left and right, respectively.
The different distributions are Run-2 events scaled to 14 TeV and 3000 fb−1 (red),
Phase-2 FullSim (blue), Phase-2 Delphes (green).
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10.4 Systematic Uncertainties

The experimental uncertainties are expected to be dominated by τh reconstruction

efficiency and fake rate uncertainties. Additional uncertainties stem from jet energy scale

and resolution, b-tagging efficiency, and integrated luminosity.

The values for systematic uncertainties were derived by scaling uncertainties to their

expected value after collecting a total integrated luminosity of 3000 fb−1 and then prop-

agating the values through the upgrade study [Tab. 10.3].

Table 10.3: Summary of the experimental systematic uncertainties.
Systematic source of uncertainty Value

τh efficiency 2.5%
τh fake rate 15%

Jet energy scale 1-3.5%
Jet energy resolution 3-5%

b-tagging 1%
Integrated luminosity 1%

10.5 Results

The expected yields after the baseline selection are shown for each SR with an ex-

pected contribution from signal [Tab. 10.4].

10.6 Interpretation

While the di-τh upgrade study presented here has been found to drive the sensitivity,

an additional the semileptonic channel has been included which extends the exclusion

bounds by about 60–80 GeV[153].
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Table 10.4: Signal region yields for degenerate scenario. The three rightmost columns
show the signals, with masses given in the form of m(τ̃)/m(χ̃0

1)
Bin DY+jets +jets QCD Other Sum (200/100) (500/200) (700/300)

mT2 0 mT 0 Nj 0 101.79 ± 24.97 58.93 ± 43.95 18.63 ± 4.56 28.78 ± 0.44 3.98 ± 2.86 212.10 ± 50.83 91.35 ± 4.31 1.21 ± 0.05 0.21 ± 0.01
mT2 0 mT 0 Nj 1 76.59 ± 17.49 4.96 ± 0.31 123.23 ± 12.14 75.69 ± 0.66 9.84 ± 3.33 290.29 ± 21.56 49.43 ± 3.17 0.86 ± 0.04 0.17 ± 0.01
mT2 0 mT 1 Nj 0 21.06 ± 9.44 4.23 ± 0.29 4.89 ± 2.39 12.05 ± 0.30 2.61 ± 1.54 44.83 ± 9.87 29.77 ± 2.46 0.76 ± 0.04 0.18 ± 0.01
mT2 0 mT 1 Nj 1 13.52 ± 6.77 1.39 ± 0.13 46.04 ± 7.35 24.25 ± 0.37 -0.67 ± 1.78 85.20 ± 10.00 22.45 ± 2.14 0.61 ± 0.04 0.15 ± 0.01
mT2 0 mT 2 Nj 0 12.95 ± 6.77 3.23 ± 0.26 2.62 ± 1.79 4.87 ± 0.18 -0.33 ± 1.15 23.67 ± 7.01 17.54 ± 1.89 1.31 ± 0.05 0.40 ± 0.02
mT2 0 mT 2 Nj 1 15.85 ± 7.90 1.51 ± 0.45 36.72 ± 6.57 10.34 ± 0.21 3.84 ± 1.70 68.27 ± 10.43 13.89 ± 1.68 1.11 ± 0.05 0.35 ± 0.02
mT2 1 mT 0 Nj 0 142.96 ± 28.82 9.56 ± 0.64 22.99 ± 5.17 19.44 ± 0.49 9.63 ± 2.41 204.57 ± 29.39 84.33 ± 4.14 1.20 ± 0.05 0.20 ± 0.01
mT2 1 mT 0 Nj 1 102.16 ± 20.01 2.06 ± 0.29 121.69 ± 11.91 62.76 ± 0.88 5.65 ± 2.18 294.32 ± 23.41 43.05 ± 2.95 0.77 ± 0.04 0.14 ± 0.01
mT2 1 mT 1 Nj 0 34.34 ± 11.45 1.39 ± 0.21 6.22 ± 2.71 17.17 ± 0.39 0.59 ± 0.89 59.71 ± 11.81 28.38 ± 2.40 1.30 ± 0.05 0.25 ± 0.01
mT2 1 mT 1 Nj 1 19.42 ± 8.29 1.09 ± 0.62 27.56 ± 5.64 31.27 ± 0.46 1.24 ± 1.45 80.58 ± 10.16 16.20 ± 1.81 0.91 ± 0.05 0.17 ± 0.01
mT2 1 mT 2 Nj 0 24.93 ± 10.43 0.57 ± 0.11 2.61 ± 1.79 7.90 ± 0.25 2.09 ± 1.03 38.10 ± 10.64 11.23 ± 1.51 2.10 ± 0.07 0.57 ± 0.02
mT2 1 mT 2 Nj 1 4.78 ± 4.44 0.15 ± 0.03 15.68 ± 4.30 13.41 ± 0.26 1.21 ± 1.03 35.22 ± 6.28 8.01 ± 1.27 1.81 ± 0.06 0.58 ± 0.02
mT2 2 mT 0 Nj 0 0.04 ± 0.01 0.09 ± 0.05 0.01 ± 0.01 0.44 ± 0.07 0.00 ± 0.00 0.59 ± 0.08 0.41 ± 0.29 0.04 ± 0.01 0.01 ± 0.00
mT2 2 mT 0 Nj 1 0.08 ± 0.02 0.01 ± 0.00 2.36 ± 1.59 1.81 ± 0.17 0.00 ± 0.00 4.27 ± 1.60 0.01 ± 0.00 0.02 ± 0.01 0.00 ± 0.00
mT2 2 mT 1 Nj 0 13.63 ± 7.70 0.57 ± 0.12 3.54 ± 2.02 5.98 ± 0.22 0.53 ± 0.51 24.25 ± 7.98 2.07 ± 0.64 0.57 ± 0.04 0.12 ± 0.01
mT2 2 mT 1 Nj 1 3.88 ± 2.51 0.20 ± 0.07 15.52 ± 4.31 13.80 ± 0.35 1.05 ± 0.73 34.44 ± 5.05 2.11 ± 0.64 0.38 ± 0.03 0.08 ± 0.01
mT2 2 mT 2 Nj 0 0.18 ± 0.03 0.39 ± 0.10 0.07 ± 0.01 8.50 ± 0.24 1.09 ± 1.03 10.22 ± 1.06 3.50 ± 0.84 2.91 ± 0.08 0.76 ± 0.02
mT2 2 mT 2 Nj 1 2.03 ± 1.78 0.08 ± 0.03 9.58 ± 3.35 15.30 ± 0.29 -0.44 ± 0.51 26.99 ± 3.80 1.73 ± 0.58 2.19 ± 0.07 0.63 ± 0.02
mT2 3 mT 2 Nj 0 22.49 ± 18.48 0.09 ± 0.04 0.02 ± 0.00 2.25 ± 0.09 -0.48 ± 0.51 24.85 ± 18.49 0.23 ± 0.20 3.57 ± 0.09 1.74 ± 0.04
mT2 3 mT 2 Nj 1 0.12 ± 0.02 0.03 ± 0.01 5.15 ± 2.39 5.13 ± 0.12 0.55 ± 0.51 10.98 ± 2.45 1.10 ± 0.46 3.15 ± 0.09 1.72 ± 0.04

The expected upper limits at the 95% confidence level are calculated using the asymp-

totic formula, as described [App. B.5], and are plotted along with the 5σ discovery po-

tential [Fig. 10.5].
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Figure 10.5: The expected upper limits at the 95% confidence level and the 5σ discov-
ery potential for degenerate direct stau production after combining the results from
the di-τhand semileptonic channels.
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11.1 Summary and Conclusions

The main analysis presented in this thesis was a search for supersymmetry in final

states with two hadronically decaying taus and missing transverse momentum in 13 TeV

proton-proton collisions with 77.2 fb−1 of data collected by the CMS Detector.

The latest analysis improves upon the first result produced by the CMS experiment

by including additional data and by enhancing the analysis techniques employed. The

most novel improvement is the application of a new Deep Neural Network architecture

to reduce the misidentification rate of hadronically decaying taus. Additional changes

were introduced to restructure the search region binning and improve the background

validation. These new techniques reduce the expected upper limit on the direct stau

production cross section by as much as 50%.

No significant deviation from Standard Model expectations are observed in the data

and accordingly a 95% confidence level upper limit on the direct stau pair production

cross section is set. Mass degenerate stau pair production is excluded for minimally su-

persymmetric models (MSSM) with m(τ̃) ∈ 90-150 GeV. Similarly, exclusion is expected

for left-handed only pair production with m(τ̃L)=125 GeV. However, no such exclusion

is observed in the data.

The currently presented analysis is close to the required sensitivity to rule out much

of the phase space for left handed stau pair production with m(τ̃L) ∈ 90-175 GeV. These

results suggest including the data collected in 2018 will provide this additional sensitivity.

Moreover, a study was presented using simulation of the High-Luminosity LHC (HL-

LHC) environment with the CMS Phase-2 detector. This scenario corresponds 3000 fb−1

of data taken at a center-of-mass energy of 14 TeV. The study shows sufficient sensitivity

to formally expect discovery of mass degenerate direct stau pair production for m(τ̃) ∈
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[100, 650 GeV].
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Figure A.1: Probe τ number of particle flow candidates
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Figure A.2: Probe τ MVA isolation
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Figure A.3: Probe τ DNN Isolation, this raw value is averaged with the MVA score
above to form DeepPF isolation
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Figure A.4: pT of PFCandidates associated to the probe τ
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Figure A.5: Relative pT of PFCandidates associated to the probe τ
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Figure A.6: pz of PFCandidates associated to the probe τ
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Figure A.7: Relative pz of PFCandidates associated to the probe τ
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Figure A.8: Reconstructed |η| of PFCandidates associated to the probe τ
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Figure A.9: ∆ η between the probe τ and associated particle flow candidates
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Figure A.10: ∆ φ between the probe τ and associated particle flow candidates
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Figure A.11: ∆ R between the probe τ and associated particle flow candidates
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Figure A.12: Significance of d0 for the particle flow candidates associated to the probe τ
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Figure A.13: Significance of dz for the particle flow candidates associated to the probe τ
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Figure A.14: Error of measured dz for the particle flow candidates associated to the probe τ
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Figure A.15: Error of measured d0 for the particle flow candidates associated to the probe τ
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Figure A.16: Measured dz for the particle flow candidates associated to the probe τ
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Figure A.17: Measured d0 for the particle flow candidates associated to the probe τ
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Figure A.18: d0 dz for the particle flow candidates associated to the probe τ
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Figure A.19: d0 ∆φ for the particle flow candidates associated to the probe τ
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Figure A.20: Puppi weight for the particle flow candidates associated to the probe τ
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Figure A.21: Lost Inner Hits for the particle flow candidates associated to the probe τ
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Figure A.22: Pixel Hits for the particle flow candidates associated to the probe τ
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Figure A.23: Strip Hits for the particle flow candidates associated to the probe τ
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Figure A.24: FromPV flag for the particle flow candidates associated to the probe τ

154



Appendix B Chapter A

0.4− 0.2− 0 0.2 0.4 0.6 0.8 1 1.2 1.4
Is High Purity Track (pfCand)

0

100

200

300

400

500

310×

E
ve

nt
s/

B
in

Preliminary CMS  (13 TeV)-12016, 36 fb

Data
QCD
Top+Rare
EWK
DY Others

H
τµτ→Z

%8

%0

%12

%1

%76

0.8

0.9

1

1.1

1.2

D
at

a/
M

C

0.4− 0.2− 0 0.2 0.4 0.6 0.8 1 1.2 1.4
Is High Purity Track (pfCand)

0

50

100

150

200

250

300

310×

E
ve

nt
s/

B
in

Preliminary CMS  (13 TeV)-12017, 41.5 fb

Data
QCD
Top+Rare
EWK
DY Others

h
τµτ→Z

%7

%4

%21

%3

%64

0.8

0.9

1

1.1

1.2

D
at

a/
M

C

Figure A.25: High Purity flag for the particle flow candidates associated to the probe τ
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Figure A.26: IsBarrel flag for the particle flow candidates associated to the probe τ
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Figure A.27: Vertex Quality flag for the particle flow candidates associated to the probe τ
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B.1 The di-τh Trigger

The current di-τh trigger was developed after CMS Run-I to maintain acceptable
efficiency in the high activity Run-II environment, without increasing rates beyond al-
lowable thresholds. This trigger begins by clusterizing the hits in the E/HCAL around
local maxima into 3 by 3 sections in the η−φ plane. The energy from the decay lies inside
this initial cluster for the majority of one prong and one prong plus neutral pion decays.
A second maximum outside of this initial cluster exists for 20 % of all three-prong tau
decays, and so additional merging is required. The scaled sum of the energy deposited in
the ECAL and HCAL gives the L1T reconstructed of the tau energy CMS-DP-2016-037:

Eτ = a× EECAL + b× EHCAL + c (B.1)

The reconstruction algorithm yields fairly accurate energy and angular resolution at
the L1. Next, pattern recognition is employed to verify that the cluster distribution
is consistent with tau decays. After passing this criterion, the isolation of the tau is
calculated as the residual energy in a 5 by 9 area in η − φ surrounding the primary
cluster. If a jet successfully passes all these listed selections, then it continues onto the
HLT trigger where a more refined choice based further on particle-flow is applied.

The final result is an efficiency of around 40 % for a tau with pT = 40 GeV [Fig B.1].
The trigger has a threshold of pT (τ) >= 35 GeV per-leg.

Measurement of the di-τh trigger efficiencies are made in data by the CMS τh Physics
Object Group (POG) using a tag-and-probe method in the µτh final state. The tag is
a reconstructed and isolated muon matched to a single muon trigger object, while the
probe is a τh passing the a tight MVA selection and matched with the τh leg of a µτh
cross-trigger. The cross-trigger is identical to that used in the hadronic di-τh trigger.

The corresponding simulation to data scale factors (εDATA/εMC = SF) for a very tight
isolation selection are applied to correct each τh leg of the di-τh triggers. Analogously the
offline isolation selection has a corresponding simulation to data scale factor measured
in the µτh final state.
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Figure B.1: Plotted on the left above is the performance per tau leg for the di-τh
trigger CMS-DP-2018-009. The y-axis gives the efficiency to reconstruct a genuine
tau decay. On the right, a similar efficiency curve is plotted for pmissT in 2017. The
ratio of efficiencies yields the scale factor (εDATA/εMC = SF).

B.2 pmissT Trigger

Addition of the pmissT trigger was made as it can increase the stau signal efficiency
by as much as 7 %. The pmissT trigger is much more sensitive to pile-up and calibration
effects than the di-τh trigger, and so a more careful approach is necessary for the L1T.

At L1 CaloJets are found using a sliding 3 by 3 window with cells of size 4 by 4
in the H/ECAL. Windows containing central 4 by 4 regions with energy in excess of
all surrounding neighbors, and above a minimum threshold, are selected as jets. The
CaloJets are pile-up subtracted and calibrated. Next, the pmissT is constructed using the
CaloJets. Thresholds are chosen according to trigger rate limitations. Continuing onto
the HLT, PF is implemented to compute pmissT with better resolution.

The pmissT trigger efficiency is measured in data by V. Dutta with the help of an addi-
tional single electron trigger (HLT Ele27 WPTight Gsf in 2016, HLT Ele32 WPTight Gsf
OR HLT Ele32 WPTight Gsf L1DoubleEG in 2017). The number of events passing the
single electron trigger and the following additional selection criteria defines the denomi-
nator of the efficiency ratio:

• Events must have an electron with pT > 35 GeV, passing tight selection criteria,
that is within ∆R < 0.1 of the trigger object that fired the electron trigger.

• To match the event topology of the analysis the presence of at least two jets is
required. Counting is made on jet objects that are at least ∆R = 0.4 away from
the electron trigger object.
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• The pmissT filters are also applied [Sec. 7.4.5].

Dividing the number of events that pass the selection above and the pmissT trigger by
the number of events that pass only the selection above gives the efficiency to pass the
pmissT trigger. Taking the ratio of efficiencies measured in data and simulation yields the
pmissT trigger scale factor [Fig. B.1].

Lastly, a trigger used to select single isolated muons is applied to construct an unbi-
ased region to study tau performance from Z → ττ → µντνττh and to collect events in
the Z → µµ channel used to correct the mass and pT spectrum.

A summary of the selected HLT paths is shown below [Tab. B.3].
The turn-on for the di-τh trigger is quite slow and does not achieve full efficiency at

the plateau. Therefore, utilizing the pmissT trigger recovers some signal efficiency. The
OR between these two triggers is very complicated to correctly model, and so offline
selections are made to orthogonalize between their use. In the region of pmissT < 200 GeV
the di-τh trigger is used, whereas in the region pmissT >= 200 GeV events are selected
from the pmissT trigger. The relatively high offline selection value of pmissT >= 200 GeV is
selected to avoid modeling the complicated slope of the trigger turn-on.

B.3 Datasets Used

Data-taking period HLT path
2016 HLT DoubleMediumIsoPFTau35 Trk1 eta2p1 Reg

HLT DoubleMediumCombinedIsoPFTau32 Trk1 eta2p1 Reg
HLT PFMET120 PFMHT120 IDTight
HLT IsoMu22 or HLT IsoMu24

2017 HLT DoubleTightChargedIsoPFTau35 Trk1 TightID eta2p1 Reg
HLT DoubleTightChargedIsoPFTau40 Trk1 eta2p1 Reg
HLT DoubleMediumChargedIsoPFTau40 Trk1 TightID eta2p1 Reg
HLT PFMET120 PFMHT120 IDTight PFHT60
HLT PFMETNoMu120 PFMHTNoMu120 IDTight PFHT60
HLT PFMETTypeOne120 PFMHT120 IDTight PFHT60
HLT PFMET140 PFMHT140 IDTight
HLT PFMETNoMu140 PFMHTNoMu140 IDTight
HLT PFMETTypeOne140 PFMHT140 IDTight
HLT IsoMu27 or HLT IsoMu29

Table B.1: HLT paths corresponding used for data collection in 2016 and 2017. Not
all trigger paths were available for the full data-taking period.

The datasets used in the combined 2016 and 2017 analysis result in 77.2 fb−1 [Tab. B.2],
[Tab. B.3]. Separate Monte Carlos samples have been produced to replicate the sepa-
rate detector conditions and to introduce improved tunes over the two years [Tab. B.4],
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Dataset
/Tau/Run2016B-03Feb2017-ver1-v2/MINIAOD

/Tau/Run2016B-03Feb2017-ver2-v2/MINIAOD

/Tau/Run2016C-03Feb2017-v1/MINIAOD

/Tau/Run2016D-03Feb2017-v1/MINIAOD

/Tau/Run2016E-03Feb2017-v1/MINIAOD

/Tau/Run2016F-03Feb2017-v1/MINIAOD

/Tau/Run2016G-03Feb2017-v1/MINIAOD

/Tau/Run2016H-03Feb2017-ver2-v1/MINIAOD

/Tau/Run2016H-03Feb2017-ver3-v1/MINIAOD

/MET/Run2016B-03Feb2017 ver1-v1/MINIAOD

/MET/Run2016B-03Feb2017 ver2-v2/MINIAOD

/MET/Run2016C-03Feb2017-v1/MINIAOD

/MET/Run2016D-03Feb2017-v1/MINIAOD

/MET/Run2016E-03Feb2017-v1/MINIAOD

/MET/Run2016F-03Feb2017-v1/MINIAOD

/MET/Run2016G-03Feb2017-v1/MINIAOD

/MET/Run2016H-03Feb2017 ver2-v1/MINIAOD

/MET/Run2016H-03Feb2017 ver3-v1/MINIAOD

/SingleMuon/Run2016B-03Feb2017 ver1-v1/MINIAOD

/SingleMuon/Run2016B-03Feb2017 ver2-v2/MINIAOD

/SingleMuon/Run2016C-03Feb2017-v1/MINIAOD

/SingleMuon/Run2016D-03Feb2017-v1/MINIAOD

/SingleMuon/Run2016E-03Feb2017-v1/MINIAOD

/SingleMuon/Run2016F-03Feb2017-v1/MINIAOD

/SingleMuon/Run2016G-03Feb2017-v1/MINIAOD

/SingleMuon/Run2016H-03Feb2017 ver2-v1/MINIAOD

/SingleMuon/Run2016H-03Feb2017 ver3-v1/MINIAOD

Table B.2: Datasets used in the 2016 analysis.

[Tab. B.5]. Because of the large cross section DY+jets is generated at LO, whereas rarer
events such as top quark, di-boson, and Higgs boson related processes are generated
at NLO. Background processes are then rescaled to the most precisely calculated cross
section available, typically that of NNLO.
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Dataset
/Tau/Run2017B-31Mar2018-v1/MINIAOD

/Tau/Run2017C-31Mar2018-v1/MINIAOD

/Tau/Run2017D-31Mar2018-v1/MINIAOD

/Tau/Run2017E-31Mar2018-v1/MINIAOD

/Tau/Run2017F-31Mar2018-v1/MINIAOD

/MET/Run2017B-31Mar2018-v1/MINIAOD

/MET/Run2017C-31Mar2018-v1/MINIAOD

/MET/Run2017D-31Mar2018-v1/MINIAOD

/MET/Run2017E-31Mar2018-v1/MINIAOD

/MET/Run2017F-31Mar2018-v1/MINIAOD

/SingleMuon/Run2017B-31Mar2018-v1/MINIAOD

/SingleMuon/Run2017C-31Mar2018-v1/MINIAOD

/SingleMuon/Run2017D-31Mar2018-v1/MINIAOD

/SingleMuon/Run2017E-31Mar2018-v1/MINIAOD

/SingleMuon/Run2017F-31Mar2018-v1/MINIAOD

Table B.3: Datasets used in the 2017 analysis.

Category Sample name Cross section [pb]
DY+jets DYJetsToLL M-50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 5765.4
DY+jets DY1JetsToLL M-50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 1231.20
DY+jets DY2JetsToLL M-50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 404.685
DY+jets DY3JetsToLL M-50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 123.789
DY+jets DY4JetsToLL M-50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 66.6368
DY+jets DYJetsToLL M-10to50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 18610
Top TTTo2L2Nu TuneCUETP8M2 ttHtranche3 13TeV-powheg-pythia8 87.315
Top ST tW antitop 5f NoFullyHadronicDecays 13TeV-powheg-pythia8 TuneCUETP8M1 19.6
Top ST tW top 5f NoFullyHadronicDecays 13TeV-powheg-pythia8 TuneCUETP8M1 19.6
Top TTWJetsToLNu TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8 0.204
Top TTZToLLNuNu M-10 TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.253
Other SM ZZTo2L2Nu 13TeV powheg pythia8 0.564
Other SM ZZTo2L2Q 13TeV amcatnloFXFX madspin pythia8 3.22
Other SM ZZTo4L 13TeV-amcatnloFXFX-pythia8 1.212
Other SM WZTo2L2Q 13TeV amcatnloFXFX madspin pythia8 5.6
Other SM WZTo3LNu TuneCUETP8M1 13TeV-powheg-pythia8 4.43
Other SM WWTo2L2Nu 13TeV-powheg 10.481
Other SM WWW 4F TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.209
Other SM WWZ TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.165
Other SM WZZ TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.056
Other SM ZZZ TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.014
Other SM GluGluHToTauTau M125 13TeV powheg pythia8 2.78
Other SM ZHToTauTau M125 13TeV powheg pythia8 0.0532144
Other SM WplusHToTauTau M125 13TeV powheg pythia8 0.0340648
Other SM WminusHToTauTau M125 13TeV powheg pythia8 0.0549587

Table B.4: Simulated samples used for the background prediction in the analysis of
2016 data. The Moriond17 datasets are used. Note that first the Standard Model
process is listed, next the specific topology of that process, e.g., number of additional
jets. Lastly the PYTHIA tune ( Tune* ) and the matrix element generator (13TeV-* )
are listed.
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Category Sample name Cross section [pb]
DY+jets DYJetsToLL M-50 TuneCP5 13TeV-madgraphMLM-pythia8 5765.4
DY+jets DY1JetsToLL M-50 TuneCP5 13TeV-madgraphMLM-pythia8 1070.5
DY+jets DY2JetsToLL M-50 TuneCP5 13TeV-madgraphMLM-pythia8 375.03
DY+jets DY3JetsToLL M-50 TuneCP5 13TeV-madgraphMLM-pythia8 147.11
DY+jets DY4JetsToLL M-50 TuneCP5 13TeV-madgraphMLM-pythia8 49.741
Top TTTo2L2Nu TuneCP5 13TeV-powheg-pythia8 87.31
Top TTToSemiLeptonic TuneCP5 PSweights 13TeV-powheg-pythia8 364.36
Top ST tW antitop 5f NoFullyHadronicDecays TuneCP5 13TeV-powheg-pythia8 19.56
Top ST tW antitop 5f NoFullyHadronicDecays TuneCP5 13TeV-powheg-pythia8 19.56
Top ST tW top 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8 19.56
Top TTWJetsToLNu TuneCP5 13TeV-amcatnloFXFX-madspin-pythia8 0.2125
Top TTZToLLNuNu M-10 TuneCP5 13TeV-amcatnlo-pythia8 0.2432
Other SM ZZTo2L2Nu 13TeV powheg pythia8 0.60
Other SM ZZTo2L2Q 13TeV amcatnloFXFX madspin pythia8 5.07
Other SM ZZTo4L 13TeV-amcatnloFXFX-pythia8 1.325
Other SM WZTo2L2Q 13TeV amcatnloFXFX madspin pythia8 9.24
Other SM WZTo3LNu TuneCUETP8M1 13TeV-powheg-pythia8 4.43
Other SM WWTo2L2Nu 13TeV-powheg 4.9
Other SM WWW 4F TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.209
Other SM WWZ TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.165
Other SM WZZ TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.056
Other SM ZZZ TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.014
Other SM GluGluHToTauTau M125 13TeV powheg pythia8 2.78
Other SM ZHToTauTau M125 13TeV powheg pythia8 0.0532144
Other SM WplusHToTauTau M125 13TeV powheg pythia8 0.0340648
Other SM WminusHToTauTau M125 13TeV powheg pythia8 0.0549587

Table B.5: Simulated samples used for the background prediction in the analysis of
2017 data. The 12Apr2018 re-miniAOD datasets are used.
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B.4 Simulation Corrections and Their Uncertainties

• Tau energy scale is corrected in the simulation according to measurements made
by the CMS τh POG in the µτh channel. The measured shifts are -0.5 (0.7)%,
1.1 (-0.3) %, 0.6 (-1) % for one prong, one prong + π0, and three prong decays,
respectively, in 2016 (2017). An uncertainty in this correction of 1.2 % is propagated
through to the final results.

• In initial Monte Carlo simulation an anticipated pile-up distribution is used to
mix in the expected pile-up events. The underlying generator distribution is later
corrected to match the distribution delivered by the LHC. Uncertainties in this
correction are propagated into the yields as a difference of event weights.

• There are known differences between efficiency in simulation and data for genuine
and fake jets to pass the b-jet selection. These differences are corrected jet-by-
jet and the product of these weights is used to adjust the overall event weight.
Uncertainties in each scale-factor are propagated into the yields as a difference of
event weights.

• There are known differences between efficiency in simulation and data for genuine
and fake events to pass the b-jet selection. These differences are corrected jet-by-
jet and the product of which is used to adjust the event weight. Uncertainties in
each scale-factor are propagated into the yields as a difference of event weights.

• Differences in jet-by-jet energy scale and resolution are corrected for. Global
variables such as pmissT and Nj are calculated with the varied collections. This results
in a variation of the event yields which is propagated as a systematic.

• Drell-Yan mass and pT are simultaneously corrected using binned measurements
from the Z → µµ channel. These corrections can be thought of an LO to highest
order correction. A systematic is propagated by measuring the difference between
this correction and a simulated LO to NLO correction.

• Tau Isolation Efficiency is corrected by using the scale factor previously de-
scribed along with the previously described uncertainty [App. 7.4.3, Sec. 8.3]

• Tau Trigger Efficiency is corrected using the scale factor derivation previously
described [App. B.1]. No systematic is propagated as this uncertainty is considered
to be covered by the offline isolation systematic.

• Muon Trigger and Reconstruction Efficiency is measured and corrected for
when using the µτh control region. No systematic is considered.
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B.5 Statistical Methods at the LHC

In order to make a formal statistical claim regarding the outcome of the analy-
sis two hypothesis must be posited, one in which the universe contains only Stan-
dard Model processes (H0) and one in which stau production exists as described by
the SMP describing direct stau production (H1). In this case the Neyman-Pearson
lemma dictates that the ratio of the likelihoods gives the most powerful hypothesis
test statistic, this in turn motivates the profile-likelihood test statistic λµ defined be-
low Gross:1099994,Cowan:2013pha,Cranmer:2015nia

λµ =
L(µ, θ̂(µ))

L(µ̂, θ̂)
, (B.2)

here the terms θ̂ and µ̂ in the denominator are the nuisance parameters and signal strength
multiplier, µ̂ = σobs/σSM, which maximize the likelihood estimate, L, respectively. In the
numerator, the signal strength µ is allowed to float and a new best fit of the nuisances
θ̂(µ) is performed at each point. This test statistic along with the predicted and observed
data are used to evaluate the p-value of each hypothesis. The background only hypothesis
is constructed to be one-sided with respect to µ̂:

q0 =

{
−2 log(λ(0) µ̂ ≥ 0
0 µ̂ < 0

(B.3)

B.6 Additional Validation Regions
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Table B.6: Validation region yields for the 2016 analysis.

Search Region Fake DY Top Rare Total Pred. Obs
Low MT2 VR

300 < ΣMT , NJ = 0 4.08 ± 1.41 ± 2.67 26.9 ± 5.59 ± 9.24 0.154 ± 0.0755 ± 0.0396 0.509 ± 0.288 ± 0.238 31.6 ± 5.78 ± 9.62 25
300 < ΣMT , NJ >= 1 2.88 ± 0.991 ± 1.86 6.83 ± 1.82 ± 3.19 0.941 ± 0.199 ± 0.475 1.15 ± 0.387 ± 0.682 11.8 ± 2.12 ± 3.78 14

250 < ΣMT < 300, NJ = 0 3.55 ± 1.38 ± 1.78 21.9 ± 4.91 ± 6.15 0.788 ± 0.195 ± 0.347 1.2 ± 0.495 ± 0.546 27.4 ± 5.13 ± 6.44 27
250 < ΣMT < 300, NJ >= 1 4 ± 1.23 ± 2.02 11.9 ± 2.91 ± 3.86 1.25 ± 0.224 ± 0.599 0.734 ± 0.287 ± 0.55 17.8 ± 3.18 ± 4.43 17
200 < ΣMT < 250, NJ = 0 19.4 ± 3.14 ± 4.46 50.4 ± 7.91 ± 17 1.72 ± 0.276 ± 0.492 1.26 ± 0.475 ± 0.741 72.8 ± 8.53 ± 17.6 84

200 < ΣMT < 250, NJ >= 1 15.8 ± 2.35 ± 7.36 22.9 ± 3.71 ± 6.98 4.05 ± 0.403 ± 1.51 2.96 ± 0.674 ± 1.14 45.7 ± 4.46 ± 10.3 25
High MT2 Same-Sign VR

300 < ΣMT , NJ = 0 0.743 ± 0.398 ± 0.403 < .7 < .2 0.0348 ± 0.0233 ± 0.0514 0.777 ± 0.399 ± 0.406 1
300 < ΣMT , NJ >= 1 0.702 ± 0.478 ± 0.25 < .7 0.0952 ± 0.0561 ± 0.0238 0.149 ± 0.0493 ± 0.0841 0.945 ± 0.484 ± 0.265 0

250 < ΣMT < 300, NJ = 0 0.234 ± 0.721 ± 0.316 < .7 < .2 0.0524 ± 0.0263 ± 0.0512 0.287 ± 0.722 ± 0.32 4
250 < ΣMT < 300, NJ >= 1 2.28 ± 1.05 ± 0.372 < .7 0.082 ± 0.0519 ± 0.0796 0.062 ± 0.0283 ± 0.0755 2.43 ± 1.06 ± 0.388 2
200 < ΣMT < 250, NJ = 0 5.57 ± 1.75 ± 1.17 < .7 0.0365 ± 0.0365 ± 0.0131 0.0389 ± 0.0219 ± 0.0285 5.65 ± 1.75 ± 1.17 7

200 < ΣMT < 250, NJ >= 1 11.8 ± 2.44 ± 0.784 < .7 0.132 ± 0.0888 ± 0.0929 0.151 ± 0.0445 ± 0.0735 12.1 ± 2.44 ± 0.793 9
Low MT2 Same-Sign VR

300 < ΣMT , NJ = 0 1.24 ± 0.644 ± 0.382 < .7 < .2 0.106 ± 0.0368 ± 0.0482 1.34 ± 0.645 ± 0.385 2
300 < ΣMT , NJ >= 1 3.33 ± 0.916 ± 1.8 < .7 0.0245 ± 0.00595 ± 0.0565 0.421 ± 0.077 ± 0.197 3.77 ± 0.919 ± 1.81 3

250 < ΣMT < 300, NJ = 0 2.97 ± 0.963 ± 0.78 1.95 ± 1.53 ± 0.482 < .7 0.129 ± 0.0409 ± 0.0658 5.05 ± 1.8 ± 0.919 2
250 < ΣMT < 300, NJ >= 1 3.3 ± 1.2 ± 0.467 0.375 ± 0.375 ± 0.181 0.296 ± 0.113 ± 0.14 0.441 ± 0.079 ± 0.179 4.41 ± 1.27 ± 0.55 3
200 < ΣMT < 250, NJ = 0 18.9 ± 2.92 ± 1.28 1.51 ± 0.878 ± 1.68 0.152 ± 0.0902 ± 0.107 0.257 ± 0.0596 ± 0.187 20.8 ± 3.06 ± 2.13 14

200 < ΣMT < 250, NJ >= 1 19.7 ± 2.9 ± 4.04 < .7 0.787 ± 0.177 ± 0.401 0.97 ± 0.223 ± 0.3 21.4 ± 2.91 ± 4.07 18

High MT2 B-Enriched VR
300 < ΣMT , NJ >= 1 2.52 ± 0.989 ± 1.72 < .7 4.66 ± 0.467 ± 1.92 0.0962 ± 0.0357 ± 0.0449 7.27 ± 1.09 ± 2.58 12

250 < ΣMT < 300, NJ >= 1 4.31 ± 1.31 ± 2.5 0.37 ± 0.37 ± 0.232 8.14 ± 0.625 ± 3.22 0.0511 ± 0.0255 ± 0.0438 12.9 ± 1.5 ± 4.09 11
200 < ΣMT < 250, NJ >= 1 6.33 ± 1.97 ± 1.94 1.97 ± 1.06 ± 2.84 11.1 ± 0.723 ± 3.57 0.341 ± 0.122 ± 0.188 19.7 ± 2.36 ± 4.96 20

Low MT2 B-Enriched VR
300 < ΣMT , NJ >= 1 3.82 ± 1.07 ± 2.75 0.777 ± 0.55 ± 1.52 14.2 ± 0.823 ± 4.27 0.726 ± 0.321 ± 0.269 19.6 ± 1.49 ± 5.31 12

250 < ΣMT < 300, NJ >= 1 2.89 ± 1.67 ± 1.44 2.45 ± 1.11 ± 1.88 20.3 ± 0.971 ± 5.58 0.15 ± 0.0373 ± 0.228 25.8 ± 2.22 ± 6.07 29
200 < ΣMT < 250, NJ >= 1 17.6 ± 2.91 ± 10.3 5.85 ± 1.69 ± 3.59 55.2 ± 1.62 ± 14.3 1.5 ± 0.483 ± 0.658 80.2 ± 3.77 ± 18 59

High MT2, Small ∆φ VR
300 < ΣMT , NJ = 0 0 ± 0.416 ± 0.336 < .7 < .2 1.92 ± 0.122 ± 0.441 1.82 ± 0.433 ± 0.554 3

300 < ΣMT , NJ >= 1 0.714 ± 0.898 ± 0.0551 1.58 ± 0.918 ± 1.32 0.106 ± 0.0596 ± 0.0531 2.23 ± 0.271 ± 0.557 4.63 ± 1.31 ± 1.44 9
250 < ΣMT < 300, NJ = 0 2.12 ± 0.78 ± 1.27 0.658 ± 0.658 ± 0.17 0.0859 ± 0.0859 ± 0.0629 0.621 ± 0.072 ± 0.137 3.49 ± 1.03 ± 1.29 0

250 < ΣMT < 300, NJ >= 1 2.23 ± 1.26 ± 1.01 9.18 ± 2.31 ± 6.19 0.0781 ± 0.0531 ± 0.145 0.926 ± 0.116 ± 0.275 12.4 ± 2.64 ± 6.28 5
200 < ΣMT < 250, NJ = 0 5.1 ± 1.87 ± 2.01 1.18 ± 0.836 ± 1.71 0.0753 ± 0.0753 ± 0.0898 0.422 ± 0.0609 ± 0.12 6.78 ± 2.05 ± 2.64 12

200 < ΣMT < 250, NJ >= 1 19.3 ± 3.49 ± 4.82 22 ± 3.58 ± 24.2 0.723 ± 0.189 ± 0.238 1.72 ± 0.315 ± 0.425 43.8 ± 5.02 ± 24.7 41

165



Appendix A Chapter B

Table B.7: Validation regions yields for the 2017 analysis.

Search Region Fake DY Top Rare Total Pred. Obs
Low MT2 VR

300 < ΣMT , NJ = 0 0.942 ± 1.31 ± 0.22 16.9 ± 4.95 ± 7.39 0.413 ± 0.298 ± 0.137 0.67 ± 0.361 ± 0.631 18.9 ± 5.14 ± 7.42 29
300 < ΣMT , NJ >= 1 3.32 ± 1.34 ± 2.47 4.22 ± 1.25 ± 3.28 0.443 ± 0.377 ± 0.186 4.24 ± 1.04 ± 1.33 12.2 ± 2.15 ± 4.32 16

250 < ΣMT < 300, NJ = 0 2.93 ± 1.47 ± 0.965 13.8 ± 4.05 ± 8.51 0.0582 ± 0.0582 ± 0.2 0.644 ± 0.359 ± 0.274 17.4 ± 4.32 ± 8.57 21
250 < ΣMT < 300, NJ >= 1 1.49 ± 1.03 ± 0.319 12 ± 3.15 ± 3.31 0.00149 ± 0.00111 ± 0.00701 2.18 ± 0.696 ± 1.01 15.7 ± 3.38 ± 3.48 16
200 < ΣMT < 250, NJ = 0 12.9 ± 3.1 ± 3.53 43.2 ± 7.56 ± 18.6 0.546 ± 0.37 ± 0.732 1.49 ± 0.575 ± 0.902 58.2 ± 8.2 ± 19 56

200 < ΣMT < 250, NJ >= 1 11.3 ± 2.37 ± 4.27 15.4 ± 2.62 ± 4.46 1.94 ± 0.808 ± 1.41 2.54 ± 0.708 ± 1.42 31.2 ± 3.69 ± 6.49 26
High MT2 Same-Sign VR

300 < ΣMT , NJ = 0 0.679 ± 0.404 ± 0.413 < 1 < .2 0.0101 ± 0.00224 ± 0.00388 0.689 ± 0.404 ± 0.413 1
300 < ΣMT , NJ >= 1 1.42 ± 0.782 ± 0.214 < 1 0.0125 ± 0.0046 ± 0.0082 0.0362 ± 0.0209 ± 0.00878 1.47 ± 0.782 ± 0.214 0

250 < ΣMT < 300, NJ = 0 0.858 ± 0.906 ± 0.668 < 1 < .2 0.0117 ± 0.00223 ± 0.00417 0.869 ± 0.906 ± 0.668 5
250 < ΣMT < 300, NJ >= 1 2.7 ± 1.12 ± 0.0236 < 1 0.00382 ± 0.00237 ± 0.00563 0.0123 ± 0.00245 ± 0.00588 2.71 ± 1.12 ± 0.0249 0
200 < ΣMT < 250, NJ = 0 2.01 ± 1.36 ± 1.81 < 1 < .2 0.0146 ± 0.00257 ± 0.00651 2.03 ± 1.36 ± 1.81 4

200 < ΣMT < 250, NJ >= 1 7.64 ± 2.05 ± 0.46 < 1 0.000815 ± 0.000815 ± 0.000751 0.0163 ± 0.00283 ± 0.0156 7.65 ± 2.05 ± 0.46 4
Low MT2 Same-Sign VR

300 < ΣMT , NJ = 0 1.11 ± 0.573 ± 0.457 < 1 < .2 0.0232 ± 0.0032 ± 0.00761 1.13 ± 0.573 ± 0.457 1
300 < ΣMT , NJ >= 1 2.51 ± 0.846 ± 1.37 < 1 0.0315 ± 0.007 ± 0.0734 0.241 ± 0.161 ± 0.0603 2.78 ± 0.861 ± 1.37 2

250 < ΣMT < 300, NJ = 0 0.0864 ± 0.769 ± 2.2 < 1 < .2 0.0178 ± 0.00291 ± 0.00455 0.104 ± 0.769 ± 2.2 2
250 < ΣMT < 300, NJ >= 1 3.06 ± 1.13 ± 0.798 < 1 0.343 ± 0.226 ± 0.413 0.0418 ± 0.00446 ± 0.011 3.45 ± 1.15 ± 0.899 3
200 < ΣMT < 250, NJ = 0 17.5 ± 3.14 ± 3.68 < 1 0.000345 ± 0.000345 ± 0.000848 0.0495 ± 0.0048 ± 0.0135 17.6 ± 3.14 ± 3.68 17

200 < ΣMT < 250, NJ >= 1 11.3 ± 2.52 ± 2.43 < 1 0.0379 ± 0.00778 ± 0.0201 0.956 ± 0.439 ± 0.267 12.3 ± 2.56 ± 2.44 12
High MT2 B-Enriched VR

300 < ΣMT , NJ >= 1 0.535 ± 0.743 ± 0.134 < 1 4.25 ± 1.37 ± 0.9 0.237 ± 0.185 ± 0.182 5.03 ± 1.57 ± 0.928 7
250 < ΣMT < 300, NJ >= 1 3.02 ± 1.16 ± 1.46 0.471 ± 0.471 ± 0.416 6.57 ± 1.63 ± 4.35 0.449 ± 0.394 ± 0.628 10.5 ± 2.09 ± 4.65 8
200 < ΣMT < 250, NJ >= 1 6.07 ± 1.54 ± 3.13 0.974 ± 0.691 ± 1.6 6.06 ± 1.61 ± 2.31 0.294 ± 0.205 ± 0.534 13.4 ± 2.34 ± 4.24 8

Low MT2 B-Enriched VR
300 < ΣMT , NJ >= 1 1.82 ± 0.894 ± 1.09 1.2 ± 0.949 ± 1.46 9.85 ± 1.81 ± 4.41 2.1 ± 0.915 ± 0.759 15 ± 2.41 ± 4.83 9

250 < ΣMT < 300, NJ >= 1 4.54 ± 1.33 ± 3.19 2.07 ± 1 ± 2.42 17.8 ± 2.6 ± 6.85 0.692 ± 0.385 ± 0.929 25.1 ± 3.12 ± 7.99 17
200 < ΣMT < 250, NJ >= 1 10.4 ± 2.54 ± 5.48 6.17 ± 2.01 ± 4.01 32.5 ± 3.34 ± 7.44 2.1 ± 0.804 ± 1.39 51.1 ± 4.72 ± 10.2 46

High MT2, Small ∆φ VR
300 < ΣMT , NJ = 0 0.949 ± 0.521 ± 0.488 1e-07 ± 0 ± 2e-07 0.000895 ± 0.000895 ± 0.000192 1.81 ± 0.405 ± 0.388 2.75 ± 0.66 ± 0.623 0

300 < ΣMT , NJ >= 1 1.04 ± 1.02 ± 0.359 6.98 ± 2.07 ± 3.91 0.00474 ± 0.0022 ± 0.00127 1.87 ± 0.455 ± 0.42 9.9 ± 2.36 ± 3.95 11
250 < ΣMT < 300, NJ = 0 0.91 ± 0.692 ± 0.0505 3.11 ± 1.95 ± 4.28 0.00202 ± 0.00202 ± 0.00121 0.354 ± 0.21 ± 0.16 4.38 ± 2.08 ± 4.28 2

250 < ΣMT < 300, NJ >= 1 3.36 ± 1.61 ± 0.0821 9.1 ± 2.5 ± 6.48 0.00101 ± 0.00101 ± 0.00114 0.751 ± 0.302 ± 1.07 13.2 ± 2.99 ± 6.57 17
200 < ΣMT < 250, NJ = 0 1.59 ± 1.02 ± 0.466 1.26 ± 0.936 ± 3.79 1e-07 ± 0 ± 0 0.106 ± 0.0238 ± 0.0502 2.95 ± 1.38 ± 3.81 5

200 < ΣMT < 250, NJ >= 1 4.07 ± 2.45 ± 2.92 22 ± 3.86 ± 9.69 0.492 ± 0.491 ± 0.116 1.13 ± 0.425 ± 0.906 27.7 ± 4.62 ± 10.2 43

To ensure the test statistic is not penalized when fluctuations bring the background
below predictions a lower bound is introduced. This statistic is valuable for rejecting
the hypothesis H0 which is equivalent to affirming H1, i.e., claiming a discovery. When
rejecting the latter hypothesis the one-sided test statistic for a hypothesis of H1 with
signal strength µ becomes

qµ =

{
−2 log(λ(µ)) µ̂ ≤ µ
0 µ̂ > µ

(B.4)

The p-value test statistic of q0 is calculated by integrating over the corresponding
probability distribution function of the background only hypothesis f(q0|b)dq0 from the
observed q0,obs to infinity, i.e.

pb =

∫ ∞
q0,obs

f(q0|µ = 0, θ̂(µ = 0))dq0. (B.5)

Similarly, such a p-value also exists for the hypothesis of background with signal and
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corresponding multiplier µ, qµ,

ps+b =

∫ ∞
qµ,obs

f(qµ|µ, θ̂(µ))dqµ. (B.6)

A Z-score can then be computed assuming that the distribution of p-values is Gaussian
distributed:

Z = Φ−1(1− p), (B.7)

where Φ is the cumulative distribution function of the Gaussian. The typical threshold
for claiming the discovery of a new process is 5 sigma, whereas exclusion takes place at
1.64 sigma (95 %).

When setting upper limits on signal cross sections the standard prescription is to
create a more robust estimate by adjusting the p-value ps+b as follows:

p′s+b =
ps+b

1− pb
. (B.8)

This can be statistically interpreted as the ratio of the probability to produce a false-
negative signal rejection normalized by background only true-positive probability. The
convention is to exclude a signal production scenario when p′s+b < .05.

In the most general case, these probability distributions cannot be calculated exactly
and must be sampled explicitly by throwing toys, i.e., by varying the nuisance parameters
and sampling the resulting event counts. Often explicit generation of toys can be avoided
by making use of the asymptotic form of the test statistic from which it can be shown
that Gross:1099994:

pµs+b(Asymptotic) = 1− Φ(
√
qµ) −→ p′µs+b(Asymptotic) =

1− Φ(
√
qµ)

Φ(
√
q0 −

√
qµ)

. (B.9)

Stress tests carried out for the analysis showed that the 95% confidence level ex-
pected upper limit was decreased by roughly 10 % when using the asymptotic formulas
in the analysis – for computational convenience, it was decided to use the asymptotic
formulation.
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[91] R. Frühwirth, W. Waltenberger, and P. Vanlaer, Adaptive Vertex Fitting, Tech.
Rep. CMS-NOTE-2007-008, CERN, Geneva, Mar, 2007.

[92] CMS Collaboration, S. Chatrchyan et. al., Description and performance of track
and primary-vertex reconstruction with the CMS tracker, JINST 9 (2014), no. 10
P10009, [arXiv:1405.6569].

[93] CMS Collaboration, A. M. Sirunyan et. al., Performance of the CMS muon
detector and muon reconstruction with proton-proton collisions at

√
s = 13 TeV,

JINST 13 (2018), no. 06 P06015, [arXiv:1804.0452].

[94] “Pat exercise 07: Pf2pat tutorial.” https:

//twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuidePATPF2PATExercise.

[95] CMS Collaboration, V. Khachatryan et. al., Performance of electron
reconstruction and selection with the CMS detector in proton-proton collisions at√
s = 8TeV, JINST 10 (2015) P06005, [arXiv:1502.0270].

[96] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual, Eur. Phys. J. C 72
(2012) 1896, [arXiv:1111.6097].

[97] “Cms data analysis school 2015: Jet analysis.”

[98] CMS Collaboration, V. Khachatryan et. al., Jet energy scale and resolution in
the CMS experiment in pp collisions at 8 TeV, JINST 12 (2017), no. 02 P02014,
[arXiv:1607.0366].

[99] “Jet energy corrections: Official software tools for applying jec corrections and
uncertainties..”

[100] CMS Collaboration, Plans for Jet Energy Corrections at CMS, .

[101] T. C. collaboration, Identification of b-quark jets with the CMS experiment,
Journal of Instrumentation 8 (apr, 2013) P04013–P04013.

[102] CMS Collaboration, M. Stoye, Deep learning in jet reconstruction at CMS, J.
Phys. Conf. Ser. 1085 (2018), no. 4 042029.

[103] C. Collaboration, Performance of q-lepton reconstruction and identification in
CMS, Journal of Instrumentation 7 (jan, 2012) P01001–P01001.

[104] CMS Collaboration, A. M. Sirunyan et. al., Performance of reconstruction and
identification of τ leptons decaying to hadrons and ντ in pp collisions at

√
s = 13

TeV, JINST 13 (2018), no. 10 P10005, [arXiv:1809.0281].

175

http://xxx.lanl.gov/abs/1405.6569
http://xxx.lanl.gov/abs/1804.0452
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuidePATPF2PATExercise
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuidePATPF2PATExercise
http://xxx.lanl.gov/abs/1502.0270
http://xxx.lanl.gov/abs/1111.6097
http://xxx.lanl.gov/abs/1607.0366
http://xxx.lanl.gov/abs/1809.0281


[105] CMS Collaboration, V. Khachatryan et. al., Reconstruction and identification of
τ lepton decays to hadrons and ντ at CMS, JINST 11 (2016) P01019,
[arXiv:1510.0748].

[106] CMS Collaboration, Performance of reconstruction and identification of tau
leptons in their decays to hadrons and tau neutrino in LHC Run-2, CMS Physics
Analysis Summary CMS-PAS-TAU-16-002, 2016.

[107] CMS Collaboration, A. M. Sirunyan et. al., Performance of missing transverse
momentum reconstruction in proton-proton collisions at

√
s = 13 TeV using the

CMS detector, arXiv:1903.0607.

[108] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, and
J. Winter, Event generation with SHERPA 1.1, JHEP 02 (2009) 007,
[arXiv:0811.4622].

[109] J. M. Butterworth, G. Dissertori, and G. P. Salam, Hard Processes in
Proton-Proton Collisions at the Large Hadron Collider, Ann. Rev. Nucl. Part.
Sci. 62 (2012) 387–405, [arXiv:1202.0583].

[110] D. Kotlorz and A. Kotlorz, Evolution equations for truncated moments of the
parton distributions, Phys. Lett. B644 (2007) 284–287, [hep-ph/0610282].
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